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CHAPTER 1 MULTIMODAL IMAGING AND STAPHYLOCOCCUS AUREUS 
INFECTION 

 

OVERVIEW 
Bioanalytical modalities such as imaging mass spectrometry, sequencing, and microscopy 

are commonly used for understanding biological processes of health and disease. Characteristics 
of each modality vary in terms of spatial resolution, molecular coverage, molecular specificity, 
and whether it is targeted or exploratory. For instance, stained microscopy provides high spatial 
resolution for visualizing cell and tissue-level structure but provides low molecular specificity. In 
contrast, matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) 
provides label-free characterization of tens to thousands of chemical species within a single 
experiment; however, this comes at the cost of a coarser spatial resolution as compared to 
microscopy.  

Combining information acquired from orthogonal imaging modalities allows for the 
creation of multimodal imaging datasets, providing an opportunity for untargeted data to be 
contextualized in terms of biomolecular pathways.  These contextualized data can then be directed 
towards identifying molecular mechanisms of health and disease as well as diagnosis and 
prognosis. Methods that provide orthogonal information, such as mass spectrometry for chemical 
coverage and microscopy for spatial coverage, are best for generating multimodal imaging 
datasets.  

Recent computational advances allow the combination of different imaging modalities 
through methods such as image registration and segmentation. However, extracting biologically 
meaningful information from multimodal imaging data remains a challenge largely due to the high 
dimensionality and chemical complexity of the data. There is an acute need for integrated 
computational methods so that we can link complementary imaging modalities and elucidate 
molecular findings using the context of one to mine the other. There is also a growing body of 
work that highlights the importance of shifting from traditional univariate approaches to more 
multivariate methods to provide systems biology levels of insight into the biological system at 
hand. 

The ability to identify molecular species and map their spatial distributions in relation to 
known tissue substructures is a powerful way to track molecular differences associated with a 
specific disease and is a major goal of those using spatially targeted mass spectrometry. Analyzing 
mass spectrometry data collected from a tissue presents a number of challenges from high 
dimensionality to chemical complexity. The work summarized below aims to address and solve 
challenges associated with analyzing spatially targeted mass spectrometry data by developing new 
computational methods, data mining techniques, and visualization strategies. 

The development of these new methods is of great importance to the field of imaging, 
leveraging powerful spatially aware methods alongside robust computational techniques to 
determine localized molecular changes and provide a systems biology-level summary of chemical 
changes in tissue. The application of these new computational methods enables a superior 
approach to analyzing multimodal imaging data than were previously possible.  

Staphylococcus aureus soft tissue infections involve the formation of abscesses that cause 
changes in architecture within the host tissue microenvironment on a structural and molecular 
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level. By applying techniques developed within this body of work, the molecular heterogeneity of 
this bacterial infection was characterized and molecular drivers among staphylococcal abscesses 
and neighboring regions of infected tissue were elucidated.  

 

INTRODUCTION 
As technology advances, the amount of scientific information that can be produced from a 

given sample has increased enormously. This current era of big data offers incredible opportunities 
to understand health and disease with unprecedented nuance. However, it also presents unique 
computational challenges for the integration and visualization of datasets with high dimensionality 
and size.1 It is essential to integrate multiple modalities of data to responsibly make conclusions 
about human health.  

Bioanalytical modalities used to analyze tissue provide myriad types of data ranging from 
chemical information (comprising proteomics and lipidomics for instance) to spatial information 
(such as cellular and tissue neighborhoods obtained from stained microscopy). Each of these 
methods have trade-offs; methods that provide high spatial resolution are often limited in chemical 
specificity, whereas methods that provide deep chemical coverage have limited spatial information 
(Figure 1-1).  

 
Figure 1-1: Spatially targeted biomolecular approaches, compared by molecular coverage (e.g., number of 
identifications) and spatial resolution (on a micron scale).  

 
Of the methods detailed in this work, each provides a level of spatial resolution and 

chemical specificity (Table 1-1). Additional technologies along this spectrum are reviewed 
comprehensively in Prentice, et al. and Kruse, et al.2,3 To capture both high spatial resolution and 
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high chemical specificity, the development of biocomputational methods to combine spatially 
localized molecular measurements from multiple imaging modalities is necessary.   

 
 SPATIAL 

RESOLUTION 
CHEMICAL SPECIFICITY FOCUS 

MALDI IMS Coarse (e.g., > 10µm) High Exploratory 

Multiplexed 
Immunofluorescence 

Fine (e.g., < 1µm) High Targeted 

Autofluorescence Fine (e.g., < 1µm) Low Exploratory 

Period-Acid Schiff Fine (e.g., < 1µm) Low Targeted 

Multi-modal Imaging Fine (e.g., < 1µm) High Exploratory + 
Targeted 

Table 1-1: Comparison of spatial resolution and chemical specificity for a subset of bioanalytical imaging modalities. 

 

SPATIALLY LOCALIZED MOLECULAR MEASUREMENTS 

Microscopy 
Histological staining is a critical diagnostic tool and has been long been applied to 

characterize tissue features and cellular neighborhoods.4,5 Staining protocols are often tailored to 
the specific tissue sample and experimental question,6 although hematoxylin and eosin (H&E) and 
periodic acid-Schiff (PAS) are two broadly applicable staining approaches. Autofluorescence 
microscopy has recently been applied to characterize tissue architecture without disrupting the 
molecular composition of a sample.7,8 Stained and autofluorescence microscopies offer high 
spatial resolution but lack chemical specificity. 

Immunohistochemistry approaches apply an antibody to add specificity to tissue imaging.9 
Traditionally these approaches are limited in plexity due to the availability of primary antibody 
hosts and fluorescent reporters. Multiplexed immunofluorescence (MxIF) approaches such as Co-
detection by indexing (CODEX) address this challenge by sequential quenching of fluorophores 
or the use of oligonucleotide barcodes.10–12 These antibody-based techniques offer high spatial 
resolution but still lack the complex molecular information provided by mass spectrometry.  

Spatially Targeted Proteomics 
Within the field of proteomics, there have been advances to bridge the gap between spatial 

resolution and chemical specificity as well as chemical coverage. State of the art proteomics 
approaches usually involve liquid chromatography with tandem mass spectrometry (LC-MS/MS), 
which provides high proteomic coverage but does not maintain spatial information.13,14 Typically, 
tissues are homogenized, samples are analyzed with LC-MS/MS, and large-scale proteomic 
differences among tissues are characterized. However, with the advent of spatially targeted 
approaches such as micro-liquid extraction surface analysis (microLESA),15 we are now able to 
couple the high coverage of LC-MS/MS with spatial information. 

Proteomics methods are subject to a trade-off between proteomic coverage (number of 
protein identifications) and spatial resolution (Figure 1-1). On one end of the spectrum, LC-
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MS/MS of homogenized provides high proteomic coverage but lacks spatial information. 
Conversely, tissue imaging methods such as MALDI IMS provides proteomic data on a pixel-wise 
level at ~30-50 µm. Bridging that gap are hybrid technologies such as Nanodroplet Preparation in 
One pot for Trace Samples (nanoPOTS),16–18 which can be combined with laser capture 
microdissection to extract samples for processing with LC-MS/MS, and microLESA,15,19,20 which 
involves performing LC-MS/MS on selected ~100 µm regions of trypsin-digested tissue.  

Analyzing data acquired from spatially targeted methods such as microLESA can be 
challenging due to the high dimensionality (few samples and thousands of proteins measured) as 
well as sparsity (missing values due to small tissue sample size), requiring custom data analytical 
pipelines.  
Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry 

Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) 
allows for the untargeted detection of hundreds to thousands of molecular species from a tissue 
sample within a single experiment.21,22 Although it has somewhat lower spatial resolution than 
microscopy, IMS enables the detection and identification of a wide range of biological species at 
increased molecular coverage with high spatial resolution and sensitivity using advanced data 
processing techniques. A typical MALDI IMS experiment is performed by first taking a tissue 
section and thaw-mounting it onto a glass slide (Figure 1-2). The tissue section is then 
homogenously coated with a crystallized matrix. An automated UV laser is then applied to the 
tissue in a raster pattern, ablating the tissue and allowing for acquisition of mass spectra at specific 
pixel locations corresponding to discrete x and y coordinates. Ion intensity heatmaps, commonly 
referred to as ion images, can then be generated for specific m/z, providing spatial localization and 
intensity information across the tissue.21  

 

 
Figure 1-2: Schematic of a routine MALDI IMS experiment. 1) Tissue sections are cryosectioned and mounted onto a 
conductive glass slide. 2) MALDI matrix is applied uniformly across the slide. 3) An automated UV laser is applied 
in a raster pattern, generating a plume of ions that are analyzed by a mass spectrometer. 4) A full mass spectrum is 
generated at each pixel. 5) Ion intensity heatmaps, known as ion images, are generated for specific m/z values. 

 
Although common methods and protocols for MALDI IMS have been developed, sample 

preparation protocols are often adapted for specific tissue types and analytes of interest to 
maximize detection of ions of interest.23–27 Routine MALDI IMS experiments using commercial 
instruments are typically performed at a resolution of 10 µm, although laser focusing approaches 
and stage pitch reduction have enabled high spatial resolution as low as 1 µm.28 

Several computational tools exist for the analysis of MALDI IMS data, but few are 
specifically designed to facilitate integration of MALDI IMS data with other modalities.29,30  
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BIOCOMPUTATIONAL METHODS FOR MULTIMODAL IMAGING 
IMS data alone can provide spatially resolved molecular information. However, coupled 

with other types of imaging modalities such as microscopy, it allows for even higher spatial and 
molecular resolution. For example, IMS provides highly resolved chemical specificity, but 
relatively low spatial resolution. Microscopy can provide a much higher spatial resolution, but 
relatively low chemical specificity. As such, combining an IMS dataset with a microscopy image, 
each obtained on serial sections of tissue can offer much higher resolution chemical and spatial 
resolution.  

Recent advances to couple these IMS and microscopy include multimodal image 
registration.8 Landmark registration has been used to co-register MALDI IMS data with stained 
and autofluorescence microscopy. The resultant registered image offers improved spatial 
resolution for MALDI IMS data and allows for more granular comparison of tissue substructures.8 
Another example of multimodal imaging can be seen with image fusion of IMS and microscopy 
images.31 This computationally driven process integrates IMS and microscopy, resulting in an 
image that is rich in chemical and spatial resolution using a statistical regression approach. 
Multivariate regression is applied to microscopy measurements to predict ion distributions, 
increasing ion image resolution by an order of magnitude. 

Image registration and fusion are two methods that can be performed using IMS and other 
imaging modalities that offer higher chemical and/or spatial resolution. Ongoing efforts at the 
interface of hardware and software development seek to further improve chemical specificity, 
chemical coverage, and spatial resolution by improving IMS technology as well as incorporating 
other imaging modalities such as multiplexed immunofluorescence, transcriptomics, and 
elemental imaging.  
Computational challenges for multimodal imaging 

Several challenges exist for the analysis and integration of multiple data types. These 
include data dimensionality and structure as well as data visualization.   

IMS data is highly dimensional and large in terms of data size, often requiring a form of 
data compression to decrease the computational load.29,30,32 Methods to compress IMS data include 
binning mass spectra for each pixel or compressing them based on regions of interest (ROI) and 
generating average spectra. One compression method based on ROIs is image segmentation, which 
involves subdividing tissue regions with  homogenous spectral profiles and identifying co-
localized m/z values.29,30 Another data compression approach uses unsupervised machine learning 
to reduce dimensionality and extract features (specific m/z values) for downstream statistical 
analysis.32 One common unsupervised approach is principal component analysis (PCA), which 
involves combining individual variables (specific m/z values) into linear combinations that exhibit 
similar behavior. These groups are known as “components” and represent patterns in the data with 
far fewer dimensions. Another example of an unsupervised approach is non-negative matrix 
factorization (NMF), which works similarly as PCA, with the exception that all calculations are 
performed in the positive domain, making it especially useful for IMS observations where there 
are no negative values in the dataset and the resultant components can be represented as average 
spectra. In addition to these types of dimensionality reduction techniques, other unsupervised 
machine learning approaches such as hierarchical clustering and k-means clustering can also be 
used to determine potential groupings of the data based on spectral similarity.32  
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In addition to data dimensionality and structure, visualization of IMS data remains a 
challenge. Large and multivariate datasets require extensive computational power and visualizing 
multiple imaging modalities in an integrated manner further necessitates computational 
bandwidth. Advanced machine learning methods have been developed to mathematically integrate 
IMS data with microscopy into a combined form; these include data-driven image fusion31 and 
interpretable machine-learning based marker discovery.33 However, these integrated images are 
not as functional for molecular imaging studies where human interpretation by domain experts is 
the goal. Although image viewers such as QuPath34 and Napari35 support multiple imaging 
modalities where viewers can import multimodal imaging data and selectively view each side-by-
side or overlaid with varying degrees of transparency, there remains a need for novel visualization 
strategies that allow for spatial mapping of different source modalities into the same coordinate 
systems while still allowing the content of the original modalities to be viewed and considered 
separately.   

 
CASE STUDY: STAPHYLOCOCCUS AUREUS ABSCESS FORMATION AND 

DEVELOPMENT 
Staphylococcus aureus is a gram-positive bacterium which presents a severe public health 

concern, responsible for over 20,000 deaths36 and costing between $3.2 billion to $4.2 billion37 
annually in the US alone. A hallmark of S. aureus infection and disease progression is the 
formation of abscesses.38 These abscesses begin as bacterial colonies and quickly progress into 
intricate three-dimensional structures that cause changes in architecture within the host tissue 
microenvironment on a cellular and molecular level.39,40 These abscesses, once thought to be static 
lesions, are now understood to be dynamic environments consisting of a staphylococcal 
microbiology at the center of the abscess with defined layers consisting of necrotic host tissue, 
host immune cells, and microbial cells which release factors that support disease progression.19,39,40  

The geometry of the abscess changes depending on the region of infection, making each 
infection a unique biological system. Further, the three-dimensional nature of these infections 
presents more complexity because the differential interaction between the bacteria and their host 
environment results in depth gradients of oxygen and nutrients necessary for their survival as well 
as gradients in host and pathogen proteins involved in inflammation.39,41 Previous work has 
suggested that these abscesses are simply regions of dead neutrophils and stagnant bacteria; 
however, recent work has shown that these abscesses are in fact comprised of active bacteria with 
spatially oriented gradients of living and dead immune cells.42 These gradients indicate that there 
is a complex microenvironment within the host-pathogen interface, where presumably there is a 
complicated interplay between the host proteins and pathogen proteins. For instance, it has been 
speculated that intracellular S. aureus could be a reservoir for antibiotic resistant bacteria.42 
Combined, these factors make spatial characterization of the bacterial host-pathogen interface a 
major challenge.  

 
SUMMARY AND RESEARCH OBJECTIVES 

In order to improve our current biocomputational approaches to integrate multimodal 
molecular imaging data and further understand staphylococcal abscess development, a series of 
technological and biological advancements were made using three independent approaches. 
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First, an automated unsupervised method for analyzing high-dimensional spatially targeted 
proteomic data utilizing PCA followed by k-means clustering was developed. The technical 
contribution was to create a method to rapidly filter complex proteomics data from a microLESA 
experiment and determine the most relevant species from hundreds to thousands of measured 
proteins in the form of ranked protein lists and pathway enrichments, thereby providing a systems-
level view into complex molecular biological processes. From a biological standpoint, this method 
was used to identify key metabolic and cytoskeletal reorganization processes involved in infection 
as well as proteins involved in calcium-dependent, metabolite interconversion, and cytoskeletal 
processes that were enriched in sites of infection, especially at the ten days post-infection 
timepoint.  

Second, CODEX immunofluorescence and MALDI IMS data were integrated and 
segmentation methods for microscopy were evaluated involving watershed and intensity-based 
thresholding; upon evaluation, it was determined that a more multivariate approach was needed 
and so a k-means clustering method for CODEX immunofluorescence data was developed. From 
a biological perspective, cell types that were not labeled by antibodies were discovered and spectra 
for these cell types were extracted and molecular heterogeneity within a staphylococcal abscess 
was observed; lipids co-localizing to specific abscess rich and non-abscessed regions were also 
identified.  

Finally, to address the challenge of multi-modal microscopy and IMS data visualization, a 
contour mapping strategy was developed to overlay whole-slide images comprising IMS and PAS. 
Biologically, this provided insights into the directionality and morphology of abscess development 
using IMS signals in the form of contour maps.  
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CHAPTER 2 A RAPID MULTIVARIATE ANALYSIS APPROACH TO EXPLORE 
DIFFERENTIAL SPATIAL PROTEIN PROFILES IN TISSUE 

 
This chapter was adapted with permission from Sharman, et al., Journal of Proteome Research. 
Copyright 2022 American Chemical Society. 

 

OVERVIEW 
Spatial proteomics is a method that analyzes the protein content of specific cell types and 

functional regions within tissue. Although spatial information is often key to understanding 
biological processes, interpreting region-specific protein profiles can be challenging due to the 
high dimensionality of the proteomic data acquired. Herein, we developed a multivariate analysis 
approach to rapidly explore differential protein profiles acquired from distinct tissue regions and 
applied it to analyze a spatially targeted proteomics dataset collected from Staphylococcus aureus-
infected murine kidney at two timepoints (4- and 10- days post infection). This approach consists 
of applying a principal component analysis (PCA) for dimensionality reduction of protein profiles 
measured using micro-liquid extraction surface analysis (microLESA) mass spectrometry. 
Following PCA, k-means clustering was applied onto the PCA-processed data, thereby grouping 
samples by chemical similarity in an unsupervised manner. Cluster center interpretation revealed 
a subset of proteins that differentiate between spatial regions of infection over two time points. A 
gene ontology analysis of these proteins revealed that these proteins are involved in metabolomic 
pathways, calcium-dependent processes, and cytoskeletal organization. We also discovered that 
Annexins 2, 3, and 5 were increased in areas of infection and speculated that while Annexin 2 may 
be facilitating staphylococcal anchoring in tissue, Annexin 3 and Annexin 5 may be conferring 
various degree of host protection during infection. In summary, applying this multivariate analysis 
pipeline to an infectious disease case study highlighted differential protein changes across regions 
of infection over time, highlighting the dynamic nature of the host-pathogen interface.  

