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CHAPTER 1

Introduction

Microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS) are devices on the

scale of a few micrometers or even nanometers. These systems play an important role in a wide range of

applications, including medical, automotive, aerospace, consumer electronics, etc. The micro/nano scale of

MEMS and NEMS devices presents unique challenges to the design and operation of these devices. Due to

their minuscule size, these devices are affected by interfacial forces and the atomic-level roughness of the

surfaces, leading to stiction and wear issues.1,2 The high surface-to-volume ratio also makes these devices

more susceptible to contamination, which can further exacerbate the wear and stiction problems.1,2

Ongoing research and development efforts are addressing these issues and improving the performance

of these devices in various applications. Unfortunately, traditional lubricants, such as long-chain alkanes,

are ineffective at this scale. These lubricants undergo a phase transition in a nano-confined gap and be-

come too viscous to reach all of the crevices of MEMS and NEMS.3 Alternative materials and fabrication

techniques that can reduce surface roughness and improve tribological properties are being explored and de-

veloped. For example, using nanoscale coatings and surface treatments, such as diamond-like carbon4–6 and

tetrafluoroethylene,7 can help reduce degradation. Additionally, the development of novel lubricants, such

as graphene-based8,9 and self-assembled monolayer lubricants,2,10,11 has shown promise in improving the

tribological performance of these devices.

1.1 Thin Films Coatings as Lubricants

A lubricant aids in transmitting forces, particles, or energy between two surfaces, and lower frictional forces

of surfaces in contacts. The effectiveness of the lubricants can be measured by their ability to minimize

frictional forces, and can be measured by the force of adhesion (F0) and coefficient of friction (COF) as

depicted in Equation 2.1. Force of adhesion, also referred to as adhesive force, measures the force required

to pull two surfaces in contact apart. While COF is a metric quantifying the amount of a resisting force

divided by the force in the perpendicular direction pushing the surfaces together. Some examples of common

COF’s are static, kinetic, deformation, molecular, and rolling coefficients. In this work, we are measuring

the kinetic COF, which quantifies the force restricting movement of one surface relative to its neighboring

surface. Among the alternative lubrication schemes, thin film coatings are seen as a promising solution

for reducing friction and wear in mechanical devices that have micro and nanoscale surface separations.1,2

These films can be fine-tuned through changes in their terminal group chemistries, backbone chain length,

1



backbone chemistry, and film composition. All have impacted their lubricating effectiveness along with other

properties, such as durability, solvent interactions, and thermal response.11,12

Particularly, the terminal group, as shown in various experimental and computational studies, has a signif-

icant impact on the tribological response of the thin film coating. For example, phenyl-terminated monolayer

thin films have been shown to yield higher frictional forces than methyl-terminated films, explained by the

twisting ability of the phenyl groups, hampering movement during shear.13 Meanwhile, hydroxylated and

carboxylated films had higher frictional and adhesive forces (F0) compared to methyl-terminated films, at-

tributed by their capability to form inter-monolayer hydrogen bonds. In addition to traditional experiments,

computational studies have also reported similar trends.12,14 Having more than one chemistry at an interface

introduces additional cross-interactions that could alter the lubricating properties. Experiments by Brewer

et al. demonstrated that a methyl-functionalized microscope tip in contact with either hydroxyl or carboxyl

terminated monolayers results in a lower COF compared to the same tip in contact with a methyl terminated

monolayer.14 Furthermore, introducing heterogeneity to individual monolayer films, i.e., having two or more

terminal group chemistries within the same surface or layer, offers the potential to get better lubricating per-

formance. Computational studies conducted by Lewis et al. for monolayers composed of methyl-terminated

alkanes mixed with perfluoroalkanes demonstrate a regime where the COF is reduced compared to either

pure component system.15 The cross-interactions between the multitude of terminal groups in these systems

are complex, as hinted by Le et al.16 However, this presents an information-rich parameter space that could

offer more insight into how to design a perfect lubricating thin film.

All of these studies, whether experimental or computational, confirm the prominent role of terminal

groups in the lubricating ability of monolayer films. Only examining terminal group chemistry creates a

vast realm of research to explore on its own where different chemical parameters can be used to optimize

film properties. However, when combining this plethora of information with the monolayer film design, it

will provide thousands of lubricating properties. By collecting this database of knowledge, we can better

understand the quantitative structure-property relationships (QSPR) of these films.12,17,18

1.2 Molecular Dynamics and High-throughput Screening

Despite the many benefits, investigating a vast parameter space which could range from thousands to tens of

thousands combinations, poses an overwhelming challenge for any researcher. The shear number of potential

thin film design makes it practically impossible to be studied using traditional experimental methods. exper-

imental methods can be incredibly expensive, time-consuming, and highly prone to error. Thus, in order to

make a dent in the many combinations, we can apply computational techniques, which can be scaled up by

the ever-increasing availability of computing resources.
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Figure 1.1: Visualization of monolayer thin films studied with optimizable components, e.g., terminal group,
backbone, backbone chain length, degree of crosslinking, and film composition.

