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CHAPTER I 

 

INTRODUCTION 

 

DNA Regulatory Elements in the Human Genome 

With few exceptions, all life on earth uses the same fundamental mechanism to express 

genes: DNA is transcribed into messenger RNA (mRNA), which is then translated into proteins. 

This process, called gene expression, controls the uniqueness of species and how hundreds of 

specialized cell types can be made from a single genome. The initial regulatory steps of 

transcription are critically important in tightly controlling gene expression programs in the cell. In 

particular, non-coding cis-regulatory DNA sequences in the genome, called DNA regulatory 

elements, control which genes are transcribed and how many mRNA transcripts are made 

(Andersson & Sandelin, 2019; Haberle & Stark, 2018; Heinz, Romanoski, Benner, & Glass, 2015; 

Long, Prescott, & Wysocka, 2016; Rickels & Shilatifard, 2018). To actively regulate transcription, 

DNA regulatory elements are bound by transcription factors (TFs), which, through complex 

biochemical interactions and biophysical phase separation mechanisms, recruit regulatory 

complexes that affect transcription of nearby target genes (Figure 1A) (Haberle & Stark, 2018; 

Peng, Li, & Xu, 2020; Ptashne, 1967, 1986). Because the activity of DNA regulatory elements 

control which and how much genes are transcribed, DNA regulatory element activity dictates 

cellular identity, including both maintenance of cell identity and determination of cell fate during 

differentiation (Corces et al., 2016; Heinz et al., 2015). For this reason, global DNA regulatory 

element dysfunction can drive diseases where cells adopt new identities, fail to differentiate 

completely, or differentiate incorrectly. For example, the mis-regulation of DNA regulatory 
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elements can drive neoplastic transformation and cause a variety of cancers (Bradner, Hnisz, & 

Young, 2017; Smith & Shilatifard, 2014).  

 

Promoters & Enhancers 

DNA regulatory elements can be classified into many categories. Promoters and enhancers 

are two types of positive DNA regulatory elements that, when active, drive transcription of their 

target genes. Promoters and enhancers are functionally similar overall (Andersson, Sandelin, & 

Danko, 2015), but they differ in a few key ways. First, promoters exist directly upstream of the 

genes they regulate while enhancers are located distal to their target genes and can exist in any 

orientation because they can be brought into close proximity via 3D chromatin looping 

mechanisms (Figure 1A) (Andersson & Sandelin, 2019; Panigrahi & O'Malley, 2021; Schaffner, 

2015). Because they are unrestricted by target gene distance and because they lack consensus DNA 

sequence motifs, such as a TATA box or initiator sequence, it is challenging to identify enhancers 

in the human genome (Long et al., 2016). Nonetheless, significant efforts from ENCODE, 

FANTOM, and other consortia using different enhancer identification methods have discovered 

over 1 million putative enhancers in the human genome for hundreds of tissues and cell types 

(Abugessaisa et al., 2021; The ENCODE Project Consortium et al., 2020; Wang et al., 2019). 

Promoters and enhancers also differ in the types of genes they regulate in the human 

genome. In general, genes regulated only by promoters are constitutively expressed and are 

associated with housekeeping functions in the cell, whereas enhancers regulate genes associated 

with cell-type specific functions (Long et al., 2016). In this way, enhancers control cell fate and 

identity to a much greater extent than promoters. Alterations to enhancer function can cause 

disease and are thought to drive the development of complex, polygenic diseases (Herz, 2016; 
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Maurano et al., 2012; Smith & Shilatifard, 2014). Understanding where enhancers are in the human 

genome and how they function is vital for identifying the genetic causes of many common 

debilitating complex, polygenic diseases like Crohn’s disease.  

Silencers 

Another class of DNA regulatory elements called silencers actively repress gene 

expression. In principle, they act similar to promoters and enhancers, but they instead are bound 

by TFs that repress transcription of nearby target genes (Pang, van Weerd, Hamoen, & Snyder, 

2022). Like enhancers, silencers are challenging to identify because they lack consensus DNA 

sequence motifs and can be located distal from the genes they regulate. Furthermore, it is difficult 

to discern whether a gene is inactive due to the activity of silencers or other silencing mechanisms 

because silencers are just one mechanism for repressing gene expression. This makes silencers 

much more difficult to identify than enhancers, so they remain a critically understudied component 

in the transcriptional regulation field. While recent efforts have been made to identify silencers in 

the human genome, these studies have not been performed at consortia-like scales, so a 

comprehensive evaluation of silencers in the human genome is also lacking. Some assays that 

identify putative enhancers may also identify silencers, but the lack of quantitative measures on 

regulatory activity—i.e. how much target gene transcription they drive—makes  it difficult to 

discern whether these regions have positive or negative effects on gene transcription. 

 

Epigenetic Control of DNA Regulatory Elements  

DNA regulatory elements themselves can be regulated. In eukaryotes, genomic DNA is 

tightly bound to nucleosomes, which are octameric complexes of histone proteins (Klemm, 

Shipony, & Greenleaf, 2019). The majority of DNA is tightly wound up by nucleosomes into 



4 
 

structures called heterochromatin, which, by steric hindrance, prevents most proteins from binding. 

In any given cell type, only ~2% of genomic DNA is accessible to TFs, so most human DNA 

regulatory elements are not active (Klemm et al., 2019). Furthermore, accessibility is only one 

layer of control, other processes prevent DNA regulatory elements from being bound by TFs and 

driving transcription of their target genes, so DNA regulatory elements exist in several distinct 

functional chromatin states (Figure 1B) (Atlasi & Stunnenberg, 2017). 

As the first layer of regulatory control, accessibility is mediated by pioneer transcription 

factor binding; pioneer TFs bind short DNA sequences exposed on the outside of nucleosomes 

(Cirillo et al., 2002; Soufi et al., 2015). Pioneer TFs “open” DNA by recruiting chromatin 

remodelling complexes, such as SWI/SNF, which eject nucleosomes from the locus substantially 

reducing the level of steric hinderance imposed by the bound nucleosomes (Wolf et al., 2023). 

Figure 1: Schematic of enhancer concepts. (A) Enhancers interact with their target genes via chromatin 
looping. The TFs that bind enhancers interact with coactivators which regulate transcription initiation and 
RNAPII pause release. (B) Enhancers exist in three broad chromatin states: inaccessible, poised, and active. 
Only active enhancers, by binding TFs, drive transcription of their target genes. Poised enhancers are 
accessible but not active. They can contain several epigenetic modifications that are associated with active 
enhancers. 
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Once accessible, epigenetic features of DNA regulatory elements can be modified by a variety of 

epigenetic modifiers; this includes demethylation of DNA, post transcriptional modifications to 

histone tails, and many other biochemical modifications (Atlasi & Stunnenberg, 2017; Gasperini, 

Tome, & Shendure, 2020). Whether these epigenetic features are required for regulatory element 

activity remains a controversial question in the field (Morgan & Shilatifard, 2020), and recent 

work suggests many of them are generally dispensable for activity (Barnett et al., 2020; Dorighi 

et al., 2017; Douillet et al., 2020; Kreibich, Kleinendorst, Barzaghi, Kaspar, & Krebs, 2023; 

Rickels et al., 2017; Zhang, Zhang, Dong, Xiong, & Zhu, 2020). The distinct overlap of these 

marks can be used to place DNA regulatory elements into over a dozen different functional states 

(Ernst & Kellis, 2012; The ENCODE Project Consortium et al., 2020). While this many different 

chromatin states nicely demonstrates the vast complexity of this process and can be useful in other 

contexts, this level of detail can be overwhelming. For simplification purposes, inactive DNA 

regulatory elements that are accessible and contain various combinations of these epigenetic 

features are generally designated as “poised” regulatory elements.  

In contrast, “active” DNA regulatory elements are both accessible and actively drive 

transcription of their target genes. Compared to the other functional chromatin states, active DNA 

regulatory elements play the most direct role on gene expression, so identifying them is important 

for understanding which genomic loci regulate a given cell identity. While several assays can 

profile which DNA regulatory elements are accessible, discerning whether accessible elements are 

“active” is a vitally important distinction to make when identifying which non-coding DNA 

sequences dictate cell identity and cause specific diseases when dysfunctional.  
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Profiling DNA Regulatory Element Activity  

Epigenetic Annotations 

 There are several approaches to identify DNA regulatory elements in the human genome. 

Promoters can be easily identified based on their fixed, proximal distance to the genes they 

regulate, but enhancers are much more difficult to identify. One of the first approaches to identify 

enhancers used a comparative genomics framework to identify regions of high sequence 

conservation (Lindblad-Toh et al., 2011). This approach can yield many genomic regions with 

functional constraint, but they cannot determine which DNA regulatory elements are used by a 

particular cell type or whether the DNA regulatory region has an activating, silencing, or neutral 

effect on gene expression. Therefore, assays that functionally characterize the genome, collectively 

called “functional genomic methods” are required to identify the enhancers driving gene 

expression programs that yield a given cell type.  

One of the most common functional genomic methods to identify putative enhancers is to 

profile the genome for epigenetic marks associated with enhancer activity. This approach uses the 

presence of distinct combinations of epigenetic marks to infer DNA regulatory element activity 

and function. For example, a common approach is to profile the genome for the three histone 

modifications H3K27ac, H3K4me1, and H3K4me3 (Rada-Iglesias et al., 2011). The relative 

abundance of these epigenetic marks classifies DNA regulatory elements into active enhancers, 

active promoters, poised enhancers, and poised promoters (Creyghton et al., 2010; Villar et al., 

2015). Another approach classifies enhancers as non-promoter regions of bidirectional 

transcription using either PRO-seq or CAGE-seq to demarcate sites of RNA polymerase II 

(RNAPII) engagement (Abugessaisa et al., 2021; Andersson et al., 2014). Approaches like these 

are convenient, because they reflect the endogenous state of the DNA regulatory element and 
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leverage well-defined methods. However, they do not directly measure enhancer activity, but 

rather infer it by association with these marks. Furthermore, there is disagreement on which 

epigenetic marks most accurately identify active enhancers, so many enhancer studies define 

enhancers differently. This is problematic because use of different epigenetic marks yields 

enhancer sets that do not agree with each other in terms of their identity, the number of active 

enhancers called overall, and their evolutionary and functional characteristics (Benton, Talipineni, 

Kostka, & Capra, 2019). While these approaches are unquestionably useful for identifying 

candidate enhancers, the lack of a direct functional measure of enhancer activity may cause them 

to be misleading. This approach may be substantially more accurate in the future when studies into 

the biochemical mechanisms of enhancer-mediated transcription uncover better molecular 

identifiers of active DNA regulatory elements.  

 

Massively Parallel Reporter Assays 

The initial characterization of enhancers described them as DNA sequences capable of 

driving transcription of a plasmid reporter gene irrespective of its orientation or distance to the 

gene (Banerji, Olson, & Schaffner, 1983). This description led to the development of reporter 

assays as tools to identify enhancers in the human genome (Sadowski, Ma, Triezenberg, & 

Ptashne, 1988; Triezenberg, LaMarco, & McKnight, 1988). In these assays, a single candidate test 

sequence is cloned into a transcriptional reporter plasmid and assayed for its ability to drive 

transcription of the reporter gene. This approach, however, is low throughput since only one DNA 

sequence is tested at a time. For this reason, Massively Parallel Reporter Assays (MPRAs), which 

leverage next-generation sequencing, were developed to test the regulatory activity of thousands 

of DNA sequences at once in order to identify putative DNA regulatory elements in a high-
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throughput manner (Melnikov et al., 2012; Patwardhan et al., 2009; Santiago-Algarra, Dao, Pradel, 

Espana, & Spicuglia, 2017). One advantage of MPRAs is that, unlike the epigenic profiling 

methods described above, they directly measure regulatory activity. To do this, MPRAs clone 

candidate DNA sequences into a reporter plasmid on a massively parallel scale. This resulting 

plasmid library is transfected into cells and all candidate sequences are assayed for regulatory 

activity at once. MPRAs vary in design, but all follow the same overall logic. The test sequences 

that have regulatory activity drive transcription of the reporter gene and yield “reporter RNAs” 

which are sequenced and matched to their associated test sequence. Their abundance in the reporter 

RNA pool is normalized to their abundance in the plasmid DNA input, and the greater reporter 

RNA to plasmid DNA ratio, the more active the test sequence (Santiago-Algarra et al., 2017).  

While MPRAs directly measure the ability of a DNA sequence to drive transcription, they 

too have limitations. By removing DNA sequence from their native environment and placing them 

within a plasmid reporter, MPRAs are exogenous assays and it is hard to know for certain if their 

activity on a plasmid recapitulates their activity at their endogenous locus. To circumvent this 

issue, several groups have conducted “lenti-MPRAs” which insert reporter constructs into 

chromatin using lentivirus particles (Inoue et al., 2017). While some differences in regulatory 

activity were observed between integrated and non-integrated MPRAs, overall, the results are 

largely similar. Furthermore, the lenti-MPRA approach is confounded in that the insertion site is 

a different chromatin landscape from the endogenous locus. Moreover, some applications are not 

amenable to lentiviral integration and for the ones that are, they require additional experimental 

steps that can prove to be tricky. It therefore does not appear that the improvements in accuracy 

outweigh the technical challenges when considering a lentiviral versus episomal approach. In most 

cases, it seems that an episomal MPRA is sufficient.  
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There are many types of episomal MPRAs, each tailored to a specific purpose. Self-

transcribing active regulatory region sequencing (STARR-seq) is one type of MPRA that is 

uniquely designed to assay an entire genome for regulatory activity (Arnold et al., 2013; Inoue et 

al., 2017; Kircher et al., 2019; Maricque, Dougherty, & Cohen, 2017; Melnikov et al., 2012; 

Muerdter et al., 2018; Patwardhan et al., 2012). STARR-seq quantifies regulatory activity genome-

wide by cloning randomly fragmented genomic DNA into the 3’UTR of the reporter plasmid. 

Because the test sequence is contained within the 3’UTR of the reporter RNAs that are produced, 

active DNA regulatory elements will drive transcription of themselves, so activity is quantified by 

the abundance of DNA regulatory element sequences within the reporter RNA pool.  

STARR-seq, which was developed for use in the Drosophila melanogaster genome, is a 

tremendously elegant approach, but has major limitations when applied to the human genome. 

Because the human genome is about 20 times larger than the Drosophila genome, it is technically 

challenging to accommodate all 3 billion base pairs of human DNA in one assay. Whole human 

genome STARR-seq requires large-scale cloning procedures and can only produce shallow 

sequencing coverage of human regulatory elements (Johnson et al., 2018). In addition, STARR-

seq assays both accessible and inaccessible chromatin. Because only 2% of the human genome is 

accessible in any given cell type, ~98% of all regions assayed in whole human genome STARR-

seq are inaccessible and therefore inactive endogenously (Klemm et al., 2019). In this way, nearly 

all of the regulatory information provided by this approach is for regions that would not drive 

transcription of nearby genes in their endogenous chromatin state. Therefore, most reads map to 

inaccessible chromatin so that whole human genome STARR-seq is overall inefficient.  

Because of this limitation, recent methods have been developed to reduce the scope of the 

assay to accessible chromatin. These approaches, HiDRA and FAIRE-STARR-seq, accomplished 
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this by combining STARR-seq with techniques that capture accessible chromatin to specifically 

test the regulatory potential of accessible DNA (Chaudhri, Dienger-Stambaugh, Wu, Shrestha, & 

Singh, 2020; Glaser et al., 2021; X. Wang et al., 2018). As a result, these methods only sample 2% 

of the human genome while assaying nearly all regulatory elements capable of driving 

transcription endogenously. This approach enables deeper sequencing coverage of all biologically 

relevant regulatory regions. 

Although HiDRA and FAIRE-STARR-seq have been performed previously, they have not 

been characterized in-depth or developed to their full capability. Because these assays combine 

accessibility and regulatory activity methods, they have the potential to reveal multiple levels of 

gene regulatory information simultaneously, but this potential has not been explored. Additionally, 

important parameters of these methods, such as effects from query sequence length, effects from 

orientation of insert on plasmid, and the development of an optimal data analysis strategy have not 

been investigated. These methods, like most other MPRA approaches, have also largely ignored 

detection of silencing activity, even though, in theory, they could identify silencers. Altogether, 

these approaches require better characterization and an expansion of their capabilities to address 

difficult questions in transcriptional regulation, such as profiling of gene regulatory divergence 

between species. 

  

Gene Regulatory Divergence Between Species 

Humans are among the most complex organisms on earth, yet we have the same number 

of genes as Caenorhabditis elegans, a substantially less complex organism that is only made up of 

959 total somatic cells (Kimble & Hirsh, 1979; Sulston & Horvitz, 1977; Sulston, Schierenberg, 

White, & Thomson, 1983). So how are humans so different from C. elegans if the number of genes 
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is the same? In general, the complexity of the human species arises from drastically different levels 

of gene regulation. At every step from gene to protein, humans have extremely complex and 

expansive gene regulatory mechanisms when compared to simpler species like C. elegans 

(Ledford, 2008). This increased regulatory complexity, due in large part to an increased size of the 

non-coding genome, allows humans to generate over a million different proteins from the ~20,000 

genes encoded in the human genome (Aebersold et al., 2018). Furthermore, these regulatory 

processes fine-tune the amounts of those proteins, so that over 200 different cell types can be 

produced from the same genome (Heinz et al., 2015). In addition, this increased complexity, allows 

for highly specialized processes like adaptive immunity to exist. As species become more closely 

related, such as in the case of humans and non-human primates, the complexity of their gene 

regulatory mechanisms is much more similar. In this case, the phenotypic differences are 

determined largely by divergent use of the same gene regulatory processes rather than in the 

proteins and the regulatory pathways that make them up.  

 

Differences in gene expression control phenotypic changes between humans and non-

human primates  

 In 1971, Britten and Davidson proposed that phenotypic changes between organisms may 

be driven primarily by changes in expression of gene rather than changes in their identity (Britten 

& Davidson, 1971; King & Wilson, 1975). Four years later, Mary-Claire King and Allan Wilson 

famously extended this hypothesis to phenotypic differences between humans and chimpanzees. 

They noted that there are not enough changes in protein sequences to explain the differences in 

phenotype, and therefore proposed that alterations to gene regulation is what drove evolution of 

humans from our most recent common chimpanzee ancestor over 8 million years ago. This 
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hypothesis is attractive because many of the genes involved in human-specific phenotypes, 

particularly those related to morphology, are pleiotropic and important for several other biological 

processes, including development. By changing the regulation of genes, one can alter their 

expression in only one cell type. Whereas changing the sequence of the gene itself will alter its 

overall function in all cell types. In other words, changes in gene regulation provide a better 

mechanism for fine-tuning gene expression to adapt and evolve phenotypes that improve overall 

fitness than changing protein coding sequences (Reilly & Noonan, 2016).  

 Since 1975, this gene regulatory hypothesis has largely been validated by several studies. 

Most convincingly, a survey of gene expression levels between similar cell types across primate 

species reveals phylogenetic relationships that accurately reflect the true evolutionary relationships 

between species (Brawand et al., 2011). Interestingly, the degree of gene expression divergence 

between two closely related species varies widely across different cell types and tissues, which is 

likely due to different functional constraints on the biological function of each tissue (Reilly & 

Noonan, 2016). In addition, gene expression levels between species of the same cell type are much 

more similar than gene expression levels between cell types of the same species indicating that 

cell-type specific gene expression changes are favored over pleiotropic changes that effect many 

cell types (Brawand et al., 2011). Critically, most gene expression does not need to change in order 

to produce a phenotypic outcome, as only ~10-39% of genes display divergent expression 

depending on the cell types and species that are being compared (Brawand et al., 2011; Reilly & 

Noonan, 2016). 
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Differential Enhancer Activity Drives Gene Expression Divergence Between Species 

The changes in gene expression across species are ultimately caused by changes in gene 

regulation, which are primarily mediated by changes in DNA regulatory element activity. Several 

studies have compared epigenetic profiles of DNA regulatory elements between similar cell types 

across species. In general, changes in epigenetic modifications correlate with changes in gene 

expression (Cain, Blekhman, Marioni, & Gilad, 2011; Zhou et al., 2014), with one study finding 

that divergent epigenetic profiles explain ~42% of the gene expression variance between humans 

and chimpanzee lymphoblastoid cell lines (Zhou et al., 2014). Because gene expression changes 

between primate species are cell-type specific, regulatory activity divergence more often occurs at 

enhancers than promoters (Villar et al., 2015). Altogether, differential regulation of enhancers 

drives differences in gene expression that produce species-specific phenotypes.  

 

Gene Regulatory Divergence in Cis and Trans  

Changes in gene regulation can occur in either cis or in trans. How these two terms are 

defined depend on what the unit of measure is, but broadly, cis changes are local substitutions to 

the nearby DNA sequence, whereas trans changes are global, cell environment changes to 

diffusible products, like transcription factors (Hill, Vande Zande, & Wittkopp, 2020; Signor & 

Nuzhdin, 2018; Vande Zande, Hill, & Wittkopp, 2022). These two modes of change are very 

different approaches of altering gene regulation to adapt to a given environmental stress. Because 

cis changes are local and typically only affect the expression of one gene, their effects are precise 

but overall small, making them less likely to be overall deleterious. However, changes to many 

genes may be required if evolutionary pressures are strong and require rapid adaptation. Because 

cis changes only affect one gene, many changes would have to occur, which may be too slow. By 
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contrast, a single trans change affects the entire cellular environment so it can alter the expression 

of many genes at once. Therefore, trans changes can allow the species to more rapidly adapt to a 

given evolutionary pressure than changes in cis. However trans changes are more likely to be 

pleiotropic and deleterious to overall fitness (Hill et al., 2020). In some way, trans effects are 

encoded in the genome, so cis changes could ultimately cause trans changes. It is important to note 

that the terms cis and trans are respective to the unit of divergence. While a trans change must 

arise from a genetic difference between species, this genetic difference has a different effect on 

gene regulation than a mutation that affects divergence only in cis, so they are under different 

selective pressures during evolution.    

Parsing cis and trans effects on gene regulatory divergence has been primarily investigated 

at the level of gene expression, as measured by differences in mRNA transcript levels between 

closely related species. Because DNA sequence changes and cellular environment changes are 

inherently linked within an endogenous setting, these studies leverage unique methods that can 

directly and exclusively test divergence in either cis or trans. One approach is to measure allele-

specific expression differences within a common cellular environment so that changes in cis are 

compared in a common trans-regulatory setting. A common way to do this involves mating two 

closely related species so that they generate F1 hybrids; gene expression for each allele is measured 

in the hybrids, which represents a common cellular environment, and this is then compared to the 

expression in the parental environments. This approach has been applied to many different taxa 

including Drosophila, yeast, plants, and mice (Coolon, McManus, Stevenson, Graveley, & 

Wittkopp, 2014; Emerson et al., 2010; Goncalves et al., 2012; McManus et al., 2010; Osada, 

Miyagi, & Takahashi, 2017; Shi et al., 2012; Tirosh, Reikhav, Levy, & Barkai, 2009; Wittkopp, 

Haerum, & Clark, 2004, 2008). Overall, these studies have yielded widely different measures of 
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the relative abundance of cis and trans effects on gene expression, however, they commonly find 

that the proportion of cis effects increases with increased evolutionary divergence (Signor & 

Nuzhdin, 2018).  

Performing F1 hybrid studies is impractical when investigating cis and trans divergence 

between primate species. One recent study circumvented this limitation by measuring allele-

specific expression in a fused human-chimpanzee tetraploid iPSC cell line (Agoglia et al., 2021). 

By comparing gene expression in the fused cell line—the common hybrid environment—to 

expression in the native cell lines, this approach is similar to the experimental logic of F1 hybrid 

studies. The authors of this study found that ~39% of differentially expressed genes can be 

explained by divergence in cis. Taking this a step further, another study, using this same tetraploid 

cell line, generated embryoid bodies, performed single-cell RNA-seq, and measured allele-specific 

expression of each cell type within the embryoid body (Barr, 2022). They found that, on average, 

~70% of inter-species differences in gene expression could not be explained by changes in trans. 

Common cellular environment studies like these are powerful because they are well-controlled and 

the local differences of each allele on target gene expression can be easily identified.  

Figure 2: Cis and trans modes of divergence in gene regulatory element activity for both gains and 
losses in activity. Cis changes alter the DNA sequence of the enhancer, and these changes affect its own 
activity. Trans changes affect the cellular environment, and these changes affect the activity of the enhancer 
and likely many other enhancers. See also Figure 30D-E. 
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DNA Regulatory Element Activity Divergence in Cis and Trans 

While most studies have focused on differences in mRNA levels as a way to measure the 

effect of cis and trans changes, these expression differences are ultimately mediated by divergent 

DNA regulatory element function. However, only a handful of studies have investigated cis and 

trans divergence directly on DNA regulatory element activity. With DNA regulatory element 

activity as the unit of measure, cis divergence is simply changes to the underlying sequence of the 

DNA regulatory element that alters its own function, so these changes only alter the activity of one 

regulatory element (Figure 2). On the other hand, trans divergence is changes to the cellular 

environment that affect regulatory element activity of many DNA regulatory elements at one time 

(Figure 2). For example, the differential abundance of a TF can alter all regulatory elements that 

bind that TF.  

Like gene expression studies, investigations into cis and trans effects on DNA regulatory 

element activity are similarly challenged by an inherent link between genome and cellular 

environment, and they too must adopt unique methods that allow for the parsing of these two 

effects. To do this, researchers leverage MPRAs, which allow DNA sequences to be removed and 

tested outside of their native environment. One MPRA-based approach compares regulatory 

activity measures of homologous sequences between closely related species within a common 

cellular environment (Arnold et al., 2014; Klein, Keith, Agarwal, Durham, & Shendure, 2018; 

Uebbing et al., 2021; Weiss et al., 2021). By controlling the cellular environment, any effects from 

trans-regulatory differences between species are negated when assessing DNA regulatory element 

activity. While this approach allows direct identification of regulatory divergence in cis, it lacks 

direct assessment of regulatory activity changes in trans.  
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Another, more direct, approach compares regulatory activity of the same sequences across 

species-specific cellular environments (Gordon & Ruvinsky, 2012; Mattioli et al., 2020; Whalen 

et al., 2023). This MPRA-based approach allows direct identification of DNA regulatory element 

activity divergence in both cis and trans. In this way, these approaches can be leveraged to 

investigate the relative proportions of cis and trans divergence on regulatory element activity. The 

largest scale study to date using such an approach analyzed differential activity of ~1,600 

homologous regulatory elements between human and mouse embryonic stem cells (Mattioli et al., 

2020). They selected the ~1,600 regions to test, 268 of which are enhancers, from the FANTOM 

consortium, which uses a single biochemical feature—enhancer RNAs—to identify enhancers 

(Abugessaisa et al., 2021). They found 660 elements with regulatory divergence in cis and 293 

elements with regulatory divergence in trans. This study, along with two other much smaller scale 

studies suggest that cis divergence primarily drives species-specific regulatory element activity 

between closely related species (Gordon & Ruvinsky, 2012; Mattioli et al., 2020; Whalen et al., 

2023). However, these studies considered small, pre-selected subsets of regulatory elements, so 

their results represent only a small and selection-biased portion of the genome. Evolution over 

millions of years acts at genomic scale, so these studies lack a global view of how the cis and trans 

modes of divergence on regulatory activity drove existing gene regulatory differences between 

closely related species. Therefore, the field requires a comprehensive and unbiased survey of cis 

and trans contributions to global gene regulatory divergence to better understand the mechanisms 

driving gene regulatory evolution. This gap in knowledge is largely due to limitations of current 

technologies to profile DNA regulatory elements in the human genome.   
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Scope of Dissertation 

In this dissertation I present two projects. In Chapter II, I present a substantially improved 

and well-characterized ATAC-STARR-seq method that allows simultaneous profiling of 

chromatin accessibility, TF occupancy, and DNA regulatory activity. When I began my PhD, 

ATAC-STARR-seq was a completely novel idea and had not been developed yet. Since then, two 

versions of ATAC-STARR-seq—HiDRA and FAIRE-STARR-seq—were published before ours. 