 
INTRODUCTION 

The proteomics field has developed an extensive set of methods to separate, purify, 
identify, and quantify proteins.43–48 For instance, liquid chromatography with tandem mass 
spectrometry (LC-MS/MS) was developed to provide deep proteomic coverage on the order of 
tens to thousands of proteins; however, this coverage is possible due to tissue homogenization, 
which removes spatial context. 13,14 As such, LC-MS/MS is powerful for identifying proteins and 
their post-translational modifications. Within the biomedical space, this method has been applied 
to research diseases such as cancer49–51, diabetes52–55, and heart disease56–59.  Proteomics can also 
be applied in a spatially targeted way, for instance, using matrix-assisted laser 
desorption/ionization imaging mass spectrometry (MALDI IMS),21,22,60–62 which can be used to 
acquire protein measurements for hundreds of species simultaneously at a relatively high spatial 
resolution of anywhere from 10µm to 50µm.63,64 As a result, MALDI IMS can provide an 
unparalleled combination of high plexity and high spatial resolution for molecular imaging; 
however, since the sample acquisition is over a smaller section of tissue as compared to a larger 
homogenized tissue section, the overall protein coverage and confidence in identifications is lower 
than LC-MS/MS.65,66 
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In between these two extremes in terms of spatial and protein coverage are hybrid 
technologies that leverage histology-directed spatial acquisition with LC-MS/MS. As a result, 
these hybrid methods can provide deeper molecular coverage than other spatial analyses from 
sampled regions. One such method is Nanodroplet Processing in One Pot for Trace Samples 
(nanoPOTS).16–18 NanoPOTS involves the use of laser capture microdissection for spatially 
targeted sample acquisition followed by LC-MS/MS analysis for protein identification and 
quantitation.67,68 This method routinely provides an average of 2,000 protein identifications at a 
100µ spatial resolution.18 Micro-Liquid Extraction Surface Analysis (microLESA) is another 
hybrid technology which involves histology-driven selection of regions of tissue. Image-guided 
robotic spotters are used to deposit picoliters of a proteolytic enzyme solution on regions of interest 
that are about ~100µm in diameter (for reference, a traditional LESA experiment is usually 
performed on regions that are 1-2mm15,69–71). After an incubation period, proteolytic peptides are 
extracted and analyzed using LC-MS/MS.  

As with any method, spatially targeted LC-MS/MS methods have their unique set of 
challenges. After LC-MS/MS acquisition, the data are processed using software such as 
MaxQuant,72,73 which cross-references the mass spectra with reference spectral databases, 
performs peptide and protein quantification, and finally generates protein identifications for each 
sample. Since these methods target smaller tissue regions, the amount of tissue acquired for 
analysis is reduced, thereby resulting in an overall decrease in the total number of proteins detected 
as compared to standard bulk proteomics results. This generates missing values within the dataset. 
Other reasons for missing values can be due to protein concentrations being below the limit of 
detection, protein measurements being filtered based on user-defined criteria, or proteins being 
missing randomly due to technical issues or a borderline signal-to-noise ratio. Furthermore, there 
is often molecular heterogeneity present in the samples due to biological variation based on sample 
location, which leads to differences in the total number of proteins identified per sample as well 
as representation of specific protein families. Within this particular study, protein coverage ranged 
from 31% - 77% among samples.15,74  

Current methods for analyzing proteomics data are often univariate in nature, focusing on 
individual proteins and assessing their differential expression among samples and between disease 
states.75–83 Although powerful in their own respect, these methods tend to be less applicable for 
capturing systems-level trends or panels of molecules working in unison, thereby limiting their 
effectiveness at retrieving the most information from originally complex multivariate data. This 
aspect coupled with the missing values prevalent in spatially targeted data make these data 
unamenable to one-on-one protein comparisons without pre-processing steps such as 
imputation.84–86 Supervised methods can be applied for protein studies; however, these are largely 
applied for categorizing samples of tissue into categories such as diseased and non-diseased or to 
differentiate among tissue regions.87–89 In comparison, the advantage of an unsupervised approach 
is that the data are allowed to separate into underlying trends, some of which will be non-biological 
and others biological, as opposed to a supervised approach where the analysis focused on 
recognizing specific pre-determined categories.  

In this work, we address the challenges and nuances of spatial proteomic data analysis by 
describing the development of a rapid automated unsupervised multivariate method using PCA 
and k-means clustering to discover molecular differentiators within a publicly available 
microLESA data set investigating Staphylococcus aureus infection in a murine kidney on a spatial 
scale and over two timepoints.74 This staphylococcal model was selected to provide insight into 
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the profound protein changes within tissue that contain bacterial abscesses, while maintaining 
broad multivariate protein coverage and avoiding prior focus on specific tissue classes of protein 
species. 

 

RESULTS & DISCUSSION 
S. aureus is a Gram-positive bacterium known to cause skin and soft tissue infections.40 A 

hallmark of staphylococcal infection is the formation abscesses within soft tissue, the development 
of which is often accompanied by changes in host architecture as well as changes in host cellular 
and molecular composition.38–40,74 Elucidating the formation of these structures, which include 
tracking the molecular changes across different regions of, and in proximity to, the abscess is 
critical for understanding how S. aureus interacts with the host immune system to infiltrate and 
proliferate as abscesses. 

In the originally published experiment,74 mice were infected with fluorescently tagged 
strains of S. aureus and their kidneys were excised for analysis at 4 or 10 DPI (Figure 2-1). Three 
regions were selected for extraction74: the staphylococcal abscess community (SAC), the non-
abscessed cortex, and the interface between the abscess and the surrounding non-abscessed cortex 
(Figure 2-2A). 42 samples were collected altogether, with 20 collected at 4 DPI (5 from the 
interface, 7 from non-abscessed cortex, and 8 from the SAC) and 22 at 10DPI (6 from the interface, 
7 from non-abscessed cortex, and 9 from the SAC). There were 3 biological replicates for each 
DPI category (6 mice total, 3 mice at 4DPI and 3 mice at 10DPI) and multiple ROIs from each of 
the 3 regions were sampled for analysis. 

 

 
Figure 2-1: Pipeline for Spatially Targeted Proteomics Data Acquisition and Analysis. A) Protein data were acquired 
from tissue samples using spatially targeted sample acquisition and then peptides were analyzed using LC-MS/MS. 
Data preprocessing involved protein identification and quantitation using MaxQuant software. B) PCA was applied 
for dimensionality reduction and grouping of correlated and anticorrelated proteins among regions and timepoints. 
The PCA-processed data were clustered by k-means, and cluster centers examined for protein identifications. 
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Figure 2-2: S. aureus-infected murine kidney. A) Graphical depiction of the host-pathogen interface of S. aureus 
infection within a murine kidney. SAC: staphylococcal abscess community (SAC). B) Summary of the total number of 
host and pathogen proteins detected. 

 

Protein Identification and Quantification 
Approximately 1,500 proteins were detected from each sample. Proteins unidentified in 

one sample but detected in another sample or that were below the limit of detection were not 
reported, thereby generating a missing value in the LFQ table. The percent of missing values in 
each sample ranged from 31% to 77% (Table 2-1).  

 

Table 2-1: Missing values per sample 
SAMPLE PERCENT MISSING VALUES 
4DPI_interface_2_4 52.71 
4DPI_interface_2_2 47.24 
4DPI_interface_2_1 52.32 
4DPI_interface_1_2 77.21 
4DPI_interface_1_1 59.70 
4DPI_cortex_3_3 56.44 
4DPI_cortex_3_2 60.77 
4DPI_cortex_2_3 57.73 
4DPI_cortex_2_2 53.29 
4DPI_cortex_2_1 58.70 
4DPI_cortex_1_2 65.17 
4DPI_cortex_1_1 50.33 
4DPI_SAC_3_3 46.19 
4DPI_SAC_3_2 48.78 
4DPI_SAC_2_3 71.71 
4DPI_SAC_2_2 72.98 
4DPI_SAC_2_1 36.96 
4DPI_SAC_1_3 45.91 
4DPI_SAC_1_2 59.45 
4DPI_SAC_1_1 48.76 
10DPI_interface_5_3 31.02 
10DPI_interface_4_3 38.92 
10DPI_interface_4_2 36.35 
10DPI_interface_4_1 46.27 
10DPI_interface_3_2 36.46 
10DPI_interface_3_1 37.27 
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10DPI_cortex_4_4 64.61 
10DPI_cortex_4_3 72.21 
10DPI_cortex_3_3 63.84 
10DPI_cortex_3_2 58.90 
10DPI_cortex_2_3 95.41 
10DPI_cortex_2_2 92.87 
10DPI_cortex_2_1 89.42 
10DPI_SAC_4_3 41.74 
10DPI_SAC_4_2 47.90 
10DPI_SAC_4_1 51.77 
10DPI_SAC_3_3 42.32 
10DPI_SAC_3_2 52.82 
10DPI_SAC_3_1 41.05 
10DPI_SAC_2_3 63.40 
10DPI_SAC_2_2 55.33 
10DPI_SAC_2_1 66.22 

 

Outliers were assessed by calculating z-scores for each sample based on the number of 
protein groups identified in each and excluding samples with a z-score > |2|. Three samples were 
excluded and a table of 39 remaining samples was generated containing protein group versus LFQ 
intensity. Missing protein values can be handled in several ways, including imputing them based 
on a pre-defined model or removing proteins that were not detected across all samples. For our 
primary analysis, we opted for the latter; all proteins with missing values in one or more samples 
were excluded, leaving a total of 287 protein groups. All 287 protein groups were identified as 
murine using the MaxQuant database search. Of note, although in this case study MaxQuant LFQ 
was used as the input data, other value types such as iBAQ intensities or raw ion intensities can 
also be provided as input data for this PCA + k-means workflow, without it requiring substantial 
changes. The choice of which input type to supply depends on what is most appropriate for the 
data set and analysis at hand. 

Once the data were pre-processed, we sought to develop an unsupervised multivariate 
method that would allow us to capture the unique proteomic signature from each of the distinct 
ROIs, but without focusing on a specific protein species and instead providing broad coverage 
across a panel of proteins. The entire 287-protein-group data set was used (4DPI (n=20) and 10DPI 
(n=19)) and region (SAC (n=17), interface (n=11), or cortex (n=11)). The data were not pooled by 
technical or biological replicate in order to provide as many measurements as possible for the 
unsupervised learning and to avoid an “averaging out” of information, which has the potential of 
underpowering the analysis, especially given the low number of samples already (n=39).  

Principal Component Analysis Followed by k-Means Clustering 
PCA was selected to address the “curse of dimensionality,” which broadly summarizes the 

myriad challenges in analyzing and identifying patterns in high-dimensional data. PCA works by 
grouping correlated and anticorrelated features into a series of orthogonal components. As a result, 
the data are transformed from a high-dimensional space into a lower-dimensional space with 
minimal loss of information.  

For this analysis, PCA with a randomized solver90 was applied to reduce the dimensionality 
of the data and group correlated and anticorrelated proteins based on the protein LFQ intensity 
values. This resulted in a reduction of the overall dataset, from a matrix of dimensions [39 x 287] 
to that of [39 x 39]. All components were retained to avoid the loss of information. The first and 
second principal components accounted for 81.35% and 10.61% of the explained variance, 
respectively, and together, these components separated the data by region and timepoint (Figure 
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2-3A). We further labeled the data by regions and timepoints to explore variation present among 
these subsets. (Figure 2-3A, C). Samples collected from the (uninfected) cortex cluster seem to 
separate away from those collected from the interface and SAC, suggesting similarity between the 
interface and SAC proteomics, which is expected since both contain regions of infection (Figure 
2-3A). There is also a degree of protein similarity among the biological replicates because samples 
within the PCA seem to cluster similarly based on biological replicate (Figure 2-3B). 

Studying the results of the PCA as a function of time point reveals a clear distinction 
between samples collected 4 and 10 DPI (Figure 2-3C). This suggests that infection time is a key 
differentiator among the protein patterns in both interface and SAC regions. Some interface 
samples that were collected 10DPI overlap closely with SAC samples collected 10DPI, suggesting 
that, after 10DPI, the interface proteome could potentially start resembling that of the SAC. This 
observation is indicative of interface heterogeneity and a differential impact of infection among 
regions of tissue surrounding bacterial abscesses. It may also imply spatial expansion of the 
immune response and expanding tissue damage as result of the progressing infection, but this 
finding would require subsequent follow-up study and validation. Conversely, samples acquired 
from the cortex where there was no infection visibly present do not show a separation between 4 
and 10DPI. 

Although PCA provides groupings of samples based on the protein (LFQ) content, a 
secondary step is required to identify and interpret protein patterns. The hypothesis was that an 
automated unsupervised clustering method would provide additional insight into the spatial 
patterns of S. aureus infection over early and late time points. Unsupervised clustering is 
commonly applied to high-dimensional data as it involves grouping similar samples together based 
on variation among measured features. Within a protein data set, samples that contain similar 
protein expressions patterns are grouped together and the underlying variation among the 
groupings can potentially represent relevant information. There are many methods for 
clustering,32,91,92 but k-means clustering93–95 with a Euclidean distance metric was chosen because 
the cluster centroids, representing the average protein pattern for each group can provide rapid and 
straightforward protein-level insight. 

For this non-imputed data set, k-means clustering was applied to the PCA-transformed 
data. Silhouette scores96 were used as a performance metric and a k of 4 was selected. Each sample 
was subsequently assigned membership to 1 of 4 clusters descriptors of samples in each cluster 
were added to aid in interpretation (Figure 2-3D).  

Studying the results of the clustering, samples from the non-abscessed cortex are grouped 
into cluster 3 and include samples from both 4DPI and 10DPI. However, there was varied cluster 
membership for samples extracted from areas of infection. cluster 4 is composed of samples 
acquired from the cortex and interface 4DPI and 10DPI, which suggests a similarity between the 
proteome of the interface early in the infection and the cortex as opposed to the proteome of other 
interface samples or the SAC. Cluster 2 consists of interface and SAC samples, both collected at 
4DPI and 10DPI. Conversely, cluster 1 only contains samples from interface and SAC at 10DPI. 
The clustering patterns of interface and SAC samples lead to two interesting observations. First, 
the SAC samples separating into two different clusters is consistent with findings of previously 
observed abscess heterogeneity39,74 and indicates that there can still be changes in abscesses that 
are seemingly fully formed. Second, that abscess formation and mounting immune response may 
take up to 10DPI to manifest in proteomic changes within the interface even ugh abscesses can be 
seen after 4DPI. This distinction in the protein content between the early and late interface is 
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notably evident as interface samples are seen clustering with cortex and SAC samples at varying 
timepoints. In summary, these observations from the k-means reveal patterns of staphylococcal 
infection progression and heterogeneity in the proteome among specific regions of infection.  

 

 
Figure 2-3: Principal Component Analysis (PCA) and k-means clustering results of proteins of an S. aureus infected 
murine kidney. A) PCA was performed on protein LFQ intensity values acquired from 3 regions and 2 timepoints. 
This unsupervised approach separates the SAC and interface (left) from the cortex samples with no visible infection 
(right). B) Samples also seem to cluster based on biological replicate within the PCA space. C) There is a separation 
among the samples 4- and 10-days post infection within samples acquired from region of infection; this separation is 
not seen from samples acquired from the cortex where there was no visible infection. D) k-means clustering was used 
to cluster the samples after PCA. k = 4 was determined using silhouette scores as a metric. To aid in interpretation, 
clusters are labeled by the regions and timepoints from which samples were collected. 

 
Cluster Interpretation 

The multivariate analysis presented provides broad proteomic insight based on underlying 
proteomic (LFQ) variations and, within this model of infectious disease, offers a high-level 
understanding of protein differences between two time points and three regions within a soft-tissue 
S. aureus infection. In order to identify a subset of relevant proteins from the total 287 proteins 
measured, the average centroids of each cluster were analyzed. The PCA followed by k-means 
approach allows for the automatic ranking of proteins that significantly contribute to the clustering 



 23 

models such that proteins with high absolute centroid values contribute more as differentiators 
within the clustering model as compared to those with low absolute centroid values, thereby 
potentially signaling biological relevance. The average centroids for each of the four clusters were 
extracted, with 287 proteins or protein groups as observations and absolute cluster centroid values 
as variables. Each centroid includes all proteins and proteins with high absolute values are more 
relevant to a given cluster than those with low values. 

Of the 287 proteins analyzed in the non-imputed dataset, the top 10% with highest absolute 
centroid values were labeled for interpretation (Figure 2-4). Alpha globin 1, cytoplasmic actin, and 
beta-globin have the highest absolute centroid values and distinguish clusters comprising samples 
from infected regions (interface and SAC) as opposed to those from the cortex. Also among these 
top 10% of proteins are mitochondrial ATP synthase subunits alpha & beta and pyruvate kinase, 
which are involved in ATP synthesis, as well as proteins involved in maintaining cell structure and 
facilitating tissue repair/remodeling such as myosin-9, cytoplasmic actin, filamin, and fibrinogen. 
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Figure 2-4: Molecular differentiators among regions of S. aureus-infected kidney. A) All four cluster centers are 
overlaid, with 10% of proteins (n=29) with highest absolute values labeled. Underlined are the three proteins with 
overall highest absolute centroid values. * = proteins involved in ATP synthesis. ** = proteins involved in maintaining 
cell structure and facilitating tissue repair/remodeling. 