As computing resources become more advanced and integrated into all science fields, we can simulate

more systems in record times. MD simulations, a popular method of study, are increasingly being utilized

as a powerful tool for studying complex chemical and physical systems. This avoids the need to develop

experimental synthesis techniques, which may be non-trivial and time intensive. One of the key benefits of

MD simulations is their ability to perform large-scale sweeps of the accessible parameter space.

To study these thin films on the nanoscale, MD simulations are an excellent candidate to quickly and

effectively reveal the intrinsic properties associated with defect-free films on pristine contaminant-free sur-

faces. Such approach has been utilized by Summers et al. to study and optimize various parameters de-

scribing the monolayer, including backbone chain length, chain densities, and a small collection of terminal

chemistries.12 Recent development of the Molecular Simulation and Design Framework (MoSDeF)19 and the

Signac Framework20 enables the systematic and automated large-scale screening of soft matter systems. This

allows for reproducible initialization and parameterization of systems in order to manage these large data

spaces. These tools have been used to design and perform large scale molecular dynamics screening studies

in several recent studies12,21,22 as well as used to fully capture the provenance of simulation workflows for

increased reproducibility in other work.23,24 The idea of maintaining repeatability in molecular simulations is

an obvious and yet until recently, unregulated subject. Many simulations fail to fully disclose the parameters,

necessary codes, data analysis, etc., in regard to their systems of interest. Even if the work is transparent

and all the materials accessible to others, if the resources are not transferable from one computer to another,
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this constitutes the work as not reproducible. Adopting open-source tools and standards, those that have un-

dergone extensive review and testing, is essential to mitigate the reproducibility issue that is lurking in the

computational community.

1.3 Machine Learning Integration

The optimization of monolayer films using merely brute force computational screening, at certain point, can

become impractical. As the parameter space is further expanded, i.e., when more variables are introduced,

the number of system configurations to be considered could increase to near infinite, making it impossible to

be fully surveyed. Instead, a more efficient approach can be achieved by combining computational screening

with machine learning (ML) techniques, where data generated from MD simulations are used to train pre-

dictive models. These models help mitigate the workload for the high-throughput screening by extrapolating

trends found from small subsets of data to predict properties for the entire parameter space. This information

can be used to guide subsequent steps to either only focus on systems with a high likelihood of possessing

desirable properties or strategically simulating systems that best improve the understanding of underlying

QSPR trends. As a result, this saves time and resources that may have been wasted simulating configurations

that offer little value.

ML is a technique with ever-increasing popularity, operating as a branch of artificial intelligence (AI),

which utilizes data and algorithms to imitate how humans learn and apply thought processes. These tech-

niques have been applied in conjunction with other traditional computational simulation techniques, e.g.,

MD and Density Functional Theory (DFT), in various subjects, including protein folding,25–27 polymers/-

monomers optimization,28–30 molecular properties prediction,31,32 all with great success. Depending on the

specific quantity of interest, different machine learning algorithms can be applied. Relevant to this work,

Neural Network30,32 and Random Forest,12,33 are useful methods that exhibit the great benefits of applying

ML to analyze and project in silico data. As the use of in silico data in predictive designs continues to in-

crease, the ability to rapidly generate, screen, learn, and predict from this data will be valuable tools for both

computational and experimental researchers.

1.4 Prior Work and Scope of Study

In prior work, we developed a screening framework to explore the role of terminal group chemistry on thin

film frictional properties under shear. The study focused on uniform monolayers with 16 different terminal

group chemistries, with each monolayer terminal group chemistry independently varied to study trends and

combinations of chemistries that provided favorable tribological properties. The COF and F0 were used to

quantify the systems.12 Data from 100 different monolayer combinations were analyzed with the random for-
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est regression model, creating ML models that predict COF and F0 solely from the chemistry of the terminal

group. ML models need a certain amount of training data in order to be accurate. Too little training data and

the model loses accuracy; too much training data and the algorithm over-predicts and wastes resources. De-

spite the limited amount of data available for training, the ML models still exhibit good predicting capability.

The success of the models suggest the benefit of utilizing a similar approach to pre-screen parameter space

and accelerate the discovery of monolayer combinations with desirable properties.

Expanding upon the previous results, this study1 will consider a larger parameter space by introducing a

heterogeneous monolayer, i.e., having two terminal group chemistries in one surface. Specifically, we con-

sider systems in which one monolayer consists of a single homogeneous or uniform terminal group (C in

Figure 2.2), while the other monolayer is made up of two chemistries (A and B in Figure 2.2 a), with varying

relative compositions. The study considers a pool of 19 different chemistries, creating 9747 unique dual-

monolayer systems, when accounting for the mixing ratio of terminal groups in the mixed monolayer. With

the generated data, the ML random forest algorithm will be employed to create a predictive model, allowing

for the further projection of the screened data. In chapter 2 we provide an overview of the computational

approach, focusing on the simulation workflow, analysis methods, and the ML model. In the results section

of chapter 3, we present the data generated from the MD screening and identify key terminal groups and

combinations associated with improved tribological performance. In chapter 4, we will investigate suitable

strategies for utilizing ML models to guide future work. This includes creating predictive models and apply

them toward screening of even larger data spaces (193,131 unique systems, created from 621 chemistries

from the CheMBL library.34,35) Finally, we experiment with hypothetical scenarios where ML is further inte-

grated with the high-throughput screening process to speed up similar high-throughput screening processes,

reducing required time and computing resources. All relevant information to maintain reproducibility in gen-

erating this data and workflow is readily available and adaptable for others to use, following the principle of

TRUE (Transferable, Reproducible, Usable by others and Extensible) simulations described by Thompson et

al..23 The instructions to access the accompanied GitHub repository is described in Appendix A.