These methods applied slightly different techniques to accomplish the same overall goal of 

performing STARR-seq on accessible chromatin sequences, but they did not explore key 

parameters of the assay and realize the full potential of these methods. We present our own version 

of ATAC-STARR-seq as a substantial improvement to these techniques and unlike the previous 

methods, we also provided the field with computational and technical support to increase 

accessibility of the method to others. The overall goal of developing ATAC-STARR-seq was to 

create a method that allowed us and others to investigate exciting biological questions that were 

not previously possible. At its core, ATAC-STARR-seq now allows researchers to identify all 

biologically relevant DNA regulatory elements in the human genome with an assay that directly 

quantifies regulatory activity. Given how much non-coding DNA sequences play a role in human 

disease, the value of this method cannot be understated. 

In Chapter III, I use ATAC-STARR-seq to investigate the respective contributions of cis 

and trans changes on DNA regulatory element activity between human and rhesus macaque on a 

genome-wide scale to understand the preferred mode of DNA regulatory element activity 

evolution between closely related species. This question was limited  by the available technologies, 

and we could not have investigated this second story without first developing ATAC-STARR-seq. 

Overall, we observe a greater role for trans-regulatory mechanisms driving primate evolution than 
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previously appreciated and identify that changes in both cis and trans affect most divergent active 

regulatory regions. 
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CHAPTER II1 

 

ATAC-STARR-SEQ REVEALS TRANSCRIPTION FACTOR-BOUND ACTIVATORS AND SILENCERS 

ACROSS THE CHROMATIN ACCESSIBLE HUMAN GENOME 

 

Introduction 

Transcription is regulated by transcription factors (TFs) and the DNA sequences they bind, 

called cis-regulatory elements. Enhancers, which are a class of cis-regulatory elements, are distally 

located from the genes they target and serve as key drivers of cell-type specific gene expression 

(Heinz et al., 2015). Because enhancers require TF binding, they are largely dependent on 

chromatin accessibility to elicit transcriptional activity. Therefore, chromatin accessibility is a vital 

regulator of enhancer function, and this is evidenced by the observation that ~94% of all ENCODE 

TF ChIP-seq peaks fall within accessible chromatin (Klemm et al., 2019). In any given cell type, 

only a small fraction (~2%) of the genome is accessible to TF binding (Klemm et al., 2019; 

Thurman et al., 2012). In this way, most enhancers are inaccessible and are less likely to drive 

transcription endogenously.  

Enhancers are difficult to identify and validate because they lack uniform features and are 

less constrained by gene proximity than promoters (Gasperini et al., 2020). Massively parallel 

reporter assays (MPRAs) were developed to test the regulatory potential of thousands to millions 

of DNA sequences in parallel, providing high-throughput identification of putative enhancers.  

 
1 This chapter is adapted from “ATAC-STARR-seq reveals transcription factor-bound activators and silencers across 
the chromatin accessible human genome” published in Genome Research and has been reproduced with the permission 
of the publisher and my co-author Emily Hodges, Ph.D. | Citation: “Hansen, T. J., & Hodges, E. (2022). ATAC-
STARR-seq reveals transcription factor-bound activators and silencers across the chromatin accessible human 
genome. Genome Research, 32, 1529-1541. doi:10.1101/gr.276766.122” 
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Overall, MPRAs test the regulatory potential of genomic regions by cloning them en masse into a 

reporter plasmid and leveraging high-throughput sequencing to quantify regulatory activity 

(Santiago-Algarra et al., 2017). Among the variety of different vector backbones and assay designs 

applied to MPRAs, Self-Transcribing Active Regulatory Region sequencing (STARR-seq) is 

uniquely designed to assay an entire genome for regulatory activity (Arnold et al., 2013; Inoue et 

al., 2017; Kircher et al., 2019; Maricque et al., 2017; Melnikov et al., 2012; Muerdter et al., 2018; 

Patwardhan et al., 2012). STARR-seq quantifies regulatory activity genome-wide by cloning 

randomly fragmented genomic DNA into the 3’UTR of the reporter plasmid. Thus, active 

enhancers drive transcription of themselves, and activity is quantified by the abundance of its own 

sequence in the transcript pool, removing the need for barcodes that some MPRAs employ. One 

major limitation of STARR-seq is that it is technically challenging to accommodate the massive 

size of the human genome; it requires large-scale cloning procedures and produces shallow 

sequencing coverage of human regulatory elements (Johnson et al., 2018). In addition, STARR-

seq assays both accessible and inaccessible chromatin. Thus, many assayed regions are derived 

from heterochromatin and are less likely to be transcriptionally active in the cell type in question.  

To narrow the scope of the assay, recent methods have combined STARR-seq with 

techniques that capture accessible chromatin to specifically test the regulatory potential of 

accessible DNA (Buenrostro, Giresi, Zaba, Chang, & Greenleaf, 2013; Chaudhri et al., 2020; 

Glaser et al., 2021; X. Wang et al., 2018). As a result, these methods only sample a fraction of the 

human genome (~2%) while assaying nearly all regulatory elements capable of driving 

transcription endogenously, because they are derived from open chromatin. This approach remains 

comprehensive while enabling deeper sequencing coverage of biologically relevant genomic 

regions. Furthermore, integrated approaches have recently been described that combine 
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measurements of chromatin accessibility with analysis of transcription and other epigenomic 

features from a single population of cells (Barnett et al., 2020; Chen et al., 2022; Clark et al., 2018; 

Kelly et al., 2012). Similarly, ATAC-STARR-seq has the potential to reveal multiple levels of 

gene regulatory information simultaneously, but this potential has not been explored. In addition, 

a complete understanding of gene regulatory activity is lacking with most MPRA approaches 

because silencing activity is largely overlooked, with a few recent exceptions (Doni Jayavelu, 

Jajodia, Mishra, & Hawkins, 2020; Y. S. Kim et al., 2021; Pang & Snyder, 2020); this is potentially 

due to technical caveats of distinguishing silencers from either that of missing data or interference 

from head-on transcriptional conflicts or post-transcriptional silencing mechanisms.  

Here, we demonstrate a new workflow that substantially expands the capabilities of ATAC-

STARR-seq to extract and measure gene regulatory information. Using this approach, we aimed 

to identify both activators and silencers, as well as to simultaneously profile chromatin 

accessibility, and perform TF footprinting. From a single ATAC-STARR-seq dataset, a multi-

layered, integrated view of the human genome can be captured—a feature that has not been 

explored previously. We provide a protocol and code repository so that this new ATAC-STARR-

seq workflow may be easily used and adopted by the field.   

 

Results 

ATAC-STARR-seq Experimental Design 

The ATAC-STARR-seq approach is divided into the three main parts: 1) ATAC-STARR-

seq plasmid library generation, 2) reporter assay, and 3) data analysis (Figure 3A). To generate 

ATAC-STARR-seq plasmid libraries, nuclei are isolated from a cell type of interest and exposed 

to Tn5, the cut-and-paste transposase used in the ATAC-seq method (Buenrostro et al., 2013). Tn5 
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simultaneously cleaves DNA fragments within accessible chromatin and attaches customizable 

sequence adapters to their 5’ ends. ATAC-STARR-seq adapters are designed to serve as homology 

arms for direct Gibson cloning into the STARR-seq reporter plasmid, which enables cloning of 

accessible DNA fragments en masse. The resulting ATAC-STARR-seq plasmid library consists 

of millions of unique plasmids each harboring their own unique open chromatin-derived DNA 

fragment.  
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Figure 3: Schematic of the ATAC-STARR-seq methodology. (A) The experimental design of ATAC-
STARR-seq consists of three parts: plasmid library generation, reporter assay, and data analysis. Open 
chromatin is isolated from cells with the cut and paste transposase Tn5 and only large DNA fragments 
(>500bp) are removed. The open chromatin fragments are cloned into a reporter plasmid and the resulting 
clones—called an ATAC-STARR-seq plasmid library—are electroporated into cells. 24 hours later, both 
reporter RNAs (blue)—which are transcribed directly off the ATAC-STARR-seq plasmid—and ATAC-
STARR-seq plasmid DNA (red) are harvested, and Illumina-sequencing libraries are prepared and 
sequenced. The resulting ATAC-STARR-seq sequence data is analyzed to extract regulatory activity, 
chromatin accessibility, and transcription factor footprints. (B) Reporter plasmid design and the expected 
outcomes for neutral, active, and silent regulatory elements. Each ATAC-STARR-seq plasmid within a 
library contains a truncated GFP (trGFP) coding sequence, a poly-adenylation signal sequence, an origin 
of replication (Ori) (which moonlights as a minimal core promoter), and the unique open chromatin 
fragment being assayed. Since the accessible region is contained in the 3’ UTR, the abundance of itself in 
the transcript pool reflects its activity. In this way, neutral elements do not affect the system and reporter 
RNAs are expressed at a basal expression level dictated by the minimal core promoter, the Ori. Accessible 
chromatin fragments that are active express reporter RNAs at a higher level than the basal expression level, 
while silent elements repress the Ori and reporter RNAs are expressed at a lower level than basal expression. 
Dashed boxes represent new components of the ATAC-STARR-seq assay design and workflow.  
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In our updated ATAC-STARR-seq workflow, we employ the STARR-seq Ori backbone, 

where the origin of replication (Ori) functions as the minimal promoter (Muerdter et al., 2018) 

(Table 1). Each plasmid in the ATAC-STARR-seq plasmid library contains a truncated GFP 

(trGFP) coding sequence, a poly-adenylation signal sequence, the Ori, and the unique accessible 

DNA fragment being assayed (Figure 3B). Critically, the accessible region is cloned into the 3’ 

UTR, so if the accessible region is active, it interacts with the Ori to drive self-transcription. Thus, 

an accessible region’s level of activity is reflected by its own level of expression. Transcripts from 

ATAC-STARR-seq plasmids, termed “reporter RNAs”, are expressed at basal levels from the 

activity of the Ori itself. This allows detection of silencing activity—the inhibition of the basal 

expression—in this assay.  

Following its creation, the ATAC-STARR-seq plasmid library is transfected via 

electroporation into a given cell line. From the same flask of cells, both reporter RNAs and plasmid 

DNA are harvested 24 hours later, then prepared as Illumina sequencing libraries and sequenced. 

Activity is calculated as the log2 ratio between normalized read counts from the reporter RNA and 

plasmid DNA datasets. The re-isolation of plasmid DNA recovers only the ATAC-STARR-seq 

plasmids that were successfully transfected, thus providing a more accurate representation of the 

“input” sample than sequencing without transfection. Table 1 provides a comparison of 

experimental and analytical features as well as reported data metrics for the current ATAC-STARR 

design and previously reported approaches (Chaudhri et al., 2020; X. Wang et al., 2018).  
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Table 1: A comparison of experimental differences and result metrics between accessible chromatin 
coupled to STARR-seq techniques. 

Type Description 
ATAC-STARR-seq 

(Hansen & 
Hodges) 

HiDRA (Wang 
et al. 2018) 

FAIRE-STARR-seq 
(Chaudhri et al. 2020) 

Experimental 
Differences 

Cell type GM12878 GM12878 
Purified murine splenic B 

cells 

Accessible 
chromatin extraction 

process 

ATAC-seq (Tn5-
tagmentation) 

ATAC-seq (Tn5-
tagmentation) 

FAIRE-seq (crosslinking-
based) 

mtDNA removal 
process 

Omni-ATAC 
(detergent-based)  

CRISPR against 
mtDNA gRNAs 

none 

Size selection 0-500bp  150-500bp 300-700bp 

Reporter plasmid 
promoter 

Bacterial origin of 
replication (ORI) 

Super Core 
Promoter 1 

Super Core Promoter 1 

Manner of plasmid 
library sequence 

library preparation 

Reisolated after 
electroporation (in 

parallel with 
reporter RNAs) 

Sequenced as-is, 
no reisolation  

Not sequenced 

Analysis 
Sliding windows & 

DESeq2 
Fragment groups 

& DESeq2 
Homer findPeaks, no 

normalization to DNA 

Result metrics 

Library Complexity ~50 million 9.7 million 
Not reported directly, 

~81% coverage of input  

Number of active 
regions called 

30,078 active 
regions 

66,254 active 
HiDRA regions 

11,809 STARR-positive 
regions 

Number of silent 
regions called 

21,125 silent regions None reported None reported 

Number of 
accessible chromatin 

peaks called 
101,904 peaks None reported 

55,133 peaks (from 
FAIRE-seq not the plasmid 

library) 

Number of TFs 
footprinted 

746 TFs None reported None reported 

Number of 
SHARPER-RE 
driver elements 

identified 

None reported ~13,000 None reported 
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The GM12878 ATAC-STARR-seq plasmid library is highly complex 

Following the experimental design outlined above, we tagmented GM12878 cells and 

generated an ATAC-STARR-seq plasmid library. A successful ATAC-STARR-seq experiment is 

predicated on maintaining complexity at all stages of the protocol. We estimated the initial 

complexity of our ATAC-STARR-seq plasmid library by sequencing the library at low depth and 

estimating the number of unique reads with the Preseq software package (Daley & Smith, 2013) 

(Figure 4A). The GM12878 ATAC-STARR-seq plasmid library contains a maximum complexity 

of about 50 million unique accessible DNA fragments, providing ample coverage of accessible 

loci.  

 

24hrs post-transfection is the optimal time to harvest ATAC-STARR-seq reporter RNAs 

The introduction of plasmid DNA into cells produces an interferon-stimulated gene 

response that can confound the isolation of biologically relevant regulatory activity (Muerdter et 

al., 2018). To minimize this interference in our data, we determined the optimal incubation time 

between electroporation and harvest. Two factors play an important role in determining when to 

harvest RNA: global reporter RNA expression levels and the timing of interferon stimulated gene 

response to STARR-seq reporter plasmid DNA. To investigate both factors, we electroporated 

ATAC-STARR-seq plasmid DNA, isolated poly-adenylated RNA at several time points after 

transfection, quantified RNA expression with qPCR, and compared to an untransfected sample 

(Figure 4B). An increase in reporter RNA expression is observed at 3 hours (the earliest timepoint) 

and remains stable at later time points. We measured expression of IFNB1, IFIT2, and ISG15 to 
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characterize the interferon stimulated gene response in our system. RNA expression for all three 

genes increases initially but returns to baseline by 24 hours. Given the persistent level of reporter 

Figure 4: ATAC-STARR Optimization. (A) Estimated complexity curve for the GM12878 ATAC-
STARR plasmid library. Dashed lines represent predicted values from Preseq’s lc-extrap. The associated 
ribbon plots (light blue) represent the 95% confidence interval reported with the predicted value. (B) 
Relative expression of reporter RNAs and three interferon-stimulated genes (IFNB1, IFIT2, and ISG15) at 
varying timepoints between 0- and 36-hours post-electroporation.  For each analysis, fold-change values 
are relative to the untransfected condition. Three replicates were isolated and quantified for each timepoint. 
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RNAs and the attenuated interferon stimulated gene response in our system, we decided to harvest 

24 hours after electroporation. Together, this allows us to capture reporter RNAs that reflect 

steady-state regulatory properties of GM12878 accessible regions without sacrificing reporter 

RNA recovery.  

 

Figure 5: Characterization of ATAC-STARR sequencing libraries. (A) Agilent Tapestation results for 
relevant steps of ATAC-STARR, this includes the following: tagmented products, plasmid library inserts, 
and Illumina sequencing libraries for all three replicates of DNA and RNA. Tagmented products lack the 
full Illumina adapter and therefore are about 100bp smaller than their later-stage counterparts. They also 
include larger fragments which were removed via selection before the cloning step. The Illumina-ready 
libraries were amplified using a minimal PCR cycle number and therefore the plasmid or cDNA template 
as well as the first and second round products can be seen as larger material—this material is not sequence-
able as it lacks at least one of the adapters required for cluster amplification. (B) Insert size distribution of 
ATAC-STARR-seq reads, as quantified by Picard’s CalculateInsertSizeMetrics. (C) Estimated complexity 
curves for ATAC-STARR sequencing libraries. Dashed lines represent predicted values from Preseq’s lc-
extrap. The associated ribbon plots (light blue) represent the 95% confidence interval reported with the 
predicted value. 
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ATAC-STARR-seq maintains nucleosome profiles of Tn5 selected DNA fragments 

For a total of three replicates, we then transfected the library into GM12878 cells and 

harvested both reporter RNAs and plasmid DNA from the same flask of cells 24 hours later. Using 

the captured reporter RNAs and plasmid DNA, we prepared Illumina sequencing libraries for each 

replicate and submitted for sequencing. The size distribution of the accessible DNA fragments 

remained consistent throughout the ATAC-STARR-seq procedure and displayed the characteristic 

nucleosome banding and DNA pitch typified by ATAC-seq fragment libraries (Figure 5A,B). 

Analysis of library complexity between replicates revealed an average maximum complexity of 

90 million unique fragments for input DNA, and 10 million unique fragments for reporter RNAs 

(Figure 5C). The difference between RNA and DNA complexities is likely due to higher 

duplication rates in the RNA samples (Table 2) driven by both the expression of multiple 

Figure 6: Correlation between ATAC-STARR-seq replicates. Scatter plots of DESeq2-normalized read 
counts per bin between replicates for both (A) DNA and (B) RNA samples. Pearson (r2) and spearman (ρ) 
correlation coefficients are indicated in the top left corner for each pairwise comparison. 
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transcripts per plasmid and more PCR cycles required for the RNA samples. In addition, for both 

RNA and DNA samples, replicates displayed high Pearson (r2: 0.96-0.99) and Spearman’s (ρ: 

0.77-0.93) correlation coefficients indicating strong agreement among the three replicates assayed 

(Figure 6). Altogether the ATAC-STARR-seq sequence libraries demonstrated the necessary 

quality and complexity for downstream analysis. 

 

Table 2: ATAC-STARR-seq sequencing summary statistics. Plasmid library column represents data 
from the library complexity check.    

Table 3: Genrich peak counts for varying FDR thresholds. Underlined values indicate the peak sets 
that were analyzed further.    

Metric Plasmid 
Library 

DNA 
Rep 1 

DNA 
Rep 2 

DNA 
Rep 3 

RNA 
Rep 1 

RNA 
Rep 2 

RNA 
Rep 3 

Total read count 
(paired end) 

113,978,
542 

55,453,3
64 

47,609,9
89 

81,350,9
11 

101,163,
327 

122,274,
760 

103,410,
392 

Filtered read 
count (paired 
end) 

66,730,2
49 

30,803,0
98 

26,530,4
51 

44,046,9
83 

56,307,7
16 

67,956,4
76 

56,098,4
54 

Filtered & 
deduplicated 
read count 
(paired end) 

29,482,0
15 

22,626,1
81 

20,015,6
87 

28,369,1
14 

11,385,8
51 

8,122,46
2 

9,285,79
6 

Trimming Rate 79.7% 76% 79% 82% 76% 76% 76% 
Mapping Rate 
(>30MAPQ) 73% 61% 61% 59% 61% 61% 59% 

% mtDNA reads 19.13% 8.6% 8.7% 8.6% 8.6% 8.6% 8.3% 
% ENCODE 
blacklist reads 0.147% 0.05% 0.05% 0.05% 0.05% 0.05% 0.05% 

Duplication rate 56% 27% 25% 35.6% 80% 88% 83% 
Number of PCR 
Cycles  10 8 8 8 13 13 12 

FastQC fields 
failed Per base sequence content, Sequence Duplication Levels 

Sample FDR < 0.01 FDR < 0.001 FDR < 0.0001 FDR < 0.00001 
Corces 133,007 89,829 66,471 50,784 
ATAC-STARR 162,877 124,612 101,904 85,668 
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ATAC-STARR-seq faithfully captures chromatin accessibility with high signal-to-noise  

The use of Tn5 on native chromatin to selectively clone chromatin accessible DNA 

fragments provides the opportunity to quantify not only reporter activity, but also chromatin 

accessibility simultaneously from the same plasmid library. This is because the same DNA 

fragments sequenced in a typical ATAC-seq workflow are contained in the ATAC-STARR-seq 

plasmids. Given the insert fragments from reisolated plasmids are sequenced, we asked if the 

resulting peak profiles recapitulate native ATAC-seq to measure chromatin accessibility. This is 

important because, in contrast to a typical ATAC-seq procedure, ATAC-STARR-seq involves 

several additional steps including cloning, transfection and reisolation, which could distort the 

content of the library such that it no longer represents its native profile in the genome. Specifically, 

mapped sequence reads derived from inserts of reisolated plasmids are counted at a given locus 

and this estimate infers the accessibility of the region at the time of tagmentation. This also reflects 

the number of plasmids that represent a given region within the reisolated ATAC-STARR-seq 

plasmid library. To test this, we processed the reisolated plasmid DNA as an Omni-ATAC-seq 

dataset and benchmarked against the GM12878 Omni-ATAC-seq dataset from Corces et al. 2017. 

Raw sequences obtained for both datasets were processed through identical workflows (see 

Methods). After collapsing read duplicates, we called peaks for each dataset using a variety of 

false-discovery rates (FDRs) (Table 3). To closely match the number of peaks previously reported 

by Corces et al. 2017 (~108,433), we chose two separate FDR thresholds—0.0001 for ATAC-

STARR-seq and 0.001 for the Corces data—yielding 101,904 and 89,829 accessible chromatin 

peaks respectively (Corces et al., 2017). The ATAC-STARR-seq and Corces et al. peak sets 

represent 2.22% and 2.11% of the genome, respectively, which agrees with previous reports 
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(Figure 7A, (Klemm et al., 2019; Thurman et al., 2012)). Overall, 71% of ATAC-STARR-seq 

peaks are reproduced in the Corces et al. dataset, while 81% of Corces et al. peaks overlap the 

ATAC-STARR-seq dataset (Figure 7B; Jaccard index = 0.589), indicating strong agreement 

between these data despite substantial differences in ATAC-STARR DNA sample preparation. 

Figure 7: ATAC-STARR-seq accurately quantifies chromatin accessibility. ATAC-seq data from 
Corces et al. 2017 is compared with ATAC-STARR-seq plasmid DNA data. (A) Fraction of the human 
genome represented by each peak set. (B) Venn diagram of peak overlap between the two datasets and the 
associated Jaccard Index. (C) Fraction of paired-end (PE) fragments in peaks—FRiP scores—for both 
samples. (D) Signal tracks comparing counts per million (CPM) normalized read count at a representative 
locus. 
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Furthermore, the fraction of reads in peaks score (FRiP), an ENCODE ATAC-seq standard 

measure of noise, is considerably higher for both ATAC-STARR-seq (0.74) and Corces et al. 

(0.526) than the ENCODE accepted standard (>0.2, Figure 7C), indicating minimal background 

in our dataset. The high signal-to-noise is also evident when looking at normalized read pileups at 

a representative locus (Figure 7D), where the signal mirrors the Corces et al. accessibility signal 

patterns. Based on these results, we conclude that ATAC-STARR-seq can accurately retain 

chromatin accessible peaks in the human genome with high signal-to-noise.   

 

A sliding windows approach increases activity region calling sensitivity  

ATAC-STARR-seq tests regulatory activity in DNA enriched for accessible chromatin. 

Unlike whole genome STARR-seq or other MPRAs, where the genomic DNA fragment 

distribution is relatively constant, read coverage varies substantially from peak-to-peak in ATAC-

STARR-seq. In this way, ATAC-STARR-seq requires an analysis strategy that calls active and 

silent regulatory regions within accessibility peaks. To address this “peaks-within-peaks” problem, 

we developed an analytical approach using DESeq2 to normalize reporter RNA read counts to 

reisolated plasmid DNA read counts. DESeq2 additionally performs an independent filtering step 

which removes low count data confounders that can influence ratios and result in false positive 

peak calls (Love, Huber, & Anders, 2014).  

We tested two different approaches for regulatory activity analysis. The two approaches 

differ in how genomic regions are defined prior to differential analysis with DESeq2. Our “sliding 

window” method, defines regions by slicing accessible peaks into 50bp sliding bins with a 10bp 

step size (Figure 8A). Alternatively, the “fragment group” method, which is the approach used in 
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Wang et al. 2018, synthesizes regions by grouping paired-end sequencing fragments by 75% or 

greater overlap (Figure 9A). Using a different set of genomic regions, both methods assign and 

count overlapping RNA and DNA reads to each genomic region and, using DESeq2, identify 

regions where the RNA count is statistically different from the DNA count at a Benjamini-

Figure 8: ATAC-STARR-seq quantifies regulatory activity within accessible chromatin. (A) 
Schematic of the sliding window peak calling method. Accessibility peaks are chopped into 50bp bins at a 
10bp step size with the BEDTools makewindows function (options -w 50, -s 10). For each window, RNA 
and DNA reads are counted using Subread’s featureCounts function. Differential analysis comparing RNA 
and DNA read count is performed with DESeq2. Significant bins are called at an Benjamini-Hochberg (BH) 
adjusted p-value < 0.1 and parsed into active or silent depending on log2 fold-change (FC) value (+/- zero). 
Finally, bins are collapsed into regions using the BEDTools merge function. Log2FC scores are averaged 
across merged bins. (B) Volcano plot of log2FC scores against -log10-transformed BH adjusted p-value from 
DESeq2 for all bins analyzed. (C) The proportion of bins called as active or silent. (D) The number of 
regions defined as either active or silent. (E) Overlapping density plots of active and silent regulatory region 
size; dashed lines represent the medians in each case. (F) The proportion of accessible peaks that overlap 
an active or silent region, or both. 



36 
 

Hochberg (BH) adjusted p-value < 0.1.  The “sliding window” method yielded ~30,000 distinct 

active regions, while the “fragment groups” method yielded ~20,000 distinct active regions (Figure 

9B). In addition, nearly all active regions defined using the fragment group method (95%) are also 

captured in the sliding window method regions (Figure 9C). Given this overlap and a 50% greater 

recovery with the sliding windows approach, we used the sliding windows method to call active 

ATAC-STARR-seq regulatory regions.  

 

Figure 9: Comparison between the sliding window and the fragment group active region calling 
methods. (A) Diagram of the fragment group region calling scheme. Paired-end fragments from the DNA 
samples are first assembled into “fragment groups” (FGs) which represent groups of more than 10 paired-
end fragments with each fragment overlapping another fragment by at least 75%. Like the sliding window 
method, reads from RNA and DNA samples are then assigned to each FG and active FGs are identified 
using differential analysis with DESeq. The same padj (<0.05) and log2fold-change (>0) filters are applied. 
For FGs that overlap, the FG with the largest activity score is isolated.  (B) The number of active regions 
called with either method. (C) Euler plot comparing the region overlap between the two methods. 
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Investigating the influence of replicates on region calls 

We note that the Wang et al. 2018 study reported twice the number of active regions 

reported herein. This discrepancy may be explained in part by using the super core promoter in 

their assay, but another major difference between the two studies is replicate number (five 

replicates versus three replicates). To determine if the difference in active region count is driven 

by replicate number, we downloaded and analyzed raw sequencing data from Wang et al. 2018 

using our pipeline and analysis methods. We then assigned reads to the bins we analyzed and called 

active regions using either three or five replicates (Figure 10A). With five replicates, we also 

captured ~66,000 active regions; however, we identified ~39,000 regions with only three 

replicates. This is much closer to the number we report (~30,000) and suspect the extra 9,000 

regions may be the result of experimental differences, such as the promoter employed. Altogether 

the number of called active regions increases with more replicates. 