Analysis on Imputed Data Set 
Given the low number of samples (n=39) covering two time points and three regions, 

eliminating proteins with missing values in one or more samples resulted in eliminating a 
substantial amount of measured protein data. We re-analyzed the data set, this time with all the 
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protein data and the incorporation of an imputation approach to handle the missing values. 
Imputation has been systematically evaluated and successfully implemented for mass spectrometry 
datasets and studies.84,90,97 A recent study demonstrated that techniques such as local least-squares, 
random forest, and Bayesian PCA missing value estimation work well for label-free data-
independent acquisition mass spectrometry (DIA-MS) datasets.85 However, this study among 
others revealed that for an imputation to be biologically relevant, it must model actual observed 
phenomena. Within the case of microLESA data where proteins are sampled from small, 
biologically heterogeneous regions of tissue, the probability that a protein was not detected when 
its value is missing is higher than if we were to impute a value based on an imputation method. 
Therefore, for this case study, we chose a simple model with the assumption that if a protein was 
not measured, it was below the limit of detection or not present in the sample. Therefore, missing 
values were zero-filled. This type of imputation is a common approach for handling missing value, 
as opposed to our primary approach, where columns with missing values were removed such that 
only globally present proteins are used for the analysis.84,85,97 

This zero-filled data set comprised 3,613 proteins in total. The PCA and k-means clustering 
results remained largely the same (Figure 2-5) with notable exceptions: within the PCA, 
components 1 and 2 now respectively represent 77.26% and 10.3% of the data as compared to the 
81.35% and 10.61% previously, Figure 2-5A-C), silhouette score analysis revealed a k of 5 to be 
optimal for this larger richer dataset with imputed values, (Figure 2-5D), and resultant cluster 
membership of samples. Furthermore, within the k-means clustering results, there is a new cluster 
intermediately situated between the cortex and interface/SAC 4 and 10DPI clusters. This new 
cluster consists of samples from the cortex 4 and 10DPI as well as interface 4DPI. Samples 
originally organized into a single cluster comprising cortex 4 and 10DPI split into two clusters, 
with two samples acquired from the cortex at 4DPI comprising one cluster and six samples 
acquired from the cortex at 4 and 10DPI comprising a second cluster. This change from the original 
clustering output indicates that with the inclusion of all proteins and zero-filling those with missing 
values, we can observe more perceived separation among the samples. The cluster with interface 
and SAC samples 10DPI remains unchanged. 
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Figure 2-5: Principal Component Analysis (PCA) and k-means clustering results of a proteomic dataset with imputed 
values of an S. aureus infected murine kidney. A) PCA was performed on protein LFQ intensity values acquired from 
3 regions and 2 timepoints. This unsupervised approach separates the SAC and interface (left) from the cortex samples 
with no visible infection (right). B) Samples also seem to cluster based on biological replicate within the PCA space. 
C) There is a separation among the samples 4- and 10-days post infection within samples acquired from the region of 
infection; this separation is not seen from samples acquired from the cortex where there was no visible infection. D) 
k-means clustering was used to cluster the samples after PCA. k = 5 was determined using silhouette scores as a 
metric. To aid in interpretation, clusters are labeled by the regions and timepoints from which samples were collected. 

 
The analysis of the cluster centroids revealed that cluster membership is largely driven by 

the same proteins, such as alpha globin 1, cytoplasmic actin, and beta-globin (Figure 2-6). 
However, there were some notable new proteins in this list such as several immune-response 
related factors such as S100-A9 and prothymosin alpha.98 Although the primary drivers of cluster 
membership remained the same, the same analytical process applied to the larger imputed dataset 
provided a broader description of the host-pathogen interface, uncovering additional target 
proteins that can be further validated. 
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Figure 2-6: Murine molecular differentiators among regions of S. aureus-infected kidney using the zero-filled dataset. 
All five cluster centers are overlaid, with 1% of proteins (n=35) with highest absolute values labeled. Underlined = 
three proteins with highest centroid values; * = proteins involved in the immune response. 

 
One caveat to this analysis is the interpretation of the PCA pseudo-protein signature, which 

represents combinations of protein LFQ data that capture as much of the observed variance as 
possible. However, variation does not always imply biological relevance. For instance, the PCA 
might be skewed by high-intensity values for proteins that may not be biologically relevant or miss 
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low-intensity valued proteins that nevertheless may hold biological significance, but whose 
importance is mathematically hard to discern in the presence of proteins with higher intensity 
values. Even though normalization across the entire sample set during the LFQ intensity 
calculation was performed within MaxQuant differences in overall protein intensity values may 
still affect the final output. This relays a fundamental concern in proteomics, which is the extremes 
in dynamic range of signal and biological abundance for detected proteins. 

Another caveat is that PCA is vulnerable to proteins that may be present in non-Gaussian 
distributions in the LFQ intensity domain, which goes against a key assumption for PCA.32 
Therefore, it is important to refrain from attempting to over-interpret the pseudo-protein signatures 
and limit the interpretation to exploring in each cluster only the highest absolute centroid values. 
In doing so, we only claim to find a focused subset of interesting proteins that merit further 
investigation, from among the hundreds that were measured over the entire experiment, thereby 
providing a means of efficiently identifying candidates for future investigation. Another way to 
mitigate this is to use alternative clustering methods such as hierarchical clustering can also be 
used to analyze the dimensionality reduced proteomics data. For this analysis, k-means was 
selected due to the ease of interpretation of the cluster centroids, which represent the average 
protein pattern for each cluster. 

In summary, this unsupervised multivariate method provides a way to efficiently analyze 
highly complex spatially targeted proteomics data and provide an effective way of highlighting a 
panel of potential drivers of biological differences among regions of interest. 

Gene Ontology Analysis 
In addition to identifying individual proteins from thousands measured, the functional 

categories of each protein were assessed to provide additional biological insight. The Protein 
Analysis Through Evolutionary Relationships (PANTHER) classification system99 was used for 
gene ontology analysis of the proteins driving the clustering algorithm. Absolute centroid values 
were summed across all four clusters, and the top 100 and 175 proteins for the non-imputed and 
zero-imputed datasets, respectively, with highest accumulated centroid values selected for gene 
ontology analysis. A broader or more narrow biological interpretation can be performed by 
selecting more or fewer proteins, respectively. Original LFQ intensity values for the selected 
proteins were retrieved, and their LFQ intensity was standardized per protein by removing the 
mean and scaling to unit variance. Standardized protein intensity values were averaged per cluster, 
proteins with positive values per cluster were extracted, and proteins per cluster were analyzed 
using PANTHER for a gene ontology analysis, and the resultant protein classes found in each 
cluster were determined (Figure 2-7). 

The gene ontology results indicate that the set of proteins driving the clustering model 
comprise thirteen protein classes, including cytoskeletal and metabolic processes (Figure 2-7). 
Panels A - D are sorted from regions distant from the abscess with no visible bacteria present 
(cortex 4DPI and 10DPI) to those in proximity to abscesses at the later timepoint (interface/SAC 
10DPI), and panel E shows three protein classes (cytoskeletal, metabolite interconversion enzyme, 
and calcium-binding) with distinct changes between regions of infection (interface/SAC) and no 
infection (cortex/early interface).  
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Figure 2-7: Gene ontology analysis. Gene ontology analysis was performed using the 100 proteins with highest 
accumulated absolute centroid values. The LFQ intensity for these proteins were normalized across all samples and 
those with values above 0 were analyzed using the PANTHER classification system based on Protein Class. Panels A 
– D are sorted from no infection (cortex 4DPI & 10DPI) to most infection (interface 10DPI and SAC 10DPI). The 
total number of proteins in each cluster are as follows: A) 31, B) 28, C) 47, D) 48. Panel E shows three protein classes 
with differences among regions of infection versus no infection, and the total number of proteins in each class. 

 
A gene ontology analysis was also performed using the larger, zero-filled dataset (Figure 

2-8). As with the centroid analysis described previously, protein classes remained largely the same 
with the addition of defense/immune proteins that were present in clusters with infected samples. 
There were also additional calcium-binding proteins, such as Calprotectin, a major immune 
component.  

 



 30 

 
Figure 2-8: Gene ontology analysis using the imputed dataset. The PANTHER classification system was used to 
perform a gene ontology analysis of the 5% of murine proteins with highest centroid values (n=175). These proteins 
were classified based on Protein Class. Panels A – E are sorted from no infection (cortex 4DPI) to most infection 
(interface 10DPI and SAC 10DPI). The total number of proteins in each cluster are as follows: A) 64, B) 57, C) 55, 
D) 60, E) 65. Panel F shows three protein classes with differences among region of infection and no infection and the 
total number of proteins in each class. 

This analysis identified cytoskeletal proteins that are enriched at the site of infection 
(abscess and interface), particularly at the later timepoint, indicative of extensive tissue damage 
resulting from S. aureus residing and proliferating within the tissue, as well as subsequent repair 
and remodeling efforts by the host.100 In addition, there is an enrichment of established immune 
factors, such as calcium-binding proteins, comprising different Annexins, which have been 
recently implicated in the defense against Gram-positive infections.101–103 Annexins A2 and A3 
were increased in two clusters: i) Interface 4DPI & 10DPI, SAC 4DPI & 10DPI and ii) Interface 
10DPI, SAC 10DPI. Annexin A5 showed increased abundance only in the Interface 10DPI, SAC 
10DPI cluster.  

A survey of recent literature suggests that Annexin A2 interacts with staphylococcal 
clumping factors A and B, facilitating attachment to epithelial cells.102,103 One study concluded 
that the binding of Annexin A2 allows S. aureus to anchor onto vascular endothelial cells, 
establishing this host protein as an important factor for initiating staphylococcal interaction with 
its host.104 In contrast, little is known about the roles of Annexins A3 and A5 during infection with 
S. aureus. A transcriptomics study revealed that Annexin A3 expression is restricted to neutrophils 
and is increased in the blood of patients with sepsis.105 Annexin A5, which was increased in the 
Interface 10DPI, SAC 10DPI cluster, has been shown to aid survival in a murine sepsis model by 
inhibiting HMGB1-mediated proinflammation and coagulation.106 Despite these findings, it is not 
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clear how Annexins A3 and A5 affect the host-pathogen interplay, particularly in the context of S. 
aureus soft-tissue infections. While our study relies on a relatively small sample size, our data 
clearly show that Annexins A2, A3, and A5 are highly abundant at the site of infection. The data 
presented here and previous studies on Annexins allow us to speculate that while A2 may be 
facilitating staphylococcal anchoring in the tissue, A3 and A5 may confer varying degrees of host 
protection during staphylococcal infection. 

This systems-level analysis of a complex biological model demonstrates the utility of the 
data generated through this multivariate analysis method and presents the potential for future 
biology-driven investigation and experimentation. The gene ontology analysis demonstrated here 
is one of many potential interpretations of the cluster centers. Another method for interpreting the 
cluster centroids would be to build protein-protein interaction networks using proteins with high 
accumulated absolute centroid values as seeds. Another caveat within this particular infectious 
disease model is that the samples chosen in this study belonged to biologically distinct locations 
with profound protein changes. However, there are multiple opportunities to tune the pipeline to 
be more robust or sensitive to the protein changes within the study for different data sets with more 
nuanced protein heterogeneity. There would need to be some prior knowledge about the source of 
protein variation, but those changes could be used to inform the PCA, the number of k-means 
clusters, and the approach to cluster interpretation. 

Even though this method was applied to spatially targeted proteomics data acquired by 
microLESA, it can be extended to multi-omics data involving metabolites, lipids, and peptides 
acquired using other spatially targeted approaches such as liquid extraction surface analysis,69,71,107 
liquid microjunction,108,109 nanoPOTS,16–18 tissue punch biopsies,110,111 laser capture 
microdissection,76–79,112 and hydrogel extractions.113–115 

 

CONCLUSIONS  
A rapid automated unsupervised method for analyzing high-dimensional spatially targeted 

proteomic data utilizing PCA followed by k-means clustering was applied to study soft-tissue S. 
aureus infection in murine kidney. k-means clustering results revealed molecular heterogeneity in 
the abscesses and the interface region between areas of infection and non-infection that goes 
beyond what can be seen by microscopy alone. Proteins driving the clustering algorithm, and 
thereby likely to play a role in staphylococcal infection, were extracted from cluster centroids and 
found to be involved in key metabolic processes and cytoskeletal reorganization. Subsequent gene 
ontology analysis of proteins with high accumulated absolute centroid values revealed that proteins 
involved in calcium-dependent, metabolite interconversion, and cytoskeletal processes were 
enriched in sites of infection, especially at the 10DPI timepoint. These findings collectively 
demonstrate that this multivariate approach is a powerful method that provides a means of rapidly 
filtering complex biological data to determine the most relevant species from hundreds to 
thousands of measured proteins in the form of ranked protein lists and pathway enrichments, 
thereby providing a systems-level view into complex molecular biological processes. 
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METHODS 

Sampling and Data Acquisition 
Data used in the murine case study are stored on the ProteomeXchange Consortium 

database by the PRIDE118 partner repository with the data set identifier PXD019920.74 From this 
original publication, we briefly report the methods used for sample preparation and technical 
aspects for  microLESA and LC-MS/MS (Figure 2-1).74 Six- to eight-week-old mice were retro-
orbitally inoculated with S. aureus (strain USA300 LAC) constitutively expressing sfGFP.74 
Infections were allowed to progress until 4 or 10 days post-infection (DPI) before animals were 
humanely euthanized and kidneys excised for analysis. All animal experiments were approved by 
the Vanderbilt Medical Center Institutional Animal Care and Use Committee. Kidney sections 
were cryosectioned into 10 µm thick tissue sections, thaw-mounted onto glass microscope slides, 
and imaged with autofluorescence microscopy (Carl Zeiss Microscopy, White Plains, NY)) to 
determine ROIs for microLESA sampling. Trypsin dissolved in ddH2O to a final concentration of 
0.048 μg/mL was applied to each ROI using a robotic piezoelectric spotter (sciFLEXARRAYER 
S3, Princeton, NJ). Slides were then incubated at 37°C for three hours in 300 μL ammonium 
bicarbonate, and proteolytic peptides were extracted using a TriVersa NanoMate (Advion Inc., 
Ithaca, NY) with the LESAplusLC modification. To mitigate batch effects, samples were run in a 
single batch in a randomized order by both region and time point. Samples were stored at -4°C 
prior to analysis to preserve protein integrity. Once all samples were collected, they were collected 
and analyzed by liquid chromatography with tandem mass spectrometry (LC-MS/MS) in positive 
ion mode using an Orbitrap Fusion Tribrid mass spectrometer (Thermo Scientific, San Jose, CA) 
at 120,000 resolving power at m/z 200 with a mass range of m/z 400-1600 and an automatic gain 
control target of 1.0x106.  

Data Analysis 

Protein identification and quantitation were performed using MaxQuant version 1.6.773 as 
follows (Figure 2-1A). Raw LC-MS/MS files were processed using the label-free quantification 
method in MaxQuant. Spectra were simultaneously searched against Mus musculus and 
Staphylococcus aureus (strain USA300 LAC) reference databases downloaded from UniProt 
KB116, and the resultant peptide and subsequent protein identifications include name of species. 
These labeled identifications can later be used to separate the proteins by species. These were 
supplemented with the reversed sequences and common contaminants for quality control purposes. 
Acetyl (protein N-term) and oxidation (M) were set as variable modifications. The option for 
‘Match between runs’ was not used and the LFQ min. ratio count was set to 1. Minimal peptide 
length was seven amino acids. Peptide and protein false discovery rates (FDRs) were both set at 
1%. 

The subsequent data analysis was performed on the resultant protein groups file containing 
label-free quantitation (LFQ) intensity values from MaxQuant, was used for. In this file, each row 
contains the group of proteins that could be reconstructed from a set of peptides; proteins in each 
protein group are sorted based on the number of identified peptides in descending order. This 
protein groups file was analyzed for outliers using a z-score anomaly detection calculation. Briefly, 
z-scores were calculated based on the number of protein groups identified and samples with z-
scores > |2| were excluded. Based on this calculation, 3 samples out of 42 in all were excluded. 
Proteins identified as “reverse”, “only identified by site”, or “potential contaminants” were also 
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removed, as were proteins with fewer than 2 unique peptides identified. As a result of this filtering 
process and due to the molecular heterogeneity between samples, there are many missing LFQ 
values in the dataset. For the initial analysis, proteins with missing values in any of the samples 
were excluded from the subsequent data analysis, resulting in a dataset comprising only 287 
proteins (rather than the 3613 protein rows from the start). To also assess broader coverage, a 
secondary (inclusive) analysis was also conducted, where instead of removal, the missing values 
were zero-filled and analyzed using the same subsequent data analysis method.  