1This work is adapted and reproduced with permission from AIP Publishing from the following work (Quach, C. D., Gilmer, J. B.,
Pert, D. O., Mason-Hogans, A., Iacovella, C. R., Cummings, P. T. & McCabe, C. High-Throughput Screening of Tribological Properties
of Monolayer Films Using Molecular Dynamics and Machine Learning. The Journal of Chemical Physics, 5.0080838. ISSN: 0021-9606,
1089-7690 [Feb. 2022])
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CHAPTER 2

Methods

2.1 Molecular Dynamics Setup

MD is a computer simulation method used in computational chemistry to study the behavior and interactions

of molecules. It uses numerical methods to integrate the equations of motion for a system of atoms or

molecules, taking into account their interactions with each other and with their environment, over a period

of time. The output from an MD simulation is a series of snapshots that describe the positions and motions

of the atoms or molecules in the system, allowing researchers to study the molecular-scale behavior and

properties of the system. This method can help provide insights into the behavior of complex molecular

systems that are difficult to study experimentally, as well as predict properties and behaviors of a molecular

system. MD simulations allow researcher to screen through a vast parameter space, studying the various

properties whether thermodynamic or dynamic in operating under different conditions.

In this study, we are considering a system that is made up of two opposing amorphous silica surfaces, each

coated with an alkylsilane monolayer, forming a dual-monolayer. Each surface, sized 5 nm x 5 nm, is created

followed the procedure described by Summers et al.,36 and is available in the form of a Python script, with the

instructions to access available in the Appendix A. The silica surfaces have an average surface roughness of

0.11 nm, a desirable approximation based off of Black et al., which utilized a more computationally intensive

synthesis mimetic simulation.37 100 alkylsilane chains are chemisorbed to each surface, resulting in a surface

density of 4 chains/nm2. The surface density is consistent with prior computational12,36,37 and experimental2

studies that determine chain surface densities to be between 4.0-5.0 chains/nm2. Each alkylsilane chain

is a fully saturated 17 carbon backbone capped with a terminal group from Figure 2.2 b. The remaining

uncoordinated oxygens were hydrogenated to mimic surface oxidation.

Each monolayer system was prepared using the MoSDeF software suite.19,38,39 Specifically, the initializa-

tion of the monolayer structure is encapsulated as an mBuild recipe,38,40 which preserves the entire process

used to construct the monolayer structure. The foyer library39,41 was used to atomtype and parameterize each

system with the Optimized Potential for Liquid Simulation - All Atoms (OPLS-AA) forcefield.42 A forcefield

is where bonded and non-bonded information for each atom is stored. Bonded interactions include: bonds,

angles, and torsions. Non-bonded parameters include electrostatics and van der Waals interactions. Param-

eters for the alkylsilane chains were taken from GROMACS 5.143,44 and those for the silica surface from

Lorenz et al.45 The force field details are provided in Appendix B and is also available in the accompanied
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GitHub repository (see Appendix A). The particle-particle particle-mesh (PPPM) algorithm was used to cal-

culate the long-range electrostatic interactions, using a force and pressure correction in the z-dimension to

support slab geometries; systems are periodic in the monolayer plane.44,46 The original script for the process

described above is available in the accompanied GitHub repository (see Appendix A).

MD simulations were performed using the Large-scale Atomic/Molecular Massively Parallel Simulator

(LAMMPS) and GROMACS simulation engines.43,44,47,48 LAMMPS was solely used to relieve the system

of initial high-energy configurations and possible atom overlaps. The more stable structure generated was

then fed into GROMACS to perform the rest of the simulation workflow, starting with energy minimization

following a steepest descent algorithm, followed by a 1 ns equilibration in the canonical (NVT) ensemble at

298 K using the Nóse-Hoover thermostat. An NVT simulation was then performed at 298 K in which the two

surfaces were brought into contact by applying a constant normal force of 5 nN along the z direction to the

bottom surface over 0.5 ns, allowing for the distance between the two surfaces to reach a steady state. After

compression, shearing simulations (with surfaces moving at relative speed of 10 ms−1) were performed at 3

different normal loads of 5 nN, 15 nN, and 25 nN. Specifically, the shearing process is simulated by pulling

a ghost particle, which is coupled to the top surface via a harmonic spring with a spring constant of 10,000

kJ/(mol.nm2), in the x direction at 10 ms−1. The shear is simulated for 10 ns, and the last 5 ns is used for

analysis (production regime). An example of a dual-monolayer system is shown in Figure 2.1

2.2 High-Throughput Screening Workflow

High-throughput screening is a scientific technique used in drug discovery, chemical biology, and materials

science to rapidly test large numbers of samples for specific biological or chemical activities. It involves the

use of automated equipment and processes to perform multiple tests in parallel, enabling researchers to screen

thousands of compounds or samples in a short amount of time. The goal of high-throughput screening is to

identify potential leads for further study, with the ultimate aim of discovering new drugs, chemicals, or ma-

terials with desired properties. Depending on the type of experiments, high-throughput screening combines

the use of high-speed robotic systems, microfluidic technologies, and high-throughput analytical instruments,

or purely computational simulation tools to screen large libraries of compounds or biological samples. The

results of screening are used to prioritize compounds or samples for further study, which can be validated

through more detailed and time-consuming laboratory experiments.