To further investigate the effect of replicate number on region calling sensitivity in our 

data, we merged and split our three ATAC-STARR-seq replicates into five randomly sampled 

Figure 10: Analysis of replicate count on region calling sensitivity. (A) Number of active regions called 
using HiDRA data with either 3 or 5 replicates. Current ATAC-STARR-seq active region number is plotted 
for comparison. (B) Number of active regions called when 2, 3, 4, or 5 pseudoreplicates are provided. To 
generate pseudoreplicates, replicates were merged and then split into 5 separate files. 
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“pseudo-replicates”. We then called active regions using two, three, four, or five pseudo-replicates 

(Figure 10B). We find the largest increase in region count going from two to three replicates. Thus, 

the three replicate condition seems to yield the best value, while additional replicates may be 

needed to detect more weakly active regulatory regions. However, it is also very important to note 

that studies investigating the relationship between replicate number, sensitivity, and accuracy for 

RNA-seq data have demonstrated that performing more replicates yields more differentially 

expressed genes, but this is concomitant with an increase in false positive rate (Lamarre et al., 

2018; Schurch et al., 2016). Therefore, the additional regions that are called with increasing 

replicate counts may represent a disproportionate number of false positives and may affect the 

outcomes of certain accuracy-sensitive applications like computational modelling.  

 

Duplicate removal hinders region calling sensitivity 

A question that often arises when determining biological signals from sequence read count 

data is whether to collapse read duplicates, as duplicates can arise both technically (PCR 

duplicates) and biologically (active regions generate multiple transcripts of themselves). To 

understand their contribution to data interpretation, we analysed our data with and without 

duplicates and compared the output. Removal of duplicates produces modest improvements to 

correlation coefficients between replicates, although both conditions had correlations indicative of 

satisfactory reproducibility (Figure 6, Figure 11A-B). However, excluding duplicates produced 

many fewer active regions called than including duplicates (~21,000 fewer regions) (Figure 11C). 

Together, this indicates that removing duplicates modestly improves reproducibility but 



39 
 

significantly sacrifices sensitivity. Furthermore, most of the regions called without duplicates are 

also called when duplicates are included, indicating that, for the most part, duplicate removal 

affects sensitivity and not accuracy (Figure 11D). Because the with-duplicate analysis yielded 

many more additional regions and is reproducible between replicates, we included duplicates in 

Figure 11: Comparison between keeping duplicates and removing duplicates to call active regions. 
(A-B) Scatter plots of DESeq2-normalized read counts per bin between replicates for both (A) DNA and 
(B) RNA samples when duplicates are removed. Pearson (r2) and spearman (ρ) correlation coefficients are 
indicated in the top left corner for each pairwise comparison. (C) The number of active regions called with 
or without duplicates. (D) Euler plot comparing the region overlap between the two methods. 
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our activity analysis moving forward. Importantly, because our approach filters by significance, 

reproducibility is required when calling active and silent regions. Therefore, identified active and 

silent regions are of high confidence when including duplicates. 

 

ATAC-STARR-seq quantifies regulatory activity of open chromatin 

In the sliding window approach, bins are classified as active or silent depending on whether 

RNA is enriched or depleted, respectively, and then like-bins are merged to collapse overlaps 

(Figure 8A). Using this approach, we identified ~590,000 bins where RNA and DNA counts were 

significantly different (Figure 8B). More specifically, this analysis identified 251,895 (4.1%) 

active bins and 339,737 (5.5%) silent bins from the ~5.6 million total bins measured (Figure 8C). 

Overlapping bins were merged into 30,078 active and 21,125 silent regulatory regions (Figure 8D). 

It is important to note that more silent than active bins are called; however, because silent regions 

are generally larger (Figure 8E), merging overlapping bins results in fewer silent regions than 

active. Collectively, the active and silent bins represent ~9.5% of all bins measured, indicating that 

the majority of accessible DNA is transcriptionally neutral. Moreover, most accessible peaks do 

not have an active or silent region contained within them (69.5%), suggesting that most accessible 

regions are neutral regulatory regions according to our assay (Figure 8F). This suggests that the 

majority of accessible DNA has no regulatory potential in this cellular context or, alternatively, 

that ATAC-STARR-seq is not sensitive enough to measure weakly active or weakly silent regions. 

A recent study in mouse embryonic stem cells made the same observation using an orthogonal 

approach, suggesting this phenomenon is present in other mammalian species (Glaser et al., 2021). 

We note that a small percentage of accessible peaks (4.4%) contain both active and silent regions, 

demonstrating that there can be competing regulatory regions within the same accessible peak. 
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Both short and long DNA fragments are required for comprehensive region calling 

Because DNA fragment synthesis for MPRAs is limited to 200 bp including the adapters 

and barcode, a significant advantage of ATAC-STARR-seq and other capture-based MPRAs is the 

ability to measure activity of longer DNA sequences (Santiago-Algarra et al., 2017). To investigate 

the effect of fragment length on regulatory region calls, we divided mapped reads into short 

(>125bp) and long (<125bp) fragments and independently called active and silent regulatory 

regions; 125bp was chosen as it bisects the bimodal peak distribution displayed by RNA and DNA 

libraries (Figure 5B). Overall, read counts were similar for each sample after splitting into short 

and long groups (Figure 12A). Two to three times as many active and silent regions were called in 

the long fragment group compared to the short group (20,833 versus 10,789 for active and 16,872 

versus 6,213 for silent).  Nonetheless, a substantial number of regions are called within the short 

fragment group, although both fell short of the number of active and silent regions called when 

both long and short were used (Figure 12B). The regulatory regions called using long DNA 

fragments are larger than those called with short fragments, as expected (Figure 12C); however, 

they display little difference in TSS distance, indicating these groups are not comprised of different 

genomic annotations (Figure 12D). A critical observation is that only 23% of active regions called 

using short reads overlap active regions called using longer reads, revealing the two groups identify 

different regulatory regions in the genome (Figure 12E); this is also true for the silent regulatory 

regions, although to a lesser extent. Altogether this analysis reveals that short and long DNA 

fragments identify different regulatory region sets both in number and similarity. Therefore, to be 
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as comprehensive as possible, STARR-seq assays should be designed to include both short and 

long DNA fragments rather than impose a size selection to remove smaller fragments.  

Figure 12: Effect of fragment length on regulatory region calls. ATAC-STARR-seq fragments were 
parsed into “long” and “short” files based on whether they were greater than or less than or equal to 125nt. 
(A) read counts of each fragment length classification for each replicate for both plasmid DNA and reporter 
RNA samples.  (B) Active and silent region counts using only long fragments, only short fragments, or 
both. (C) Boxplots of basepair (bp) length for the active and silent region sets called for each fragment 
length classification.  (D) Annotation of regulatory regions relative to the transcriptional start site (TSS). 
The promoter is defined as 2kb upstream and 1 kb downstream of the TSS. (E) Venn diagrams representing 
the amount of active or silent region overlap between the region sets called from each fragment length 
classification. 
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Active and silent ATAC-STARR-seq regions represent both proximal and distal cis-

regulatory elements and lie within functional chromatin states 

To gain insight into the regulatory features of active regions, we annotated both active and 

silent regions according to genomic location. Active regions are found in both promoter proximal 

and distal areas of the genome, with a majority occurring in intronic and intergenic sites (~55%), 

whereas silent regions coincide primarily with promoters (~75%) (Figure 13A). Functional 

classification of active and silent regions by the 18-state ChromHMM model (Roadmap 

Epigenomics Consortium et al., 2015) revealed that active regions consist of TSS active, TSS 

flanking upstream, and Enhancer Active 1 chromatin states and are devoid of repressive states like 

Repressed Polycomb Weak and Quiescent (Figure 13B). By contrast, silent regions are slightly 

enriched for bivalent chromatin states (TSSBiv, EnhBiv), consistent with the observation that they 

are accessible but not active. Most silent regions also coincide with TSS Active and TSSFlnk 

ChromHMM states, which corroborates their promoter proximal locations; however, their 

designation as “active” by ChromHMM is somewhat puzzling considering these DNA fragments 

do not drive transcription in our assay. One explanation is that silent regulatory activity, as 

measured by episomal-based reporter assays, does not fully copy regulatory activity as predicted 

by ChromHMM. Alternatively, active promoters may confound the reporter assay by initiating 

transcription from the 3’UTR of the plasmid causing conflicts with active transcription from the 

Ori.  
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Figure 13: Regulatory regions defined by ATAC-STARR exhibit annotations, histone modifications, 
and TFs characteristic of their function. (A) Annotation of regulatory regions relative to the 
transcriptional start site (TSS). The promoter is defined as 2kb upstream and 1kb down-stream of the TSS. 
(B) Annotation of regulatory regions by the ChromHMM 18-state model for GM12878 cells. (C) Heatmaps 
of GM12878 ENCODE ChIP-seq signal and regulatory activity for proximal and distal ATAC-STARR-
defined regulatory regions. Proximal regions were classified as within 2kb upstream and 1kb downstream 
of a TSS; all other regions were annotated as distal. Active and silent regions were ranked by mean activity 
signal for both proximal and distal regions. (D-E) Transcription factor motif enrichment analysis as 
quantified by HOMER. Fold-change values are relative to the default background calculated by HOMER. 
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To further investigate if silent regions are a result of 3’UTR transcription initiation, we 

considered if an orientation bias existed in reporter RNAs levels. If 3’UTR transcription conflicts 

exist, we would expect many fewer reporter RNAs when transcription results in head-on conflicts 

rather than occurring in the same direction as the Ori. We therefore subset reads based on whether 

they arose from an insert cloned in a 3’ to 5’ direction or in a 5’ to 3’ direction (Figure 14A). We 

then assigned read counts to all bins analyzed (Figure 14B-C), the bins called active (Figure 14D-

E), or the bins called silent (Figure 148F-G). Because this is expected to be a promoter-specific 

effect, we also split bins into proximal and distal based on location to the nearest transcription start 

site. In all cases, more than 95% of the bins do not display an orientation bias, which we defined 

as a normalized read count difference greater than five between orientations (Figure 14H). 

Moreover, we observe high Pearson and Spearman’s correlation coefficients between orientations 

for all conditions (r2: 0.80-0.91 and ρ: 0.73-0.90) and the minimal contribution of orientation bias 

to silent regions is in agreement with a previous report (Klein et al., 2020). For the <5% of regions 

that do display orientation bias, proximal bins are more affected than distal bins, as expected. 

Altogether, ATAC-STARR-seq does not display a significant orientation bias and most of the 

21,000 silent regions we observe result from legitimate silencing activity or another source.  
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Figure 14: Assessment of potential orientation bias in ATAC-STARR-seq data. (A) Schematic of the 
method for separating reads based on insert orientation. Read 1 and Read 2 are sequenced from the same 
position regardless of insert orientation on the plasmid and reporter RNA samples. Therefore, insert 
orientation can be specified based on how the read pair map to the genome. 5’-3’ inserts have R1 on the top 
strand, while 3’ -5’ inserts have R1 on the bottom strand. (B-G) Scatter plots of counts per million 
normalized reporter RNA read counts between 5’ to 3’ inserts and 3’ to 5’ inserts for (B) all proximal bins 
analyzed, (C) all distal bins analyzed, (D) active proximal bins only, (E) active distal bins only, (F) silent 
proximal bins only or (G) silent distal bins only. Pearson (r2) and spearman (ρ) correlation coefficients are 
indicated in the top left corner for each pairwise comparison. Proximal bins were defined as within 2kb 
upstream and 1kb downstream of a transcription start site, while distal bins were defined as everything else. 
Dashed lines indicate +/- 5 counts from the expectation (y=x). The percentage of bins that lie outside of 
these lines are denoted in (H). 
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Active and silent ATAC-STARR-seq regions are distinct functional classes and are 

enriched for specific histone modifications and TF motifs 

To further investigate the chromatin landscape of the active and silent regions, we plotted 

ENCODE GM12878 ChIP-seq signal (The ENCODE Project Consortium et al., 2020) for EP300, 

CTCF, and histone modifications associated with active and repressed chromatin states (Figure 

13C). As expected, active regions contain EP300 at their center with histone 3 lysine 27 acetylation 

(H3K27ac) more broadly distributed across the center; histone 3 lysine 4 mono-methylation 

(H3K4me1) is also present at distal regions, while histone 3 lysine 4 tri-methylation (H3K4me3) 

is at proximal regions. In addition, histone 3 lysine 27 tri-methylation (H3K27me3)—a bivalent 

repressive mark—is largely absent from active regions. Proximal silent regions, on the other hand, 

are enriched for H3K27me3 and H3K4me3. This suggests many of the proximal silent regions are 

accessible bivalent regulatory elements in lymphoblastoid cells. To support their designation as 

silent calls, we compared histone modification signal at accessible peaks that contain either a silent 

region, an active region, both a silent and active region, or neither, which we define as neutral 

accessible peaks (Figure 15A). Consistent with the observations above, silent accessible peaks 

contain more H3K27me3 signal and are devoid of H3K27ac signal relative to the other accessible 

peak types.  

It is important to note that silent regions are distinct from neutral regions, which are defined 

as regions failing to reach significance in the RNA-DNA differential analysis. Overall, neutral 

regions exhibit baseline levels of histone modifications and distribution in genomic annotations 

like that of all accessible peaks (Figure 15B-C, Figure 13A-B). While neutral regions represent the 



48 
 

majority of accessible peaks, it is possible that a subset are weak enhancers as indicated by overlap 

with ChromHMM states, or regulatory elements that display activity in a different cellular context. 

Our analysis of TF motifs within active and silent regions revealed prominent differences 

in motif enrichment. Distal silent regions are strongly enriched for CTCF and its counterpart 

BORIS, which is associated with diverse functions including gene repression and insulator activity 

Figure 15: Additional characterization of ATAC-STARR-seq regulatory regions. (A) Histone 
modification ChIP-seq signal at accessible chromatin peaks. Boxplot of the distribution of histone 
modification ChIP-seq signal for accessible chromatin peaks (ChrAcc) that contain an active region, a silent 
region, both an active and silent region, or neither (neutral). Values represents the average fold change over 
control signal per region for each histone modification. (B) Annotation of regulatory regions relative to the 
transcriptional start site (TSS). The promoter is defined as 2kb upstream and 1 kb downstream of the TSS. 
(C) Annotation of regulatory regions by the ChromHMM 18-state model for GM12878 cells. 
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(Figure 13D-E)(S. Kim, Yu, & Kaang, 2015). In addition, we found enrichment for the SP/KLF 

family several of which (Cao, Sun, Icli, Wara, & Feinberg, 2010) are known to be transcriptional 

repressors. By contrast, the most enriched TFs in active regions were the IRF family, the ETS 

family, subunits of the NF-kB complex, and general promoter TFs such as THAP11 and YY1. 

These data are consistent with our current understanding of immune gene regulation and regulatory 

element function, which together corroborates the quantification of regulatory activity with 

ATAC-STARR-seq. 

 

ATAC-STARR-seq retains the ability to map in vivo TF binding 

An inherent advantage of an ATAC-seq based approach is the ability to perform TF 

footprinting. Computational footprinting methods identify Tn5 cleavage events or “cut sites” from 

ATAC-seq data and, when combined with motif analysis, can identify TF binding sites with high 

accuracy (Bentsen et al., 2020; Yan, Powell, Curtis, & Wong, 2020). Since ATAC-STARR-seq 

produces similar high-quality chromatin accessibility peak profiles as standard ATAC-seq, we 

explored whether TF footprints were also preserved. We generated Tn5-bias corrected cut site 

signal files for both Corces et al. 2017 and ATAC-STARR-seq accessibility datasets and plotted 

cut site signal at all accessible CTCF motifs (Figure 16A) (Bentsen et al., 2020). As a control, we 

also plotted GM12878 CTCF ChIP-seq signal from ENCODE and ranked region order by highest 

mean ChIP-seq signal. We observed consistent depletion of Tn5 cut-sites for both Corces et al. 

2017 and ATAC-STARR-seq accessibility at CTCF sites. Moreover, we only observe footprints 

at motifs with CTCF ChIP-signal, demonstrating the utility of TF footprinting to determine motifs 
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that are bound or unbound by TFs. Given the importance of TFs in driving enhancer function, this 

distinction is vital when dissecting transcriptional regulation in human cells.  

TF motif enrichment analysis pointed to multiple ETS family members, including ETS1 

which is an important immune cell regulator (Garrett-Sinha, 2013) (Figure 13D). So, we asked 

whether ETS1 footprints are also present in our data. Unlike CTCF, ETS1 shares its motif with 

many other transcription factors, such as ETV4; therefore, footprinting cannot distinguish ETS1 

Figure 16: ATAC-STARR-seq identifies transcription factor footprints. (A) Comparison of ENCODE 
CTCF ChIP-seq signal to Corces et al. and ATAC-STARR-seq cut count signal for all accessible CTCF 
motifs. (B) Comparison of ENCODE ETS1 ChIP-seq signal to Corces et al. and ATAC-STARR-seq cut 
count signal for all accessible motifs with the ETS/1 motif archetype. For both, regions were ranked by 
largest mean ChIP-seq signal. (C) Aggregate plots representing mean signal for the TOBIAS-defined bound 
and unbound motif archetypes: CTCF, ETS/1, CREB/ATF/1, IRF/1, SPI, NFKB/2. 
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and ETV4 binding sites. For this reason, we refer to TFs using their ENCODE-defined 

“archetypes”, which reflects the group of TFs that share the same motif (Vierstra et al., 2020). For 

each archetype, we performed footprinting against one of the TFs within an archetype to infer 

motifs bound by members of the group, such as ETS1 for the ETS/1 archetype. To assess the extent 

to which ETS1 footprints can be explained by ETS1 binding, we plotted GM12878 ETS1 ChIP-

seq signal from ENCODE within both Corces et al. 2017 and ATAC-STARR-seq cut sites (Figure 

16B). Indeed, ETS1 ChIP-seq signal explains the majority but not all the ETS/1 footprints present. 

We observe similar cut-site signal to Corces et al. 2017, further indicating that ATAC-STARR-

seq can detect in vivo binding of transcription factors despite the additional cloning and 

transfection steps involved in producing ATAC-STARR-seq DNA libraries.  

We performed footprinting for several more immune related TF archetypes to identify 

bound or unbound TF motifs (Figure 16C). For all TFs, bound motifs display substantially larger 

footprint depth than unbound motifs. Together, this indicates that ATAC-STARR-seq, when 

combined with footprinting, can identify regions of the genome where TFs are bound. This 

additional level of information can be leveraged in conjunction with accessibility and activity to 

understand the context of TF binding while circumventing the need to perform individual 

chromatin immunoprecipitations.  

 

Collective profiling of accessibility, in vivo TF binding, and activity with ATAC-STARR-

seq reveals distinct networks of gene regulation 

Interrogating chromatin accessibility, TF binding, and regulatory activity together can be 

used to interpret locus-specific gene regulatory mechanisms. For example, active regulatory 

elements surrounding the B cell-specific expressed gene ZBTB32 overlap IRF8 and NFKB1 
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footprints suggesting these regions are regulated by IRF8 and NFKB1 binding (Figure 17A). We 

also observe SP1 and KLF3 footprints overlapping a silent region at the ETV2 locus, a gene lowly 

expressed in B cells, according to the Human Protein Atlas (Uhlen et al., 2015; Uhlen et al., 2019). 

Together this indicates that active and silent regions can, in part, be explained by the occupancy 

of these TFs.  

To demonstrate the power of integrating TF footprints and regulatory regions on a global 

scale, we clustered active and silent regions based on the presence or absence of several TF 

footprints (Figure 17B-C). Footprints were selected based on top hits from the previous motif 

enrichment analysis (Figure 13D-E). Regulatory activity may be driven by one or multiple TF 

binding events that defines the cluster and is representative of a gene regulatory network in the 

genome. Indeed, we find that the putative target genes regulated by each unique group are enriched 

for distinct gene regulatory pathways and are often related to the TFs in the cluster (Figure 17D-

E). For example, cluster C is primarily defined by the presence of IRF/1 and is enriched for 

interferon alpha/beta signalling. It is interesting that active clusters tend to be more associated with 

B cell function than silent clusters, which are more associated with general, non-B cell related 

pathways.  
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Figure 17: TF footprints stratify ATAC-STARR-defined regulatory regions into gene regulatory 
networks. (A) ATAC-STARR-defined chromatin accessibility, TF footprints, and regulatory regions 
at Chr19:35,611,232-35,798,446 (hg38). Signal tracks represent counts per million normalized read 
depth of chromatin accessibility. Zooms into ETV2 and ZBTB32 show that some regulatory regions are 
occupied by a SP1, KLF3, IRF8, or NFKB1 footprint. (B-C) Heatmaps of clustered (B) active and (C) 
silent regions based on presence or absence of footprints for select TF motif archetypes. (D-E) 
Reactome pathway enrichment analysis for nearest-neighbor gene sets for each of the clusters. Genes 
counts for each cluster are displayed below their group identifier.  
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Altogether, these distinct gene regulatory networks provide an additional layer of insight 

into the mechanisms that control gene expression and showcase how integration of the multiple 

layers of gene regulatory information provided by ATAC-STARR-seq can narrow the focus of 

gene targets for active and silent regions. We envision such an analysis could be used to interpret 

the functional consequences of a dysregulated transcription factor or disease-associated genetic 

variants. We provide this level of detail from a single dataset, which further demonstrates the 

strong potential of our workflow to reveal distinct functional layers of human gene regulation. The 

resolution we achieve here would not be possible without all three levels of regulatory information 

provided by ATAC-STARR-seq. 

 

Discussion 

Genome-wide approaches that integrate measurements of multiple layers of gene 

regulation are needed to better understand enhancer function. By combining ATAC-seq with 

STARR-seq, ATAC-STARR-seq assays regulatory activity only within the context of accessible 

chromatin. This allows deeper coverage of regulatory elements by narrowing scope but remaining 

inclusive of nearly all active regulatory elements. In this report, we substantially expand the 

capabilities of ATAC-STARR-seq and present an improved workflow which uniquely permits 

simultaneous profiling of accessibility, TF occupancy, and regulatory activity from a single DNA 

fragment source. Specifically, we implement key experimental and analytical improvements and 

present data rationalizing the decisions we make. Experimentally, we adapt a modified 

tagmentation protocol (Omni-ATAC) to remove mitochondrial DNA from the DNA fragment 

pool. We also utilize the Ori as the minimal promoter on the STARR-seq backbone which 

improves reporter RNA expression, recovery, and dynamic range over the super core promoter 
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(SCP1) backbone (Klein et al., 2020; Muerdter et al., 2018). Furthermore, we reisolate the 

transfected plasmid DNA to capture only the DNA that is available to cells, which is a more 

accurate measure of the input than sequencing prior to transfection. Reisolating plasmid DNA 

drives a greater degree of variance between samples and better reflects a true experimental 

replicate than sequencing the same DNA sample for each RNA replicate. Finally, we show that 

replicate number and inclusion of long and short fragment sizes are critical for comprehensive 

region calling.  

Critically, we developed and tested a simple and sensitive region calling strategy that 

improves detection of regulatory regions including silencers. We also quantify chromatin 

accessibility and identify TF footprints, which is surprising given the added processing steps in 

ATAC-STARR-seq including cloning, transfection, and recapture of DNA libraries that can dull 

or degrade footprint signal. This enabled us to stratify the active and silent regulatory regions into 

distinct gene regulatory networks defined by the presence of one or multiple TF footprints. Such 

an analysis typically requires multiple genomic sequencing assays, but we do this using a single 

dataset.  

With this improved workflow, we identified 30,078 active regions and 21,125 silent 

regions in lymphoblastoid cells. Most active regions were distal to transcription start sites, enriched 

for functional active ChromHMM states, and were enriched for known B cell regulating-TF motifs 

such as IRF8 and NFkB. By contrast, the silencers are proximal to transcription start sites and 

enriched for CTCF and the SP/KLF TF family. Silent regions are also enriched for the bivalent 

marks H3K27me3 and H3K4me3 and may represent regulatory regions that are poised, 

particularly at promoters. Because our plasmid design places regulatory regions within the 3’UTR 

of the truncated reporter gene, it is possible that the lack of observed reporter RNAs at silent 
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regions are a result of head-on transcriptional conflicts that arise from antisense transcription 

initiation from the 3’UTR. However, we show this minimally occurs in our system and the silent 

regions reflect true silencing activity or another source that has yet to be identified. While further 

studies may be needed to validate these silent regions, this work confirms that the silencers are a 

distinct class of regulatory element with distinct properties compared to active and neutral regions 

and warrant further investigation. Even with an increasing number of studies targeted at identifying 

silencers in the human genome, silencing regulatory regions remain an under-studied aspect of 

gene regulation and our approach provides a new strategy to investigate these elements on a global 

scale (Doni Jayavelu et al., 2020; Y. S. Kim et al., 2021; Pang & Snyder, 2020).  

ATAC-STARR-seq data has several distinct attributes that require a tailored analysis 

strategy. Current MPRA bioinformatic tools and pipelines are not tractable for these data, because 

in ATAC-STARR-seq the input itself is enriched for accessible chromatin and the read pileup 

varies considerably within these loci. In this way, the analysis of our data required calling 

essentially “peaks within peaks”. For this reason, it was critical to 1) normalize RNA to DNA and 

2) avoid regions of low count data, which is why we adapted approaches using DESeq2. We also 

showed that including PCR duplicates was preferred over collapsing duplicates. In the future it 

would be beneficial to introduce a unique molecular identifier to the system—such as the strategy 

employed by UMI-STARR-seq (Neumayr, Pagani, Stark, & Arnold, 2019)—to collapse only the 

duplicates arising from PCR. While we show comparisons of analysis strategies here, we believe 

that more information could be extracted from this and future ATAC-STARR-seq datasets with 

improved analysis strategies. In recent years we have seen the development of tailormade peak 

callers for whole genome STARR-seq, such as CRADLE (Y. S. Kim et al., 2021) and 
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STARRPeaker (D. Lee et al., 2020); a similarly tailored ATAC-STARR-seq peak caller could 

further improve the capabilities of the method.  

While this study was limited to one condition, there are many potential applications of 

ATAC-STARR-seq. With the ability to subset enhancers by TF occupancy, ATAC-STARR-seq 

could be leveraged to investigate enhancer grammar by pairing measurable regulatory activity with 

multiple TF footprints that drive enhancer function. This approach also has the potential to identify 

dysfunctional gene regulatory networks in diseases like cancer where neoplastic transformation 

can be driven by the dysfunction of a specific TF. Additionally, an ATAC-STARR-seq plasmid 

library may be generated from one cell-type and tested in another. This flexibility could be used 

as a tool to determine context dependent activity or investigate enhancer and TF usage patterns 

during a differentiation time course.  

In this study, we demonstrated that our improved ATAC-STARR-seq workflow is a 

powerful approach enabling joint quantification of chromatin accessibility, transcription factor 

occupancy, and regulatory activity. We further demonstrate how this single assay can characterize 

the human genome at many functional levels from chromatin accessibility to distinct gene 

regulatory networks. This method provides a state-of-the-art approach to deeply investigate 

transcriptional regulation of the human genome. We provide a detailed protocol, a well-

documented code repository, and guidelines for quality control (below) so that ATAC-STARR-

seq may be easily used and adapted by the field.  

 

Guidelines for ATAC-STARR-seq quality control 

Generate highly complex ATAC-STARR-seq plasmid libraries. Library complexity is the 

most important consideration when generating an ATAC-STARR-seq plasmid library.  Library 
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complexity is defined by the number of unique DNA fragments analyzed in the library, i.e., the 

number of unique plasmid inserts, and the more complex a plasmid library, the more DNA 

sequences that are tested. Greater library complexity translates to greater coverage of the genome. 

While we have not experimented directly with different library complexities, less complex libraries 

would likely result in a reduction in sensitivity and fewer regions being called active and silent. 