Using Python version 3.7, we applied Scikit-learn’s PCA with a randomized solver90 and 
generated an array of 39 ranked components (the maximum, given that there are 39 samples). This 
array of PCA-transformed data (of size 39×39 instead of the original 39×287) was then used for 
k-means clustering using Scikit-learn’s KMeans implementation. A range of k values from 2 to 15 
was tested using silhouette scores96 as a performance metric96 to determine the optimal k number 
of clusters. Upon determining the optimal k value to be 4, the k-means clustering algorithm was 
deployed to assign cluster membership to each sample; aside from setting the random_state 
parameter to a fixed but randomly selected integer (42) to maintain reproducibility across runs, the 
default parameters were used. Cluster centroids for each cluster, which represent the average for 
all points belonging to the cluster, were used for biological interpretation with 10% of proteins 
(n=29) with highest absolute values labeled. Since the k-means clustering was performed on PCA-
transformed data, the resultant cluster centroids are in the form of 4 rows (one per cluster) and 39 
columns (one for each principal component). To interpret the cluster centroids in terms of the 
protein groups, we cast the centroids back to the original measurement space by performing matrix 
multiplication between the centroid table (of size 4 ´ 39) and the PCA scores table (of size 39 ´ 
287), thereby generating a final matrix of size 4 ´ 287. For the secondary (inclusive) analysis as a 
supplement to the original analysis, we also performed the PCA and k-means clustering on the full 
proteomic dataset, zero-filling the missing values, which resulted in a total feature set of 3613 
proteins. For this analysis, a k of 5 was selected and the resultant cluster centroids were extracted 
in the same way as described above, with the note that the final centroid matrix was in that case of 
size 5 ´ 3613.  

The absolute centroid values were summed per cluster and the 100 and 175 proteins for the 
non-imputed and zero-imputed datasets, respectively, with highest accumulated centroid values 
were selected for gene ontology analysis. The original LFQ intensity values for those top proteins 
were extracted for each sample and their intensity was standardized per protein by removing the 
mean and scaling to unit variance. These standardized protein intensity values were averaged per 
cluster, and proteins with a standardized intensity greater than zero were selected for gene ontology 
enrichment analysis, which was performed using the Protein Analysis Through Evolutionary 
Relationships (PANTHER) classification system (version 16.0) for each set of proteins per 
cluster.99 Only murine proteins were used for the gene ontology analysis since PANTHER does 
not include the S. aureus strain USA300 LAC in their databases. The resultant protein classes were 
summarized. All code for data analysis can be found at 
https://github.com/kavyasharman/microlesa. 
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CHAPTER 3 MULTIMODAL MALDI IMS AND CODEX IMMUNOFLUORESCENCE 
TO ASSESS HOST IMMUNE RESPONSES 

 

OVERVIEW 
Spatially targeted mass spectrometry techniques such as matrix-assisted laser 

desorption/ionization (MALDI) imaging mass spectrometry (IMS) permit label-free analysis of 
hundreds to thousands of chemical species within a single tissue section and span the fields of 
proteomics, metabolomics, and lipidomics. However, extracting biologically relevant molecular 
drivers from such experiments remains a challenge due to the complexity and high dimensionality 
of the data acquired from each spatial location. Microscopy-based techniques such as co-detection 
by indexing (CODEX) multiplexed immunofluorescence (MxIF) and histological staining make it 
possible to demarcate a number of cell types and functional tissue units (FTU’s), providing a means 
of contextualizing spatially targeted mass spectrometry data. In this work, a series of segmentation 
workflows were assessed, leading to the development of a customized multivariate k-means 
clustering approach was developed to generate segmentation masks, which were used to probe 
MALDI IMS data to explore the cellular and lipidomic composition of an S. aureus-infected 
murine kidney. Results uncovered lipidomic heterogeneity among abscessed regions and non-
abscessed regions, with specific lipids localizing to each region, demonstrating the utility of this 
integrated workflow for understanding the host immune response. 

 

INTRODUCTION 
Imaging mass spectrometry (IMS) allows for molecular interrogation of tissue while 

preserving spatial integrity.21,22 IMS studies span the fields of proteomics, metabolomics, and 
lipidomics, permitting label-free characterization of tens to thousands of chemical species within 
a single experiment.23–27 However, extracting biologically relevant molecular drivers from 
spatially targeted mass spectrometry experiments remains a challenge due to the complexity of the 
dataset, with a full mass spectrum comprising tens to thousands of molecular measurements 
gathered from each spatial location. One way to contextualize IMS data is to supplement it with 
registered autofluorescence (AF),7,117 which provides gross anatomical information for automated 
image registration, or co-detection by indexing (CODEX) multiplexed immunofluorescence 
(MxIF) microscopy, 10–12 which labels cell-specific antigens with antibody-bound fluorescent 
markers. 

Traditionally, this gross anatomical information can be provided by an expert pathologist 
or domain expert trained to identify cell types and functional tissue units. However, as this is a 
manual process, it is typically performed on small portions of a tissue section. With large whole-
slide images (WSIs), manual annotation becomes cost and time-prohibitive due to the high number 
of tissue substructures, which brings with it the challenge of avoiding human bias and human drift 
in accuracy as more and more structures are annotated. Through the development of computational 
approaches to whole slide images, segmentation can be applied across the entire tissue section. 
There have been myriad approaches in the microscopy and imaging fields to build automated 
segmentation techniques and software. Many of these segmentation techniques have been 
developed for the single cell level, relying on first identifying cell centers and then identifying cell 
borders.118–120 Others rely on applying deep learning approaches121 sometimes requiring 
interactive training122,123 to build a model that can then be deployed to generate segmentation 
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masks. Still others rely on integrating existing methods to generate an analytical toolbox to enable 
exploration of cell phenotypes.124 However, most, if not all, of these approaches are not as well 
suited for exploring larger cellular substructures and functional tissue units (FTUs). For instance, 
within the kidney, FTUs such as glomeruli or tubules are comprised of groups of cells that are not 
only much larger in size but can be appear to be disconnected since they tend to be larger than the 
thickness of a standard serial section and are therefore only seen in fragments. Although the 
aforementioned methods perform well for nuclear and single cell segmentation, they do not 
perform well for these larger FTUs. This challenge necessitates the development of segmentation 
pipelines that are better suited for multi-cellular units.  

To address these challenges, a series of segmentation techniques were tested, leading to the 
development of a customized unsupervised multivariate segmentation workflow. This was applied 
to study the host immune response in a Staphylococcus aureus-infected murine kidney. Abscess 
formation is a hallmark of S. aureus infection and disease progression. Once thought to be a static 
lesion, the abscess is now understood to be a dynamic microenvironment of staphylococcal 
microcolony surrounded by layers of staphylococcal cells releasing microbial factors, host immune 
cells releasing antimicrobial factors, and living and dead host tissue cells.39,40,125 Within this 
molecularly heterogeneous interface, lipids have been specifically implicated in a number of host 
immune responses126–129 as well as key biological functions.130,131 Furthermore, lipids may also be 
implicated in antibiotic resistance of S. aureus.132 In sum, there is much that remains to be resolved 
in terms of specific molecular factors that are involved in the development and progression of these 
abscesses. Here, we leverage multimodal MALDI IMS and CODEX MxIF to help elucidate the 
lipidomic landscape of staphylococcal abscesses and the host immune response. 

 

RESULTS & DISCUSSION 
The staphylococcal host-pathogen interface within a soft-tissue infection is a complex 

molecularly heterogeneous environment. Before developing a segmentation technique to generate 
masks of cell types and functional tissue units on the basis of CODEX MxIF data, we first obtained 
a normal murine kidney with no infection present to evaluate a series of segmentation techniques.  

Image segmentation methods were evaluated for their potential in segmenting 
substructures of a bacterial infection. Watershed segmentation and intensity thresholding was used 
to identify and segment regions of the bacteria. The automated segmentation algorithm was built 
using QuPath,34 an open-source software for digital pathology and whole slide image analysis, to 
automatically segment. This process was scripted in Java as a QuPath macro to enable automated 
segmentation across the WSI. The first part of the script involved tiling the WSI. Overlapping tiles 
are generated to ensure annotations that may fall on the border between two tiles are captured. This 
tiling process was found to be most computationally efficient when coupled with the segmentation. 
As a result, the method entails generating a tile, exporting the tile into ImageJ, segmenting, and 
exporting the resultant mask back to QuPath. A detailed workflow for segmentation for each tile 
was built (Figure 3-1) that involved an initial preprocessing step converting the image to RGB and 
applying a Gaussian blur for denoising the image. A watershed algorithm was applied to the values 
in the image to determine the local maxima. Concurrently, the same filtered tile is thresholded 
using an intensity threshold and an intersection of the maxima image and thresholded image is 
calculated. Holes are filled to ensure entire FTUs are being captured before creating a selection 
and exporting the resultant annotations back to QuPath. Once the annotations are created, they can 
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be exported as vector-based segmentation masks as .txt files with x and y coordinates that can be 
applied to the registered IMS data. 

 

 
Figure 3-1: Watershed and intensity-based segmentation approach on a single tile. Individual tiles are exported 

from QuPath, an open source digital pathology image analysis software, to ImageJ and processed for single 
channel intensity thresholds and watershed maxima, resulting in a binary mask output highlighting unique macro 
structures in the tissue. This binary mask is split into individual segments as QuPath annotations and exported for 

registration with pre-processed IMS data. 

 
This tiling approach was applied to a single channel of a WSI acquired on a normal murine 

kidney (Figure 3-2). The overlapping tiling approach ensured that any FTUs that were on the 
border of a tile were captured fully. Although the results show successful segmentation of the renal 
tubules, closer analysis reveals that some of the segmentations split tubules into multiple ROIs.  
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Figure 3-2: Whole-slide segmentation of murine kidney on the AQP1/AF 488 (FITC) channel, which marks 

proximal tubules. Images are tiled and segmented sequentially to improve processing speed. 

 
This challenge of split segmentations is consistent across multiple FTUs in the murine 

kidney as well (Figure 3-3). For instance, upon looking at the original unsegmented four-channel 
MxIF image (Figure 3-3a), it is evident that there are varying sizes of tubules. However, upon 
performing segmentation on the proximal tubules (Figure 3-3b), thick limb (Figure 3-3c), and 
collecting ducts and proximal tubules (Figure 3-3d), it is evident that many of the FTUs have been 
split across many segmentations. Nuclei segmentation (Figure 3-3e,f) is the only FTU that 
performs well with this type of watershed and intensity-based segmentation, largely due to the 
uniformity of the IF signal as well as the relatively similar size of each nuclei. Additionally, due 
to non-specific markers such as biotinylated DBA/NeutrAvidin 650, which marks both collecting 
ducts and proximal tubules, identifying specific FTUs remained a challenge. A final challenge 
with this type of segmentation approach was the manual determination of optimal hyperparameters 
for color thresholding levels and noise tolerance. Although selecting these for a single WSI is 
feasible, applying this segmentation as a standardized workflow across multiple WSI microscopy 
images with different relative intensity levels is not possible without optimizing hyperparameters 
for each image, thereby hindering reproducibility. It was therefore concluded that although the 
tiling approach that was developed worked well to uniformly segment WSIs using a watershed 
and intensity-based approach, it was not well-suited for our goal of segmenting distinct FTUs for 
the purpose of integrating them with IMS and generating FTU-specific molecular signatures. 
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Figure 3-3: Multi-channel segmentation on an IF image of normal murine kidney. A) original unsegmented four-
channel MxIF image. B) AQP1/AF 488 (FITC), which marks proximal tubules. C) THP/Cy3 (Texas Red) stain, which 
marks thick limb. D) Biotinylated DBA/NeutrAvidin 650 (Cy5), which marks collecting ducts and proximal tubules. 
E) Hoechst (DAPI), which marks nuclei. F) a higher resolution of Hoechst (DAPI) stain showing segmentation of 
individual nuclei. 

 
To address the challenges of reproducibility, scaling, and disparate segmentation masks of 

single FTUs, a multichannel segmentation workflow comprising singular value decomposition 
(SVD) followed by k-means clustering was developed. SVD is similar to PCA in that it addresses 
the “curse of dimensionality,” or the challenges in analyzing high dimensional data, and groups 
correlated and anticorrelated features into a set of orthogonal components which can then be 
clustered using a method such as k-means. By grouping features using SVD before k-means, lower-
amplitude differences among features can be captured, thereby improving k-means clustering 
capabilities.  

Another challenge with processing large WSI images is that it is difficult to perform 
analyses on the entire image at once due to limited computational power. One solution is to apply 
parallel processing, which allows the user to work with datasets that are larger than the current 
working memory. This was accomplished by first saving the .ome.tiff microscopy file as a Zarr 
file and then loading the image using Dask133 arrays. Dask arrays are built by storing the full Zarr 
file into a series of smaller “chunks” that can be loaded separately and processed in parallel, 
allowing for more efficient processing of the WSI. This is especially useful for large datasets 
without losing quality or having to use a tiling approach, which can be sensitive to large-scale 
artifacts such as gradients across the WSI. 
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An additional customization we developed in this workflow was the implementation of 
mini-batch k-means clustering134 from the Sci-kit learn Python programming suite rather than the 
standard k-means clustering implementation. This approach uses mini-batches to reduce the 
overall computation time, with the size of the mini-batch being a user-specified hyper-parameter. 
We found that 10% of the full data size provided results similar to standard k-means clustering 
with a processing time that was orders of magnitude faster. 

The final customization was the inclusion of a background subtraction step to eliminate 
intensity signals from off-tissue pixels which introduced noise to the overall clustering results. To 
do so, the DAPI channel staining nuclei was selected and a series of thresholding techniques from 
the OpenCV image processing library was tested. It was determined that a global thresholding 
technique provided the most comprehensive background subtraction; a morphological 
transformation to smoothen the image and fill holes was applied to ensure all pixels that were on-
tissue would be included, and the resultant mask was used to select only on-tissue pixels from the 
full multi-channel dataset. 

With all these optimizations in mind, the unsupervised multivariate segmentation method 
was deployed onto an MxIF multi-channel image of normal human kidney (Figure 3-4). Mini-
batch k-means clustering was performed on a random 10% subset of on-tissue pixels with k values 
ranging from 2 to 70. A within-cluster sum of squares (WCSS) score was calculated for each 
clustering result, and it was determined that a k value of 20 was optimal. The results of the 
clustering with k=20 was displayed as a multichannel image (Figure 3-4A). We found that clusters 
1 and 2 correlated well with glomeruli (red) and tubules (green), respectively (Figure 3-4B). This 
was especially interesting because the original MxIF marker panel did not contain any glomeruli-
specific antibodies; just epithelial markers that stained both glomeruli and tubules. However, in 
using a multivariate k-means clustering approach, we were able to discern glomeruli specifically 
and create a segmentation mask for them. We also observed clusters correlated with medullary 
arrays (cluster 5 and 6) and inner and outer regions of varying tubules (clusters 2, 9, and 10).  

 

 
Figure 3-4: Clustered MxIF image of normal human kidney. Clusters 1,2 correlate with glomeruli (red) and tubules 
(green). Clusters 5,6 correlated with medullary arrays (blue) and epithelial cells (pink). Clusters 9,10 are both 
correlated with inner (yellow) and outer (pink) regions of tubules. Clusters 2,9 are also correlated with inner (pink) 
and outer (green) regions of tubules. However, the differences among clusters 2, 9, and 10 seem to correlate with 
different regions of tubules, potentially highlighting sub-tubular differences.  
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Having tested this customized segmentation pipeline for highly multiplexed IF data, we 

applied the same workflow to an S. aureus-infected murine kidney. Briefly, mice were inoculated 
with S. aureus (strain Newman) and sacrificed seven days post-infection. Murine kidneys were 
harvested, cryosectioned at 10µm thickness, and thaw mounted onto coverslips. AF microscopy 
was acquired on all sections, serving as the basis for multimodal image registration. Sections were 
analyzed with MALDI IMS to generate pixel-wise molecular data and serial sections were stained 
against a 17-marker panel comprising immune and renal antigens for CODEX MxIF.  

Following image acquisition and registration, the CODEX MxIF imaging data was 
analyzed using the customized segmentation pipeline. A k of 17 was determined optimal, once 
again using WCSS scores as a metric. In doing so, we observed clusters that matched known cell 
types and FTUs. For instance, there were four clusters that highlighted areas of abscess and 
necrosis (Figure 1-5A). Additional clusters revealed different immune and renal regions (Figure 
3-5B).  

 

 
Figure 3-5: k-means clustering results on an S. aureus-infected murine kidney. A) Composite k-means clustering 
image highlights areas of abscess using clusters a, b, h, and j. B) Individual clusters which can be correlated to 
different immune and renal regions.  

 
Average mass spectra for the major regions within the kidney and abscessed regions were 

extracted from the IMS datasets using the pixel coordinates from the k-means clustering results 
(Figure 1-6). In doing so, we detected lipidomic heterogeneity between the abscessed regions. For 
instance, abscess rich regions displayed [SM(d34:1)+H]+ and [PC(P-34:0)+H]+, while healthy, 
non-abscessed regions contained [PC(36:1)+H]+ and [PC(34:1)+H]+ (Figure 3-6A-E).  
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Figure 3-6: Summary of k-means clustering data and extracted mass spectra. A) Overlay of clusters with a high 
abundance of progenitor cells, neutrophils, B-cells with the top spectral markers for each cluster. B-E) Similar 
analyses can be seen for each stained cell class. Progenitor cells and distal tubules were represented by two clusters 
potentially indicating differential response to infection. 
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CONCLUSIONS  
The host immune response within an S. aureus-infected murine kidney is complex and 

remains relatively uncharacterized. Approaches such as MALDI IMS can provide tens to 
thousands of molecular measurements across the tissue but require integration with orthogonal 
approaches, such as CODEX MxIF, to correlate the spatially targeted molecular measurements 
with regions of healthy and infected tissue. In this work, a series of segmentation workflows were 
assessed to address the challenges of high dimensionality of MxIF imaging and large dataset sizes, 
leading to the development of a customized unsupervised multivariate k-means approach to 
segment CODEX MxIF data. The segmented imaging data was then used to extract region-specific 
MALDI IMS signatures, uncovering rich molecular profiles of specific cellular regions within the 
infected kidney. Biocomputational methods such as those developed here are critical for exploring 
molecular and cellular diversity and will be required as we move towards more multimodal 
approaches to study health and disease.  