For our application, the high-throughput screening with MD can be used to scan through large parameter

space to determine thin film coatings that can provide beneficial lubrication properties for nano-scale surfaces

in contact. Of the two surfaces in the dual monolayer systems, as detailed in the previous section, the bottom

surface is homogeneous (singular terminal group C in Figure 2.2 a), and the top surface contains a mixture
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Figure 2.1: Snapshot of dual-monolayer system (difluoro-terminated on both top and bottom monolayer)
during the energy minimization (a) and shearing (b) stage

of two types of alkylsilane chains (groups A and B in Figure 2.2 a), differing by their terminal groups. The

mixing ratios for the top monolayers considered in this study include 0.5:0.5 and 0.25:0.75. The pool of 19

different terminal group chemistries investigated are shown in Figure 2.2 b; this adds 3 additional terminal

group chemistries to those considered by Summers et al.12 The uniform bottom monolayer and the mixed

top monolayer can be composed of any combination of groups from Figure 2.2 b, with the constraint that

the two groups in the mixed monolayer must be different. In total 12,996 combinations ([19 terminal groups

in uniform layer] * [19 * 18 terminal group combinations in mixed layer] * [2 composition ratios]) were

considered; this translates to a total of 116,964 simulations (12,996 * 3 * 3) when factoring in the composition

ratios studied, the 3 normal loads, and 3 replicates considered for each system. Of the 12,996 systems

considered, 3249 systems with the mixing ratio in the top monolayer of 0.5:0.5 were duplicated during the

screening and thus such combinations had 3 additional replicates; in total 9747 unique combinations (19 ∗

19∗18 of 0.25:0.75 systems + 1/2∗19∗19∗18 of 0.5:0.5 systems) were considered.

Managing and executing screening workflows, such as described above can be challenging. Major hurdles

include the ability to automate each step of the simulation workflow, managing large workspaces, and mon-
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Figure 2.2: (a) Simplified schematic of the systems studied. The top monolayer is a mixture of two types of
terminal groups chemistries (A and B), studied at two different mixing ratios (0.25:0.75, 0.5:0.5), while the
bottom monolayer is homogeneous (chemistry C). (b) Depiction of the 19 different chemistries considered.
From top to bottom, left to right, the terminal groups are amino, hydroxyl, methyl, acetyl, carboxyl, isopropyl,
cyano, ethylene, methoxy, nitro, difluoromethyl, perfluoromethyl, cyclopropyl, pyrrole, phenyl, fluorophenyl,
nitrophenyl, toluene, phenol.

itoring the simulation progress of the project as a whole. These obstacles are overcome by the utilization of

several open-source software packages including the MoSDeF Framework19 and the Signac Framework.20,49

The use of the MoSDeF framework allows for the encapsulation of the system initialization step, including

the construction of chemical systems based on provided variables and perform atomtyping and parameteriza-

tion all in the same ecosystem. The Signac Framework is used to manage, monitor, and advance the progress

of the automated project as a whole. The use of these open-source software ensures that all scripts and input

parameters used to initialize the systems, submit the systems for simulation, and analyze the systems are cap-

tured and preserved, ensuring the simulations are TRUE (Transparent, Reproducible, Usable by Others, and

Extensible).23 A summary of the screening workflow is visualized in Figure 2.3. All scripts and parameter

files are available in the associated GitHub repository (see Appendix A). We also note that a small subset of

simulations (less than 1% of the total) failed to complete due to unstable initial configurations. However, in

all cases, each unique system composition reported includes at least 3 replicates.

2.3 Calculation of Frictional Properties

The coefficient of friction (COF), µ , and adhesion force, F0, were calculated from the last 5 ns of the simula-

tion trajectory from each system under shear using the modified version of Amonton’s law of friction given

by Equation 2.1.

Ff = F0 +µ ×FN (2.1)

In the equation, Ff , F0, µ and FN represent the frictional force, the adhesive force, the coefficient of fric-
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Figure 2.3: High-throughput screening workflow utilizing all open-source software. Specifically, the
MoSDeF software suite is utilized to automatically perform system initialization, while GROMACS and
LAMMPS are used to perform the molecular dynamics simulation, whose results are analyzed with MDTraj;
the workspace and workflow as a whole is managed by signac and signac-flow.

tion, and the normal force, respectively. A linear regression of the average friction force (ordinate) versus

normal load (abscissa) were used to calculate the COF from the slope and F0 from the intercept of the regres-

sion line with the ordinate axis. The frictional force is calculated by summing all the forces in the direction

of shear on the bottom monolayer every 1 ps and averaged over the last 5 ns of the simulation (the production

regime) using MDTraj.50

2.4 Machine Learning Model

2.4.1 Random Forest Regressor Algorithm

Random forest regression is a machine learning algorithm used for regression tasks, that is, predicting a

continuous target variable based on input features.51,52 It is an ensemble method that combines multiple

decision trees to make predictions, as opposed to a single decision tree. Once provided a training set of data

composed of a set of input parameters and their expected outcomes, the random forest ensemble model will

create a series of decision trees, each generated from a sub-sample of the training data. The predictions of each

individual tree are combined to make the final prediction, either through averaging or a weighted average.