To estimate library complexity, we suggest performing low-depth sequencing of the plasmid 

library prior to conducting the reporter assay portion of ATAC-STARR (see methods). In this 

report we find our library complexity is roughly 50 million unique sequences. We made critical 

choices in procedure and reagents used to ensure this high library complexity; therefore, we 

strongly discourage replacement of key procedures with faster, cheaper, or simpler alternatives. 

For the human genome, we recommend library complexities of at least 20 million.  

Perform minimal PCR cycles to keep PCR duplication rates low. As mentioned previously, 

duplicates should not be collapsed when calling active and silent regions, because they can arise 

both technically (PCR duplicates) and biologically (active regions generate multiple transcripts of 

themselves). Due to this issue, it is important to minimize PCR duplicates when preparing 

sequencing libraries. To achieve this, we try to obtain just enough sequence-able material using 

the fewest number of PCR cycles. We recommend a duplication rate < 90% for Reporter RNA 

samples and < 50% for plasmid DNA samples.  

Reads should pass general quality filters. The sequenced Reporter RNA and plasmid DNA 

libraries should be analyzed for quality using FastQC. Both should pass all FastQC quality filters 

except per base sequence content (Tn5 has a bias) and sequence duplication levels (inherent quality 

of ATAC-STARR-seq). Mapping rate should be high (>80%) for most cell lines. For GM12878 

cells, at least in our hands, ~20% of reads map to the Epstein-Barr Virus genome which causes our 
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mapping rates to be low (~60-70%). This phenomenon is unique to viral-transformed cell lines 

like GM12878.  

Replicates should be reproducible. We recommend calculating Spearman’s correlation 

values between ATAC-STARR-seq replicates (see methods). In STARR-seq-based methods, 

Spearman’s correlation values > 0.7 are typically sufficient for downstream analysis (Arnold et 

al., 2013; Barakat et al., 2018; Chaudhri et al., 2020; Glaser et al., 2021; X. Wang et al., 2018). 

Importantly, our analytical pipeline does not identify non-replicating regions as active or silent. 

Therefore, data for regions that are not reproducible should not manifest as false positives in our 

system. Less reproducibility, however, will lead to drop out and a greater false negative rate.  

Assessment of Batch Effects. While correlation scores are one measure of assessing batch 

effects between replicates, principal component analyses (PCA) can also provide critical insights 

into batch effects, particularly when several conditions are compared to each other. If batch effects 

are minimal, samples should cluster together only by condition and not by the batch in which they 

were processed. In our system, batch effects could contribute to false negatives, rather than false 

positives, as reproducibility is required for active and silent region calling to reach the necessary 

statistical significance. If needed, we recommend correcting for batch effects by including 

replicate number in the DESeq2 formula, i.e., ~ replicate + condition, as described in the DESeq2 

vignette: (http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html). 

Plasmid DNA data should meet general ATAC-seq standards. Because plasmid DNA 

samples reflect ATAC-seq libraries, they should generally meet ATAC-seq quality thresholds, 

such as a FRiP score > 0.2. Importantly, a stringent q-value should be applied to yield between 

50,000-110,000 ChrAcc peaks that represent about 2% of the human genome. The fragment size 

distribution should be bimodal with two peaks representing nucleosome free DNA fragments 
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(>100bp) and mono-nucleosomal DNA fragments (~200bp). This should be determined prior to 

sequencing via tapesation (Supplemental Figure S2A) and during the analysis phase (Supplemental 

Figure S2B). We do not see the di-, tri-, quad-, etc. nucleosomal bands due to removal of large 

fragments via SPRI bead size selection in the plasmid library generation process.  

 

Materials & Methods 

Cell Culture 

GM12878 cells were obtained from Coriell and cultured with RPMI 1640 Media 

containing 15% fetal bovine serum, 2mM GlutaMAX, 100 units/mL penicillin and 100 μg/mL 

streptomycin. Cells were cultured at 37°C, 80% relative humidity, and 5% CO2. Cell density was 

maintained between 0.2×106 and 1×106 cells/mL with a 50% media change every 2-4 days. All 

cell lines were regularly screened for mycoplasma contamination using the MycoAlert kit (Lonza). 

 

Plasmids 

The hSTARR-seq_ORI plasmid vector was a gift from Alexander Stark (Addgene plasmid 

#99296) and the pcDNA3-EGFP was a gift from Doug Golenbock (Addgene plasmid #13031). 

The bacterial stabs from Addgene were spread onto an LB agar plate containing 100μg/mL 

ampicillin and incubated at 37°C overnight. For each, a single colony was picked and grown in 

50mL LB containing 100μg/mL ampicillin overnight at 37°C while shaking at 225rpm. Plasmid 

DNA was extracted using the ZymoPURE II Plasmid Midiprep kit (Zymo Research, #D4200).  

The linear vector used in the ATAC-STARR-seq gibson cloning step was generated by a 

single 50μL PCR reaction using NEBNext® Ultra™ II Q5® Master Mix (NEB, #M0544S). While 

not necessary for this study, primers were designed to add the i5 barcode to the linearized vector; 
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this allows for different ATAC-STARR-seq plasmid libraries to be pooled and tracked. Following 

this approach, a universal forward primer (Fwd_universal_STARR) and a reverse primer 

(Rev_N504_STARR) designed to add the N504 barcode were used (primer sequences are provided 

in Table 4). PCR Products were purified with the Zymo Research DNA Clean & Concentrator-5 

kit. DNA yield was determined by Nanodrop, and purity was analysed by gel electrophoresis; the 

linearized vector was the only product observed on the gel.   

 

Tagmentation 

A total of eight tagmentation reactions were performed on 50,000 GM12878 cells each. 

We followed a slightly modified version of the Omni-ATAC approach used in Corces et al. 2017 

(Corces et al., 2017). Specifically, twice as much Tn5 than described in the protocol was used. 

Standard Tn5 transposase was prepared in-house following the method described in Picelli et al. 

2014 (Picelli et al., 2014). Standard Tn5 transposome was assembled as described in Barnett et al. 

2020 (Barnett et al., 2020) with the following oligos: Tn5_1, Tn5_2_ME_comp, and TN5MEREV. 

Tagmented products were pooled together and purified with the Zymo Research DNA Clean & 

Concentrator-5 kit (#D4013). The entire elution was split and amplified via five-10μL PCR 

reactions. We used NEBNext® High-Fidelity 2× PCR Master Mix (#M0541S)—which is not a 

hot-start formulation—to first extend tagments before the initial denaturation step of PCR via the 

following cycling parameters: 72°C 5 min, 98°C 30s; 4 cycles of 98°C 10s, 62°C 30s, 72°C 60s; 

final extension 72°C 2 min; hold at 10°C. Forward and reverse primer sequences, Fwd_atac-

starr_tag and Rev_atac-starr_tag, are provided in Table 4. Amplified products were purified with 

the Zymo Research DNA Clean & Concentrator-5 kit and then analyzed for concentration and size 

distribution with a HSD5000 screentape (Agilent, #5067) on an Agilent 4150 TapeStation system. 
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After amplification, we selected PCR products less than 500bp using SPRISelect beads (Beckman-

Coulter, #B23317) at a 0.6× volume ratio of beads:sample. Selection was verified using a 

HSD5000 screentape.  
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Table 4: Oligo sequences used in ATAC-STARR-seq and qPCR. Red denotes i7 or i5 barcode. 

 

Name Sequence (5' to 3') Description 
Fwd_universal_ST
ARR 

CATCTCCGAGCCCACGAGACTCGAC
GAATTCGGCCGG 

Primer to linearize vector with PCR 
and add homology arms for gibson 
cloning.  

Rev_N504_STARR ACATCTGACGCTGCCGACGATCTACTC
TTGCATGCTCTAGATCAATCTAATTC 

Primer to linearize vector with PCR, add 
a nextera i5 barcode to the linear vector, 
and add homology arms for gibson 
cloning. 

Tn5_1 TCGTCGGCAGCGTCAGATGTGTATAA
GAGACAG 

Used to assemble Tn5 transposome. 
Nextera adapter A. Hybridize with 
TN5MEREV 

Tn5_2_ME_comp GTCTCGTGGGCTCGGAGATGTGTATA
AGAGACAG 

Used to assemble Tn5 transposome. 
Nextera adapter B. Hybridize with 
TN5MEREV 

TN5MEREV /5Phos/CTGTCTCTTATACACATCT Used to assemble Tn5 transposome.  
Nextera adapter complementary 
sequence to Tn5_1 and 
Tn5_2_ME_comp 

Fwd_atac-starr_tag  TCGTCGGCAGCGTCAGATG used to extend and amplify tagments 
prior to cloning 

Rev_atac-starr_tag  GTCTCGTGGGCTCGGAGATG used to extend and amplify tagments 
prior to cloning 

STARR_GSP CTCATCAATGTATCTTATCATGTCTG Gene Specific Primer used in Reverse 
Transcription (from Muerdter et al. 2018) 

Nextera Index N701 CAAGCAGAAGACGGCATACGAGATTC
GCCTTAGTCTCGTGGGCTCGG 

i7 Barcode primer #1 for Nextera library 
preps (8bp barcode) 

Nextera Index N702 CAAGCAGAAGACGGCATACGAGATCT
AGTACGGTCTCGTGGGCTCGG 

i7 Barcode primer #2 for Nextera library 
preps (8bp barcode) 

Nextera Index N504 AATGATACGGCGACCACCGAGATCTA
CACAGAGTAGATCGTCGGCAGCGTC 

i5 Barcode primer #4 for Nextera library 
preps (8bp barcode) 

Nextera Index N505 AATGATACGGCGACCACCGAGATCTA
CACGTAAGGAGTCGTCGGCAGCGTC 

i5 Barcode primer #5 for Nextera library 
preps (8bp barcode) 

Fwd_qPCR_STARR
-ORI-reporter-RNA 

CACTGGGCAGGTGTCC qPCR primer 

R_qPCR_hSTARR_
ORI_reporter_RNA 

GTCTCTTATACACATCTGACGC qPCR primer 

GAPDH_fwd AAATCAAGTGGGGCGATGCT qPCR primer 
GAPDH_rev CAAATGAGCCCCAGCCTTCT qPCR primer 
ACTB_fwd GTTGTCGACGACGAGCG qPCR primer 
ACTB_rev GCACAGAGCCTCGCCTT qPCR primer 
IFIT2_fwd AAGGGTGGACACGGTTAAAG qPCR primer 
IFIT2_rev GGTACTGGTTGTCAGGATTCAG qPCR primer 
ISG15_fwd AGCATCTTCACCGTCAGGTC qPCR primer 
ISG15_rev GCGAACTCATCTTTGCCAGT qPCR primer 
IFNB1_fwd GTTTCGGAGGTAACCTGTAAGT qPCR primer 
IFNB1_rev GAACCTCCTGGCTAATGTCTATC qPCR primer 
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Massively Parallel Cloning  

Four 10μL gibson cloning reactions were performed with NEBuilder® HiFi DNA 

Assembly Master Mix at a vector:insert molar ratio of 1:2. As a negative control, we performed 

one cloning reaction substituting tagments with nuclease-free water. Gibson products were pooled 

and purified via ethanol precipitation as previously described in Sambrook & Russell (Sambrook 

& Russell, 2006); we used glycoblue (150μg/mL) as a co-precipitant. Purified gibson products 

were electroporated into MegaX DH10B T1R Electrocomp™ Cells (Invitrogen, # C640003) using 

a Bio-Rad Gene Pulser. Three electroporations for the ATAC-STARR-seq sample (and 1 for the 

control) were performed with the following parameters: exponential decay pulse type, 2kV, 200Ω, 

25μF, and 0.1cm gap distance. Pre-warmed SOC media (1mL) was added immediately following 

electroporation; the three reactions were pooled and incubated at 37°C for 1 hour. We confirmed 

cloning success by plating a dilution series—using a small aliquot from the ATAC-STARR-seq 

and negative control samples—onto pre-warmed LB agar plates containing 100μg/mL ampicillin 

and visualizing colonies 24 hours later. The remaining ATAC-STARR-seq transformation was 

added directly to a 1L LB liquid culture with 100μg/mL ampicillin and grown at 37°C while 

shaking at 225rpm overnight. The next day, plasmid DNA was harvested from the 1L culture using 

the ZymoPURE II Plasmid Gigaprep (Zymo Research, #D4204). Before prepping, we recorded a 

1.633 optical density.   

 

Electroporation 

GM12878 cells were cultured so that cell density was between 400,000 and 800,000 

cells/mL on day of transfection. Three replicates were performed on separate days. For each 

replicate, a total of 20 electroporation reactions was performed using the Neon™ Transfection 
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System 100 µL Kit (Invitrogen, #MPK10025) and the associated Neon™ Transfection System 

(Invitrogen, #MPK5000). 121 million GM12878 cells were collected, washed with 45mL PBS, 

and resuspended in 2178μL Buffer R. For each reaction, 5 million cells (in 90μL Buffer R) were 

electroporated with 5μg of ATAC-STARR-seq plasmid DNA (in 10μL nuclease-free water) in a 

total volume of 100μL with the following parameters: 1100V, 30ms, and 2 pulses. Electroporated 

cells were dispensed immediately into a pre-warmed T-75 flask containing 50mL of RPMI 1640 

with 20% fetal bovine serum and 2mM GlutaMAX.  

 

Cell Harvest 

24 hours after transfection, the 50mL ATAC-STARR-seq flask was divided into two equal 

volumes; plasmid DNA was extracted from one volume, while reporter RNAs were extracted from 

the other. Plasmid DNA was isolated with the ZymoPURE II Plasmid Midiprep kit (#D4200) and 

eluted in 50μL 10mM Tris-HCL pH 8.0. Prior to lysis, cells were washed with 25mL PBS to 

remove any extracellular plasmid DNA. Reporter RNAs were extracted in a stepwise process. 

First, total RNA was isolated from the second volume of transfected cells using the TRIzol™ 

Reagent and Phasemaker™ Tubes Complete System (Invitrogen™, #A33251). Specifically, 5mL 

TRIzol was added to homogenize the washed and pelleted cells. Next, polyadenylated RNA was 

isolated from total RNA using oligo(dT)25 Magnetic Beads (NEB, #S1419S) at a 1μg Total RNA 

to 10μg beads ratio. We performed this step at 4°C and eluted into 50μL10mM Tris-HCl pH 7.5. 

The extracted poly(A)+ RNA was treated with DNase I (NEB, #M0303S). This reaction was 

cleaned up using the Zymo Research RNA Clean & Concentrator-25 kit (Zymo Research, 

#R1018).  
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First-strand cDNA synthesis 

For each sample, ten 50μL reverse transcription reactions were carried out using 

PrimeScript™ Reverse Transcriptase (Takara, #2680) and a gene specific primer (STARR_GSP) 

as described by Muerdter et al. 2018 (Muerdter et al., 2018). Single-stranded cDNA was treated 

with RNase A at a concentration of 20μg/mL in low salt concentrations and cleaned up with a 

Zymo Research DNA Clean & Concentrator-5 kit.  

 

Illumina Sequencing Library Preparation 

For reisolated plasmid and reporter RNA samples, Illumina-compatible libraries were 

generated using NEBNext® Ultra™ II Q5® Master Mix and a unique combination of the 

following Nextera indexes: N504-N505 (i5) and N701-N702 (i7), see Table 4 for primer 

sequences. DNA samples were amplified for 8 PCR cycles, while RNA was amplified for 12-13 

cycles. In both cases, products were purified with the Zymo Research DNA Clean & Concentrator-

5 kit and analyzed for concentration and size distribution using a HSD5000 screentape. Purified 

products were sequenced on an Illumina NovaSeq, PE150, at a requested read depth of 50 or 75 

million reads, for DNA and RNA samples, respectively, on an Illumina NovaSeq 6000 machine 

through the Vanderbilt Technology for Advanced Genomics (VANTAGE) sequencing core.  

 

Read Processing 

FASTQ files for the two Omni-ATAC-seq replicates from Corces et al. 2017 and all five 

HiDRA replicates from Wang et al. 2018 were downloaded from the NCBI sequence read archive 

(run codes: SRR5427886- SRR5427887 and SRR6050484-SRR6050523, respectively) and were 

processed using the same pipeline as ATAC-STARR-seq (Corces et al., 2017; X. Wang et al., 
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2018). For this publicly available data and our own, FASTQ files were trimmed and analysed for 

quality with Trim Galore! (version 0.6.7) using the --fastqc and --paired parameters. Trimmed 

reads were mapped to hg38 with bowtie2 (version 2.3.5.1) using the following parameters: -X 500 

--sensitive --no-discordant --no-mixed (Langmead & Salzberg, 2012). Mapped reads were filtered 

to remove reads with MAPQ < 30, reads mapping to mitochondrial DNA, and reads mapping to 

ENCODE blacklist regions using a variety of functions from the Samtools software package 

(version 1.13) (H. Li et al., 2009). When desired, duplicates were removed with the 

markDuplicates function from Picard (version 2.26.3) (https://broadinstitute.github.io/picard/). 

Read count was determined using the flagstat function from Samtools. Read counts for each step 

are provided in Supplemental Table S1. We also provide a python script on our GitHub repository 

(Hansen & Hodges, 2022b) that performs the processing steps above. Complexity was estimated 

using the lc-extrap function from the Preseq package (version 2.0.0) (Daley & Smith, 2013) and 

insert size was determined using the CollectInsertSizeMetrics function from Picard. Complexity 

curves were plotted in R with ggplot2. 

 

Accessibility Analysis 

Peak Calling. We called accessibility peaks with the Genrich software package (version 

0.5, https://github.com/jsh58/Genrich), using deduplicated bam files. For ATAC-STARR-seq, we 

used all three replicates of reisolated plasmid samples. For Corces data, we used the two available 

replicates. For both, we set a false-discovery rate of 0.0001 and the -j parameter, which specifies 

ATAC-seq mode.  

Peak Comparisons. Peaks between Corces and ATAC-STARR-seq plasmid DNA were 

compared using the jaccard function from the BEDTools package (version 2.30.0) (Quinlan & 
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Hall, 2010).  FRiP scores (the fraction of reads in peaks) and the genomic fraction represented by 

each peak set was calculated using custom code available on our GitHub repository. Euler plots 

were made in R with the eulerr package (version 6.1.0) (Larsson, 2021) and bar charts were made 

in R with ggplot2.  

Signal Tracks. Accessibility signal tracks were generated with the bamCoverage function 

from the deepTools package (version 3.5.1) (Ramirez et al., 2016) using the following parameters: 

-bs 10 --normalizeUsing CPM -e --centerReads. Signal was plotted using the Sushi package 

(version 1. 30.0) (Phanstiel, Boyle, Araya, & Snyder, 2014) in R.  

 

Active and Silent Region Calling  

We called active and silent regions using the sliding window and fragment groups methods. 

In both cases, except where specified, mapped read files containing duplicates were used for region 

calling. Overlap between the two active region sets identified by each method was determined 

using BEDTools jaccard. Methods for each are listed below.  

Sliding Window. Within ATAC-STARR-defined open chromatin regions, we generated 50 

bp genomic, sliding window bins with a 10bp step size using the makewindows function and -s 10 

-w 50 parameters from the BEDTools software package. Bins smaller than 50bp were removed 

from the analysis and reads were counted per bin for each replicate using the featureCounts 

function from the Subread package with the following parameters: -p -B -O --minOverlap 1 (Liao, 

Smyth, & Shi, 2014). The resulting counts matrix was pre-filtered to remove bins with zero counts 

and then analyzed with the DESeq2 software package (version 1.32.0) in R to identify active and 

silent bins (Love et al., 2014). Bins with an Benjamini–Hochberg (BH) adjusted p-value < 0.1 and 

log2 fold-change (RNA/DNA) > 0 were defined as active, whereas silent had a BH adjusted p-
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value < 0.1 and log2 fold-change (RNA/DNA) < 0. Overlapping and book-ended bins were merged 

with the merge function from BEDTools (using default parameters), resulting in active and silent 

regions. A python script for region calling is available on our GitHub repository. For the sliding 

window strategy, we also performed the analysis with or without duplicates in order to compare 

the results. For the without-duplicate analysis, deduplicated bam files were used at the 

featureCounts step, otherwise all parameters were the same. Active regions were compared using 

the jaccard function from the BEDTools package. Scatter plots and correlation coefficients for 

replicate-to-replicate comparisons were generated by first extracting DESeq-normalized counts, 

using the counts(normalized=TRUE) function, plotted using ggplot2, and compared using the 

cor.test() function in R using both Spearman’s and pearson correlation methods.   

Fragment Groups. We generated fragment groups using custom code based on the method 

described in Wang et al 2018 (X. Wang et al., 2018). Paired-end mapped reads were converted 

from bam to bed format using the bamtobed function from the BEDTools software package with 

option -bedpe and a custom awk function. Overlapping paired-end fragments were grouped using 

the bedmap function from the BEDOPS software package (version 2.4.28) (Neph et al., 2012) 

using the following parameters: --count --echo-map-range --fraction-both 0.75. Importantly, only 

fragment groups made up of 10 or more reads were used for downstream analysis. Reads were 

counted per fragment group for each replicate bam file using the featureCounts function from the 

Subread package (version 2.0.1) with the following parameters: -p -B -O --minOverlap 1. The 

resulting counts matrix was pre-filtered to remove bins with zero counts and then analyzed with 

the DESeq2 software package in R to identify active fragment groups.  Fragment groups with an 

adjusted p-value < 0.1 and log2 fold-change (RNA/DNA) > 0 were defined as active. This method 

resulted in many fragment groups that overlapped each other, so we isolated the most active region 
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within each overlap using a custom function available on our GitHub repository; the resulting, 

non-redundant regions were defined as active peaks.   

 

Replicate Count Effects 

HiDRA replicate count comparison. Raw HiDRA sequencing data was downloaded and 

processed as described in the read processing section above. Using the same bins generated and 

analyzed in the active and silent region calling section, reads from all five HiDRA replicates were 

counted per bin using the featureCounts function from the Subread package and the following 

parameters: -p -B -O --minOverlap 1. Active and regions were called in the same manner as 

described in the active and silent region calling section using either three or five replicates. Region 

counts for each condition were plotted using ggplot2.  

Pseudo-replicate analysis. To create pseudo-replicates, all three replicate bam files of our 

ATAC-STARR data were merged using Samtools merge. Merged reads were split into five 

separate files using the Samtools view command with the -s options set to $rep.2, where .2 

represents 20% of the reads and $rep represents the seed number for random sampling. In this way, 

each pseudo-replicate was sampled with a unique seed number and should, therefore differ from 

the other pseudo-replicates. Using the same bins analyzed in the active and silent region calling 

section, reads from all five pseudo-replicates were counted per bin and active regions were called 

in the same manner as described in the active and silent region calling section using two, three, 

four, or five pseudo-replicates. Region counts for each condition were plotted using ggplot2.  
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Short vs. Long DNA Fragment Analysis 

Reads were split from filtered bam files (read duplicates included) into short and long 

groups using samtools view piped to an awk command that filters paired end fragments 

shorter/equal to 125nts (awk ‘substr($0,1,1)=="@" || ($9<= 125 && $9>=0) || ($9>= -125 && 

$9<=0)’) or longer than 125nts (awk ‘substr($0,1,1)=="@" || ($9> 125) || ($9<-125)’). Read 

counts were performed with samtools flagstat. Active and silent regulatory regions were called in 

the same manner as described above using the “sliding windows” approach. Overlaps were 

calculated using bedtools jaccard (default parameters). Region size was calculated in R and 

annotation was perfomed using the ChIPSeeker package (version 1.28.3) (Yu, Wang, & He, 2015); 

promoters were defined as 2kb upstream and 1kb downstream of a TSS. All plots were made using 

ggplot2 in R.  

 

Orientation Analysis 

Replicate bam files were merged using Samtools merge. Reads were split by orientation 

using Samtools view -f, which selects reads based on their SAM flags. Reads with flags 99 and 

147 were assigned to the 5’-3’ bam file, while reads with flags 83 and 163 were assigned to the 3’-

5’ bam file. The same bins generated and analyzed for region calling were used. Bins designated 

as active and silent were used for the active only and silent only analysis, respectively. The three 

bin sets were further subset into proximal and distal based on distance to the nearest TSS using the 

ChIPSeeker software package; proximal bins were defined as 2kb upstream and 1kb downstream 

of a TSS while distal was everything else. For each subset of bins, reads were counted per bin for 

the orientation-specific bam files using the featureCounts function from the Subread package with 

the following parameters: -p -B -O --minOverlap 1. Scatter plots of counts per million normalize 
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read count were generated with ggplot2 and both Spearman’s and pearson correlation coefficients 

were determined with the cor.test() function in R. Bins with a greater than 5 read count difference 

between insert orientations were considered to be biased; we based this threshold on the all distal 

bins scatterplot with the assumption that distal bins should not display an orientation bias. The 

percentage biased was plotted with ggplot2.  

 

Active and Silent Peak Characterization 

Annotation. Active and silent peak sets were annotated relative to transcription start site 

(TSS) locations and plotted in R using the ChIPSeeker package (version 1.28.3) (Yu et al., 2015); 

promoters were defined as 2kb upstream and 1kb downstream of a TSS. ChromHMM state was 

assigned to each peak using the BEDTools intersect function and -u parameter; the list of hg38 18-

state ChromHMM regions (Roadmap Epigenomics et al., 2015) 

(https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/core

_K27ac/jointModel/final/E116_18_core_K27ac_hg38lift_mnemonics.bed.gz) were intersected 

against the regions sets of interest and the proportion was plotted with ggplot2.  

Heatmaps. The activity bigwig was generated with the deepTools package. Merged bam 

files for RNA and DNA were converted to counts per million normalized bedGraph files using the 

bamCoverage function and the following parameters: -bs 10 --normalizeUsing CPM. The resulting 

RNA bigwig was normalized to the DNA bigwig to generate a signal file of log2(RNA/DNA) ratio 

using the bigwigCompare function and the following parameters: -bs 1 --operation log2 --

pseudocount 1 –skipZeroOverZero. Heatmaps were generated using the deepTools package. 

Activity signal was plotted at distal and proximal regions and region order was ranked by 

maximum mean signal. GM12878 ChIP-seq bigwig files were downloaded from the ENCODE 
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consortium (The ENCODE Project Consortium et al., 2020) and plotted. The matrix was made 

using the computeMatrix function, with the following parameters: -a 2000 -b 2000 --referencePoint 

center -bs 10 --missingDataAsZero. The matrix was plotted using the plotHeatmap function with 

the following key parameters: --sortUsing mean --sortUsingSamples 1.  

Histone Signal Boxplots. We intersected silent and active regions with our accessible peaks 

file using the intersect function from the BEDTools software package to get peaks that contain an 

active region, a silent region, both an active and silent region, or neither. Using the slop function 

from BEDTools we then extended ChrAcc peaks by 1kb on either side and then used the 

bigwigCompare function from the DeepTools package to determine 

H3K4me1/H3K4me3/H3K27ac/H3Kme3 GM12878 ChIP-seq bigwig signal distributions for each 

for the ChrAcc peak types. The same ENCODE files used in the heatmap analysis above, were 

also used here. The plotted values represent the average fold-change over control for each ChrAcc 

peak +/- 1kb. Plots were made with ggplot2.  

Motif enrichment. We performed motif enrichment on the active and silent peak sets using the 

findMotiftsGenome.pl script from the HOMER package (version 4.10, http://homer.ucsd.edu/) 

(Duttke, Chang, Heinz, & Benner, 2019) using the following parameters: -size given -mset 

vertebrates. Plots were made with ggplot2.  

Neutral region calling. Neutral regions were called in the exact same manner as active or 

silent except for one critical difference: only bins with padj > 0.1 were selected. Annotation of 

distance to nearest TSS and ChromHMM were performed as described for the active and silent 

regions above.  