 

METHODS 
Materials:  

1,5-Diaminonaphthalene (DAN) was purchased from Sigma-Aldrich Chemical Co. (St. 
Louis, MO, USA). HPLC-grade tetrahydrofuran (THF), acetonitrile, and methanol were purchased 
from Fisher Scientific (Pittsburgh, PA, USA).  
Murine Infection: 

In preparation for murine infections, bacteria were streaked from freezer culture on 
trypticase soy agar with antibiotics, as required. Isolated colonies were used to prepare overnight 
cultures in 5 mL of trypticase soy broth (TSB). After overnight growth, bacteria were sub-cultured 
1:100 in fresh TSB and grown until mid-to-late log phase (2-3 h; OD 600 nm ~2-2.5). Cells were 
pelleted by centrifugation at 7,000 rpm for 6 min and washed with phosphate buffered saline (PBS) 
three times. After the final wash, cells were resuspended to an OD 600 nm of approximately 0.4 
in PBS (~1-2 x 108 CFU/mL). The inoculum was determined by serial dilution in PBS and plating 
to TSA. 

Prior to infection, female 6-8-week-old BALB/c mice, purchased from The Jackson 
Laboratory, were   anesthetized   by   intraperitoneal   injection   with   125–250 mg/kg   of 2,2,2-
tribromoethanol. Mice were infected retro-orbitally with 100 µL of the prepared staphylococcal 
cells (~1-2 x 107 CFU).  At 4, 7, or 10 days post infection mice were humanely euthanized by CO2 
inhalation. The kidneys were harvested and immediately frozen on dry ice. Animals were used and 
handled in accordance with protocols approved by the Vanderbilt University Institutional Animal 
Care and Use Committee (IACUC) and in compliance with NIH guidelines, the Animal Welfare 
Act, and US Federal law. 

Sample Preparation: 
Infected kidney tissue was cryosectioned to a 10 µm thickness, thaw mounted onto indium 

tin-oxide (ITO) coated glass slides (Delta Technologies, Loveland, CO, USA) for IMS analysis or 
poly-L-lysine coated glass cover slides for CODEX IF analysis and returned to ~20 °C within a 
vacuum desiccator. Autofluorescence microscopy images for the IMS was acquired using EGFP, 
DAPI, and DsRed filters on a Zeiss AxioScan Z1 slide scanner (Carl Zeiss Microscopy GmbH, 
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Oberkochen, Germany) prior to matrix application.7,117  IMS samples were coated with a 20 
mg/mL solution of DAN dissolved in THF using an HTX TM Sprayer (HTX Technologies, LLC, 
Chapel Hill, NC, USA) yielding a 1.67 mg/cm2 coating (0.05 mL/hr, 4 passes, 40 °C spray nozzle). 
Tissue samples were imaged immediately after matrix deposition before undergoing hematoxylin 
and eosin histological staining.135  
MALDI timsTOF IMS: 

MALDI IMS was performed on a prototype Bruker timsTOF pro MS system (Bruker 
Daltonics, Bremen, Germany) in quadrupole-time of flight (qTOF) only analysis mode. The qTOF 
ion images were collected in positive ion mode at 10 µm pixel size with the beam scan set to 8 
µm2 using 200 laser shots per pixel and 18.6% laser power (30% global attenuator and 62% local 
laser power) at 10 kHz. Data were collected from m/z 50 – 2000 for lipid analysis. All qTOF mode 
imaging data were visualized using SCiLS Lab Version 2019 (Bruker Daltonics, Bremen, 
Germany). Lipids were identified using a combination of mass accuracy (≤ 3 ppm) and 
LIPIDMAPS136–138 database searching.  

CODEX Multiplexed Immunofluorescence:  
Samples for CODEX IF were prepared according to the manufacturer’s protocols (Akoya 

Biosciences, Marlborough, MA) and as previously described.139 Antibodies were conjugated as 
previously described139 and diluted to 1:200. CODEX multiplexed immunofluorescence images 
were acquired on a Zeiss Axio Observer (White Plains, NY) using a 20x objective (324 nm/pixel), 
LED stack (specifically, 385 nm, 469 nm, 555 nm, and 631 nm), z stack (11 slices at 1.5 µm 
spacing), and tiling functions. Instrument autofocus was used to focus the imaging area. CODEX 
IF images were processed using MAUVE software (Akoya Biosciences) which performed the 
neighborhood analysis automatically with 10 to 30 µm spatial distances.  
Data processing: 

Data was processed using a combination of commercial and in-house software. Microscopy 
imaging data was processed in Python. First, images stored as directory-store Zarr140 arrays were 
computationally mapped using the Dask133 for distributed computing. After initial import, the data 
were pre-processed by removing the mean of each channel and scaling to unit variance using the 
following calculation: 𝑧=(𝑥−𝑢)𝑠 (x, sample value, u=mean of all samples with that particular 
channel, s=associated standard deviation).  This pre-processing method was chosen to mitigate 
any channel intensity artifacts due to differences in microscopy acquisition. We then performed 
dimensionality reduction by applying a compressed singular value decomposition (SVD) using the 
SciPy implementation in Python with the ‘gesvd’ lapack driver. 

The k-means clustering model was built using a 10% randomly selected subset of the 
reconstructed matrix following SVD (48,438,400 pixels). A grid search for the ideal number of k 
clusters ranging from 2 to 100 was performed using Scikit-learn’s implementation of the k-means 
clustering algorithm. The grid search results were evaluated using a within-cluster-sum-of-squares 
(WCSS) score, which calculates the averaged squared Euclidean distance of all points within a 
cluster to the cluster centroid. Using the WCSS score as a metric, a k of 17 was selected for the 
final clustering. The k-means clustering model was built on a 10% randomly selected subset of the 
data and used to predict on the full dataset. 
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MALDI IMS data preprocessing 
MALDI IMS data was processed using in-house Python scripts. The processing creates a 

mean mass spectrum from the raw IMS data and selects peaks from spectrum with a signal-to-
noise ratio of 3 with an intensity threshold of 10 a.u. to remove noise spikes in the data. Peak 
selection is estimated with full width at half-mass and this m/z window is extracted from every 
mass spectrum to create a dense matrix of IMS coordinates x peak intensities. 

MALDI IMS and microscopy image registration 
After the MALDI IMS experiment, the MALDI IMS slide was scanned with an Zeiss 

Axio.Scan.Z1 using an eGFP filter with the matrix layer still on the top of the sample surface. This 
captures the post-IMS AF image that indicates the position of each laser ablation mark across the 
tissue surface. Following previously described approaches, the theoretical coordinate of each IMS 
pixel was extracted from the IMS metadata into an IMS pixel map and the post-AF image was 
registered to the IMS pixel map by selecting 5 fiducials. The corresponding fiducials here are IMS 
pixel and its laser ablation mark as imaged by microscopy. This creates an exact registration of the 
IMS pixel its origin in microscopy coordinates. 

After alignment of the postAF image to IMS, the pre-acquisition AF image is automatically 
registered to the registered postAF image using an in-house registration library that wraps the 
elastix registration tools. Then the CODEX image is also automated registered with the in-house 
tool to the pre-acquisition AF image previously aligned to post AF image. After alignment of 
CODEX to pre-acquisition AF, CODEX is registered to the IMS data.  

MALDI IMS data analysis 
With the CODEX data previously registered to the IMS data, CODEX k-means clusters 

were also aligned with IMS data. As IMS data was sampled at 10 µm/px and the CODEX at 0.5 
µm/px, a frequency table of each CODEX cluster per each IMS pixel was computed (i.e., position 
x101,y101 has n pixels per k cluster). These frequencies were normalized by the IMS pixel area 
in microns (400 CODEX pixels per IMS pixel) and these values were used to weight the mean 
spectrum calculation for each k cluster. After computing the cluster mean spectra, the overall mean 
spectrum was subtracted from each to find the most intense signals per cluster. The top markers 
were taken to be those with the highest signal in the respective cluster’s mean spectrum after 
removing the overall mean.  
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CHAPTER 4 AUGMENTING DIGITAL PATHOLOGY WHOLE-SLIDE IMAGES 
WITH MALDI IMS-DERIVED MOLECULAR CONTOUR MAPS 

 

This chapter was adapted from the previously submitted article by Sharman, et al., Copyright 2022 
by Journal of the American Society for Mass Spectrometry 

 

OVERVIEW 
Imaging mass spectrometry (IMS) provides spatially informed molecular profiles from 

tissue samples. Routine visualization of these data are in the form of heat maps; however, 
interpreting these data and integrating them with known histopathological stained microscopy can 
pose a challenge due to the complexity of the data from each whole slide image and the lack of 
methods to integrate the two into a single two-dimensional representation. Here, we develop a 
contour mapping approach to visualize the ion intensity data from IMS and project the results onto 
stained microscopy images to study the host-pathogen interface of a Staphylococcus aureus-
infected murine kidney. Univariate analysis of the IMS data revealed lipids colocalizing with 
staphylococcal abscesses and contour maps were generated, revealing the two-dimensional lipid 
distribution within and around the abscess, as well as a quantitative indication of the spatial rate 
of change of the ion intensity. A multivariate non-negative matrix factorization approach was 
applied to reduce the dimensionality of the full IMS dataset, generating a subset of thirteen 
representative images from a full dataset of 440. Visualizing these results as contour maps overlaid 
onto stained microscopy revealed distinct molecular profiles of the major abscess and surrounding 
immune response. This workflow also allowed for a molecular visualization of the transition zone 
at the host-pathogen interface, providing more information about the spatial molecular dynamics 
than histopathological staining alone. In summary, we developed an innovative visualization 
strategy using contour maps to project ion intensity data onto high-resolution stained microscopy, 
thereby providing augmented visualization of the molecular composition of an S. aureus-infected 
kidney. 

 

INTRODUCTION 
Matrix Assisted Laser Desorption/Ionization (MALDI) imaging mass spectrometry (IMS) 

enables concurrent label-free analysis of hundreds to thousands of chemical species within a single 
tissue section in a single experiment, reporting the spatial distributions of proteins, metabolites, or 
lipids in the form of ion images.141–145 However, interpretation of the multitude of molecular 
images from IMS experiments can be challenging.22 Often, to aid human interpretation, the 
molecular images of IMS must be contextualized by other well-characterized and established 
microscopy modalities, such as histological color stains or immunohistochemistry.146  

Experiments that combine MALDI IMS and microscopy have become routine and most 
IMS software, open-source or commercial, has some support for simultaneous visualization of 
microscopy and IMS images. For multimodal molecular imaging studies where not only spatial 
co-registration, but also computational integration of the content of the source modalities into a 
single image type or result is the goal, advanced machine learning (ML) methods have been 
developed to mathematically integrate the observations in IMS measurements with the 
observations reported by microscopy into a combined form (e.g. data-driven image fusion,147 
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interpretable ML-based marker discovery33). However, for multimodal molecular imaging studies 
where human interpretation by domain experts is the objective, computational integration of 
multimodal content is not necessarily the end goal. In those scenarios, it is often important to 
provide a human-digestible representation that on the one hand takes spatial mapping of the 
different source modalities into the same coordinate system as far as possible, to reduce the 
cognitive bandwidth involved in cross-modal spatial mapping of observations, and that on the 
other hand still allows the content of the source modalities to be viewed and considered separately. 
Maintaining the ability to view the original microscopy content, textures, and coloring can be 
important for domain experts to be able to recognize the structures and cues they have been trained 
on and are familiar with. The contour approach described here fits in the latter category. 

Most current software allow the user to visualize ion images side-by-side or to overlay 
them with microscopy images by registering the images and changing each’s opacity. These views 
offer qualitative insight for cross-modality interpretation, but there remains opportunity for novel 
visualizations to bring out other different aspects more clearly or for these depictions to be tailored 
towards particular applications. In this work, we are particularly interested in making high-
dimensional data in combination with microscopy easier to interpret for humans and in more 
clearly delineating important spatial areas of molecular change and making their correspondence 
to specific microscopic areas more accessible for domain experts. 

Here, we develop the use of contour maps for combining the untargeted molecular 
information from IMS with biologically informative microscopy. Contour maps have historically 
been used in geography to depict land structures and elevations. In these maps, the proximity of 
the contour lines represents the change in altitude, allowing the viewer to visualize in a two-
dimensional space the localized height of geographical objects such as mountains, as well as the 
rate of altitude change across space. Within the biomedical community, contour maps have been 
used to depict risk of disease recurrence,148 to visualize EEG brain activity,149 and to project 
computational Mueller matrix mapping results onto histological samples150. Similar to how 
contour lines enable data interpretation in geographical maps, we introduce the same concept to 
ion images to enable a multimodal IMS-microscopy data visualization strategy that integrates 
spatially, yet still yields easy interpretation by domain experts trained on only one of the two 
modalities. 

In this work, we demonstrate the novel application of contour maps to depict ion intensity 
distributions as well as changes in ion intensity or derivatives of ion intensity to augment whole-
slide histopathology images. We used soft-tissue S. aureus infection as a case study. A hallmark 
of S. aureus infection in tissue is the formation of abscesses. These abscesses can often look the 
identical under histopathological staining, yet still exhibit heterogeneous molecular 
signatures.20,39,41,74 Combining molecular information from IMS measurements with the pathology 
information provided by PAS-stained microscopy can help elucidate changes in molecular 
architecture across the abscess that would otherwise remain difficult to discern. 

 
RESULTS & DISCUSSION 

A hallmark of soft-tissue staphylococcal infections is the formation of abscesses. Though 
these can be studied using histopathological staining such as PAS staining, approaches such as 
MALDI IMS can provide additional spatially resolved molecular information about the tissue. 
Elucidating the molecular changes in and around the staphylococcal abscess is critical to 
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understand how S. aureus proliferates and persists within host tissue, withstanding both host 
defenses and antibiotic drug treatments. 

In this experiment, a mouse was inoculated with a fluorescently labeled strain of S. aureus 
and its kidney excised for analysis with PAS, MALDI IMS, and autofluorescence microscopy 
(Figure 4-1A). QuPath, a software tool for analyzing whole-slide images, was used to segment the 
fluorescently labeled S. aureus; in doing so, we identified one major abscess as well as smaller 
satellite infections throughout the kidney (Figure 4-1B). Regions of the kidney were annotated by 
a pathologist and include the major abscess, inflammatory cell infiltrate, renal pelvis, renal 
medulla, renal cortex, and adrenal gland (Figure 4-1C).  

 

 
Figure 4-1: Murine kidney annotated by regions of interest. A) Autofluorescence microscopy image of a murine 
kidney; fluorescently labeled S. aureus can be seen by the green fluorescence. B) QuPath software was used to perform 
threshold-based segmentation of fluorescently labeled S. aureus, shown in yellow. C) Pathologist-annotated regions 
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of the kidney (renal pelvis, renal medulla, renal cortex, adrenal gland) and regions pertaining to infection 
(inflammatory cell infiltrate, major abscess). 

 

Univariate Contour Maps 
We used these labels to segment the IMS data and performed a pixel-wise Pearson 

correlation analysis among each metabolite from the IMS data and each major tissue structure. 
This univariate method allowed us to identify metabolites colocalizing to each of the annotated 
tissue structure types (Figure 4-2).  

 

 
Figure 4-2: Pearson correlation coefficients for metabolites colocalizing with regions of the kidney and regions 
associated with infection.  
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For this portion of the work, we focused on the major abscess (Figure 4-3A). The Pearson 
correlation analysis revealed an ion (m/z 742.572, [PC(O-32:0)+Na]+, -0.09 ppm)) that colocalizes 
with bacterial colonies and the major abscess. The current approach to visualize the spatial 
localization of a single ion is to generate a heatmap of the ion intensity across the tissue (Figure 
4-3B). To derive biological insight, stained microscopy images (e.g., PAS) and ion images are also 
commonly depicted next to each other. Alternatively, to facilitate easier cross-modal spatial 
mapping, the microscopy image is sometimes overlaid with the ion image into a single 
visualization with e.g. the opacity set to 50% for each. While the latter approach provides broad 
alignment and interpretation, overlaying colormaps of both modalities creates inherent ambiguities 
in terms of the dataset origin of an observed color in that blended visualization. For example, a 
pixel that is blue can be the result of a PAS violet-colored pixel mixing with an IMS green-colored 
pixel, or it could equally well be a mixing of a blue PAS pixel and a low-intensity and therefore 
nearly transparent IMS pixel. Opacity-based blended visualizations can be useful in certain 
scenarios, but when it is important to know the source of a particular shade of color or when 
specific intensity levels of the PAS or IMS data need to be discernable (because a domain expert 
is trained to use those levels or colors as cues for a recognition task), an opacity blending 
visualization is usually less well-suited. Using distinct colormaps for the different source 
modalities, such as one that is shades of one color and the other shades of a different color, is a 
possible solution; however, this approach still tends to lead to ambiguities for human observers 
since cognitive bandwidth would need to be used up to keep the color-origin mapping in mind 
while reading the image. Instead, we address this challenge by combining the two data sources 
into a single visualization, making spatial mapping between sources easier, but using different data 
visualization techniques to represent the content of each data source. Keeping the different content 
representations visually discernable, despite plotting on the same spatial coordinate system, allows 
for less ambiguous interpretation of the spatial connection between the distinct information sources 
despite populating the same visualization.  