The use of multiple decision trees helps to reduce over-fitting and increase the robustness of the model, as

well as improve the accuracy of predictions. Random forest regression is also capable of handling non-linear

relationships between input features and the target variable, as well as handling missing values in the data.

Random forest regression is widely used in a variety of applications, including stock price prediction, weather

forecasting, and medical diagnosis. Hence, this method can be deemed reasonable to be applied in our study
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to predict the tribological properties of thin film coatings.

The MD-generated tribological data set is analyzed using the random forest regressor, as implemented in

the scikit-learn library,52 where the input is a composite molecular descriptors, or ”fingerprint”, of the ter-

minal group combinations, and output being their corresponding tribological properties/lubricating efficacy.

This setup is consistent with the prior work by Summers et al.12 Each predictive model will rank the im-

portance of each of the features in the ”fingerprint” based on how each input affects the final prediction and

unveils information regarding properties that play determinant roles in predicting the tribological properties

of the monolayer. These features, in addition to the ability to provide prediction for novel systems, makes

random forest regressor advantageous for screening/discovery research. All of the random forest models in

this study have 1000 trees, ensuring the predictions converge in a reasonable amount of time.33 Each decision

tree in the forest is allowed to expand until all leaves are pure (choosing splits that decrease impurity defined

by the Gini impurity). All models used mean squared error (MAE) as error criterion during training. Each

random forest model, and its subsequent decision trees, are trained with 35 features, which are molecular

descriptors calculated through RDKit.53 This setup is consistent with previous study by Summers et al.12

allowing for direct comparison between these studies, focusing on the accuracy of the models and feature

importance ranking determined from the two sets of data.

2.4.2 Molecular Fingerprint

In our implementation, the training data for ML algorithm are pairs of inputs, i.e., the ”fingerprint” repre-

senting each system, and expected outputs, i.e., the COF and F0. Here, the ”fingerprint” of each system is

the combined chemical and physical attributes of the component terminal groups calculated using the RD-

Kit cheminformatics library.53 Chemoinformatics is a branch of computational chemistry that deals with the

representation, storage, manipulation, and analysis of chemical and biological data. It involves the use of

computer algorithms, data structures, and databases to study chemical and biological systems. In cheminfor-

matics, chemical structures are modeled using mathematical algorithms and represented as numerical data,

which makes them ideal input for ML models.

The procedure to generate a ”molecular fingerprint” is adapted from our previous work.12 In short, the

”fingerprint” of each system is the weighted average of its component terminal groups’ molecular descrip-

tors. Specifically, each individual terminal group can be represented by two SMILES strings54: one of a

hydrogen capped structure and one of a methyl capped structure. Each SMILES string, in turn, is provided

to the RDKit cheminformatics library to determine molecular descriptors characterizing the chemical and

physical properties of structure.53 These descriptors are categorized into four groups: size (e.g., number of

heavy atoms), shape (e.g., planarity), complexity (e.g., connectivity), and charge distribution (e.g., topologi-
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cal polar surface area). Our previous work has determined that, while shape characteristics can be adequately

represented by a hydrogen-capped structure, other features are more accurately described with structures re-

sembling the terminal group when attached to alkylsilane backbone.12 Hence, we used the hydrogen-capped

SMILES string to determine descriptors relating to shape, and used the methyl-capped SMILES string to cal-

culate the remaining descriptors. In total, each terminal group is described by 53 descriptors, further detailed

in Appendix D.

From molecular descriptors of individual structures, we calculate the descriptors of the top and bottom

monolayers. Descriptors for the mixed monolayer with two terminal groups, i.e., the top monolayer, are the

weighted average by the relative composition of its component terminal groups’ descriptors. Descriptors for

the bottom monolayer are the descriptors of its sole terminal group. We note this representation does not

contain all of the information regarding connectivity of constituent chains and distribution pattern, and may

not fully represent our dual-monolayer system.55 However, since we are mainly interested in the interactions

of different terminal group chemistries in the inter-monolayer regions/interfaces, our composite molecular

descriptor ”fingerprint” representation was found to be sufficient. This representation only encodes minimal

information about the region of interest, with the assumption that the two terminal groups in the top monolayer

are evenly distributed. Next, the descriptors of the top and bottom monolayer are combined, retaining only

the average and minimum of each descriptor as the “molecular fingerprint” of the entire system. With this

approach, each system will be represented by a total 106 descriptors ([53 metrics]*[2 corresponding to min

and mean]), which have been shown to sufficiently summarize the most important features of these systems.12

Finally, these “molecular fingerprints” undergo a dimensionality reduction step developed by Summers

et al. using the source code hosted in the accompanied GitHub repository.12 In this step, descriptors whose

values are at least 90% correlated will be reduced to only one attribute, and descriptors with variance values

below 2% are also removed. This step reduced the number of descriptors of each system to be 34, which are

then used as the input parameters to the ML models. The process of determining molecular “fingerprint” of

each system is summarized in Figure 2.4.