 



74 
 

TF footprinting 

Computational footprinting. Transcription factor footprinting was performed using the 

TOBIAS software package (version 0.12.12) (Bentsen et al., 2020). Deduplicated mapped reads 

were used to generate Tn5-bias corrected bigwig signal files using the ATACorrect function. Using 

the corrected signal files, TF binding was calculated with the ScoreBigWig function and footprints 

for individual TFs were called for all core non-redundant vertebrate JASPAR motifs (Fornes et al., 

2020) using the BINDetect function. Motifs with a footprint were classified as “bound”, while 

motifs without a footprint were classified as “unbound”. The “archetype” for each TF was assigned 

by cross-referencing the motif annotations table from Viestra et al. 2020 (Vierstra et al., 2020).   

Data Visualization. Heatmaps were generated using the deepTools package. GM12878 

ChIP-seq bigwig files were downloaded from ENCODE (www.encodeproject.org) (The ENCODE 

Project Consortium et al., 2020) and plotted with Tn5-corrected signal at all accessible CTCF and 

ETS/1 motifs (defined as the “all” bed file for CTCF or ETS1 from BINDetect) using the 

computeMatrix reference-point function with the following key parameters:  -a 200 -b 200 --

referencePoint center --missingDataAsZero -bs1. The resulting matrix was plotted using the 

plotHeatmap function and the following key parameters: --sortUsing mean --sortUsingSamples 1. 

Aggregate plots were also generated using the deepTools package. Tn5-corrected signal was 

measured at bound and unbound sites for each TF archetype using the computeMatrix reference-

point function with the following key parameters:  -a 75 -b 75 --referencePoint center --

missingDataAsZero -bs 1. The resulting matrix was plotted using the plotProfile function.  
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Integration of Regulatory Activity, Chromatin Accessibility, and TF footprinting  

Signal and regions were visualized at the given locus using the Sushi package in R. To 

determine the presence or absence of a TF footprint, we intersected TF footprints with the active 

and silent regions bed file and reported +/- for presence of the footprint using custom code 

available on our GitHub repository. Footprints were selected based on top hits from the motif 

enrichment analysis above. Active and silent regions without a footprint for the queried TFs were 

removed from the analysis. We clustered the region subsets with the pheatmap package (version 

1.0.12, https://github.com/raivokolde/pheatmap), using the clustering_distance_row/columns = 

“binary” parameter; we cut the tree into 6 clusters for active and silent. We extracted the regions 

from each cluster and then, using the ChIPSeeker package, assigned the nearest neighbor gene. 

Using ClusterProfiler (Yu, Wang, Han, & He, 2012) and ReactomePA (Jassal et al., 2020), we 

then performed reactome pathway enrichment analysis on the nearest neighbor gene sets. We 

applied a 0.05 and 0.1 p-value cut-off for active and silent clusters, respectively. 

 

Determination of Harvest Time with Quantitative PCR 

GM12878 cells were cultured so that cell density was between 400,000 and 800,000 

cells/mL on day of transfection. Three replicates were performed on separate days. For each 

sample, 5 million GM12878 cells were electroporated with 5μg ATAC-STARR-seq plasmid DNA 

using the Neon™ Transfection System 100 µL Kit (Invitrogen, #MPK10025) and the associated 

Neon™ Transfection System (Invitrogen, #MPK5000) in Buffer R with the following parameters: 

1100V, 30ms, and 2 pulses. Electroporated cells were dispensed immediately into pre-warmed T-

12.5 flasks containing 6.25mL of RPMI 1640 with 20% fetal bovine serum and 2mM GlutaMAX.  
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Total RNA was harvested at various time points—3hr, 6hr, 12hr, 24hr, and 36hr—using 

the TRIzol™ Reagent and Phasemaker™ Tubes Complete System (Invitrogen™, #A33251). For 

each sample, 0.75mL TRIzol was added to cell pellets. First-strand cDNA synthesis was performed 

using an Oligo (dT)25 primer and the SuperScript™ IV First-Strand Synthesis System 

(Invitrogen™, #18091050). cDNA was treated with RNase H to remove RNA from RNA-DNA 

dimers. For each replicate, 10μL quantitative PCR reactions were performed in technical triplicate 

using PowerUp™ SYBR™ Green Master Mix (Applied Biosystems™, #A25742) on a 

StepOnePlus™ Real-Time PCR System (Applied Biosystems™, #4376600). For each reaction, 

1μL of the reverse-transcribed product was added and gene-specific primers were supplied at a 

final concentration of 500nM (see Supplemental Table S4 for primer sequences). Fold-change was 

calculated with the ΔΔCt method, using either GAPDH or ACTB as the housekeeping gene for 

reporter RNA or ISG targets, respectively. Plots were made with ggplot2 (version 3.3.5) 

(Wickham, 2016) in R (version 4.1.1). 

 

Plasmid Library Complexity Estimation  

Plasmid inserts were amplified via PCR for 10 cycles from 3.75μg ATAC-STARR-seq 

plasmid library using NEBNext® Ultra™ II Q5® Master Mix and the Nextera indexes, N505 and 

N701, see Supplemental Table S3 for primer sequences. Products were purified with the Zymo 

Research DNA Clean & Concentrator-5 kit (#D4013) and analyzed for concentration and size 

distribution using a HSD5000 screentape. Purified products were sequenced on an Illumina 

NovaSeq, PE150, at a requested read depth of 25 million reads through the Vanderbilt Technology 

for Advanced Genomics (VANTAGE) sequencing core.  
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Transfection efficiency estimation 

Transfection efficiency is a critical ATAC-STARR-seq bottleneck, particularly for difficult 

to transfect cells like GM12878. In parallel with ATAC-STARR-seq, we electroporated GM12878 

cells with a pcDNA3.1-eGFP plasmid and estimated transfection efficiency as the percentage of 

GFP positive cells when measured by flow cytometry 24 hours later. Specifically, GM12878 cells 

were electroporated following same conditions as above with either purified pcDNA3.1-eGFP 

plasmid or nuclease-free water and then prepared for flow cytometry 24 hours later at a 

concentration of 1.25×106 cells/mL in 1xPBS solution containing 1% BSA. We halved both GFP 

and water samples and stained one half of each with propidium iodide (Sigma-Aldrich, #P4864). 

Unstained cells (water/PI-) were used in conjunction with compensation control cells (GFP/PI- or 

water/PI+) to quantify the percentage of living GFP positive cells in the experimental condition 

(GFP/PI+) via flow cytometry; this percentage was the reported transfection efficiency. When 

performed in parallel to ATAC-STARR-seq plasmid library transfection, we consistently achieve 

around 10-20% efficiency (data not shown).  
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CHAPTER III2 

 

HUMAN GENE REGULATORY EVOLUTION IS DRIVEN BY THE DIVERGENCE OF REGULATORY 

ELEMENT FUNCTION IN BOTH CIS AND TRANS 

 

Introduction 

Phenotypic divergence between closely related species is driven primarily by non-coding 

mutations that alter gene expression, rather than protein structure or function (Brawand et al., 2011; 

Britten & Davidson, 1969, 1971; Franchini & Pollard, 2017; King & Wilson, 1975; Reilly & 

Noonan, 2016; Sholtis & Noonan, 2010). Gene expression changes can result from divergence in 

1) cis, where DNA mutations alter local regulatory element activity, or 2) trans, where changes 

alter the abundance or activity of transcriptional regulators (Hill et al., 2020; Signor & Nuzhdin, 

2018). These two modes of change have different mechanisms and scopes of effects on gene 

expression outputs. Each cis change influences a single regulatory element and its immediate local 

targets, while a trans change globally influences many regulatory elements and their gene targets. 

Thus, determining the respective contributions of cis versus trans changes to between-species gene 

expression differences is key to understanding the mechanisms that generate phenotypic 

divergence. Furthermore, because gene regulatory variants in humans are often associated with 

 
2 This chapter is adapted from “Human gene regulatory evolution is driven by the divergence of regulatory element 
function in both cis and trans” published in bioRxiv and has been reproduced with the permission of the publisher and 
my co-authors Sarah Fong, Ph.D., John A. Capra, Ph.D., and Emily Hodges, Ph.D. | Citation: “Hansen, T. J., Fong, 
S., Capra, J. A., & Hodges, E. (2023). Human gene regulatory evolution is driven by the divergence of regulatory 
element function in both cis and trans. bioRxiv, 2023.02.14.528376; doi: https://doi.org/10.1101/2023.02.14.528376” 
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disease phenotypes, understanding these mechanisms will facilitate interpretation of genetic 

variation on disease. 

Cis and trans changes are difficult to study independently because cellular environment 

and genomic sequence are inherently linked within endogenous settings. Previous studies have 

developed different approaches largely focused on gene expression levels to attempt to disentangle 

cis and trans mechanisms of gene regulatory evolution (Agoglia et al., 2021; Barr, 2022; 

Consortium, 2020; Coolon et al., 2014; Emerson et al., 2010; Goncalves et al., 2012; Graze, 

McIntyre, Main, Wayne, & Nuzhdin, 2009; Hill et al., 2020; X. C. Li & Fay, 2017; X. Liu, Li, & 

Pritchard, 2019; McManus et al., 2010; Meiklejohn, Coolon, Hartl, & Wittkopp, 2014; B. P. H. 

Metzger, Wittkopp, & Coolon, 2017; Osada et al., 2017; Shi et al., 2012; Takahasi, Matsuo, & 

Takano-Shimizu-Kouno, 2011; Tirosh et al., 2009; Vosa et al., 2021; Wittkopp et al., 2004, 2008). 

Overall, these studies have yielded a complex picture of the roles of cis and trans changes in 

different settings, but they generally argue that cis changes drive most divergence in gene 

expression between closely related species. 

Gene expression is driven by regulatory element activity; thus, to gain a better 

understanding of the molecular mechanisms underlying gene regulatory evolution, it is necessary 

to investigate cis and trans changes at the regulatory element level. To directly identify cis 

differences, several recent studies have compared the regulatory activity of homologous sequences 

between closely related species within a common cellular environment (Arnold et al., 2014; Klein 

et al., 2018; Uebbing et al., 2021; Weiss et al., 2021). By controlling the cellular environment, the 

regulatory element activity differences identified by these studies must be the result of changes in 

cis (i.e., sequence).  
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In contrast, only a handful of studies have directly tested the contributions of trans changes 

to regulatory element activity between species by comparing regulatory activity of the same 

sequences across species-specific cellular environments (Gordon & Ruvinsky, 2012; Mattioli et 

al., 2020; Whalen et al., 2023). Collectively, these studies conclude that trans changes to 

regulatory element function occur less frequently than cis changes and suggest that cis-variation 

primarily drives divergent regulatory element activity between closely related species (Irene 

Gallego Romero & Lea, 2022). One recent study comparing regulatory element activity in human 

and mouse embryonic stem cells reported ~70% of activity differences were due to changes in cis 

(Mattioli et al., 2020). However, this study considered small (~1,600), pre-selected subsets of 

regulatory elements, and as a result, a comprehensive and unbiased survey of cis and trans 

contributions to global gene regulatory divergence remains a key gap in understanding 

mechanisms of gene regulatory evolution. 

In this study, we develop a comparative ATAC-STARR-seq framework to 

comprehensively dissect cis and trans contributions to regulatory element divergence between 

species. ATAC-STARR-seq captures almost all chromatin accessible DNA fragments and assays 

them for regulatory activity. Because we create a reporter plasmid library separate from 

performing the reporter assay, our approach decouples sequence from cellular environment. Thus, 

sequences from a species of interest can be tested for activity within any chosen cellular 

environment. This allows us to systematically measure the effect of homologous sequence 

differences while controlling the cellular environment and vice versa.  

Our approach expands the scope of analysis from a few thousand regulatory elements to 

~100,000 regulatory elements genome-wide without the need for prior knowledge of regulatory 

potential (Hansen & Hodges, 2022a; X. Wang et al., 2018). Applying ATAC-STARR-seq to 
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human and rhesus macaque lymphoblastoid cell lines (LCLs), we discover that cis and trans 

changes contribute to regulatory elements with divergent activity at similar frequencies, which 

contrasts with previous smaller studies that found cis changes drive most gene regulatory variation 

between species. We show that cis divergent elements are enriched for accelerated substitution 

rates and variants that influence gene expression in human populations, while trans divergent 

elements are enriched for footprints of differentially expressed transcription factors (TFs) that 

affect multiple gene regulatory loci. Furthermore, we find that the activity of most species-specific 

regulatory elements diverged in both cis and trans between human and macaque LCLs. These cis 

& trans regions are characterized by enrichment for specific transposable element sub-families 

harboring distinct TF binding footprints in humans. Finally, we illustrate how knowledge of 

mechanisms of regulatory divergence enriches interpretation of human variation and gene 

regulatory networks. By leveraging new technology to evaluate mechanisms of regulatory element 

divergence genome-wide, our study highlights the interplay between cis and trans changes on gene 

regulation and reveals a central role for trans-regulatory divergence in driving gene regulatory 

evolution.  

 

Results 

Comparative ATAC-STARR-seq produces a multi-layered view of human and macaque 

gene regulatory divergence 

We applied ATAC-STARR-seq (Hansen & Hodges, 2022a) to assay the regulatory 

landscape of LCLs between humans and macaques (International HapMap, 2003; Rangan, Martin, 

Bozelka, Wang, & Gormus, 1986; Tosato & Cohen, 2007) (GM12878 vs. LCL8664; Figure 1A,B). 

ATAC-STARR-seq enables genome-wide measurement of chromatin accessibility, TF occupancy, 
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and regulatory element activity, which is the ability of a DNA sequence to drive transcription 

(Figure 18,19). For each experimental condition, we performed three replicates and obtained both 

Figure 18: Comparative ATAC-STARR-seq produces a multi-layered view of human and macaque 
gene regulatory divergence. (A) A schematic of the ATAC-STARR-seq methodology. Accessible DNA 
fragments are isolated from cells and subsequently cloned into a self-transcribing reporter vector plasmid, 
which are then electroporated into cells and assayed for regulatory activity by harvesting and sequencing 
Reporter RNAs and input plasmid DNA. (B) Our comparative ATAC-STARR-seq strategy to assay human 
and macaque genomes in both cellular environments. ATAC-STARR-seq plasmid libraries were 
independently generated for GM12878 and LCL8664 cell lines and then assayed separately in either cellular 
context. Our comparative approach provides measures in chromatin accessibility and transcription factor 
(TF) footprinting for both genomes as well as regulatory activity for the four experimental conditions: 
human DNA in human cells (HH), human DNA in macaque cells (HM), macaque DNA in human cells 
(MH) and macaque DNA in macaque cells (MM). (C) Euler plot representing the number of species-
specific and shared accessibility peaks identified from ATAC-STARR-seq data. (D) Distribution of 
genomic annotations for species-specific and shared accessibility peaks based on the distance to nearest 
transcription start site. (E) Select genomic loci at hg38 coordinates representing conserved or differentially 
active regions of the two genomes. Tracks represent human and rhesus macaque accessibility, TF footprints 
for SPI1 and NFKB1, and regulatory activity measures for HH, HM, MH, MM. 
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reporter RNA and successfully transfected plasmid DNA samples for each replicate. In all 

conditions, DNA input libraries were highly complex with estimated sizes ranging between 31-54 

Figure 19: Differential accessibility analysis, TF footprinting, and ATAC-STARR-seq quality 
control. (A) Estimated sequence library complexities from Picard for each replicate of each condition. This 
represents the total number of non-redundant sequences contained within the library. (B) Pearson 
correlation plots between replicates for both RNA and DNA samples for each condition. (C) 5 
representative examples of TF footprinting in human and macaque LCLs from ATAC-STARR-seq data. A 
total of 746 JASPAR motifs were analyzed to identify bound (black line) and unbound (grey line) motifs 
classified by Tn5 cut-count distributions at the motifs. Bound motifs are also called footprints. (D-E) TF 
motif enrichment analysis results for either (D) human-specific or (E) macaque-specific accessible regions. 
(F-G) Reactome pathway enrichment analysis of nearest neighbor genes for either (F) human-specific or 
(G) macaque-specific accessible regions. Only the top 8 terms are displayed. 
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million DNA sequences (Figure 19A). Both reporter RNA and plasmid DNA sequencing data were 

reproducible across the three replicates (Figure 19B; Pearson r2: 0.97-0.99).  

We first determined accessibility peaks using the sequence reads obtained from the input 

DNA libraries, as previously described.(Hansen & Hodges, 2022a) Previous studies have 

investigated regions of differential chromatin accessibility in primate LCLs and other 

tissues,(Edsall et al., 2019; Garcia-Perez et al., 2021; Shibata et al., 2012; Yao et al., 2022) and 

consistent with these results, most chromatin accessibility peaks identified between the human 

and macaque genomes (59,144, 67%) is species-specific, while 29,531 (33%) peaks had shared 

accessibility between species (Figure 18C). As expected, we find that divergent accessibility 

peaks are distally located and enriched for cell-type relevant functions (Figure 18D, 19C-G).  

Pinpointing the mechanisms underlying divergent activity requires that regulatory element DNA 

be captured from and tested in both species. Therefore, we analyzed shared accessible chromatin 

peaks so that both the human and macaque homologs were assayed. We quantified regulatory 

activity in four conditions: human DNA in human cells (HH), human DNA in macaque cells (HM), 

macaque DNA in human cells (MH), and macaque DNA in macaque cells (MM) (Figure 18B). By 

comparing activity levels of orthologous sequences in these four settings, we can dissect whether 

cis changes, trans changes, or both have occurred in every single element tested. Altogether, this 

produces an integrated, high-resolution quantification of accessibility, TF occupancy, and 

regulatory activity at both conserved and divergent regulatory elements between human and 

macaque LCLs (Figure 18E). 

Unlike in differential RNA expression analysis, it was necessary to both identify regions 

of interest and estimate their activity prior to any condition-specific comparison. To do this, we 

divided the 29,531 shared accessible peaks into sliding bins and retained bins with 1:1 orthology 
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between human and macaque. We called activity for each bin using replicates to determine p-

values for activity in each condition and collapsed overlapping bins with consistent activity. This 

yielded a set of robust active regions for each condition (Figure 20A,B, Methods). Next, we 

directly compared active regions between the four conditions. We used a rank-based comparison 

scheme to account for power differences that would affect significance thresholds, assuming that 

each condition has similar numbers of active regions within shared accessible chromatin. We 

compared results at several rank thresholds corresponding to different false discovery rate (FDR) 

thresholds and we observed similar patterns in the divergent activity calls between conditions at 

all thresholds considered (Figure 20C,D). Thus, we focus in the main text on a rank threshold of 

10,000 active regions per condition corresponding to an FDR range of 0.026-0.11. The condition-

specific regions were similarly distributed across the genome, with marginal differences in 

genomic feature content (Figure 21A). 
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Figure 20: Support of differential activity calls. (A) A schematic of the activity calling approach. Exact 
bin counts are provided to show how many bins were lost due to filtering steps. (B) Comparison of ATAC-
STARR-seq activity values for each replicate of each condition for both all bins called active and for a 
random subsample of inactive bins. (C) Lollipop chart representing the Benjamini-Hochberg adjusted p-
values applied to obtain the various number of regions for each condition. (D) The number of regions 
classified into each region set based on the number of active regions called per condition. (E) Observed vs. 
expected analysis of overlaps between the region sets compared in Figure 2B. Red line represents the 
observed, while blue density plot represents the expected distribution of overlaps for 1000 random shuffles 
within shared accessible chromatin.  
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Figure 21: Cis and trans gene regulatory divergence occur at similar frequencies. (A) Distribution of 
genomic annotations for the ~10,000 active regions called in each condition based on the distance to nearest 
transcription start site. (B) Comparison between the human and macaque native states to reveal conserved 
and species-specific active regions. (C) The percentage of active regions with conserved and divergent 
activity. (D) Cartoon depicting the four conditions tested and how they are compared to identify cis and 
trans divergent regions. (E) Human-specific cis divergent regions determined by comparing human-specific 
active regions with the MH condition. Regions without MH activity were called cis divergent regions. (F) 
Macaque-specific cis divergent regions determined by comparing human-specific active regions with the 
HM condition. (G) Human-specific trans divergent regions determined by comparing human-specific 
active regions with the HM condition. (H) Macaque-specific trans divergent regions determined by 
comparing human-specific active regions with the HM condition. The heatmaps display ATAC-STARR-
seq activity values for the specified region sets and experimental conditions. 
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Cis and trans gene regulatory divergence occur at similar frequencies 

We first tested the conservation of regulatory activity between “native states” by 

comparing human DNA in human cells (HH) and macaque DNA in macaque cells (MM) (Figure 

2B). Of the top ~10,000 regions considered, 3,034 (18%) regions have conserved activity, 6,922 

(41%) regions were active only in the HH state and 6,941 (41%) were active only in the MM state 

(Figure 21B,C). The overlap between HH and MM active regions was significantly greater than 

expected (Figure 20E; p < 2.2e-16), and the divergent activity calls are supported by clear 

differences in ATAC-STARR-seq regulatory activity signal between HH and MM (Figure 21B). 

This indicates that many active regulatory sequences with shared accessibility have divergent 

activity, challenging the widely held assumption that conserved chromatin accessibility signifies 

conserved regulatory activity. 

To determine the contribution of cis and trans changes to the differentially active 

regulatory regions, we compared their native activity to the corresponding non-native contexts—

i.e., human DNA in the rhesus cellular environment (HM) and rhesus DNA in the human cellular 

environment (MH) (Figure 21D). We define cis changes as cases when sequence orthologs are 

tested in the same cellular environment but result in activity differences, implying that DNA 

variation contributes to regulatory activity differences. Conversely, we define trans changes as 

cases when a single sequence tested in different cellular environments results in activity 

differences, suggesting cellular environment changes contribute to the activity difference. 

As expected, cis changes contributed to a large proportion of human-specific active regions (83%; 

5,745). For these regulatory elements, the human DNA sequence was active in the human cellular 

environment, but the macaque sequence was inactive in both the macaque and human cells (Figure 
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21E). Likewise, 73% of macaque-specific active regions (5,034) diverged due to changes in cis 

(Figure 21F).  

Surprisingly, similar proportions of human-specific active regions (79%; 5,443) were 

differentially active due to changes in trans, i.e., their DNA sequences were not active when 

assayed in the macaque cellular environment (Figure 21G). Likewise, 74% of macaque-specific 

active regions (5,165) were differentially active due to trans changes (Figure 21H). This was 

unexpected based on findings from previous smaller-scale studies that cis changes contribute to a 

greater number of differentially active regions than trans changes.(Gordon & Ruvinsky, 2012; 

Mattioli et al., 2020; Whalen et al., 2023) 

Collectively, these data demonstrate that trans changes to regulatory element activity occur 

as frequently as cis changes between human and macaque LCLs, indicating that trans changes in 

cellular environments have widespread impact on species-specific gene regulatory activity. These 

classifications are supported by clear qualitative differences in ATAC-STARR-seq regulatory 

activity signal between conditions (Figure 21E-H). We also observe equivalent proportions of cis 

and trans differences in activity when we vary our threshold for calling activity, indicating the 

relative abundance of cis and trans divergence is not sensitive to the threshold used (Figure 

20C,D).  

 

Most species-specific regulatory differences are driven by changes in both cis and trans 

Because cis changes and trans changes each contribute to the differential activity of many 

divergent active regulatory regions, we quantified how often they occur together in the same DNA 

regulatory element. Unexpectedly, we found that 70% of the human specific active regions (4,631) 

and 64% of the macaque specific active regions (3,994) displayed both cis and trans divergence 

(Figure 22A-D). Accordingly, we classified these regulatory regions as cis & trans, and regions 
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only divergent in cis or trans as cis only and trans only, respectively. With these definitions, the 

cis & trans class accounts for 67.5% of all divergent active regions (human and macaque 

combined), whereas cis only and trans only represent about 17% and 15.5%, respectively. Thus, 

the regions with divergent regulatory activity between humans and macaques predominantly 

exhibit functional changes in both sequence and cellular environment, suggesting that cis and trans 

mechanisms jointly contributed to the evolution of individual gene regulatory elements.  
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Figure 22: Most species-specific regulatory differences are driven by changes in both cis and trans. 
(A,B) Comparison of ATAC-STARR-seq activity values across all conditions for (A) human-specific and 
(B) macaque-specific cis and trans divergent regions. Cis only, trans only, and cis & trans regions display 
activity signals consistent with their calls. (C,D) Euler plots of the cis only, trans only, and cis & trans 
classifications for (C) human-specific and (D) macaque-specific active regions. (E) Distribution of genomic 
annotations for human-specific cis only, trans only, cis & trans, and conserved active regions. (F) Profile 
plots of ENCODE GM12878 ChIP-seq signal for H3K27ac, H3K4me1, and H3K4me3 histone 
modifications for the human-specific region classes. (G) Density plot of the distances between region center 
and accessible chromatin (ChrAcc) peak summits for human-specific cis only, trans only, cis & trans, and 
conserved active regions. The +1 and -1 histones are estimated with purple dashed lines by the ENCODE 
GM12878 H3K27ac signal summits and the conserved portion of the ChrAcc peaks is estimated with a 
grey box by the 17-way PhyloP score, see Figure 23C,D. (H) Clustered heatmap of TF motif enrichments 
for the combined or species separated cis only, trans only, cis & trans regions. Values are the z-score 
distributions of p-values, normalized across rows. Only the top 15 motifs for each region set are plotted. 



92 
 

  

Figure 23: Additional functional characteristics of cis only, trans only, cis & trans, and conserved 
active region sets. (A) Gene ontology (GO) enrichments for the putative target genes of conserved active, 
cis only, trans only, and cis & trans regions. Only the top 10 terms are shown for each. (B) Heatmaps of 
ENCODE GM12878 ChIP-seq signal for H3K27ac, H3K4me1, and H3K4me3 histone modifications for 
each human-specific region class. This is summarized by the profile plots in Figure 3F. (C) H3K27ac and 
(D) PhyloP signal distributions from accessible chromatin peak centers to define the +1/-1 nucleosomes 
and conserved region shown in Figure 22G.   
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Different mechanisms of regulatory divergence exhibit different TF motifs and locations 

within nucleosome-free regions  

Given the prevalence of these distinct modes of regulatory divergence, we investigated the 

genomic context and functional annotations of the divergent region classes (cis only, trans only, 

cis & trans, and conserved active). Functional genomic data for the human GM12878 cell line is 

readily available, so we focused on the human-specific active regions unless otherwise specified. 

While all three divergent classes consisted of more promoter-distal regions than the conserved 

active class, a substantially higher proportion of trans only regions overlapped promoter-distal 

annotations than either cis only or cis & trans regions (Figure 22E), consistent with recent results 

on trans changes between human and mouse.(Mattioli et al., 2020) Gene ontology annotations of 

genes near each region class revealed that all three cis/trans region classes were enriched for genes 

involved in cell-type specific pathways such as immune effector process and regulation of immune 

response. However, several terms distinguished the three divergent region classes, such as type I 

interferon signaling for the trans only regions and chromatin silencing for the cis only regions 

(Figure 23A). Conserved active regions were enriched for nearby genes involved in housekeeping 

pathways, such as RNA processing and translation. Together, this indicates that genes involved in 

different functional pathways may be prone to different kinds of regulatory divergence.  