To do so, the normalized ion intensity data was binned, and contour lines were generated 
for each set of binned values (Figure 4-3C). These contour lines were then overlaid with the PAS 
(Figure 4-3D), providing an augmented visualization of the molecular changes of m/z 742.572 
([PC(O-32:0)+Na]+).across the major abscess.  
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Figure 4-3: Contour map of a single MALDI IMS ion image correlating to a staphylococcal abscess. A) Periodic acid-
Schiff (PAS) stain of an S. aureus abscess within a murine kidney. B) Heat map of an ion corresponding to lipid 
[PC(O-32:0)+Na]+ (m/z 742.572, -0.09 ppm) determined to co-localize with regions of staphylococcal infection 
based on a pixel-wise Pearson correlation analysis. C) Contour map generated using the ion image for PC(O-32:0), 
with contours labeled by binned m/z intensity values. D) Contour map overlaid with PAS. 

 

Multivariate Contour Maps 
Exploring IMS data in a univariate manner, focusing on a single m/z or molecular species 

at a time, is often useful in scenarios where there is prior knowledge on the molecular species that 
are relevant to the biological system at hand. However, in cases where such prior information is 
not available, separate consideration of each of the often hundreds of m/z distributions provided 
by an IMS experiment is often not practical. In those cases, it is usually more efficient to consider 
whether, among the hundreds of molecular species mapped, one can discern any multivariate 
trends that describe spatial and spectral variations that span multiple molecular species acting in 
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unison. Such a multivariate multi-species trend also has a spatial signature that describes where in 
the tissue that trend’s panel of molecular species is heightened in intensity and where it is not. 
Similar to how the spatial distribution of a single ion (i.e., an ion image) can be represented as a 
contour plot, the spatial distribution of a multi-ion trend in the tissue (e.g., a component image, a 
cluster image, etc.) can be depicted as a contour plot. The latter will be referred to as a multivariate 
contour plot going forward. 

Computational approaches allow us to take the hundreds of ion images and sort them using 
unsupervised methods such as principal component analysis (PCA), non-negative matrix 
factorization (NMF), k-means clustering, and spatial shrunken centroids clustering, thereby 
reducing the dimensionality of the IMS data and generating a subset of images that summarize 
molecular trends and spatial and/or spectral correlations within the measured data.151–153 In this 
work, NMF was selected to go beyond single molecular species (or single m/z) images and to 
expand towards multivariate (or molecular panel) views into the molecular content of tissue. NMF 
is used to reveal a subset of underlying spatial and molecular trends or patterns in the IMS data, 
such that the empirically measured mass spectra and pixels are considered linear combinations of 
those underlying patterns. Such patterns or ‘components’ consist of a pseudo-spectrum, showing 
which molecular species along the m/z axis tend to appear in unison in the dataset, and a spatial 
distribution, which tells us where in the tissue those molecular species show that related ion 
intensity variation.  

We performed NMF on the MALDI IMS data. Reconstruction errors were calculated for 
different hyperparameter settings, with the number of components n ranging from 1 to 100. The 
parameter value of n=13 components was determined to be optimal in this context, keeping the 
number of components low (enforcing a summarizing effect where a component bundles together 
several m/z variables) while also keeping the reconstruction error low (enforcing good 
approximation of the original measurements using the lower-dimensional NMF representation) 
(Figure 4-4).  
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Figure 4-4: Reconstruction error of NMF components. Non-negative matrix factorization (NMF) was performed on 
the IMS data with components (n) ranging from 1 to 100. An n of 13 was determined to be optimal using the “elbow” 
method that indicates where the reconstruction error is minimized at the same time as the number of NMF components. 

 
Upon performing NMF on this dataset allowing a rank-13 lower-dimensional 

approximation delivering underlying 13 components, we found that several of the components 
along the spatial axis correlated to infectious disease areas in the tissue, as well as to renal 
structures such as the medulla and cortex (Figure 4-5).  
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Figure 4-5: NMF components of IMS data. Non-negative matrix factorization (NMF) was performed on the IMS data 
and each of the resultant components were visualized as ion images.  

 
In terms of infection, we found that NMF component 5 correlated with the inflammation 

region surrounding the abscess (Figure 4-6A,B), revealing key differences between the molecular 
composition of the inflammation and abscess. Conversely, NMF component 6 correlated with the 
major abscess (Figure 4-6C), revealing not only the spatially resolved molecular morphology of 
the abscess, but also the key areas of interest within the abscess based on the IMS data. For 
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instance, the top left region of the infection has a stronger molecular signal as compared to the rest 
of the abscess, as indicated by the red lines showing higher intensity, allowing us to speculate that 
this may be the center or origin point of the abscess. We can also observe two additional areas of 
high intensity, one towards the center of the abscess and one towards the bottom, further implying 
molecular heterogeneity in that region. Finally, studying these two components in the form of 
contour maps allows us to better visualize the transition zone at the host-pathogen interface. We 
can see that the transition zone is much narrower towards the top and right sides of the abscess 
than the left, evidenced by the increased proximity of contour lines towards the right, potentially 
indicating the direction in which the abscess was growing.  

In summary, the contour maps for components correlating to the inflammation (Figure 
4-6B) and abscess (Figure 4-6C), labeled with binned intensity values, reveal heterogeneous 
morphology in the tissue that was otherwise not discernable in the PAS alone. The average spectra 
corresponding to each component further reveals the distinct molecular profiles for the 
surrounding inflammation and bacterial abscess (Figure 4-6D).  
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Figure 4-6: Contour maps built upon results of multivariate NMF analysis. Non-negative matrix factorization (NMF) 
was applied to the MALDI IMS data. A) Contour map of an NMF component (component 5) reveals distinct 
differentiation between the abscess and surrounding inflammation. B) Zoomed in contour map of an NMF component 
(component 5), which correlates to the surrounding inflammatory response; contours are labeled by binned intensity 
values. C) Another contour map of an NMF component (component 6) correlating to the bacterial abscess; contours 
are labeled by binned intensity values. D) Average spectra corresponding to each of the NMF components, revealing 
distinct molecular profiles between the surrounding inflammation (top) and bacterial abscess (bottom). 
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CONCLUSIONS  
We have developed a new strategy to augment the visualization of digital pathology whole-

slide images by co-registering contour maps of ion intensity or derivatives of ion intensity acquired 
by mass spectrometry. Within this work, contour maps were used to visualize spatially resolved 
molecular changes within an S. aureus infected murine kidney. Univariate contour maps built 
using single ion images revealed the spatial changes of individual ion intensity across whole slide 
images. Non-negative matrix factorization was applied to reduce the dimensionality of the MALDI 
IMS data, and multivariate contour maps of the NMF results were generated. These maps overlaid 
onto high-resolution stained microscopy exposed staphylococcal abscess morphology and the 
molecular transition zone at the host-pathogen interface, suggesting that one side of the abscess 
was more proliferative than the other. These findings were not discernable in the PAS nor IMS 
data alone, demonstrating the effectiveness of an augmented visualization of multimodal IMS data 
that provided insight into the molecular composition of an S. aureus infected murine kidney. 
Augmented visualization strategies such as this contour mapping approach are broadly applicable 
to multimodal IMS and microscopy experiments and will become more critical with continued 
advancement of multimodal workflows.  

 
METHODS 

Ethics statement  
All animal experiments under protocol M1900043 were reviewed and approved by the 

Institutional Animal Care and Use Committee of Vanderbilt University. Procedures were 
performed according to the institutional policies, Animal Welfare Act, NIH guidelines, and 
American Veterinary Medical Association guidelines on euthanasia. 
Murine model of systemic S. aureus infection  

Six to eight-week-old female mice were anesthetized with tribromoethanol (Avertin) and 
retro-orbitally infected with ~1.5-2 x 107 CFUs of S. aureus USA300 LAC constitutively 
expressing sfGFP from the genome (PsarA-sfGFP integrated at the SaPI1 site). Infection was 
allowed to progress for seven days and then the animal was humanely euthanized, and the kidney 
was removed for molecular studies. 
MALDI imaging mass spectrometry sample preparation and data acquisition 

A 10 µm cryo-section of the infected murine kidney was mounted on a conductive ITO-
coated slide, and 1,5-Diaminonapthalene was sprayed using an automated pneumatic TM sprayer 
from HTX Technologies.154 Images were acquired in positive ionization mode at 10 µm raster size 
using a Bruker Daltonics timsTOF with beam-scanning mode turned off.155 After MALDI IMS 
was acquired, the tissue section was scanned using autofluorescence (AF) microscopy with the 
matrix still present on the tissue section to reveal laser ablation marks of the MALDI IMS 
measurements to drive the IMS–microscopy image registration.156  
Microscopy data acquisition 

AF microscopy was performed before and after MALDI IMS. The AF images were 
captured using DAPI (ex. 335-383, em. 420-470), GFP (ex.450-490, em. 500-550), and DsRed 
(ex. 538-562, em. 570-640) filters on a Zeiss AxioScan.Z1 equipped with a Zeiss HXP 120V 
fluorescent metal-halide lamp. A 10x Plan-Apochromat (NA=0.45) objective was used, resulting 
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in a pixel side size of 0.65 μm/px when combined with a Hamamatsu ORCA flash monochromatic 
camera. Exposure times were 180, 142, and 242 milliseconds for the DAPI, GFP, and DsRed 
filters, respectively. Following this image acquisition, the slide was stained using a Periodic Acid-
Schiff (PAS) stain according to existing protocols for human kidney tissue.157 PAS-stained tissue 
sections were scanned using the Zeiss AxioScan.Z1 slide scanner using a 20x Plan-Aprochomat 
20x (NA=0.8) objective with a Hitachi HV-F202SCL RGB camera for an effective pixel side size 
of 0.22 µm/px.  
Microscopy-MALDI IMS image registration 

Microscopy and MALDI IMS data were registered in two steps. In the first step, laser 
ablation marks captured by the post-IMS AF image were registered to MALDI IMS pixels using 
IMS MicroLink158 by manually selecting corresponding pairs of laser ablation marks and IMS 
pixels. After directly mapping pixels to laser ablation marks in the microscopy pixel space, PAS 
and pre-MALDI AF microscopy images were registered to the IMS data via the previously 
registered post-IMS AF image in the wsireg159 software.  

Data Analysis 
The registered PAS whole slide image (WSI) was imported into QuPath34 and the kidney 

and infection regions were annotated by a domain expert. The remainder of the analysis was 
performed in Python version 3.7 and napari35. Pathology annotations were exported from QuPath 
using the GeoJSON standard and imported into Python, along with IMS data (TIC normalized 
using a 5-95% normalization). Lipid identifications were determined on the basis of high mass 
accuracy and matching to LIPIDMAPS lipidomics gateway (lipidmaps.org).138,160 The adrenal 
gland was excluded from the analysis because the molecular species within this organ were vastly 
different from that of the kidney, with the potential of introducing extensive variation that could 
skew the analysis.  

A pixel-wise Pearson correlation analysis was performed on the normalized intensity data 
and pathology annotations to distinguish ions highly correlating with each region of interest and 
to generate corresponding ion images. A Gaussian blur from the Sci-kit image161 library was 
applied (s = 2.0, truncate = 3.5) to the ion images to attenuate single-pixel variations and to 
emphasize multi-pixel variational patterns. Contour maps were generated from these smoothed 
images using the Matplotlib162 library (levels = 10, all other hyper-parameters were set to the 
default). Non-negative matrix factorization (NMF) using Sci-kit learn’s NMF implementation was 
applied to the full IMS dataset. To determine the optimal n number of components, a range of n 
values from 1 to 100 were tested using reconstruction error as a performance metric. The 
reconstruction error within this implementation is the Frobenius norm of the matrix difference 
between the training data and reconstructed data from the fitted model. Upon determining the 
optimal n value to be 13, where the number of components and reconstruction error were both 
minimized (Figure S4), the NMF algorithm was deployed onto the full IMS dataset and a result 
with 13 components was generated. A similar Gaussian blur (s = 2.0, truncate = 3.5) and contour 
map method (levels = 10) was applied to the spatial signatures of these NMF components, 
generating contour maps. Output images were exported in the pyramidal OME-TIFF format for 
visualization in napari35 alongside MALDI IMS and contour maps. 
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CHAPTER 5 CONCLUSIONS AND PERSPECTIVES 
 

OVERVIEW 
As imaging-based technology advances, the quantity of molecular data produced from a 

given tissue sample has increased immensely. Often, different molecular imaging modalities can 
be applied to the same or serial tissue section, generating orthogonal datasets that require 
computational methods to integrate, analyze, and visualize the molecular measurements. The 
research presented in this thesis establishes a series of technical developments in the field of 
biocomputational method development for integrated multimodal imaging (Chapter 1). First, an 
automated unsupervised method was established to analyze high-dimensional spatially targeted 
proteomic data utilizing PCA followed by k-means clustering while accounting for data sparsity 
(Chapter 2). Second, segmentation methods applied to CODEX MxIF data were evaluated, after 
which a custom multivariate unsupervised method was developed to segment multicellular FTUs 
and segmentation masks were used to extract FTU-specific lipidomic signatures from registered 
IMS data (Chapter 3). Third, a data visualization strategy was developed to augment classically 
stained microscopy images with IMS-based contour maps, providing an enhanced and more 
interpretable visualization of IMS-microscopy multimodal imaging datasets (Chapter 4). 

These technical advances were applied to study Staphylococcus aureus infections within 
the murine kidney. The biological findings, comprising both proteomic and lipidomic molecular 
landscapes, provide new insight into the complex host-pathogen interface. First, the proteomic 
analysis from data obtained through microLESA revealed protein classes reflecting metabolic and 
cytoskeletal (Chapter 2). A biological hypothesis about the role of Annexins within the host-
pathogen interface also emerged, suggesting that while Annexin 2 may be facilitating 
staphylococcal anchoring, Annexins 3 and 5 may confer varying degrees of protection against 
infection (Chapter 2). Second, analysis of multimodal CODEX MxIF and MALDI IMS data 
revealed lipidomic heterogeneity within staphylococcal abscesses as well as between regions with 
and without visible abscesses, with the identification of specific lipids localizing to each (Chapter 
3). Third, a MALDI IMS-derived contour map visualization strategy overlaid onto PAS 
microscopy provided insight into the directionality of abscess growth and proliferation that was 
otherwise difficult to ascertain from each modality alone (Chapter 4). These results may inform 
the mechanism of staphylococcal abscess development and provide insight into the molecular 
pathways that are active and could potentially be disrupted to treat infection.  

 
INSIGHT AND FUTURE STUDIES OF S. AUREUS INFECTION 

The findings in this work allow for speculation about the host-pathogen interface of an S. 
aureus infection. The presence of infection is largely determined based on the interplay between 
the pathogen’s proliferative action and resultant host immune response. If the pathogen is able to 
proliferate or persist at a faster rate than the host is able to eliminate the infection, the infection 
will endure, and disease severity may increase. Conversely, if the host can eliminate the infection 
faster than the pathogen can proliferate, the infection will be cleared. Both the host and pathogen 
have myriad mechanisms for clearing and persisting, respectively, and given the heterogenous 
molecular architecture of an S. aureus infection in tissue, these may be occurring differently across 
regions of the tissue. 
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The conclusions from the proteomics study suggest that Annexins play a key role in this 
interplay. Annexins are broadly understood as calcium-dependent phospholipid binding proteins 
and as a protein class, comprise twelve different proteins with varying functions. A survey of the 
literature suggested that Annexin A2 interacts with staphylococcal clumping factors A and B, 
facilitating attachment to epithelial cells. This physical anchoring of the bacteria through the 
binding of Annexin A2 may contribute to its long-lasting infection. The proteomics study detailed 
in this thesis (Chapter 2) revealed that Annexin A2 was increased in the interface and SAC 4 and 
10 DPI. However, in addition to Annexin A2, Annexin A3 was also increased, suggesting it may 
also have a role in the host-pathogen interface. Little is known about the role of Annexin A3 within 
staphylococcal infection specifically; however, a transcriptomics study of blood samples from 
patients with sepsis indicated that Annexin A3 expression is restricted to neutrophils and is 
increased in septic samples compared to normal blood samples. This suggests that while Annexin 
A2 may be helping the bacteria remain in the tissue through an anchoring mechanism, Annexin 
A3 from the surrounding neutrophils could be providing a countereffect against the bacteria. In 
our proteomics study, it was also revealed that Annexin A5 was increased in only the interface and 
SAC samples 10 DPI. Like Annexin A3, Annexin A5 has not been implicated in staphylococcal 
infection but has been shown in previous studies to aid in the survival of a murine sepsis model. 
Specifically, Annexin A5 was found to inhibit HMGB1-mediated proinflammation and 
coagulation. Taken together, we can now speculate that Annexin A2 may be facilitating 
staphylococcal anchoring in the tissue while Annexins A3 and A5 provide varying degrees of 
protection. Future studies investigating these three Annexins could elucidate more clearly the 
impact each is having on the infection and reveal potential drug targets to bolster the host immune 
response and combat the infection.  