2.4.3 Evaluation of the Model

From the entire available in silico data set of 9772 data points generated from the MD high-throughput

screening, which includes data generated from Summers et al.12 and excludes systems whose simulation

failed to complete, 20% (1956 data points) is set aside for testing purpose while the rest (7816 data points) is

utilized to train the ML models. This allows for an independent set of systems that the predictive models have

not seen/been optimized for, and provide more reliable information regarding the accuracy and bias of the ML

models. The accuracy of the predictive model can be determined by comparing the properties obtained from
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Figure 2.4: Process of generating the molecular descriptors (fingerprints) of the dual monolayer systems.
Component terminal group chemistries of each top and bottom monolayer are represented by an H-terminated
and methyl (CH3)-terminated SMILES string, which can be used by RDKit to calculate corresponding molec-
ular descriptors. For this study, we consider a total of 53 descriptors (listed in Appendix D), which can be
grouped into 4 categories, namely, shape, size, charge distribution, and complexity. The weighted averages
of these descriptors are then calculated to represent their corresponding surface, which in turn, will be used
to determine the fingerprint of each system. Figure adapted from Summers et al.12

the simulations, i.e., our ground truth, to the values estimated by the ML model, for all systems in the test set.

The comparison can be visualized as Predicted vs Simulated plots (see Figure 4.1). From this comparison, the

coefficient of determination (R2), and mean absolute percentage error (MAPE) are used quantify the accuracy

of the ML models. The R2 describes the correlation between the simulated and predicted values, and MAPE

provides the scaled error metrics.56

2.5 Integration of ML with High-Throughput Screening

A potential application to assist the high-throughput screening process would be using the ML model as a

guide to focus on only simulating a subset of systems in the parameter space that best supports the goal of

the study. This allow researchers to only focus on designs that would yield desirable properties, instead of

having to survey and sort the parameter landscape in its entirety. One way to do so would be to integrate a

ML technique early on in the screening process. In our application specifically, MD can be used to generate

a small set of data to train baseline ML models, which can then be utilized to quickly evaluate possible

candidates and determine the next set of systems to be simulated. The results from such baseline models, can

be utilized for various efforts, such as focusing on only simulating systems with the most favorable properties,

which will improve the accuracy of the predictive models only in a certain region of the parameter space, or

simulating those that could improve the overall robustness of the subsequent models.

To test this hypothesis, we begin by training a baseline ML model initialized with only 100 data points

randomly sampled from the whole data set. The ML model can then be utilized to provide estimations on

the remainder of the data set to determine the next set of systems to be considered. From the predictions,

we will ”simulate” only the top 100 systems (ranking either the COF or F0) and append them to the previous
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training set to create the next set of predictive models. The ML-MD high-throughput screening method can

then be carried out in an iterative manner, depending on the complexity of the systems and the availability

of computational resources. For our demonstration, 25 iterations were conducted, generating approximately

2500 systems, or a quarter of the entire proposed terminal group combinations. The process were repeated

three times, differed only by the initial 100 data points used to train the baseline model, for statistical purpose.

The success of this approach can be measured by the number of systems ”simulated” and compare their COF

or F0 to how many of the top 500 systems were generated through each iteration.
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CHAPTER 3

Results and Discussion: High-throughput Screening

3.1 Results Overview

With the amount of data generated through the high-throughput screening process, there are many ways we

can view and analyze the data. Considering first the results of the high throughput screening MD simulations,

including those performed in the current study and in Summers et al.,12 we plot every data point simulated

via MD in Figure 3.1 and Figure 3.2.

Figure 3.1: Distribution of simulated systems based on their COF and F0 values. The 22 most-favorable
systems, listed in Table 3.1, corresponds to data points confined within the red dashed box in the lower left
quadrant of the figure.

We first note that the range of COF is narrower than that of F0 and also possess different distributions. For

COF, we observe a normal distribution, with values ranging from 0.074 to 0.1967, with the mean of 0.1377

and the standard distribution of 0.0143. While, for the F0, the distribution appeared positively skewed, i.e.,

more data points are of lower values than higher values, with reported values ranging from 0.007 nN to 7.942

nN. We note the skewed data explains the vast difference between the mean and the median value of F0, being

1.644 nN and 1.328 nN respectively, with the standard distribution of 1.128 nN. The skewed data of the F0

suggests that this value could be affected by property, which is related to a certain type of chemistry. Indeed,

15



Figure 3.2: Distribution of (a) COF and (b) F0 for systems considered in this study, obtained from MD
simulations

this phenomenon could be explained by a conclusion drawn from the study by Summers et al.,12 determining

that the F0 could be significantly elevated by the inter-monolayer hydrogen bonding capability of the system,

which is only observed in certain terminal groups combinations.