Human-specific cis only, trans only, and cis & trans regions also displayed different 

patterns of histone modifications, including histone H3 lysine 27 acetylation (H3K27ac), histone 

H3 lysine 4 monomethylation (H3K4me1), and histone H3 lysine 4 trimethylation (H3K4me3) 

(Figure 22F, 23B). Trans only regions showed greater H3K4me1 signal and less H3K4me3 signal 

than the other classes, and this is likely explained by the human-specific region class annotations, 

since the trans only class is more enriched for promoter-distal annotations than the cis only or cis 
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& trans classes (Figure 22E). We also observed a bimodal distribution of histone signal for trans 

only regions but not the others. This suggests that trans only elements are generally located within 

the center of the nucleosome free region (NFR), while the others are more common on the NFR 

periphery. To test this, we plotted the distance between region centers and the NFR center—the 

summit of the accessible chromatin peak (Figure 22G). We used GM12878 H3K27ac ChIP-seq 

signal to map the -1 and +1 nucleosomes (Figure 23C) and phyloP signal to identify the most 

conserved portion of the NFR (Figure 23D). As predicted, trans only regions are more often at the 

center of the NFR, while the cis only and cis & trans regions are more frequently located at the 

edges of the NFR. This means that trans only changes are more likely to occur at the center of 

NFRs, where there is stronger evolutionary constraint. Thus, evolutionary constraint at NFR 

centers may prevent cis changes, so trans changes could be required to drive differential activity 

of these elements.  

TF binding differences likely drive activity differences between cis, trans, and cis & trans 

region classes. TF motif enrichment analysis revealed distinct TF motifs that distinguish regulatory 

regions both by the mechanism of gene regulatory divergence and species-specificity (Figure 3H). 

For example, human-specific trans only regions are enriched for IRF family TFs while macaque-

specific trans only regions are enriched for the ATF4 TF, among others. Furthermore, IRF TFs are 

not enriched in human-specific cis & trans regions, suggesting the TFs that drive trans divergence 

for trans only regions are different from those that drive the cis & trans regions.   
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Key immune-related transcriptional regulators are differentially expressed between human 

and macaque LCLs 

Trans regulatory divergence results from differences in the cellular environment, including 

differences in gene expression. To explore the mechanisms underlying the striking number of trans 

divergent regions (10,611 trans only and cis & trans combined), we performed RNA sequencing 

(RNA-seq) on both GM12878 and LCL8664 cell lines. The human and macaque LCL expression 

profiles cluster together and away from other human and macaque tissues (Figure 24A). Both 

LCLs also cluster closely with expression profiles from bulk, naïve, and memory B cells to the 

exclusion of other hematopoietic lineages (Figure 24B), suggesting they are transcriptionally 

similar to one another and to primary B cells.(Calderon et al., 2019) We also confirmed that 

waiting 24 hours after transfection to collect data resulted in minimal, if any, detection of plasmid-

induced interferon-stimulated gene expression (Figure 24C-E). Thus, the human and macaque 

LCLs closely reflect primary B cells, and their transcriptional differences are likely the result of 

regulatory divergence between human and macaque. 

We identified 2,975 differentially expressed genes with 1,505 upregulated in human and 

1,470 upregulated in macaque (Figure 25A; human-specific log2(fold-change) > 2; macaque-

specific log2(fold-change) < -2; both padj < 0.001). The human-specific genes were enriched for 

immune pathways, like interferon signaling and interleukin-10 signaling; while macaque-specific 

genes were enriched for extracellular matrix pathways, like collagen formation (Figure 4B). This 

indicates that, although these cell lines have broadly similar expression profiles (Spearman’s ρ = 

0.85; Figure 24F), they display specific expression differences that could drive the trans-regulatory 

environment effects we observe. Moreover, these gene expression differences are likely due to 
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species differences, and not cell line immortalization (Figure 24B) or plasmid-induced interferon-

stimulated gene expression (Figure 24C-E) artifacts. 

 

Trans only regions are bound by differentially expressed TFs 

The differential enrichment of IRF family motifs in human-specific trans only regions 

(Figure 22H) as well as the enrichment of interferon signaling genes in human-specific 

differentially expressed genes (Figure 25B) suggests a potential link between these differentially 

expressed TFs and the observed trans-divergent regions. To explore this hypothesis, we used TF 

footprints determined from ATAC-STARR-seq (Figure 19C) to test for TF footprint enrichment 

in the human-specific trans only and macaque-specific trans only regions. Indeed, we identified 

many TFs that are both significantly differentially expressed and enriched for binding in species-

specific trans only regions; we define these TFs as “putative trans regulators” (Figure 25C, 24G). 

These putative trans regulators include several members of the IRF family (IRF4/7/8) that are 

markedly upregulated in human compared to macaque cells and are enriched for footprints in 

human-specific trans only regions (Figure 25C,D). Moreover, 18.7% of human-specific trans only 

regions were found to contain a TF footprint for one of these IRF family members that are 

canonically involved in innate immune responses (Fitzgerald & Kagan, 2020) (Figure 4D).  

In total, the putative trans regulators we identified bind 37.1% of human specific trans only 

regions and 11.5% of macaque specific trans only regions. This highlights how changes to the 

expression of a few TFs can affect activity at a substantial number of the divergent DNA regulatory 

elements in a cell (Figure 25D,24H). The remaining trans only regions may be explained by TFs 

that did not meet our putative trans regulator criteria, which included stringent significance 

thresholds and a 1:1 ortholog requirement in the comparative RNA-seq workflow. It is also likely 
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that other mechanisms contribute to differences in the trans-regulatory environment, such as 

previously described species-specific differences in post-transcriptional and post-translational 

regulation of TFs (Lin et al., 2010; Mittleman et al., 2021). Notwithstanding, this data argues that 

the differential expression of only a handful of transcription factors drives a substantial amount of 

the trans-regulatory divergence observed. 
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Figure 24: GM12878 and LCL8664 cells are transcriptionally similar to each other and primary B 
cells. (A) Principal component analysis (PCA) comparing our data with publicly available human and 
macaque RNA-seq datasets for heart, liver, lung, kidney and LCL tissue types. (B) PCA of our data with 
publicly available human primary immune cell RNA-seq datasets. (C) Volcano plot of differential 
expression analysis between GM12878 RNA-seq datasets with and without transfection of plasmid DNA 
24hrs before collection; without plasmid DNA samples are from ENCODE. Point color represents genes 
more expressed in the with-plasmid condition (blue) or without-plasmid condition (red). Thresholds were 
log2 fold-change > | 2 | and padj < 0.001. (D-E) Reactome pathway enrichment of differentially expressed 
gene sets, either (D) without DNA enriched or (E) with DNA enriched. (F) Correlation plot of log10 

transformed transcript per million (TPM) values for orthologous genes between GM12878 and LCL8664 
cell lines. A pseudo count of 1 was added to TPM before log transforming. Correlation values were 
calculated on the untransformed TPM counts. (G-H) Macaque versions of Figure 25C-D. (G) Enrichment 
of macaque-specific trans only regions for TF footprints stratified by the differential expression of the TF. 
Text is only shown for the most differentially expressed and enriched TFs. (H) Percentage of macaque-
specific trans only regions that overlap a given footprint. TFs within the same motif archetype were merged 
before determining the number of overlaps. 
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Figure 25: Trans only regions are bound by differentially expressed TFs. (A) Volcano plot of 
differential expression analysis between GM12878 (human) and LCL8664 (macaque) cell lines. Point color 
represents genes upregulated in human (blue) or macaque (orange). Thresholds were log2 fold-change > | 2 
| and padj < 0.001. (B) Enrichments of differentially expressed gene sets for Reactome pathways. Only the 
top 5 terms in each were plotted. (C) Enrichment of human-specific trans only regions for TF footprints 
stratified by the differential expression of the TF. Text is only shown for the most differentially expressed 
and enriched TFs. See Figure 24G for macaque trans only results. (D) Percentage of human-specific trans 
only regions that overlap a given footprint. TFs within the same motif archetype were merged before 
determining the number of overlaps. See Figure S4H for macaque trans only results. 



100 
 

Trans only regions are more conserved than cis only regions 

Because trans changes result from differences in the cellular environment, while cis 

changes result from functional sequence differences, we hypothesized that DNA sequences in 

trans only regions would be more conserved than sequences in cis only regions. Supporting this 

hypothesis, both trans only and cis only regions are enriched for primate PhastCons conserved 

elements compared to expected background distributions (p = 1.4e-11 and 9.1e-4, respectively), 

but trans only regions are more enriched than cis only regions (Figure 26A; trans only odds ratio 

(OR) = 1.5; cis only OR = 1.2). In contrast, cis & trans regions are significantly depleted of 

conserved elements (Figure 26A; OR = 0.67, p = 1.1e-30). As expected, regulatory sequences with 

conserved activity between human and macaque had the strongest enrichment for conserved 

elements (Figure 27A; p = 8.1e-157, OR = 3.1).  

Accelerated substitution rates compared to neutral expectations can indicate shifts in 

sequence constraint, possibly resulting from positive selection (Capra, Erwin, McKinsey, 

Rubenstein, & Pollard, 2013; Hubisz & Pollard, 2014; Pollard, Hubisz, Rosenbloom, & Siepel, 

2010). Both cis only and trans only elements are significantly enriched for elements with higher-

than-expected substitution rates (Figure 26B; 27B; cis only p=4.9e-3; trans only p=4.7e-2), but as 

expected from their sequence-based mechanism of divergence, cis only regions are more enriched 

than trans only regions (cis only OR=1.4; trans only OR=1.3). Cis & trans elements showed no 

significant difference in substitution rates compared to background expectation (p=0.3). Overall 

sequence identity was similar across cis/trans groups, ruling out the possibility of systematic 

differences in the substitution rates of these regions underlying activity differences (Figure 27C).  
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Figure 26: Cis only, trans only, and cis & trans regions have different degrees of conservation, 
acceleration, and transposable element enrichment. (A-C) Enrichments of cis only, trans only, and cis 
& trans regions for (A) 30-way PhastCons elements, (B) human accelerated elements (defined as human-
rhesus PhyloP < -1), and (C) sequences with multiple ancestral origins compared to an expected 
background. (D) Enrichment of divergent regions for transposable element (TE) overlap compared to other 
active regions. For all bar charts, the Fisher’s Exact Test odds ratio (OR) is plotted with 95% confidence 
intervals, which were estimated from 10,000 bootstraps. Windows were log2-scaled. Asterisks indicate a 
5% FDR p-value < 0.05. (E) Enrichments of cis only, trans only, and cis & trans regions for subfamilies of 
TEs compared to an expected background. (F) The AluSx consensus sequence with TF binding sites for the 
TFs with enriched footprints. (G) Jaspar motifs of the relevant TFs. (H) Enrichments of SINE/Alu 
overlapping cis & trans regions for human TF footprints compared to an expected background. For the 
scatter plots, text is only shown for the most enriched subfamilies/TFs and point size represents the number 
of overlaps observed. 
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Figure 27: Additional evolutionary analysis of cis only, trans only, cis & trans and conserved active 
regions. (A) Enrichments of conserved active regions for 30-way PhastCons elements. For the bar chart, 
the Fisher’s Exact Test odds ratio is plotted with 95% confidence intervals, which were estimated from 
10,000 bootstraps. Windows were log2-scaled. Asterisks indicate p-value < 0.05. (B) Enrichments of cis 
only, trans only, cis & trans, and conserved active regions for human accelerated elements for multiple 
human-rhesus PhyloP thresholds. (C) Boxplots of the percent sequence identity for each region. (D) 
Fraction of each region set assigned to a given sequence age. (E) The observed vs. expected values of each 
region set for a given sequence age. (F) Enrichments of cis only, trans only, and cis & trans regions for all 
transposable elements (TEs) compared to an expected background. The Fisher’s Exact Test odds ratio (OR) 
is plotted with 95% confidence intervals, which were estimated from 10,000 bootstraps. Windows were 
log2-scaled. (G) Enrichments of conserved active regions for subfamilies of TEs compared to an expected 
background. (H-I) Enrichments of (H) human-specific cis & trans regions and (I) macaque-specific cis & 
trans regions for subfamilies of TEs compared to an expected background. 
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Next, we investigated evolutionary origins of the regions in the divergent classes (Fong & 

Capra, 2021, 2022). All region sets are enriched for ancient sequences—from the placental 

common ancestor and older—so it is unlikely that differences in conservation are due to 

differences in sequence age (Figure 27D-E). Each region set is enriched for sequences with 

multiple ancestral origins, and cis & trans regions are the most significantly enriched (Figure 26C; 

conserved active p =3.6e-27; cis only p =7.9e-43; trans only p = 1.3e-56; cis & trans p = 4.6e-

233).  

Altogether, cis only and trans only regions both exhibit extremes of sequence conservation, 

divergence, and origin, as expected for sets of functional sequences in which some are 

experiencing negative selection and others positive selection. However, the sequences with cis 

only changes have more evidence of high substitution rates while trans only sequences are more 

enriched for conservation. This is consistent with their respective modes of divergence—sequence 

vs. cell environment. The fact that elements with cis & trans changes show substantially less 

evidence for selection suggests that they may arise from alternative mechanisms and have different 

functional roles.  

 

Cis & trans regions are enriched for SINE/Alu transposable elements 

Transposable element-derived sequence (TEDS) insertions are a source of raw sequence 

that often develops novel, species-specific regulatory functions (Chuong, Elde, & Feschotte, 2016; 

Chuong, Rumi, Soares, & Baker, 2013; Elbarbary, Lucas, & Maquat, 2016; Lynch et al., 2015; 

Trizzino et al., 2017). Thus, we investigated whether TEDS contribute to the divergent regulatory 

region classes, specifically in the less-conserved cis & trans elements. Overall, each class is 

depleted of TEDSs compared with genome-wide expectation (Figure 27F), consistent with 
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previous findings that all gene regulatory sequences are depleted of TEDS (Fong & Capra, 2021; 

Simonti, Pavlicev, & Capra, 2017). However, comparing within the regulatory element classes, 

cis & trans regions were enriched for TEDS compared to the other categories (Figure 5D; cis & 

trans OR = 1.14, p =9.7e-4; trans only OR = 0.86, p= 0.02; cis only OR = 0.91, p=0.08) suggesting 

that cis & trans elements more frequently originate from TEDS. Several TEDS families were 

uniquely enriched in cis & trans regions, most notably SINE/Alu and MIR derived sequences 

(Figure 26E, 27G-I). Additionally, SINE/Alu elements were more enriched in human-specific cis 

& trans regions compared to macaque-specific cis & trans regions (Figure 27H-I), suggesting that 

SINE/Alu derived sequence activity is more favorable in the human cellular environment.  

SINE/Alu elements are a common source for new DNA regulatory elements (Su, Han, 

Boyd-Kirkup, Yu, & Han, 2014; Sundaram et al., 2014; Sundaram & Wysocka, 2020). These 

sequences might have provided proto-enhancers in the last common ancestor of humans and 

rhesus macaques, developing over time into species-specific regulatory elements that experienced 

both cis & trans changes to obtain activity. The consensus AluSx sequence contains several 

sequences with high similarity to known TF binding sites (Figure 26F,G). Furthermore, TF 

footprinting analysis of cis & trans SINE/Alu elements (Figure 26H) provides strong evidence for 

the presence of TF binding, including the zinc-finger TFs, ZNF135, ZNF460, ZNF384, and PITX2, 

FOXD2, OTX2, RARG, and MEF2A. This demonstrates cis & trans regions are enriched for 

sequences derived from SINE/Alu elements and identifies several TFs that likely contributed to 

species-specific regulatory divergence. 
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Cis only regions are enriched for human variants associated with gene expression 

Next, we explored the effects of genetic variation within human populations in the different 

regulatory divergence classes. First, we quantified enrichment for expression quantitative trait loci 

(eQTL) in regions with divergent activity, hypothesizing that variation in cis only and cis & trans 

regions would be more likely to associate with variable gene expression within humans.  

Cis only elements were significantly enriched for cis-eQTLs in EBV-transformed B cells 

from the GTEx consortium, while the other classes were not enriched for cis-eQTLs (Figure 28A; 

1.6x fold-change, empirical p-value = 1e-4). Focusing on human-specific active elements, the 

difference between cis only and trans only regions is even more extreme (Figure 28A inset). This 

suggests that regulatory elements that experienced sequence-based evolutionary divergence 

between human and macaques are more likely to harbor variants that modulate gene expression 

among humans, while trans only regions are less likely to tolerate functional variants.  

We also evaluated enrichment for human genome-wide association study (GWAS) variants 

in divergent region classes. We selected immune and inflammatory traits from the UK Biobank 

(UKBB) where heritability had previously been observed in B cell gene regulatory loci (Calderon 

et al., 2019). After removing HLA-overlapping peaks, we observed modest enrichment in all 

region classes for GWAS variants across 17 inflammatory and autoimmune traits with few 

differences between the classes (Figure 29A,B; empirical p-value <0.05).  

We were particularly interested to explore variants associated with viral hepatitis C, because 

humans and chimpanzees, but not macaques or other Old-World Monkeys, are susceptible 

(Sandmann & Ploss, 2013). Human-specific trans only regions are significantly and specifically 

enriched for viral hepatitis C GWAS variants, while macaque-specific regions are not (Figure 

29B). This suggests that trans-regulatory changes contributed to the ape-specific susceptibility to 
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hepatitis C and that human genetic variants in the regions bound by these trans factors modulate 

susceptibility to infection. 

 

A human accelerated cis only element regulates NLRP1 expression and downstream trans 

changes 

Our approach can identify the causes of evolutionary divergence at regulatory elements 

and quantify the resulting phenotypic outcomes at both the molecular and organismal levels. To 

illustrate this, we analyzed a GTEx cis-eQTL (rs1805264) associated with NLRP1, MIS12, SCIMP, 

RABEP1, RPAIN, DERL2 expression variation across multiple tissues (Figure 28B, 29C) 

(Consortium, 2020). This locus overlaps a cis only region on chromosome 17 in the MIS12 

promoter that shows accelerated evolution between human and macaque (99th percentile of human 

acceleration scores; phyloP = -2.89) suggesting the locus experienced positive selection (Figure 

28C,D). To understand how variation in this cis only region evolved to produce human-specific 

regulation, we evaluated differential TF footprinting between the human and rhesus macaque 

homologs. Human substitutions influenced binding site affinities for ZFX, ZNF460, NR2C2, 

EGR1, NRF1, and KLF15 transcription factors, which exclusively bind in human LCLs, as 

evidenced by differential footprinting (Figure 28E). Together, this indicates that human 

substitutions at this element created human-specific TF binding sites and human-specific cis only 

regulatory activity. This human-specific regulatory activity is then modulated by the cis-eQTL. 

Of the genes influenced by genetic variation in this locus, NLRP1 shows the highest human-

specific differential expression between the two LCLs (Figure 28F). NLRP1 is a viral sensor, 

including for SARS-CoV-2 (Planes et al., 2022), and a core component of the pro-inflammatory 

signaling pathway. Thus, we hypothesize that variable NLRP1 expression may have substantial 
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downstream effects on pro-inflammatory signaling that affects the trans-regulatory cellular 

environment (Bauernfried & Hornung, 2022; Bauernfried, Scherr, Pichlmair, Duderstadt, & 

Hornung, 2021; Chavarria-Smith, Mitchell, Ho, Daugherty, & Vance, 2016; Fenini, Karakaya, 

Hennig, Di Filippo, & Beer, 2020). Indeed, the eQTL (rs1805264) is associated with human 

immune traits including higher platelet count and lymphocyte blood counts (Figure 28G). 

Together, this locus provides a key example of how a positively selected cis only region can affect 

expression of a target gene with potential to create substantial trans changes downstream, and, in 

turn, influence human-specific trait variation.  
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Figure 28: A human accelerated cis only element regulates NLRP1 expression. (A) Enrichments of cis 
only, trans only, and cis & trans regions for EBV-transformed B cell eQTLs. The median fold-change 
compared to the expected background is plotted with 95% confidence intervals, which were estimated from 
10,000 bootstraps. The inset in represents EBV-transformed B cell eQTLs enrichments for human-specific 
cis only, trans only, cis & trans regions. (B) Normalized expression scores of NLRP1 for the three possible 
genotypes of rs1805264. (C) PhyloP score distribution for cis only and expected shuffled regions compared 
to the PhyloP score of the chr17: 5,486,721-5,486,861 locus (red dotted line). (D) Genomic locus on Chr17 
with a zoomed-in view of a multi-way sequence alignment for a highly accelerated human-specific cis only 
element. (E) Differential TF footprints between human and macaque coincide with human-accelerated 
substitutions. (F) Differential expression of rs1805462-associated eQTL genes between human and 
macaque LCLs. (G) PheWAS associations for rs1805462 with variation in quantitative blood traits. 
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Figure 29: Cis only, trans only, and cis & trans regions are similarly enriched for genetic variation 
associated with UKBB traits (A) Enrichments of cis only, trans only, and cis & trans regions for 17 UK 
biobank traits compared to an expected background. The median fold-change is plotted with 95% 
confidence intervals, which were estimated from 10,000 bootstraps. (B) Heatmap of cis only, trans only, 
and cis & trans enrichment scores for each of the 17 UK biobank traits. The scores for the human-specific 
and macaque-specific groups are displayed for Viral Hepatitis C. Asterisk represents p-value < 0.05. (C) 
Versions of Figure 6B for all other associated genes. 
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A single substitution may drive differential expression of ETS1 by perturbing RUNX3 

binding in macaques 

We demonstrate that differential expression of a small number of TFs can explain a 

substantial portion of the human-specific trans only regions observed (Figure 25), and that cis only 

regions can be a potent source of gene expression variation (Figure 28). These observations suggest 

that a small number of cis changes may ultimately lead to substantial trans changes if they act on 

genes, like TFs, that alter the cellular environment (Hill et al., 2020; Signor & Nuzhdin, 2018). To 

illustrate the ability of our approach to enable inference of these regulatory cascades, we identified 

a human-specific cis only region at a putative enhancer for ETS1, a trans regulator that is 

substantially more expressed in human LCLs and binds to >13% of human-specific trans only 

regions (Figure 25C,E and Figure 30A-C). The activity of this putative enhancer is supported by 

GM12878 H3K27ac signal and human B cell DNA hypomethylation (Hodges et al., 2011; Moore 

et al., 2020). Furthermore, ETS1 is the closet gene to the DNA regulatory element and is contained 

within the same topologically associated domain (TAD) according to GM12878 Hi-C data (Figure 

30C) (Y. Wang et al., 2018), so ETS1 is the likely target gene. Within this human-specific cis only 

region, we identified a macaque-specific substitution (TC) that disrupts a RUNX3 motif, which 

is corroborated by the presence of a RUNX3 footprint detected in human but not macaque (Figure 

30A). A GM12878 RUNX3 ChIP-seq peak also supports human TF binding at this locus (Moore 

et al., 2020). Furthermore, the functional relevance of this element is supported by two nearby 

SNPs, rs4262739 and rs4245080, which are eQTLs for ETS1 and have been associated with human 

trait variation including lymphocyte percentage (Mountjoy et al., 2021; Vuckovic et al., 2020). 

The ETS1  
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enhancer provides a powerful example of how a nucleotide substitution impacting the function of 

a single regulatory element leads to widespread changes in the activity of hundreds of regulatory 

elements across the genome. Altogether, these examples lead us to a model of how individual cis 

changes can ultimately generate substantial trans-divergent regulatory activity between species 

(Figure 30D).  
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Figure 30: A single substitution may drive differential expression of ETS1 by perturbing RUNX3 
binding in macaques. (A) Genomic locus of a human-specific cis only regions within a putative ETS1 
enhancer. Public tracks for GM12878 H3K27ac and Human B cell DNA methylation corroborate this 
region as a putative enhancer. The first zoomed-in view of the locus shows a RUNX3 footprint present in 
human cells but not macaque cells. Nearby SNPs, rs4262739 and rs4245080, are associated with human 
trait variation. A further zoomed-in view of the footprint with a multi-species sequence alignment 
between human, chimpanzee, and macaque to reveal a macaque-specific substitution that perturbs an 
important nucleotide of the RUNX3 binding motif. (B) ETS1 and RUNX3 transcript per million (TPM) 
values for each replicate in human and macaque cells. (C) Hi-C data browser view of the ETS1 locus in 
GM12878 cells. Vertical dashed line represents the relative location of the putative ETS1 enhancer. (D) 
Model of how cis changes can become trans changes for other loci via TF expression/activity changes. 
First, cis changes alter the DNA sequence of a regulatory element to alter the affinity of TFs to the locus. 
This causes either enhancer activity loss or gain, based on the ancestral activity state of the enhancer. 
Alteration of enhancer activity, in turn, modifies the expression of target genes. If the target gene is a 
transcriptional regulator, the cis change would, therefore, also alter the cellular environment and become 
a trans change for other regulatory regions. (E) Model of how regions divergent in both cis & trans 
jointly drive differential regulatory element activity. 
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Discussion 

Here, we used a comparative ATAC-STARR-seq framework to directly identify 

differentially active DNA regulatory elements between human and rhesus macaque and to 

characterize their mechanisms of divergence—changes in cis, in trans, or in both cis & trans. We 

observe that trans-regulatory divergence is common, despite previous work suggesting that cis 

changes drive most gene regulatory divergence between species. Moreover, we find that most 

divergent elements have both cis and trans differences in activity, indicating that divergent gene 

regulatory elements are often shaped by changes in both the homologous DNA sequence and the 

cellular environment.  

 

Cis only, trans only, and cis & trans region classes display unique characteristics 

We identify three classes of regulatory elements based on their mode of divergence: cis & 

trans, cis only, and trans only. We discovered unique functional and evolutionary characteristics 

that define these region classes. In summary, cis only regions are more enriched for high 

substitution rates than trans only regions, while trans only regions are more enriched for 

evolutionarily conserved sequences, which is consistent with the fact that mutations within the 

regulatory regions are necessary for divergent activity in cis, but not in trans. In contrast, cis & 

trans regions show less sequence constraint, but are enriched for complex genomic rearrangements 

and transposable element derived sequences (SINE/Alu elements, in particular) compared to cis 

only and trans only regions, indicating that many arose from mutations to transposable element 

sequences that were present in the last common ancestor of humans and rhesus macaques. We also 

identified distinct TF motif enrichments for each region class, which highlights how differential 

activity, and its mode of divergence depends on unique TFs. Altogether our characterization of the 
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divergent region classes provides insight into the relationship between mode of regulatory 

divergence and the gene regulatory networks they act on, which remains a key gap in the field 

(Hill et al., 2020). 

 

Trans-regulatory divergence is more extensive than previously recognized 

In this study, we discovered more trans-regulatory divergence than previously reported 

(Irene Gallego Romero & Lea, 2022; Gordon & Ruvinsky, 2012; Hill et al., 2020; Mattioli et al., 

2020; Signor & Nuzhdin, 2018; Whalen et al., 2023). Several differences in study design, 

experimental system, and scale may explain this apparent discordance. First previous work largely 

focused on gene expression rather than regulatory element activity as the functional output. 

Second, many previous studies have not been able to directly test for trans changes, and thus 

assumed that elements without cis changes were driven by trans changes. Thus, they would miss 

a large number of elements with evidence of both types of change. Third, the two recent studies 

that did directly evaluate cis and trans changes on regulatory element activity focused on more 

limited, pre-selected sets of regions (Mattioli et al., 2020; Whalen et al., 2023). Whalen et al. 

reported that nearly all of 159 tested human accelerated regions (HARs) diverged in cis. This is 

concordant with our findings that many cis divergent elements have accelerated substitution rates 

and are more likely to have accelerated substitution rates than other elements. Furthermore, they 

focus on HARs, rare elements with extreme evolutionary pressures that do not represent most 

regulatory loci. Mattioli et al. compared human and mouse regulatory element homologs and 

discovered that more regions were divergent due to changes in cis (n=660) than changes in trans 

(n=293). The difference in the cis:trans ratio may be due to different sampling of the elements 

tested, but the longer evolutionary divergence between human and mouse compared to human and 
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macaque may also contribute. As previously mentioned, cis changes have been proposed to 

increase with evolutionary divergence (Coolon et al., 2014; Hill et al., 2020; B. P. H. Metzger et 

al., 2017), so we would expect to detect more cis changes at further evolutionary distances. More 

work is needed to determine the modes of gene regulatory divergence over both longer and shorter 

evolutionary distances, as well as different cellular contexts.  