The lipidomic studies detailed in this work largely focused on integrative methods to 
contextualize spatial lipid distributions with biologically relevant ROIs derived from microscopy 
(Chapter 3, Chapter 4). Although we were able to make some preliminary identifications, 
including that of a phosphatidylcholine that co-localized with the bacterial abscess, there remains 
much to be discovered about lipids within the host-pathogen interface. Lipids form critical 
components of the lipid bilayer of both host and immune cells. Further, lipids have been implicated 
in antibiotic resistance of S. aureus. Within the work described here, we found that a subset of 
lipids such as [SM(d34:1)+H]+ and [PC(P-34:0)+H]+ co-localized with the abscess-rich regions 
while other lipids such as [PC(36:1)+H]+ and [PC(34:1)+H]+  co-localized with non-abscessed 
regions (Chapter 3). A broader characterization of all of the lipids that co-localize with different 
regions of infection can help elucidate molecular mechanisms of action at the host-pathogen 
interface. This characterization may include subsetting the full lipid dataset by lipid classes, chain 
length, or type of adduct and comparing differences among regions of the infection and/or FTUs 
and cell types. In the way that multiple molecular species were displayed as a single NMF 
component contour map (Chapter 4), these lipid distributions can then be overlaid onto PAS 
showing the histology and provide context about the localizations of different types of lipids. This 
information combined with the histological information indicating regions of infection could 
provide a more nuanced depiction of the lipidomic landscape at the host-pathogen interface. 
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FUTURE PERSPECTIVES 
This work describes novel advances in biocomputational method development to integrate 

and analyze large spatially targeted multimodal imaging datasets using multivariate methods. 
However, technical advances are required before these methods can be applied to larger numbers 
of datasets in an automated way. These technical methods further require thoughtful considerations 
such as the selection of optimal hyper-parameters. Furthermore, the utility of these 
biocomputational approaches is to provide biological insight into spatially targeted molecular 
measurements by using one modality (often microscopy) to contextualize data from another (such 
as MALDI IMS). As such, there remains myriad opportunities to integrate additional types of 
spatially resolved data, such as that from spatial transcriptomics. Integrating transcriptomics data 
with proteomic and lipidomic data can further help elucidate biological processes, such as those at 
the host-pathogen interface and into other disease states.  

The applications of the workflows described here allowed for a deeper analysis of the host-
pathogen interface and provided novel insights into the complex biology that is often not captured 
in a single imaging modality. The biocomputational workflows described here would also be well-
suited for data in other types of studies where there is a complex two-dimensional interplay of 
molecular species. One such example would be the study of the tumor microenvironment, where 
the heterogeneous molecular signatures can inform disease prognoses. These approaches could 
also be applied to study medical device implants, for instance to characterize molecular changes 
in the surrounding tissue as an IMS-derived contour map overlaid onto a histology image. A drug 
delivery device where gradients of delivered drugs and their pharmacokinetics and 
pharmacodynamics need to be monitored in a two- or three-dimensional space would also be a 
strong use-case for this type of multimodal workflow. Finally, these methods could be applied 
within a clinical setting. Often pathologists rely on tissue biopsies to rapidly diagnose diseases and 
delineate the region of infection. However, these assessments are typically based on histology 
alone. A future application of the methods detailed here could involve performing a MALDI IMS 
experiment on the same tissue section and building a contour map to visualize a known biomarker 
of disease. This assessment and subsequent visualization can inform the pathologist and/or surgeon 
resecting the diseased region more so than the histology alone can provide, resulting in a more 
complete resection and reducing the chances of disease resurgence. 
  



 61 

REFERENCES 

1. Fan, J., Han, F. & Liu, H. Challenges of Big Data analysis. Natl. Sci. Rev. 1, 293–314 
(2014). 

2. Prentice, B. M., Caprioli, R. M. & Vuiblet, V. Label-free molecular imaging of the kidney. 
Kidney Int. 92, 580–598 (2017). 

3. Kruse, A. R. S. & Spraggins, J. M. Uncovering Molecular Heterogeneity in the Kidney With 
Spatially Targeted Mass Spectrometry. Front. Physiol. 13, (2022). 

4. Alturkistani, H. A., Tashkandi, F. M. & Mohammedsaleh, Z. M. Histological Stains: A 
Literature Review and Case Study. Glob. J. Health Sci. 8, 72–79 (2015). 

5. Javaeed, A. et al. Histological Stains in the Past, Present, and Future. Cureus 13, e18486 
(2021). 

6. Jayapandian, C. P. et al. Development and evaluation of deep learning-based segmentation 
of histologic  structures in the kidney cortex with multiple histologic stains. Kidney Int. 99, 
86–101 (2021). 

7. Patterson, N. H. et al. Next Generation Histology-Directed Imaging Mass Spectrometry 
Driven by Autofluorescence Microscopy. Anal. Chem. 90, 12404–12413 (2018). 

8. Patterson, N. H., Tuck, M., Van De Plas, R. & Caprioli, R. M. Advanced Registration and 
Analysis of MALDI Imaging Mass Spectrometry Measurements through Autofluorescence 
Microscopy. Anal. Chem. 90, 12395–12403 (2018). 

9. Kim, S.-W., Roh, J. & Park, C.-S. Immunohistochemistry for Pathologists: Protocols, 
Pitfalls, and Tips. J. Pathol. Transl. Med. 50, 411–418 (2016). 

10. Goltsev, Y. et al. Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed 
Imaging In Brief A DNA barcoding-based imaging technique uses multiplexed tissue 
antigen staining to enable the characterization of cell types and dynamics in a model of 
autoimmune disease. Cell 174, 968–981 (2018). 

11. Schürch, C. M. et al. Coordinated Cellular Neighborhoods Orchestrate Antitumoral 
Immunity at the Colorectal Cancer Invasive Front. Cell 182, 1341-1359.e19 (2020). 

12. Kennedy‐Darling, J. et al. Highly multiplexed tissue imaging using repeated 
oligonucleotide exchange reaction. Eur. J. Immunol. 1–32 (2021). 
doi:10.1002/eji.202048891 

13. Pitt, J. J. Principles and applications of liquid chromatography-mass spectrometry in clinical 
biochemistry. Clin. Biochem. Rev. 30, 19–34 (2009). 

14. Chen, G. & Pramanik, B. N. Application of LC/MS to proteomics studies: current status 
and future prospects. Drug Discov. Today 14, 465–471 (2009). 

15. Ryan, D. J. et al. MicroLESA: Integrating Autofluorescence Microscopy, in Situ Micro-
Digestions, and Liquid Extraction Surface Analysis for High Spatial Resolution Targeted 
Proteomic Studies. Anal. Chem. 91, 7578–7585 (2019). 

16. Zhu, Y. et al. Spatially Resolved Proteome Mapping of Laser Capture Microdissected 
Tissue with Automated Sample Transfer to Nanodroplets*. Mol. Cell. Proteomics 17, 1864–



 62 

1874 (2018). 
17. Zhu, Y. et al. Nanodroplet processing platform for deep and quantitative proteome profiling 

of 10–100 mammalian cells. Nat. Commun. 2018 91 9, 1–10 (2018). 
18. Piehowski, P. D. et al. Automated mass spectrometry imaging of over 2000 proteins from 

tissue sections at 100-μm spatial resolution. Nat. Commun. 11, 1–12 (2020). 
19. Guiberson, E. R. et al. Spatially Targeted Proteomics of the Host–Pathogen Interface during 

Staphylococcal Abscess Formation. ACS Infect. Dis. 7, 101–113 (2021). 
20. Sharman, K. et al. Rapid Multivariate Analysis Approach to Explore Differential Spatial 

Protein Profiles in Tissue. J. Proteome Res. (2022). doi:10.1021/acs.jproteome.2c00206 
21. Caprioli, R. M., Farmer, T. B. & Gile, J. Molecular Imaging of Biological Samples: 

Localization of Peptides and Proteins Using MALDI-TOF MS. Anal. Chem. 69, 4751–4760 
(1997). 

22. Norris, J. L. & Caprioli, R. M. Analysis of tissue specimens by matrix-assisted laser 
desorption/ionization imaging  mass spectrometry in biological and clinical research. Chem. 
Rev. 113, 2309–2342 (2013). 

23. Fujino, Y., Minamizaki, T., Yoshioka, H., Okada, M. & Yoshiko, Y. Imaging and mapping 
of mouse bone using MALDI-imaging mass spectrometry. Bone reports 5, 280–285 (2016). 

24. Judd, A. M. et al. A recommended and verified procedure for in situ tryptic digestion of 
formalin-fixed paraffin-embedded tissues for analysis by matrix-assisted laser 
desorption/ionization imaging mass spectrometry. J. Mass Spectrom. 54, 716–727 (2019). 

25. Dufresne, M., Patterson, N. H., Norris, J. L. & Caprioli, R. M. Combining Salt Doping and 
Matrix Sublimation for High Spatial Resolution MALDI Imaging Mass Spectrometry of 
Neutral Lipids. Anal. Chem. (2019). doi:10.1021/acs.analchem.9b02974 

26. Angel, P. M. et al. Advances in MALDI imaging mass spectrometry of proteins in cardiac 
tissue, including the heart valve. Biochim. Biophys. acta. Proteins proteomics 1865, 927–
935 (2017). 

27. Powers, T. W. et al. MALDI Imaging Mass Spectrometry Profiling of N-Glycans in 
Formalin-Fixed Paraffin Embedded Clinical Tissue Blocks and Tissue Microarrays. PLoS 
One 9, e106255 (2014). 

28. Zavalin, A., Yang, J., Hayden, K., Vestal, M. & Caprioli, R. M. Tissue protein imaging at 
1 μm laser spot diameter for high spatial resolution and high imaging speed using 
transmission geometry MALDI TOF MS. Anal. Bioanal. Chem. 407, 2337–2342 (2015). 

29. Alexandrov, T. MALDI imaging mass spectrometry: statistical data analysis and current  
computational challenges. BMC Bioinformatics 13 Suppl 1, S11 (2012). 

30. Hu, H. & Laskin, J. Emerging Computational Methods in Mass Spectrometry Imaging. Adv. 
Sci. n/a, 2203339 (2022). 

31. Van De Plas, R., Yang, J., Spraggins, J. & Caprioli, R. M. Fusion of mass spectrometry and 
microscopy: a multi-modality paradigm for molecular tissue mapping HHS Public Access. 
Nat Methods 12, 366–372 (2015). 

32. Verbeeck, N., Caprioli, R. M. & Van de Plas, R. Unsupervised machine learning for 



 63 

exploratory data analysis in imaging mass spectrometry. Mass Spectrom. Rev. 39, 245–291 
(2020). 

33. Tideman, L. E. M. et al. Automated biomarker candidate discovery in imaging mass 
spectrometry data through spatially localized Shapley additive explanations. Anal. Chim. 
Acta 1177, 338522 (2021). 

34. Bankhead, P. et al. QuPath: Open source software for digital pathology image analysis. Sci. 
Rep. 7, 1–7 (2017). 

35. Sofroniew, N. et al. Napari: A multi-dimensional image viewer for python. (2019). 
doi:10.5281/ZENODO.4048613 

36. CDC. Deadly Staph Infections Still Threaten the U.S. CDC calls for increased prevention 
to protect patients. Vital Signs (2019). Available at: 
https://www.cdc.gov/media/releases/2019/p0305-deadly-staph-infections.html. (Accessed: 
27th September 2020) 

37. Pfizer Inc. New Research Estimates MRSA Infections Cost U.S. Hospitals $3.2 Billion to 
$4.2 Billion Annually. Infection Control Today 1–2 (2005). Available at: 
https://www.infectioncontroltoday.com/view/new-research-estimates-mrsa-infections-
cost-us-hospitals-32-billion-42-billion-annually. (Accessed: 27th September 2020) 

38. Casadevall, A. & Pirofski, L. A. Host-pathogen interactions: Basic concepts of microbial 
commensalism, colonization, infection, and disease. Infection and Immunity 68, 6511–6518 
(2000). 

39. Cassat, J. E. et al. Integrated molecular imaging reveals tissue heterogeneity driving host-
pathogen interactions. Sci. Transl. Med. 10, 6361 (2018). 

40. Cheng, A. G., DeDent, A. C., Schneewind, O. & Missiakas, D. A play in four acts: 
Staphylococcus aureus abscess formation. Trends in Microbiology 19, 225–232 (2011). 

41. Perry, W. J. et al. Staphylococcus aureus exhibits heterogeneous siderophore production 
within the vertebrate host. Proc. Natl. Acad. Sci. U. S. A. 116, 21980–21982 (2019). 

42. Surewaard, B. G. J. et al. Identification and treatment of the Staphylococcus aureus 
reservoir in vivo. J. Exp. Med. 213, 1141–1151 (2016). 

43. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 
(2003). 

44. Bantscheff, M., Schirle, M., Sweetman, G., Rick, J. & Kuster, B. Quantitative mass 
spectrometry in proteomics: a critical review. Anal. Bioanal. Chem. 389, 1017–1031 (2007). 

45. Han, X., Aslanian, A. & Yates  3rd, J. R. Mass spectrometry for proteomics. Curr. Opin. 
Chem. Biol. 12, 483–490 (2008). 

46. Yates, J. R., Ruse, C. I. & Nakorchevsky, A. Proteomics by Mass Spectrometry: 
Approaches, Advances, and Applications. Annu. Rev. Biomed. Eng. 11, 49–79 (2009). 

47. Baker, E. S. et al. Mass spectrometry for translational proteomics: progress and clinical 
implications. Genome Med. 4, 63 (2012). 

48. Noor, Z., Ahn, S. B., Baker, M. S., Ranganathan, S. & Mohamedali, A. Mass spectrometry-
based protein identification in proteomics- A review. Briefings in Bioinformatics 22, 1620–



 64 

1638 (2021). 
49. Srinivas, P. R., Verma, M., Zhao, Y. & Srivastava, S. Proteomics for Cancer Biomarker 

Discovery. Clin. Chem. 48, 1160–1169 (2002). 
50. Sallam, R. M. Proteomics in Cancer Biomarkers Discovery: Challenges and Applications. 

Dis. Markers 2015, 321370 (2015). 
51. Shruthi, B. S., Vinodhkumar, P. & Selvamani. Proteomics: A new perspective for cancer. 

Adv. Biomed. Res. 5, 67 (2016). 
52. Scott, E. M., Carter, A. M. & Findlay, J. B. C. The application of proteomics to diabetes. 

Diabetes Vasc. Dis. Res. 2, 54–60 (2005). 
53. Bhat, S., Jagadeeshaprasad, M. G., Venkatasubramani, V. & Kulkarni, M. J. Abundance 

matters: role of albumin in diabetes, a proteomics perspective. Expert Rev. Proteomics 14, 
677–689 (2017). 

54. Wang, N., Zhu, F., Chen, L. & Chen, K. Proteomics, metabolomics and metagenomics for 
type 2 diabetes and its complications. Life Sci. 212, 194–202 (2018). 

55. Fu, J. et al. Advances in Current Diabetes Proteomics: From the Perspectives of Label- free  
Quantification and Biomarker Selection. Curr. Drug Targets 21, 34–54 (2020). 

56. Van Eyk, J. E. Proteomics: unraveling the complexity of heart disease and striving to change 
cardiology. Curr. Opin. Mol. Ther. 3, 546–553 (2001). 

57. McGregor, E. & Dunn, M. J. Proteomics of the heart: unraveling disease. Circ. Res. 98, 
309–321 (2006). 

58. Fu, Q. & Van Eyk, J. E. Proteomics and heart disease: identifying biomarkers of clinical 
utility. Expert Rev. Proteomics 3, 237–249 (2006). 

59. Baetta, R., Pontremoli, M., Martinez Fernandez, A., Spickett, C. M. & Banfi, C. Proteomics 
in cardiovascular diseases: Unveiling sex and gender differences in the era of precision 
medicine. J. Proteomics 173, 62–76 (2018). 

60. Stoeckli, M., Chaurand, P., Hallahan, D. E. & Caprioli, R. M. Imaging mass spectrometry: 
a new technology for the analysis of protein expression  in mammalian tissues. Nat. Med. 
7, 493–496 (2001). 

61. Amstalden van Hove, E. R., Smith, D. F. & Heeren, R. M. A. A concise review of mass 
spectrometry imaging. J. Chromatogr. A 1217, 3946–3954 (2010). 

62. McDonnell, L. A. & Heeren, R. M. A. Imaging mass spectrometry. Mass Spectrom. Rev. 
26, 606–643 (2007). 

63. Burnum, K. E., Frappier, S. L. & Caprioli, R. M. Matrix-assisted laser desorption/ionization 
imaging mass spectrometry for the  investigation of proteins and peptides. Annu. Rev. Anal. 
Chem. (Palo Alto. Calif). 1, 689–705 (2008). 

64. Spraggins, J. M. et al. Next-generation technologies for spatial proteomics: Integrating 
ultra-high speed MALDI-TOF and high mass resolution MALDI FTICR imaging mass 
spectrometry for protein analysis. Proteomics 16, 1678–1689 (2016). 

65. Aichler, M. & Walch, A. MALDI Imaging mass spectrometry: current frontiers and 



 65 

perspectives in pathology research and practice. Lab. Investig. 95, 422–431 (2015). 
66. Ryan, D. J., Spraggins, J. M. & Caprioli, R. M. Protein identification strategies in MALDI 

imaging mass spectrometry: a brief review. Curr. Opin. Chem. Biol. 48, 64–72 (2019). 
67. Kelly, R. et al. Single Cell Proteome Mapping of Tissue Heterogeneity Using Microfluidic 

Nanodroplet Sample Processing and Ultrasensitive LC-MS. J. Biomol. Tech. 30, S61 
(2019). 

68. Williams, S. M. et al. Automated Coupling of Nanodroplet Sample Preparation with Liquid 
Chromatography-Mass Spectrometry for High-Throughput Single-Cell Proteomics. Anal. 
Chem. 92, 10588–10596 (2020). 

69. Sarsby, J. et al. Liquid Extraction Surface Analysis Mass Spectrometry Coupled with Field 
Asymmetric Waveform Ion Mobility Spectrometry for Analysis of Intact Proteins from 
Biological Substrates. Anal. Chem. 87, 6794–6800 (2015). 

70. Schey, K. L., Anderson, D. M. & Rose, K. L. Spatially-directed protein identification from 
tissue sections by top-down LC-MS/MS with electron transfer dissociation. Anal. Chem. 
85, 6767–6774 (2013). 