From the data set, we also identify 22 monolayer designs that provide favorable frictional properties, e.g.,

those that have low simulated COF and F0 values (see Table 3.1 and Figure 3.1). The table was generated

by the intersection of the 500 systems with lowest COF (values ranging from 0.074 to 0.114) with the 500

with lowest F0 (values ranging from 0.007 nN to 0.541 nN). We first note that, in general, these results

agree with observations made by Summers et al., where it was noted that the COF of monolayers is mainly

affected by the shape and size of the terminal group, with chemistries of small sizes and simple shapes (e.g.,

sp hybridization) yielding the lowest COF.12 While, the F0 is most strongly affected by charge distribution,

with polarity and hydrogen bond forming ability both elevating F0.12

In agreement with these findings, we observe that a majority of the systems identified (19 out of 22)

consists of a cyano homogeneous monolayer. The cyano group is small in size, has sp hybridization and

does not readily form hydrogen bonds. These are characteristics that agree with previous work to identify

chemistries that can lower the COF and F0 of monolayers. We also note most systems in Table 3.1 are made

up of 3 different components and only one system that consists of two homogeneous monolayers (first system

in Table 3.1), which was simulated in the Summers et al. work.12 This result suggests a slight advantage to

having mixed monolayer designs. However, we also recognize that the data set is dominated with mixed

monolayers compared to homogeneous monolayers, therefore the best performing systems are likely the

result of the much larger representation of mixed monolayer systems compared to the homogeneous systems.

Nonetheless, mixed monolayer systems could provide extra flexibility during the design process and allow

for the optimization of other properties, such as thermal stability or environmental interactions, depending on
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the specific application, giving these designs advantages over homogeneous monolayers.
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3.2 Notable Homogeneous Monolayer Terminal Group Chemistries

Based on the results above, we can take a more detailed look into the top performing systems; specifically,

systems involving the cyano and isopropyl terminal groups that consistently appear with the highest frequency

in Table 3.1. Subsequently, we will look at systems whose bottom monolayer, i.e., the uniformly homoge-

neous monolayer, is terminated by either cyano or isopropyl groups, which is represented in the schematic

as Terminal Group C in Figure 2.2 a. The tribological properties of these systems are then displayed in a

heatmap (see Figure 3.3 and Figure 3.4), where the y and x axis represent the terminal groups involved in

the top monolayer, i.e., the mixed chemistry monolayer, matching with group A and B in Figure 2.2 a. The

relative composition of groups A and B is also noted as either 0.5:0.5 or 0.25:0.75 in each corresponding

figure. The magnitude of their properties, COF and F0, is reflected in the color saturation of each cell. The

remaining heatmaps of other terminal groups can be found in Appendix C. All heatmaps adopt the same

color saturation range, determined by the COF/F0 range of the entire data set. We note a few data points were

not available due to failure to meet required conditions and appeared as white. This means it could be due

to failure at the simulation step and appeared as white/empty cells or that a particular combination selected

during the high-throuput screening set up failed to meet the criteria that chemistry A must be different than

chemistry B (thus creating the white diagonal line in Figure 3.3 and Figure 3.4). These systems accounted

for less than 1% of the entire systems considered, and hence does not affect our final conclusion.

3.2.1 Cyano Terminated Monolayer

Figure 3.3 represents the heatmap of systems containing a cyano terminated homogeneous monolayer (bottom

monolayer) in addition to a heterogeneous top monolayer with two different chemistry combinations in either

a 0.25:0.75 or 0.5:0.5 ratio. These systems have COF values ranging from 0.074 to 0.150, with the mean of

0.115 and standard deviation of 0.011. The mean COF value is 16.67% lower than the average COF of

all systems surveyed, 0.1377 as reported in section 3.1, indicating that the cyano homogeneous monolayer

proved to minimize the COF of the whole system. F0, on the other hand, has a broader range, with the

minimum and maximum of 0.0848 nN and 5.890 nN respectively, and the mean of 1.908 nN and a standard

deviation of 1.180 nN. This average F0 value is slightly greater than the average value of the entire data set

shown in section 3.1, which is 1.644 nN. In other words, the result indicates that using the cyano terminating

groups in an alkylsilane monolayer can lower COF during shear, regardless of the opposing surface. However,

since this group has the tendency to form strong polar interactions and has the capability to form hydrogen

bonds with certain neighbors, it can elevate the F0 between surfaces. Therefore, one should be cautious when

designing these thin film combinations in order achieve desirable properties for their applications.
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3.2.2 Isopropyl Terminated Monolayer

Another terminal group that appears at high frequency from Table 3.1 is isopropyl terminal group chemistries.

Thus, we take a detailed look into this group shown in Figure 3.4. Out of all the systems with isopropyl

terminated groups, the monolayers have COF values ranging from 0.102 to 0.175 with the mean of 0.137

and standard deviation of 0.011; the F0 ranges from 0.0887 nN to 1.537 nN, with the mean and standard

deviation of 0.797 nN and 0.635 nN, respectively. At a glance, these systems have comparable COF values

with the mean COF values for the entire data set shown in section 3.1, while providing significantly lower F0,

on average. In summary, contrasting with the cyano group, the isopropyl group does not offer any additional

benefit for decreasing the COF. However, since this terminal group is made up of only carbons and hydrogens,

thus lacking the capability to form neither hydrogen bonding networks nor strong polar-polar interactions,

isopropyl terminated monolayer can help lower the F0 of surfaces during shear. These results suggest that

together the combination of cynao and isopropyl groups can create an optimal thin film coating, achieving

both low COF and low F0.