 

Putative trans regulators drive a substantial amount of trans-regulatory divergence in our 

system 

To identify potential drivers of the trans regulatory divergence we observe, we defined 

“putative trans regulators” as a TF class that both display expression differences between species 

and bind to trans only regions as determined by TF footprinting. This revealed that a small number 

of key immune regulators, including ETS1, drive a substantial fraction of the human trans 

divergence we observed. This suggests that the differential expression of only a handful of 

transcription factors can drive a substantial amount of the trans-regulatory divergence. 

We further showed that one of the putative trans regulators, ETS1, is likely regulated by a 

human-specific cis only region and discovered a key substitution in macaques that perturbs a 

RUNX3 TF motif. This is evidence of how a single substitution might influence the differential 

activity of a whole network of gene regulatory elements and species-specific immune-related 

traits, like Hepatitis C susceptibility in humans but not rhesus macaques. Indeed, we observed 

that only the human-specific trans only regions were highly enriched for Viral Hepatitis C 

associated variants. Altogether, our data will enable further characterization of putative trans 

regulators and identification of specific loci like the ETS1 regulatory element that may 

contribute to human-specific phenotypes.  
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A model of how cis and trans changes jointly drive divergent regulatory element activity  

Cis & trans divergent regions acquired a change in cis and a change in trans during their 

evolution from the most recent common ancestor (MRCA) between humans and rhesus macaques 

(Figure 30E). We speculate that perturbations in trans are often likely to occur prior to cis. Once 

the relevant trans factors no longer bind, some elements will accumulate enough sequence 

variation to result in cis changes as well. Several lines of evidence from previous reports and our 

study support this hypothesis. For example, cis changes have been proposed to accumulate with 

greater evolutionary divergence whereas trans changes are favored short-term (Coolon et al., 2014; 

Hill et al., 2020; B. P. H. Metzger et al., 2017). This is likely because trans changes can change 

many regulatory region activities at once but may be more deleterious than cis changes (Vande 

Zande et al., 2022). In this way, more significant phenotypic changes may be driven by changes 

to the trans-regulatory environment, but with a long-term fitness cost that can be ameliorated by 

local and precise cis changes to DNA regulatory elements.  

 

Limitations of the Study 

Several limitations of our study must be considered when interpreting our results. First, we 

only directly assay one genotype per species and infer evolutionary divergence from these models. 

While it would be ideal to evaluate additional genotypes for each species (Kelley & Gilad, 2020), 

this approach was necessary for several reasons. First, there are few non-human primate cell lines 

available to assay. Second, the comprehensive design of our comparative ATAC-STARR-seq 

approach is prohibitive for testing and interpreting activity variation across multiple genotypes and 

across multiple cellular environments.   



117 
 

Second, for experimental reasons, we leverage immortalized cell lines, whose cellular 

biology may not completely mirror the biology of primary B cells. The immortalization strategies 

differ for human and rhesus B cells. Specifically, the human B cell line was immortalized using 

Epstein-Barr Virus (EBV) (International HapMap, 2003; Tosato & Cohen, 2007); whereas the 

rhesus cell line was immortalized in vivo by a rhesus lymphocryptovirus (rhLCV) related to 

EBV—so-called Rhesus Epstein-Barr Virus (RheEBV) (Cho, Gordadze, Ling, & Wang, 1999; 

Muhe & Wang, 2015; Rangan et al., 1986). Although the viral EBNA2 gene, which drives 

transcription of many gene targets in EBV-infected cells (Wu, Kalpana, Goff, & Schubach, 1996), 

is homologous between EBV and rhLCV, host-restriction and co-evolutionary pressures may 

exaggerate many of our results. We envision that this could be avoided in future studies by using 

primate induced Pluripotent Stem Cell (iPSC) lines (I. Gallego Romero et al., 2015). Beyond these 

possible confounders, our analysis of publicly available RNA-seq datasets shows that, at least 

transcriptionally, the two cell lines are highly similar both to each other and to human primary B 

cells (Figure 24A,B).   

Despite the greater scale of the assay, ATAC-STARR-seq lacks the within-sample 

reproducibility of synthetic MPRA approaches that take dozens of measurements for each 

sequence assayed (Santiago-Algarra et al., 2017). For this reason, we cannot reliably compare 

effect sizes of activity. Instead, we binarize activity measures by applying significance thresholds 

to call active regions, which we then compare between conditions. Future analytical approaches 

may incorporate strategies that enable direct comparisons of activity. This would allow 

investigation of additional hypotheses, including proposed cis/trans compensation mechanisms on 

regulatory elements (Mattioli et al., 2020). In this way, we interpret cis & trans regions as 

individual regulatory regions where both species-specific DNA and species-specific environment 
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are necessary to observe regulatory activity. We caution against interpreting compensatory or 

directional mechanisms on individual regulatory element activity from our data. However, while 

we did not explore how multiple regulatory elements control gene expression in a directional or 

compensatory fashion, this would be possible with our data, but validation studies that place gene 

regulatory elements in their endogenous context would be needed. 

  

Concluding Remarks 

We find that trans changes contribute to DNA regulatory element activity divergence 

between human and macaque nearly as often as cis changes. Moreover, we observed that both cis 

and trans changes affect most divergent regulatory elements. These findings enabled by our 

comparative ATAC-STARR-seq framework highlight an underappreciated role for the cellular 

environment in driving gene regulatory changes. We envision that our comparative strategy will 

be useful in future studies for mapping gene regulatory divergence between different species and 

across different cell types within the same species to agnostically determine the locations and roles 

of cis and trans divergence on gene regulatory function. 

 

Materials & Methods 

Experimental Model and Subject Details  

Cell Lines 

One human lymphoblastoid cell line (GM12878) and one rhesus macaque lymphoblastoid 

cell line (LCL8664) were used in this study (International HapMap, 2003; Rangan et al., 1986; 

Tosato & Cohen, 2007). GM12878 is female, while LCL8664 is male. GM12878 and LCL8664 

were purchased directly from Coriell and ATCC (CRL-1805), respectively. We cultured both cell 



119 
 

lines with RPMI 1640 Media containing 15% fetal bovine serum, 2mM GlutaMAX, 100 units/mL 

penicillin and 100 μg/mL streptomycin. Cells were cultured at 37°C, 80% relative humidity, and 

5% CO2. Cell density was maintained between 0.2×106 and 1.5×106 cells/mL with a 50% media 

change every 2-4 days. All cell lines were regularly screened for mycoplasma contamination. 

 

ATAC-STARR-seq 

We performed four ATAC-STARR-seq experiments following the method as described in 

Hansen & Hodges 2022 (Hansen & Hodges, 2022a). We created two ATAC-STARR-seq plasmid 

libraries, one for the GM12878 accessible genome and another for the LCL8664 accessible 

genome. For a total of four experiments, we electroporated each ATAC-STARR-seq plasmid 

library into both GM12878 and LCL8664 cells, resulting in the following conditions: GM12878 

Library in GM12878 Cells (referred to as HH in text), GM12878 Library in LCL8664 Cells (HM), 

LCL8664 Library in GM12878 Cells (MH), and LCL8664 Library in LCL8664 Cells (MM). For 

HH and MH, we used Buffer R, whereas, for HM and MM, we used Buffer T from the Neon™ 

Transfection System 100 µL Kit (Invitrogen, #MPK10025). Both plasmid DNA and reporter 

RNAs were harvested from the same flask of cells and processed into llumina sequencing libraries. 

We repeated the electroporation, harvest, and sequencing library preparation steps for a total for 

three replicates; replicates were performed on separate days. The plasmid DNA and reporter RNA 

sequencing libraries for each replicate of each condition was sequenced on an Illumina NovaSeq 

6000 machine, PE150, at a requested read depth of 50 or 75 million reads, for DNA and RNA 

samples, respectively, through the Vanderbilt Technology for Advanced Genomics (VANTAGE) 

sequencing core. The GM12878 Library in GM12878 Cells was previously analyzed (Hansen & 

Hodges, 2022a) but in a different manner (GEO accession: GSE181317).  
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RNA-sequencing 

Before RNA isolation, we electroporated hSTARR-seq_ORI plasmid (Addgene #99296) 

into GM12878 and LCL8664 and matched the experimental conditions performed for the ATAC-

STARR-seq plasmid library transfections, but on a smaller scale. Instead of twenty 100μL 

electroporation reactions, we performed a single 100μL reaction for each replicate and kept the 

cell count:DNA ratio (3x106 cells and 3μg plasmid DNA per reaction) and electroporation 

conditions the same. We performed two replicates each for GM12878 and LCL8664 cell lines.  

24 hours later, we harvested total RNA using the TRIzol™ Reagent and Phasemaker™ 

Tubes Complete System (Invitrogen™, #A33251) and prepared Illumina-ready RNA-sequencing 

libraries using the SMARTer® Stranded Total RNA Sample Prep Kit - HI Mammalian (Takara 

Bio, #634874). Libraries were analyzed for quality and submitted for sequencing on an Illumina 

NovaSeq 6000 machine, PE150, at a requested read depth of 50 million reads through the 

Vanderbilt Technology for Advanced Genomics (VANTAGE) sequencing core. 

 

Quantification and Statistical Analysis 

ATAC-STARR-seq Read Processing 

FASTQ files were trimmed and analyzed for quality with Trim Galore! 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore) using the --fastqc and --paired 

parameters. Trimmed reads were mapped to hg38 with bowtie2 using the following parameters: -

X 500 --sensitive --no-discordant --no-mixed (Langmead & Salzberg, 2012). Mapped reads were 

filtered to remove reads with MAPQ < 30, reads mapping to mitochondrial DNA, and reads 

mapping to ENCODE blacklist regions using a variety of functions from the Samtools software 
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package (H. Li et al., 2009). When desired, duplicates were removed with the markDuplicates 

function from Picard (https://broadinstitute.github.io/picard/). Read count was determined using 

the flagstat function from Samtools. Library complexity was measured using the 

EstimateLibraryComplexity function from Picard and plotted with ggplot2 in R (Wickham, 2016). 

Correlation plots were generated with the deepTools package (Ramirez et al., 2016). Read counts 

for 1kb genomic windows were compared between the filtered, with-duplicates bam files using 

the multiBamSummary bins function and the following parameters: -e and --binSize 1000. Plots 

were generated using the plotCorrelation function and the following parameters: --skipZeros --

corMethod pearson.  

 

Chromatin Accessibility Peak Calling and Filtering 

Accessible chromatin (ChrAcc) peaks were called in all four conditions 

(GM12878inGM12878, LCL8664inLCL8664, GM12878inLCL8664, LCL8664inGM12878) 

using Genrich with the -j parameter, which specifies ATAC-seq mode 

(https://github.com/jsh58/Genrich). For each condition, de-duplicated bam files for the three 

plasmid DNA replicates were provided to the peak caller; as part of peak calling, Genrich collapses 

replicates to yield one peak set for the given condition and uses variance between replicates to 

assign q-values. Peaks were filtered by q-value so that the genomic coverage of the entire peak set 

for a given condition was ~1.8% (q-value thresholds ranged between 1.1e-7 and 4.3e-6). The 

purpose of filtering for genomic coverage of each peak set was to account for data quality 

differences between the samples. This allows us to compare the most accessible 1.8% of the 

respective genomes rather than regions defined by a significance threshold. We compared several 

different genome coverages but qualitatively determined 1.8% best reflected true accessible peaks 
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when looking at read pileup in a genome browser. We subsequently removed XY chromosomes 

since LCL8664 is male and GM12878 is female. Together, this yielded between 58,000-63,000 

peaks for each of the four experiments. Peaks called in rheMac10 coordinates 

(LCL8664inGM12878 and LCL8664inLCL8664) were converted to hg38 coordinates using 

liftOver with -minMatch set to 0.9.  

 

Differential Accessibility Analysis 

We intersected the filtered ChrAcc peaks from each experiment using the default 

parameters of BEDTools intersect(Quinlan & Hall, 2010) to isolate ChrAcc regions shared across 

all four contexts—this resulted in 29,531 shared ChrAcc peaks. To obtain specific-specific 

accessible regions, we intersected only the GM12878inGM12878 and LCL8664inLCL8664 

ChrAcc peaksets and wrote non-overlaps using the -v parameter. We performed motif enrichment 

using the findMotiftsGenome.pl script from the HOMER package (http://homer.ucsd.edu/) (Duttke 

et al., 2019) using the following parameters: -size given -mset vertebrates. We used ChIPSeeker 

to annotate differential accessible regions based on their distance to the nearest TSS (annotatePeak, 

level = gene & tssRegion = -2000/+1000), assign nearest neighbor genes, and perform Reactome 

pathway enrichment analysis using the assigned genes (Jassal et al., 2020; Yu et al., 2015). For the 

annotation plotting, we removed the Downstream (<=300) term from the legend to simplify, since 

we did not observe assignments to that term.  

 

Genome Browser 

The respective genome browser tracks were viewed in the hg38 build using the UCSC 

genome browser (C. M. Lee et al., 2020) and a combination of custom and public tracks. PDFs of 
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these views were downloaded and further annotated in illustrator; positions of the tracks did not 

change during illustrator editing.    

 

Active Region Calling Within Shared Accessible Peaks 

Generation of Sliding Window Bins 

We first merged all four ChrAcc peak sets (hg38 coordinates) into a single file with the 

UNIX cat function followed by BEDTools merge to generate a merged set of all peaks. Since 

ChrAcc peaks contain both active and silencing regulatory elements, it is important to divide peaks 

into smaller windows to best identify the element driving activity (Hansen & Hodges, 2022a). To 

do this, we tiled the merged peak set with sliding windows usingBEDTools makewindows and the 

-s 10 -w 50 parameters; bins smaller than 50 bp were removed. This generated 7.65 million bins 

for analysis.  

Filtering Bins for Alignability and Shared Accessibility 

To perform comparative analyses between human and macaque genomes, we required that 

all bins were mappable between hg38 and rheMac10 in a 1:1 orthologous fashion and with at least 

90% alignability. To do this, we used liftOver with -minMatch=0.9 to convert our bins from hg38 

coordinates to rheMac10 and bins that did not map from hg38 to rheMac10 were removed from 

the hg38 file. Furthermore, bins that changed size by more than +/- 2bp in the liftOver were 

excluded from the analysis. Altogether, this removed ~552,000 bins (~7.3%).  

Because differentially accessible regions would be only assayed in one ATAC-STARR-

seq plasmid library, they would confound differential activity measures when comparing the 

respective genomes. For this reason, we also required that our bins overlap shared ChrAcc 

accessible peaks by intersecting the alignability-filtered bins with the 29,531 shared ChrAcc peaks 
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described above; we used BEDTools intersect with the -u option set. This resulted in 2,028,304 

(26.5%) sliding window bins for further analysis.  

Active Region Calling 

We called active regions for each of the four experimental conditions using the 2,028,304 

filtered sliding window bins as input. To control against sample-to-sample variability, we called 

the top 10,000 most significantly active regulatory regions in each condition. By comparing the 

same number of DNA regulatory elements across conditions, we assume that a similar number of 

regions are active in each of the four experiments. This is a more conservative assumption than 

comparing regions called with the same q-value threshold across experiments, which can be 

greatly influenced by data quality differences and may not accurately reflect biology in a 

comparative analysis. We compared the results of calling different active region thresholds 

including the top 5,000, 10,000, 25,000, and 50,000. 

To call active regulatory regions, we first assigned reads to the filtered sliding window bins 

using the featureCounts function from the Subread package with the following parameters: -p -B 

-O --minOverlap 1 (Liao et al., 2014); for rheMac10 mapping reads, we used bins in rheMac10 

coordinates (linked to hg38 coordinates by a unique bin ID). To avoid negative data interpretations, 

we next removed bins with a count of zero for any RNA or DNA replicate; between 8,775 and 

70,819 bins were removed in each condition. We then quantified the activity of each bin by 

comparing RNA and DNA counts using DESeq2 (fitType="local") (Love et al., 2014). To obtain 

the top 10,000 most significantly active regions in each condition, we adjusted Benjamini-

Hochberg adjusted p-value thresholds to yield active bins that when merged in genomic space 

resulted in about 10,000 active regions for each condition–padj thresholds ranged between 0.026 

and 0.11. To ensure our active regions were robust regulatory elements, we required that each 
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region be made up of at least 5 bins by using BEDTools merge with the -c option and a custom 

awk script. For the supplemental analysis investigating threshold effects on cis and trans divergent 

regions calls, we followed the same process of adjusted padj thresholds to yield the desired active 

region count and then performed the same methods as described above to identify cis and trans 

divergent regions. We used ChIPSeeker to annotate the active regions in each condition based on 

their distance to the nearest TSS (annotatePeak, level = gene & tssRegion = -2000/+1000). For 

the annotation plotting, we removed the Downstream (<=300) term from the legend to simplify, 

since we did not observe any assignments to that term. 

Generation of ATAC-STARR-seq Activity bigWigs 

We generated ATAC-STARR-seq activity signal files with the deepTools package; to 

streamline this, we created a custom python script, which is available on the ATAC-STARR-seq 

method GitHub (github link; generate_ATAC-STARR_bigwig.py). We compared the log2 ratio of 

cpm-normalized RNA and cpm-normalized files using the bigwigCompare function and the 

following parameters: --operation log2 --pseudocount 1 –skipZeroOverZero; the cpm-normalized 

bedGraph files for RNA and DNA were generated using the bamCoverage function and the 

following parameters: -bs 10 --normalizeUsing CPM. MH and MM activity signal files were 

converted from bigwig to bedGraph (with the bigWigToBedGraph function from UCSC), lifted 

over to hg38 coordinates from rheMac10 coordinates with Crossmap (Zhao et al., 2014), and then 

converted back to bigwig files using the bedGraphToBigWig function from UCSC. We generated 

bigwigs for individual replicates, as well as for merged replicate bam files.  

Heatmaps of ATAC-STARR-seq Activity at Active and Inactive Bins 

We first subsampled the inactive bins for each condition using the Unix shuf command (-

n 150000) to reduce the number of regions plotted. ATAC-STARR-seq activity signal files for 
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each replicate were plotted at their respective active and randomly subsampled inactive bins using 

the computeMatrix function (parameters: -a 500 -b 500 --referencePoint center -bs 25 --

missingDataAsZero) and the plotHeatmap function (parameters: --sortRegions  no --zMin -0.5 --

zMax 0.5), both from deepTools. 

 

Differential Activity Analysis 

HH vs MM Activity Comparison 

To identify conserved and species-specific active regions, we intersected the HH active 

regions with the MM active regions using BEDTools intersect. We called regions with at least a 

50% reciprocal overlap as conserved active regions, whereas HH active regions that did not 

reciprocally overlap by at least 50% were classified as human-specific active regions and MM 

active regions that did not reciprocally overlap by at least 50% were classified as macaque-specific 

active regions. For all intersections, we used the following parameters: -f 0.5 -F 0.5 -e. This turns 

the 50% reciprocal into an “or” operation where either regions A&B are considered conserved 

active if either A or B overlaps the other by greater than 50%. This avoids mislabeling nested 

overlaps as differentially active where A could overlap B with 100% but B could be two times 

larger than A and therefore not overlap A by 50%. For the conserved active regions, we wrote the 

entire interval of the two overlapping regions using a combination of BEDTools intersect and 

merge in a custom script. We used the -v option in addition to the parameters listed above to write 

differentially active.  

Identification of Cis Divergent Regions and Trans Divergent Regions 

We determined if divergent active regions were a result of a change in the DNA sequence 

(cis) or a change in the cellular environment (trans) by intersecting species-specific active regions 
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with the active region set from the relevant condition. For example, human-specific cis divergent 

regions were determined by intersecting the human-specific active regions with the MH active 

region set using BEDTools intersect. Human-specific active regions that did not reciprocally 

overlap by at least 50% were determined to be Human-specific cis divergent regions (parameters: 

-v -f 0.5 -F 0.5 -e). The other comparisons were performed in the same way as described above.  

Identification of Cis & Trans Regions 

To identify regions that were divergent in both cis & trans, we asked if the exact same 

region was contained in both the cis and trans divergent region sets using BEDTools intersect and 

the -f 1.0 -r parameters; we maintained species-specificity by only comparing human-specific cis 

with human-specific trans and macaque-specific cis with macaque-specific trans. Regions that 

were unique to the cis region set were classified as cis only, while regions that were unique to the 

trans region set were classified as trans only.  

Observed vs. Expected Analysis of Active Region Overlaps 

We calculated the expected overlap assuming random distribution in shared accessible 

chromatin for all differential activity comparisons. To do this, we first randomly shuffled the MM, 

HM, and MH active region sets within shared accessible chromatin with BEDTools shuffle (1000 

iterations with the -noOverlapping parameter). This yielded 1000 sets of randomly positioned 

active region sets for MM, HM, and MH within the analytical space of shared accessible 

chromatin. For each of the 1000 shuffled region sets per condition, we determined the expected 

number overlaps by intersecting them with either the HH active, the human-specific active, or the 

macaque-specific active regions using BEDTools intersect in the same manner done for the 

observed value. We then compared the expected overlap distribution with the observed value and 

performed Grubb’s Test in R to test if the observed value was a statistical outlier.  
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Heatmaps Comparing ATAC-STARR-seq Activity Between Conditions 

ATAC-STARR-seq activity signal files were plotted at the respective regions using the 

computeMatrix function (parameters: -a 1000 -b 1000 --referencePoint center -bs 10 --

missingDataAsZero) and the plotHeatmap function (parameters: --sortRegions no --zMin -0.5 --

zMax 0.5), both from deepTools. 

 

Functional Characterization of Cis and Trans Divergent Regions 

Annotation 

We used ChIPSeeker to annotate cis only, trans only, cis & trans, and conserved active 

regions based on their distance to the nearest TSS (annotatePeak, level = gene & tssRegion = -

2000/+1000). For the annotation plotting, we removed the Downstream (<=300) term from the 

legend to simplify, since we did not observe assignments to that term. 

TF Motif Enrichment 

We first generated background regions for each region set by shuffling the respective 

regions within shared accessible chromatin 10 times using bedtools shuffle and the -chrom -

noOverlapping -maxTries 5000 parameters. We then performed motif enrichment using the 

findMotiftsGenome.pl script from the HOMER package using the respective background and the -

size given and -mset vertebrates parameters. The top 15 motifs for each region set were selected 

for plotting using pheatmap and the following parameters: scale="row", cluster_cols = FALSE, 

cluster_rows = TRUE, cutree_rows = 7, cellheight = 15, cellwidth = 30, method = "ward.D2”. 

Motifs within the same motif archetype (Vierstra et al., 2020) were collapsed so that only one 

motif of that archetype was displayed on the heatmap in the main figure.  

Gene Ontology 
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We performed gene ontology on the putative target genes for cis only, trans only, cis & 

trans, and conserved active regions using GREAT (McLean et al., 2010) 

(http://great.stanford.edu/public/html/). We used the whole genome as background and assigned 

genes with the default Basal plus extension option. The top 10 terms were plotted in R.  

Histone Modification Heatmaps 

GM12878 ChIP-seq bigwig files for H3K27ac (ENCFF469WVA), H3K4me3 

(ENCFF564KBE), and H3K4me1 (ENCFF280PUF) were downloaded from the ENCODE 

consortium(Moore et al., 2020) and plotted at conserved active, human-specific cis only, human-

specific trans only, and human-specific cis & trans regions with deepTools. Specifically, we used 

the computeMatrix function, with the following parameters: -a 2000 -b 2000 --referencePoint 

center -bs 10 –missingDataAsZero and the plotHeatmap function with the following key 

parameters: --sortUsing mean –sortUsingSamples 1 (the H3K27ac file).   

Distance to ChrAcc Peak Summits 

We first extracted region centers in R using the following operation: center = ((End-

Start)/2)+start; decimals were rounded up to integers. The ChrAcc peak summits are provided in 

the original narrowPeak file for GM12878 ChrAcc peaks, so we obtained peak summits for the 

shared accessible peaks by intersecting shared peaks with the human-active peak file. The distance 

between region center and peak summit was calculated using the bedtools closest function and the 

-D ref parameter. This distance was then plotted as a density plot with ggplot2 in R.  

To generate the H3K27ac profile plot, we plotted the GM12878 H3K27ac bigwig from 

ENCODE at ChrAcc peak summits using deepTools with the computeMatrix function (parameters: 

-a 500 -b 500 --referencePoint center -bs 10 –missingDataAsZero) and the plotProfile function. 
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We repeated for the 17-way PhyloP bigwig after downloading from the UCSC genome browser 

(http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phyloP17way/hg38.phyloP17way.bw).  

 

Generating expected background datasets from shared accessible, inactive regions 

We identified all shared accessible peaks from any of the four (HH, HM, MH, MM) 

experiments. We then used BEDTools to subtract active, shared accessible peaks, leaving a set of 

shared accessible, but inactive peaks. Then, we shuffled active regions with BEDTools (-

noOverlapping -maxTries 5000) in this shared accessible, inactive genomic background 10x to 

produce length-matched expectation datasets. We used these elements as our background to 

interpret evolutionary and genomic features of active and divergent elements.  

 

TF Footprinting 

Transcription factor footprinting was performed using the TOBIAS software package 

(Bentsen et al., 2020). For both the GM12878inGM12878 and LCL8664inLCL8664 samples, we 

used ATACorrect to generate Tn5-bias corrected cut count signal files from deduplicated bam files. 

We then used the corrected cut-counts files to calculate TF binding in the respective genomes 

using the ScoreBigWig function. We then paired all core non-redundant vertebrate JASPAR motifs 

(Fornes et al., 2020) with the GM12878 and LCL8664 TF binding profiles to call individual 

transcription factor footprints in the two genomes using the BINDetect function and the --bound-

pvalue parameter set to 0.05 . Motifs with a footprint were classified as bound, while motifs 

without a footprint were classified as unbound. Aggregate plots were generated using the 

deepTools package. Tn5-corrected signal was measured at bound and unbound sites for each 

respective TF using the computeMatrix reference-point function with the following key 
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parameters:  -a 75 -b 75 --referencePoint center --missingDataAsZero -bs 1. The resulting matrix 

was plotted using the plotProfile function.  

To determine differential footprinting at specific loci, we compared the TF motifs that 

footprinted in human and rhesus. We mapped the position of rhesus TF footprints in hg38 by lifting 

those footprint coordinates from rheMac10 using LiftOver software from UC Santa Cruz.  

Trans only TF footprint enrichment vs. differential expression 

We evaluated footprints for each TF for enrichment in human-specific and macaque-specific trans 

only regions compared to 10x length-matched expected regions. Enrichment scores were 

computed using Fisher’s Exact Test with a BH adjusted p-value < 0.05. We intersected the 

enrichment score with the differential expression values of the specified TF. We removed 

footprints associated with TF multimers, for example the SMAD2-SMAD3-SMAD4 motif, so that 

only individual TFs, such as SMAD3, were assigned differential expression values. We also 

removed TFs that were not analyzed in the differential expression analysis, likely because they did 

not meet the 1:1 orthology requirement. Altogether, 386 TFs were retained for plotting. 