71. Wisztorski, M. et al. Droplet-based liquid extraction for spatially-resolved microproteomics 
analysis of tissue sections. in Methods in Molecular Biology 1618, 49–63 (Humana Press 
Inc., 2017). 

72. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized 
p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 
26, 1367–1372 (2008). 

73. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass 
spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016). 

74. Guiberson, E. R. et al. Spatially Targeted Proteomics of the Host-Pathogen Interface during 
Staphylococcal Abscess Formation. ACS Infect. Dis. 7, 101–113 (2021). 

75. Piehowski, P. D. et al. Automated mass spectrometry imaging of over 2000 proteins from 
tissue sections at 100-μm spatial resolution. Nat. Commun. 11, 8 (2020). 

76. Satoskar, A. A. et al. Characterization of Glomerular Diseases Using Proteomic Analysis 
of Laser Capture Microdissected Glomeruli. Mod Pathol 25, 709–721 (2012). 

77. Cazares, L. H. et al. Normal, benign, preneoplastic, and malignant prostate cells have 
distinct protein expression profiles resolved by Surface Enhanced Laser 
Desorption/Ionization mass spectrometry. Clin. Cancer Res. 8, 2541–2552 (2002). 

78. Datta, S. et al. Laser capture microdissection: Big data from small samples. Histol. 
Histopathol. 30, 1255–1269 (2015). 

79. Schuetz, C. S. et al. Progression-specific genes identified by expression profiling of 
matched ductal carcinomas in situ and invasive breast tumors, combining laser capture 
microdissection and oligonucleotide microarray analysis. Cancer Res. 66, 5278–5286 
(2006). 

80. Alevizos, I. et al. Oral cancer in vivo gene expression profiling assisted by laser capture 
microdissection and microarray analysis. Oncogene 20, 6196–6204 (2001). 



 66 

81. Kunz, G. M. & Chan, D. W. The use of laser capture microscopy in proteomics research - 
A review. Dis. Markers 20, 155–160 (2004). 

82. Shapiro, J. P. et al. A quantitative proteomic workflow for characterization of frozen clinical 
biopsies: Laser capture microdissection coupled with label-free mass spectrometry. J. 
Proteomics 77, 433–440 (2012). 

83. Elias, J. et al. Prevalence dependent calibration of a predictive model for nasal carriage of 
methicillin-resistant Staphylococcus aureus. BMC Infect. Dis. 13, 111 (2013). 

84. Wei, R. et al. Missing Value Imputation Approach for Mass Spectrometry-based 
Metabolomics Data. Sci. Rep. 8, 663 (2018). 

85. Dabke, K., Kreimer, S., Jones, M. R. & Parker, S. J. A simple optimization workflow to 
enable precise and accurate imputation of missing values in proteomic datasets. J. Proteome 
Res. 20, 3214–3229 (2021). 

86. Lazar, C., Gatto, L., Ferro, M., Bruley, C. & Burger, T. Accounting for the Multiple Natures 
of Missing Values in Label-Free Quantitative Proteomics Data Sets to Compare Imputation 
Strategies. J. Proteome Res. 15, 1116–1125 (2016). 

87. Anderson, D. C., Li, W., Payan, D. G. & Noble, W. S. A new algorithm for the evaluation 
of shotgun peptide sequencing in proteomics: Support vector machine classification of 
peptide MS/MS spectra and SEQUEST scores. J. Proteome Res. 2, 137–146 (2003). 

88. Klein, O. et al. MALDI-Imaging for Classification of Epithelial Ovarian Cancer Histotypes 
from a Tissue Microarray Using Machine Learning Methods. Proteomics - Clin. Appl. 13, 
1–11 (2019). 

89. Swan, A. L., Mobasheri, A., Allaway, D., Liddell, S. & Bacardit, J. Application of Machine 
Learning to Proteomics Data: Classification and Biomarker Identification in Postgenomics 
Biology. Omi. A J. Integr. Biol. 17, 595–610 (2013). 

90. Halko, N., Martinsson, P. G. & Tropp, J. A. Finding structure with randomness: 
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 
53, 217–288 (2011). 

91. Hastie, T., Tibshirani, R. & Friedman, J. H. The elements of statistical learning data mining, 
inference, and prediction. Springer series in statistics, (Springer, 2009). 

92. Sinitcyn, P., Rudolph, J. D. & Cox, J. Computational Methods for Understanding Mass 
Spectrometry–Based Shotgun Proteomics Data. Annu. Rev. Biomed. Data Sci. 1, 207–234 
(2018). 

93. Hartigan, J. A. & Wong, M. A. Algorithm AS 136: A K-Means Clustering Algorithm. Appl. 
Stat. 28, 100 (1979). 

94. Lloyd, S. P. Least Squares Quantization in PCM. IEEE Trans. Inf. Theory 28, 129–137 
(1982). 

95. MacQueen, J. Some methods for classification and analysis of multivariate observations. in 
Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability 1, 
281–296 (The Regents of the University of California, 1967). 

96. Rousseeuw, P. J. Silhouettes: A graphical aid to the interpretation and validation of cluster 



 67 

analysis. J. Comput. Appl. Math. 20, 53–65 (1987). 
97. Karpievitch, Y. et al. A statistical framework for protein quantitation in bottom-up MS-

based proteomics. Bioinformatics 25, 2028–2034 (2009). 
98. Santamaria-Kisiel, L., Rintala-Dempsey, A. C. & Shaw, G. S. Calcium-dependent and -

independent interactions of the S100 protein family. Biochem. J. 396, 201–214 (2006). 
99. Mi, H. et al. PANTHER version 16: a revised family classification, tree-based classification 

tool, enhancer regions and extensive API. Nucleic Acids Res. 49, D394–D403 (2021). 
100. Ziesemer, S. et al. Staphylococcus aureus α-Toxin Induces Actin Filament Remodeling in 

Human Airway  Epithelial Model Cells. Am. J. Respir. Cell Mol. Biol. 58, 482–491 (2018). 
101. Gotoh, M. et al. Annexins I and IV inhibit Staphylococcus aureus attachment to human 

macrophages. Immunol. Lett. 98, 297–302 (2005). 
102. Ashraf, S., Cheng, J. & Zhao, X. Clumping factor A of Staphylococcus aureus interacts with 

AnnexinA2 on mammary epithelial cells. Sci. Rep. 7, 40608 (2017). 
103. Ying, Y.-T. et al. Annexin A2-Mediated Internalization of Staphylococcus aureus into 

Bovine Mammary Epithelial Cells Requires Its Interaction with Clumping Factor B. 
Microorganisms 9, 2090 (2021). 

104. He, X. et al. A new role for host annexin A2 in establishing bacterial adhesion to vascular 
endothelial cells: lines of evidence from atomic force microscopy and an in vivo study. Lab. 
Investig. 99, 1650–1660 (2019). 

105. Toufiq, M. et al. Annexin A3 in sepsis: novel perspectives from an exploration of public 
transcriptome data. Immunology 161, 291–302 (2020). 

106. Park, J. H. et al. Annexin A5 increases survival in murine sepsis model by inhibiting 
HMGB1-mediated pro-inflammation and coagulation. Mol. Med. 22, 424–436 (2016). 

107. Randall, E. C., Race, A. M., Cooper, H. J. & Bunch, J. MALDI Imaging of Liquid 
Extraction Surface Analysis Sampled Tissue. Anal. Chem. 88, 8433–8440 (2016). 

108. Kertesz, V. & Van Berkel, G. J. Liquid microjunction surface sampling coupled with high-
pressure liquid chromatography-electrospray ionization-mass spectrometry for analysis of 
drugs and metabolites in whole-body thin tissue sections. Anal. Chem. 82, 5917–5921 
(2010). 

109. Kertesz, V., Weiskittel, T. M. & Van Berkel, G. J. An enhanced droplet-based liquid 
microjunction surface sampling system coupled with HPLC-ESI-MS/MS for spatially 
resolved analysis. Anal. Bioanal. Chem. 407, 2117–2125 (2015). 

110. Parkinson, E. et al. Proteomic analysis of the human skin proteome after In Vivo treatment 
with sodium dodecyl sulphate. PLoS One 9, e97772 (2014). 

111. Bliss, E., Heywood, W. E., Benatti, M., Sebire, N. J. & Mills, K. An optimised method for 
the proteomic profiling of full thickness human skin. Biol. Proced. Online 18, 15 (2016). 

112. Simone, N. L. et al. Sensitive immunoassay of tissue cell proteins procured by laser capture 
microdissection. Am. J. Pathol. 156, 445–452 (2000). 

113. Harris, G. A., Nicklay, J. J. & Caprioli, R. M. Localized in situ hydrogel-mediated protein 



 68 

digestion and extraction technique for on-tissue analysis. Anal. Chem. 85, 2717–2723 
(2013). 

114. Taverna, D., Norris, J. L. & Caprioli, R. M. Histology-directed microwave assisted 
enzymatic protein digestion for MALDI ms analysis of mammalian tissue. Anal. Chem. 87, 
670–676 (2015). 

115. Nicklay, J. J., Harris, G. A., Schey, K. L. & Caprioli, R. M. MALDI imaging and in situ 
identification of integral membrane proteins from rat brain tissue sections. Anal. Chem. 85, 
7191–7196 (2013). 

116. The UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic 
Acids Res. 49, D480–D489 (2021). 

117. Patterson, N. H., Tuck, M., Van De Plas, R. & Caprioli, R. M. Advanced Registration and 
Analysis of MALDI Imaging Mass Spectrometry Measurements through Autofluorescence 
Microscopy. Anal. Chem. 90, 12395–12403 (2018). 

118. Kachouie, N. N., Fieguth, P. & Jervis, E. Watershed deconvolution for cell segmentation. 
Proc. 30th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS’08 - "Personalized Healthc. 
through Technol. 375–378 (2008). doi:10.1109/iembs.2008.4649168 

119. Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying 
cell phenotypes. Genome Biol. 7, R100 (2006). 

120. McQuin, C. et al. CellProfiler 3.0: Next-generation image processing for biology. PLOS 
Biol. 16, e2005970 (2018). 

121. Czech, E., Aksoy, A., Aksoy, P. & Hammerbacher, J. Cytokit: a single-cell analysis toolkit 
for high dimensional fluorescent microscopy imaging. doi:10.1186/s12859-019-3055-3 

122. Sommer, C., Straehle, C., Köthe, U. & Hamprecht, F. A. Ilastik: Interactive learning and 
segmentation toolkit. in 2011 IEEE International Symposium on Biomedical Imaging: From 
Nano to Macro 230–233 (2011). doi:10.1109/ISBI.2011.5872394 

123. Berg, S. et al. Ilastik: Interactive Machine Learning for (Bio)Image Analysis. Nat. Methods 
16, 1226–1232 (2019). 

124. Schapiro, D. et al. histoCAT: analysis of cell phenotypes and interactions in multiplex 
image cytometry data. Nat. Methods 14, 873–876 (2017). 

125. Guiberson, E. R. et al. Spatially-targeted proteomics of the host-pathogen interface during 
staphylococcal abscess 11 12. bioRxiv 2020.09.01.267773 (2020). 
doi:10.1101/2020.09.01.267773 

126. Hubler, M. J. & Kennedy, A. J. Role of lipids in the metabolism and activation of immune 
cells. J. Nutr. Biochem. 34, 1–7 (2016). 

127. Varshney, P., Yadav, V. & Saini, N. Lipid rafts in immune signalling: current progress and 
future perspective. Immunology 149, 13–24 (2016). 

128. Chiurchiù, V. et al. Proresolving lipid mediators resolvin D1, resolvin D2, and maresin 1 
are critical  in modulating T cell responses. Sci. Transl. Med. 8, 353ra111 (2016). 

129. Pan, Y. et al. Survival of tissue-resident memory T cells requires exogenous lipid uptake 
and  metabolism. Nature 543, 252–256 (2017). 



 69 

130. Braverman, N. E. & Moser, A. B. Functions of plasmalogen lipids in health and disease. 
Biochim. Biophys. Acta 1822, 1442–1452 (2012). 

131. Record, M., Silvente-Poirot, S., Poirot, M. & Wakelam, M. J. O. Extracellular vesicles: 
lipids as key components of their biogenesis and  functions. J. Lipid Res. 59, 1316–1324 
(2018). 

132. Bisignano, C. et al. Study of the Lipid Profile of ATCC and Clinical Strains of 
Staphylococcus aureus  in Relation to Their Antibiotic Resistance. Molecules 24, (2019). 

133. Rocklin, M. Dask: Parallel Computation with Blocked algorithms and Task Scheduling. in 
Proceedings of the 14th Python in Science Conference 126–132 (2015). 
doi:10.25080/majora-7b98e3ed-013 

134. Sculley, D. Web-Scale K-Means Clustering. 
135. Munro, B. Manual of Histologic Staining Methods of the Armed Forces Institute of 

Pathology. Pathology 3, 249 (1971). 
136. Sud, M. et al. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 35, D527–D532 

(2007). 
137. Fahy, E. et al. Update of the LIPID MAPS comprehensive classification system for lipids1. 

J. Lipid Res. 50, S9–S14 (2009). 
138. Fahy, E., Sud, M., Cotter, D. & Subramaniam, S. LIPID MAPS online tools for lipid 

research. Nucleic Acids Res. 35, W606–W612 (2007). 
139. Neumann, E. K. et al. Highly multiplexed immunofluorescence of the human kidney using 

co-detection by indexing. Kidney Int. (2021). doi:https://doi.org/10.1016/j.kint.2021.08.033 
140. Miles, A. et al. zarr-developers/zarr-python: v2.13.3. (2022). 

doi:10.5281/ZENODO.7174882 
141. Caprioli, R. M., Farmer, T. B. & Gile, J. Molecular Imaging of Biological Samples: 

Localization of Peptides and Proteins Using MALDI-TOF MS. Anal. Chem. (1997). 
doi:10.1021/ac970888i 

142. Spraggins, J. M. et al. MALDI FTICR IMS of Intact Proteins: Using Mass Accuracy to 
Link Protein Images with Proteomics Data. J. Am. Soc. Mass Spectrom. 26, 974–985 (2015). 

143. Longuespée, R. et al. MALDI mass spectrometry imaging: A cutting-edge tool for 
fundamental and clinical histopathology. PROTEOMICS – Clin. Appl. 10, 701–719 (2016). 

144. Nilsson, A. et al. Mass spectrometry imaging in drug development. Anal. Chem. 87, 1437–
1455 (2015). 

145. Heeren, R. M. A. Getting the picture: The coming of age of imaging MS. Int. J. Mass 
Spectrom. 377, 672–680 (2015). 

146. Patterson, N. H. et al. Autofluorescence microscopy as a label-free tool for renal histology 
and glomerular segmentation. bioRxiv 2021.07.16.452703 (2021). 
doi:10.1101/2021.07.16.452703 

147. Van de Plas, R., Yang, J., Spraggins, J. & Caprioli, R. M. Image fusion of mass spectrometry 
and microscopy: a multimodality paradigm for molecular tissue mapping. Nat. Methods 12, 



 70 

366–372 (2015). 
148. Joensuu, H. et al. Risk of recurrence of gastrointestinal stromal tumour after surgery: an 

analysis of pooled population-based cohorts. Lancet Oncol. 13, 265–274 (2012). 
149. Han, C., Sun, X., Yang, Y., Che, Y. & Qin, Y. Brain Complex Network Characteristic 

Analysis of Fatigue during Simulated Driving Based on Electroencephalogram Signals. 
Entropy 21, 353 (2019). 

150. Ushenko, V. A. et al. Embossed topographic depolarisation maps of biological tissues with 
different morphological structures. Sci. Rep. 11, 3871 (2021). 

151. Bemis, K. D. et al. Cardinal: An R package for statistical analysis of mass spectrometry-
based imaging experiments. Bioinformatics 31, 2418–2420 (2015). 

152. Verbeeck, N., Caprioli, R. M. & Van de Plas, R. Unsupervised machine learning for 
exploratory data analysis in imaging mass spectrometry. Mass Spectrom. Rev. 39, 245–291 
(2020). 

153. Chung, H.-H., Huang, P., Chen, C.-L., Lee, C. & Hsu, C.-C. Next-generation pathology 
practices with mass spectrometry imaging. Mass Spectrom. Rev. e21795 (2022). 
doi:10.1002/mas.21795 

154. Neumann, E., Romer, C., Allen, J. & Spraggins, J. Automatic Deposition of DAN Matrix 
using a TM Sprayer for MALDI Analysis of Lipids. protocols.io (2021). 

155. Neumann, E., Allen, J., Anderson, D., Gutierrez, D. & Spraggins, J. High Resolution 
Imaging Mass Spectrometry Analysis using Bruker Daltonics Platforms. protocols.io 
(2019). 

156. Patterson, N. H. et al. Next Generation Histology-Directed Imaging Mass Spectrometry 
Driven by Autofluorescence Microscopy. Anal. Chem 90, 40 (2018). 

157. Neumann, E. et al. PAS Staining of Fresh Frozen or Paraffin Embedded Human Kidney 
Tissue. protocols.io (2021). 

158. Patterson, H. NHPatterson/napari-imsmicrolink: IMS MicroLink v0.1.7. (2022). 
doi:10.5281/ZENODO.6562052 

159. Patterson, H. & Manz, T. NHPatterson/wsireg: wsireg v0.3.5. (2022). 
doi:10.5281/ZENODO.6561996 

160. Fahy, E. et al. Update of the LIPID MAPS comprehensive classification system for lipids1. 
J. Lipid Res. 50, S9–S14 (2009). 

161. van der Walt, S. et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014). 

162. Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007). 
 