Scatterplots were made with ggplot2 and text was plotted for TFs with a footprint enrichment 

log2OR > 0, footprint enrichment padj < 1x10-10, differential expression log2FC > 0 (log2FC < 0 

for macaque-specific), and a differential expression padj < 1x10-50 (padj < 1x10-20
 for macaque-

specific). For the TFs that met these criteria, which we defined as putative trans regulators, we 

intersected their footprints (BEDTools intersect: default parameters) with the respective trans only 

regions to determine the percentage with the given footprint. In a few cases we merged TF 

footprints, because some of the TFs shared the same motif archetype (Vierstra et al., 2020), for 

example IRF4, IRF7, and IRF8.   
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Evolutionary Characterization of Cis and Trans Divergent Regions 

PhastCons Enrichment Analysis  

We intersected active regions with 30-way MultiZ PhastCons elements—derived from an 

alignment of 27 primate species and three mammalian outgroup species (Lindblad-Toh et al., 2011; 

Siepel et al., 2005) (last downloaded September 22nd, 2021 from 

http://hgdownload.cse.ucsc.edu/goldenPath/hg38/phastCons30way/) using BEDTools with 

standard parameters. A region was considered conserved when overlapped >= 1 bp of a PhastCons 

element. For each category with activity differences between humans and rhesus macaques, we 

quantified PhastCons element enrichment in that category versus the matched 10x expectation sets 

using Fisher’s Exact Test with a BH adjusted p-value < 0.05. Unless specified, in the evolutionary 

analyses, we combined human and macaque elements and evaluated their characteristics in the 

human genome.  

Human Acceleration Enrichment Analysis 

We estimated human acceleration from ATAC-STARR-seq bins using the phyloP function 

from the Phast tools suite (http://compgen.cshl.edu/phast/). Short term estimates of human 

acceleration and conservation (--mode CONACC) were calculated between the human and chimp 

branches against the 30-way neutral tree model (--g hg38.phastCons30way.mod) using the 

likelihood ratio test (--method LRT). For long term estimates of human acceleration, we first 

trimmed the model tree to remove any species on the human branch that emerged after the most 

recent common ancestor between humans and rhesus macaques, then used this trimmed neutral 

tree model to quantify acceleration and conservation (described above). Bins with a phyloP score 

cutoff < -1 were considered accelerated. We removed any bins from the acceleration analysis that 

overlapped human duplicated regions (hg38 SELF-CHAIN) with >= 1 bp overlap using BEDTools 
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with standard parameters. To assign a single human acceleration value per divergently active 

region and matched-expectation, we assigned the bin with the minimum PhyloP score to entire 

region. We estimated human acceleration enrichment as the number of human accelerated regions 

(phylop < -1.0, corresponding to a p-value <0.05) in a divergently active group versus matched 

expected acceleration values. We assigned each region in the observed and expected dataset with 

the lowest phyloP bin value (i.e. the most accelerated value).  

Repeatmasker Transposable Element Enrichment  

We downloaded hg38 repeatmasker coordinates from the UCSC genome browser (last 

downloaded August 21st, 2021). Active regions and matched expectation sets were intersected with 

TE coordinates and active regions were assigned TE if a TE overlapped >=1bp of a region. To test 

for enrichment, we used Fisher’s Exact Test with a BH adjusted p-value < 0.05 to compute the 

enrichment of TEs overlapping active elements versus matched expectation datasets. For family-

specific analysis, we stratified by TE family overlap and quantified TE enrichment as the number 

of elements overlapping a TE family per activity category (e.g. cis only) and all other activity 

category datasets using Fisher’s Exact Test with a BH adjusted p-value < 0.05.  

TF footprint Enrichment for SINE/Alu Cis & Trans Regions 

We evaluated GM12878 TF footprints for enrichment in cis & trans regions that 

overlapped SINE/Alu transposable elements compared to 10x expected regions. Enrichment 

scores were computed using Fisher’s Exact Test with a BH adjusted p-value < 0.05.  

Assigning Sequence Ages  

The genome-wide hg38 100-way vertebrate multiz multiple species alignment was 

downloaded from the UCSC genome browser. Each syntenic block was assigned an age based on 

the most recent common ancestor (MRCA) of the species present in the alignment block in the 
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UCSC all species tree model. Regions and matched shuffles were intersected with syntenic blocks 

and the maximum age for each region was selected as the representative age. For most analyses, 

we focus on the MRCA-based age, but when a continuous estimate is needed, we use evolutionary 

distances from humans to the MRCA node in the fixed 100-way neutral species phylogenetic tree. 

Estimates of the divergence times of species pairs in millions of years ago (MYA) were 

downloaded from TimeTree (Hedges, Marin, Suleski, Paymer, & Kumar, 2015). Sequence age 

provides a lower-bound on the evolutionary age of the sequence block. Sequence ages could be 

estimated for 94% of the autosomal bp in the hg38 human genome. 

Multiple Sequence Origin Enrichment Analysis 

After assigning sequence ages to regions (above), we quantified how often regions 

overlapped multiple sequence ages (referred to as multi-origin sequences) with >=6 base pairs in 

length per age. We compared the number of multi-origin sequences in cis-, trans- and cis & trans 

categories with their length-matched expectation sets (see above section Generating genomic 

background - shared accessible, inactive expectation datasets) and computed enrichment using 

Fisher’s Exact Test.  

 

Human Variant Enrichment Analysis 

eQTL Enrichment 

We intersected each divergent activity category with eQTL from GTEx (version 8; last 

downloaded April 30th 2018) using BEDTools with standard parameters. To measure whether the 

observed number of eQTL variants was more than expected, we shuffled each divergent set of 

regulatory elements 1000x in a background set of length-matched shared accessible, inactive peaks 

and quantified the fold-changes as the number of observed eQTL variants divided by the median 
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number of expected eQTL variants. We calculated the empirical p-values from the number of 

eQTL overlaps in the expected sets that were equal to or more extreme than the observed number 

of eQTL overlaps. We bootstrapped the 95% confidence intervals by estimating the distribution of 

fold-changes from the observed count with each of the 1000 expected overlaps.  

UKBB GWAS Trait Enrichment 

We selected a set of immune, inflammatory, and B cell related traits from the UKBB pan-

GWAS. For each trait, we included only the tag-SNPs with genome-wide significance (p<5.5-e8) 

and LD-expanded those tag-SNPs to include variants in perfect LD (R2=1.0) in European 

populations from 1000 genomes (1000 genomes consortium). We removed any active regions that 

overlapped the HLA locus in hg38 (chr6:28898751-33807669), including 4 cis only elements, 1 

cis & trans, 1 trans only, and 0 conserved active. We then intersected the accessible peaks 

containing divergently active regions with LD-expanded, significant GWAS SNPs using 

BEDTools with standard parameters. To measure whether the observed number of GWAS variants 

was more than expected, we shuffled each divergent set of regulatory elements 1000x in a 

background set of length-matched shared accessible, inactive regions and quantified the fold-

changes as the number of observed GWAS variants divided by the median number of expected 

GWAS variants. We calculated the empirical p-values from the number of GWAS overlaps in the 

expected sets that were equal to or more extreme than the observed number of GWAS overlaps. 

We bootstrapped the 95% confidence intervals by estimating the distribution of fold-changes from 

the observed count with each of the 1000 expected overlaps.  

 

Gene Expression Analysis 

Data Collection 
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In addition to the RNA-seq experiments described above, we downloaded and analyzed 

FASTQ files from the following publications: Cain et al., 2011 - GSE24111 (SRR066745-7, 

SRR066751-3); Blake et al., 2020 - GSE112356 (SRR6900782-SRR6900812); Calderon et al., 

2019 - GSE118165 (SRR11007061, 071, 082, 090, 092, 094, 096, 113, 121, 124, 126, 127, 137, 

147, 156, 158, 160, 170, 183, 186, 188, 190; SRR7647654, 656, 658, 696, 698, 700, 731, 767, 768, 

769, 807, 808), and the ENCODE GM12878 Wold (total RNA-seq: ENCFF248MER, 

ENCFF006YWA, ENCFF294LGZ, ENCFF995BLA) and Gingeras (polyA plus RNA-seq: 

ENCFF001REH - ENCFF001REK) GM12878 datasets. The FASTQ files from these datasets and 

our GM12878 and LCL8664 data were processed in the same way.  

Fastq Processing of RNA-seq Data 

Raw reads were trimmed and analyzed for quality with Trim Galore! using the --fastqc and 

--paired parameters. To avoid bias arising from duplicated genes, we restricted our analysis to 1:1 

orthologous exons that we obtained from XSAnno (Zhu, Li, Sousa, & Sestan, 2014) 

(https://hbatlas.org/xsanno/files/Ensembl-v64-Human-Macaque). The hg19 file was converted to 

hg38 coordinates using liftOver. Because no rheMac2 to rheMac10 map chain file existed, we first 

converted rheMac2 coordinates to rheMac8 and then to rheMac10. We then mapped trimmed reads 

to the 1:1 orthologous exons in the respective genome using the STAR aligner(Dobin et al., 2013) 

(alignReads function); we built a STAR index for each genome for each illumina read length type 

(150nt, 50nt, 35nt, and 100nt) and applied it to the respective sample. We next counted reads in 

each 1:1 orthologous exon using the featureCounts function from subread(Liao et al., 2014); for 

our samples, we set the -s parameter to 1 because they were stranded RNA-seq datasets, while all 

others were set to 0 (unstranded). For paired datasets, we also specified the -p and -B options. We 

applied the -O option to all datasets. 
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Differential Expression Analysis 

For all pairwise comparisons presented, we performed differential expression analysis with 

DESeq2 (fitType="local") and extracted results using the lfcShrink function and apeglm shrinkage 

algorithm, which shrinks the effect size of low count data (cite deseq and apeglm). Before 

comparing GM12878 and LCL8664, we removed sex chromosomes. We defined human-specific 

expressed genes as those with a log2FC > 2 and a padj < 0.001, while macaque-specific expressed 

genes had a log2FC < -2 and a padj < 0.001. We used ChIPSeeker and ClusterProfiler to perform 

Reactome pathway enrichment analysis using the differentially expressed gene sets (Yu et al., 

2012); we plotted the top five to six categories in each case.  

TPM normalization and Correlation Between Human and Macaque LCLs 

For each of our GM12878 and LCL8664 replicates, we normalized read counts so they 

represented transcripts per million (TPM); we first calculated RPKM [10^9 * (reads mapped to 

transcript / (total reads * length of transcript))] and then converted to TPM [10^6 * 

(RPKM/(sum(RPKM)))]. We then calculated the mean TPM for each gene between the two 

replicates, added a pseudo count of 1, and log10 normalized the values. We then plotted the 

GM12878 and LCL8664 values on a 2D bin plot; both Pearson and Spearman’s correlation 

coefficients were calculated using the mean TPM values.    

Principle Component Analysis 

For each of the samples plotted in each PCA, we first extracted variance stabilizing 

transformed (VST) count values from the DESeq Dataset (dds) with the vst function (blind=TRUE) 

and then plotted principal components 1 and 2 using the plotPCA function (both functions from 

the DESeq2 package).  
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CHAPTER IV 

 

DISCUSSION AND FUTURE DIRECTIONS 

 

Discussion 

In Chapter II of this dissertation, I described a new approach called ATAC-STARR-seq 

that simultaneously quantifies regulatory activity, chromatin accessibility, and TF occupancy in 

the human genome. With this approach, we identified 30,078 active regions and 21,125 silent 

regions in human lymphoblastoid cells that are contained within ~101,000 chromatin accessible 

regions; the number of regulatory regions we identify is substantially less than the number of 

accessible regions because most chromatin accessible DNA has neutral activity. We also identified 

TF bound sites within accessible chromatin for 746 different TF motif sequences and used them 

to stratify active and silent regions into DNA regulatory networks. Altogether, we showed that 

ATAC-STARR-seq can identify five different layers of transcriptional regulation from a single 

DNA fragment library: 1) chromatin accessibility, 2) TF binding, 3) active regulatory activity, 4) 

silent regulatory activity, and 5) DNA regulatory element networks. This new method substantially 

expands the capabilities of previous methods and allows us and others to address critical and new 

questions in transcriptional regulation across several disciplines, from developmental biology to 

evolutionary biology. 

Massively parallel reporter assays like ATAC-STARR-seq are only one of several 

approaches to identify putative enhancers in the human genome. Each approach measures a 

slightly different aspect of DNA regulatory element biology and has its own set of limitations. 

Therefore, the field is best served when multiple orthogonal approaches are performed to identify 

a set of high confidence DNA regulatory elements in a given biological context (Gasperini et al., 
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2020). Compared to these other methods, there are three major advantages of ATAC-STARR-seq. 

First, the quantitative measure in ATAC-STARR-seq is direct; it is a functional quantification of 

the ability of a DNA sequence to drive transcription of a target gene. Second, the dense tiling of 

accessible regions allows for highly-resolved calls of regulatory activity such that we can identify 

~100bp active and silent components of individual accessible regions—this is not possible for 

approaches like PRO-seq that use bidirectional transcription to call DNA regulatory elements. 

Third, while most assays only provide one measure, ATAC-STARR-seq provides five different 

layers of transcriptional regulatory information from one assay. The major caveat of ATAC-

STARR-seq is that it is episomal, so it does not measure DNA sequences in their endogenous 

chromatin environments. Yet, by leveraging this caveat, we were able to identify the effect of 

cellular environment on DNA regulatory element activity in Chapter III of this dissertation. 

ATAC-STARR-seq also does not identify which genes are regulated by the elements it identifies, 

which is a significant challenge for most assays in the field. Altogether, ATAC-STARR-seq 

provides a substantial improvement to the MPRA arm of DNA regulatory identification strategies 

and should be used in combination with other approaches to obtain high-confident active and silent 

regions in future experiments.  

ATAC-STARR-seq allowed investigation of global effects on regulatory element activity 

due to changes in cis, i.e. mutations to regulatory element DNA sequence, and changes in trans, 

i.e, changes in cellular environment. This investigation, described in Chapter III, aimed to answer 

a critical question in evolution: what was the primary mode of regulatory activity evolution 

between closely related primate species that only diverged 25 million years ago? Does evolution 

over this timeframe favor global changes on the cellular environment with pleiotropic effects 

(trans), or does it favor precise changes to individual regulatory elements (cis)? By applying a 
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comparative ATAC-STARR-seq framework to human and macaque lymphoblastoid cells, we 

observed roughly the same levels of cis and trans regulatory activity divergence between LCLs 

derived from each of these species, ~11,000 compared to ~10,500, respectively. This observation 

questions current dogma, which previously thought most regulatory element activity changes 

between closely related species were in cis (Irene Gallego Romero & Lea, 2022; Gordon & 

Ruvinsky, 2012; Mattioli et al., 2020; Whalen et al., 2023). Our results conclude that trans-

regulatory divergence between human and non-human primates is much greater than previously 

thought.  

In hindsight, the high frequency of trans-regulatory divergence is not surprising 

considering that alterations to the trans-regulatory environment can occur via many mechanisms. 

To name a few, mutations to regulatory elements that control TF expression, mutations to TF 

protein sequences that alter their function, mutations that alter post-transcriptional and post-

translational processing of TFs, and alterations to signalling pathways that affect the 

phosphorylation state of a TF all can affect DNA regulatory element activity in trans. 

Comparatively, cis mutations are confined to the size of the DNA regulatory element, which is 

typically less than 1000bp. Simply put, there is a lot more opportunity to mutate trans-regulatory 

processes than those in cis. This principle is evident in a yeast study which identified that random 

mutations affect regulatory element activity in trans substantially more often than random 

mutations in cis (B. P. Metzger et al., 2016). However random mutations are not under selective 

pressures and since trans changes are pleiotropic and more likely to be deleterious overall, cis 

changes are preferentially selected during evolution (Signor & Nuzhdin, 2018). Indeed, a previous 

study between Drosophila species observed a greater proportion of cis divergence on gene 

expression as evolutionary distance increases (Coolon et al., 2014). Because non-selected random 
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mutations more often affect gene expression in trans, our observation that cis and trans divergence 

occurs as the same frequency indicates there is an evolutionary preference for cis, but this 

preference is not so strong that trans divergence is completely lost.  

We also observed that most regulatory regions diverge in both cis and trans, such that 

changes to either the DNA sequence or the cellular environment affect regulatory activity of a 

single DNA regulatory element. This observation indicates that these processes act in tandem with 

each other. There are three possible mechanisms to explain this phenomenon. First, this could be 

a coordinated redundancy mechanism to stabilize phenotypes. Such a mechanism would be under 

stabilizing selection and could operate on phenotypes that are sensitive to change. A second 

mechanism would be that after either a cis or trans change occur to inactivate a given regulatory 

element, its activity would no longer be selected. For example, if a trans change renders a DNA 

regulatory element inactive, mutation to the element can occur without affecting its function. A 

third mechanism could occur for regulatory elements that gain activity where a cis or trans change 

occurs but is not sufficient for DNA regulatory element activity. For example, a cis change could 

create a high affinity binding site for a TF that is not expressed. Likely it is a combination of all 

three, but future investigations are required to tease out these mechanisms.  

It is unlikely that regions divergent in both cis and trans acquired these changes 

simultaneously, so one event must precede the other for a given regulatory element. Because trans 

divergence occurs more frequently with shorter evolutionary time scales (Hill et al., 2020; Signor 

& Nuzhdin, 2018), I would hypothesize that, for a majority of regulatory elements, trans changes 

occur first. Moreover, we identified over a thousand regions that were divergent only in cis or only 

in trans. It is intriguing to wonder if these regions represent an intermediate state and will 
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ultimately acquire divergence in both cis and trans, given more evolutionary time. We cannot 

dissect this with our data, so future studies would be required to investigate these questions further.   

Our results are important when considering MPRA design. For technical reasons, many 

studies identify enhancers in one tissue or cell type using an epigenetic annotation method and 

then assay them for activity as a MPRA in a different cell type (Johnson et al., 2018; Klein et al., 

2018; Uebbing et al., 2021; Vockley et al., 2015; Weiss et al., 2021). For example, one study first 

identified candidate enhancers in liver tissues for a variety of primate species and tested them for 

activity in HepG2 cells. While HepG2 is a human liver cancer cell line, it may have a very different 

trans-regulatory environment than non-diseased liver cells. Moreover, this approach assumes that 

the trans regulatory environments between primate species are the same. Our failure to reproduce 

most activity measures across species highlights how such approaches may be misleading and 

confounded by effects from the cellular environment. In other words, the choice of cell type is 

critically important when performing MPRAs and interpreting their results.  

 

Future Directions 

Improvements to ATAC-STARR-seq  

Current MPRA bioinformatic tools and pipelines did not account for unique aspects of 

ATAC-STARR-seq, so it was necessary to develop a custom bioinformatic workflow. In designing 

this workflow, I made a critical assumption that most regions are neutral—they do not affect the 

basal transcription rate of the plasmid. This strategy normalizes activity scores so that the average 

value is zero, meaning there are the same number of reporter RNAs as plasmid DNA—activity is 

log2(RNA/DNA). This assumption could be confounding if the true average is non-zero. For 

example, if the average is positive, regions we call as silencers may actually not inhibit the basal 
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transcription rate. To remove this assumption altogether, I propose curating and implementing a 

negative control spike-in plasmid library made up of validated neutral activity test sequences. This 

technique is common among synthetically derived MPRA approaches, so these strategies could be 

adapted for ATAC-STARR-seq. The negative control library containing validated neutral 

sequences would be co-transfected with the ATAC-STARR-seq plasmid and normalized so that 

“zero” reflects the average activity of these neutral sequences.  

In ATAC-STARR-seq, we had to decide whether to include or remove molecular 

duplicates from our analysis. Although I showed that including PCR duplicates was preferred over 

collapsing duplicates in the ATAC-STARR-seq workflow, it is potentially confounding that we 

cannot distinguish between PCR duplicates and biological duplicates (multiple transcripts off the 

same plasmid) in our assay. This limitation could be addressed by implementing a unique 

molecular identifier (UMI) to the system—such as the strategy employed by UMI-STARR-seq 

(Neumayr et al., 2019)—to collapse only the duplicates arising from PCR. To implement a UMI 

strategy in ATAC-STARR-seq, we would integrate a UMI into the reverse transcription reaction 

so that the UMI represents a single cDNA, which is a true biological duplicate that would not be 

collapsed. The UMI sequence would replace the i5 index so that paired-end sequencing would 

provide both an i7 index to tag the sample and deconvolute it from others, as well as a UMI 

sequence for each read. PCR duplicates would have the same UMI, so these could be collapsed 

and differentiated from biological duplicates which would have different UMI sequences. This 

could be done on a platform, such as HiSeq, that would allow us to deconvolute with just one index 

alone.  
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Future Applications of ATAC-STARR-seq  

In addition to investigating cis and trans regulatory divergence between primates ATAC-

STARR-seq presents the opportunity to investigate many unique questions. One of these would be 

to apply the method to the human embryonic stem cell to neural progenitor cell time course model 

that the Hodges Lab has already established. Another project in the lab, spearheaded by Lindsey 

Guerin, looks at the interplay of DNA methylation, chromatin accessibility, and gene expression 

on cellular differentiation during this time-course. Adding ATAC-STARR-seq to this would 

provide a regulatory activity layer that could be used to differentiate poised and active enhancers 

in this system and give a highly resolved view of the functional genomic mechanisms involved in 

driving early differentiation. 

In Chapter III, I created an ATAC-STARR-seq plasmid library from one cell-type and 

tested it in another. We applied this unique aspect of MPRAs to investigate questions in 

evolutionary biology, but this concept could be applied elsewhere. Trans regulatory changes are 

probably very significant in cancer, and so it would be interesting to apply a similar logic to 

identify trans regulatory changes in cancer cell lines and the extent of their effects on regulatory 

element activity. This approach also has the potential to identify dysfunctional gene regulatory 

networks in diseases like cancer where neoplastic transformation can be driven by the dysfunction 

of a specific TF. One place to start would be to compare our current data in GM12878 cells with 

a B cell lymphoma cell line, such as SU-DHL-6. While GM12878 cells are immortalized and 

“cancer-like” their karyotype is normal and could act as the non-diseased state in a pilot 

experiment. A more elegant experiment would be to compare enhancer activity states of cancer 

and non-cancerous tissues from the same patient donor, but key limitations in cell count 

requirements for ATAC-STARR-seq would need to be solved prior to conducting this project.  
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There are many more possibilities for ATAC-STARR-seq. Ultimately it was designed to 

identify active enhancers genome-wide, so it could be used to identify active enhancers in a variety 

of different contexts or conditions. It would be valuable to have an ENCODE-like consortium-

type resource of ATAC-STARR-seq data to identify active and silent regions in dozens of cell 

lines. Such a dataset would add a direct regulatory activity measure to the growing list of functional 

data available to researchers world-wide. Even on an individual experiment scale, ATAC-STARR-

seq could be applied to important questions in human health such as understanding the effect of a 

given drug on global enhancer activity. Several drugs inhibit transcriptional regulation programs, 

so it would be beneficial to see where and how the active enhancer landscape changes to such 

drugs.  

 

 Deeper Investigation of Silencers 

The identification of 21,000 silent regions led us to investigate whether they are real—i.e., 

whether they are the result of technical artifacts or true biological activity. Overall, our 

investigation concluded that they most likely reflect true silent regions in the cell, but we cautioned 

other possible technical reasons could explain their presence. More needs to be done to tease out 

the biology of our putative silencer regions, and they present a very intriguing future direction of 

this research. One stark difference between active regions, silent regions, and neutral regions, is 

that silent regions are highly promoter enriched. This suggests that the majority of silencing 

activity occurs nearby the gene. We investigated some promoter-specific mechanisms, like 

transcription initiation from the 3’ UTR, as a way to explain this promoter bias but did not find 

anything of merit. Future investigations could explore the promoter bias further.  
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Implementation of the neutral control spike-in, as discussed above, would help support the 

validity of silencers because they provide a more controlled assessment of basal transcription rate. 

Another idea would be to validate our putative silencers with an orthogonal approach. One group 

recently developed an approach to identify silencers by leveraging the expression of Caspase 9 

from a plasmid (Pang & Snyder, 2020). Caspase 9 induces cell death, so test sequences that inhibit 

Caspase 9 expression would linger in the cell population after many divisions because non-silencer 

cells would die. It would be illuminating to see if our silencers could be identified in this setting 

as well.   

Notably, we did not consider silencers in the cis and trans investigation presented in 

Chapter III. It would be interesting to look at their activity differences in cis and trans and observe 

whether they have species specific activity and if differential activity occurs more predominantly 

in cis or in trans.  

 

Future Directions to Address Limitations of Cis/Trans Study 

 In the discussion of chapter III, I highlighted some key limitations of our study. Future 

experiments could be performed to address these limitations. There are few non-human primate 

cell lines available for purchase and so we were limited to only one rhesus macaque cell line for 

this project. Furthermore, it is challenging to investigate many genotypes from one species with 

our comparative ATAC-STARR-seq workflow—the complexity of the analysis and experiment 

become too great. This is problematic for a few reasons. First, the effects we see may reflect 

differences between these two individuals specifically and not generalize to the entire species 

(Kelley & Gilad, 2020). Second, because these two cell lines were generated by separate 

immortalization processes, the latent viral load contained within them may explain some of the 
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differences we observe. Moreover, they may represent different stages of B cell development and 

so differences may be due to cell stage differences, rather than species-level differences.  

To address this in future studies, I propose using iPSC panels for human, chimpanzee, and 

macaque (I. Gallego Romero et al., 2015; H. Liu et al., 2008). These are freely available and 

multiple genotypes per species are contained within these panels. This would avoid any 

immortalization process or cell stage effects by comparing stem cells directly to each other. While 

many of the more obvious phenotypic differences between human and macaque involve 

differentiated cells, differences at the stem cell level could also be interesting and perhaps provide 

insight into the human-specific neoteny process, which is a developmental slowdown trait thought 

to explain many phenotypic differences between humans and non-human primates (Hirai, Imai, & 

Go, 2012).  

This panel does not solve the feasibility limitation in applying a similar ATAC-STARR-

seq workflow to investigate multiple genotypes per species. It is hard to envision how to navigate 

this aside from conducting a brute force type of approach where libraries A, B, and C from one 

species are transfected into cell types X, Y, and Z from the other species. The amount of pairwise 

combinations from this experiment (≥ 33) would be overwhelming, and so the most difficult hurdle 

would be developing an analytical scheme that can simplify the dataset.  

 

Expanding our Cis and Trans Investigation to other Mammalian Species  

In line with previous studies, we would expect to see a greater degree of cis divergence as 

evolutionary distance increases between the species being compared. To see if this is true, we 

could compare a more recent and at a more distant evolutionary relationship than human and 

macaque. For example, we could compare regulatory activity with similar comparative ATAC-
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STARR-seq framework between human, chimpanzee, rhesus macaque, and mouse induced 

pluripotent stem cells (iPSCs), all of which are readily available. We would expect to see more cis 

divergence between mouse and human, and less between human and chimpanzee. We could also 

use this dataset to investigate the temporal order of cis and trans divergence by looking at whether 

a DNA regulatory element that is affected in cis and trans between human-macaque is only 

affected in cis or only in trans between human-chimpanzee.   

 

Further Dissection of Individual Evolutionary-Relevant Loci  

 The ETS1 locus, described in Chapter III, provides an example of how a single substitution 

between human and macaque may have driven differential activity of ETS1 and therefore altered 

the cellular environment in trans. While we focused more on describing global trends, specific 

examples like this provide unique opportunities to investigate individual mutational events that 

had significant impacts on evolutionary outcomes. Future studies could use our comparative 

ATAC-STARR-seq dataset to find and characterize more examples like ETS1. I would 

recommend future studies use CRISPR to “rhesus-ize” these human enhancers to discover the 

effect of cis mutations in a highly controlled fashion.   

 

Summary 

 In summary, I developed a new approach called ATAC-STARR-seq to identify enhancers 

in the human genome so that researchers could address new and important questions in gene 

regulation. I show how ATAC-STARR-seq can provide five different levels of gene regulatory 

information including the identification of active and silent regions. I then applied ATAC-STARR-

seq to investigate the relative role of cis and trans regulatory changes on gene regulatory evolution 
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between human and macaque. I discover a greater role for trans regulatory divergence than 

previously recognized and surprisingly find that most differentially active regulatory elements 

diverged in both cis and trans. These observations generate several hypotheses that can be 

investigated in future studies and add to our understanding of what it means to be human.  
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