3.3 Effect of Different Mixing Ratio

From the available data, we also can compare the effect of changing the mixing ratio. Examining the heatmaps

in Figure 3.3 and Figure 3.4 alone, we see that increases or decreases in the composition of certain terminal

groups have an effect on the lubricating properties of the thin film system. These trends can be visualized by

the increase or decrease in color saturation in the rows or columns when comparing the heatmaps of systems

that have 0.5:0.5 mixing ratio to those that have 0.25:0.75 mixing ratio in the top monolayer. The increase in

saturation of a column means that increasing the relative composition of that specific chemistry will elevate

the property, while increase in saturation of row means that decreasing composition of the chemistry will

lower the property. Since this logic is inversely related, we will only compare the change in saturation pattern

of columns but not rows.

Comparing Figure 3.3 a and c shows that for the cyano groups, increasing the hydroxyl, perfluoromethyl,

tolune and methoxy groups’ relative composition from Figure 3.3 a to c in the top monolayer, cause the

COF to become elevated; while increasing the cyano terminal group B from 0.5 to 0.75 relative composition

actually lowers their COF. Regarding the F0, comparing between the ratios in Figure 3.3 b and d, increasing

the carboxyl or phenol group terminal group B composition causes an increase in F0 values. However,

these effects are slightly different in the homogeneous isopropyl monolayer systems shown in Figure 3.4.

Comparing between the COF values in Figure 3.4 a and c, we see that the mixing ratio effects caused a

spike in the COF for slightly different sets of terminal groups, namely perfluoromethyl, difluoromethyl, and

toluene. Similar to Figure 3.3, the cyano terminal group B in Figure 3.4 decreases the system’s COF. However
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as a contrast to the cyano homogeneous monolayer, there is no noticeable difference between the F0 of the

film composition (see Figure 3.4 b and d). This inertness can be explained by the low polarity as well as lack

of strong hydrogen bonding capability of the isopropyl monolayer.

We note that, besides the terminal groups mentioned above that induce a change in patterns, there is

no consistent trends created by changes in film composition. This suggests that there is not a silver bullet

combination that lowers both the COF and the F0 currently. It is a complex balance of interactions involv-

ing intra-monlayer and/or inter-monolayer terminal groups interacting with one another affecting their final

lubricating ability. The trends observed so far still conform to standard chemical intuition.

3.4 Conclusion

From the MD high-throughput screening process, we have been able to determine several promising terminal

group chemistries that can be further studied, such as cyano and isopropyl groups. The MD results also unveil

important data regarding the strategy to design thin films to achieve optimal lubricating properties producing

low COF and F0 values. The impact of altering the mixing ratio, however, does not provide clear trends,

and one must still rely on chemical intuition to estimate the lubricating ability of different combinations.

However, introducing varying mixing ratios significantly expanded the number of potential thin film designs.

The data from the screening workflow can also serve as in silico data to new ML models, which will be further

discussed in chapter 4, and provide predictions for systems with chemistries and compositions beyond those

surveyed here.
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Figure 3.3: Heatmaps showing the COF (a, c) and F0 (b, d) of systems whose bottom monolayer consists
of only cyano terminal group (chemistry C in Figure 2.2 a), while the top monolayer is a mixture of two
different terminal group (group A and B in Figure 2.2 a). Their relative composition is annotated in each
individual figure. The dotted lines between figures (a)-(c) and (b)-(d) highlight groups whose increase in
relative composition have a visible effect on the tribological properties of the system.
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Figure 3.4: Heatmaps showing the COF (a, c) and F0 (b, d) of systems whose bottom monolayer consists
of only isopropyl terminal group (chemistry C in Figure 2.2 a), while the top monolayer is a mixture of two
different terminal group (group A and B in Figure 2.2 a). Their relative composition is annotated in each
individual figure. The dotted lines between figures (a)-(c) and (b)-(d) highlight groups whose increase in
relative composition have a visible effect the tribological properties of the systems.
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CHAPTER 4

Results and Discussion: Machine Learning

4.1 Comparing The Accuracy of ML Predictive Models

Figure 4.1: Predicted-versus-simulated plots for COF and F0 for models trained with 100 simulation data
points for uniform monolayers from Summers et al.12 data set (a and b) and trained with 7816 data points as
described in subsection 2.4.3 (c and d). The dotted line in the middle represents perfect prediction (y = x).
The outer two lines represents the 15% variation from a perfect prediction (y = 1.15x and y = 0.85x). The
coefficient of determination (R2) and mean absolute percentage error (MAPE) are included.

To begin, we train the first set of predictive models with the data generated with MD through the high-

throughput screening process reported in chapter 3. The models are then applied to predicted tribological

properties of systems in a test set, as described in chapter 2. The predicted results are then compared to the

COF and F0 results obtained directly from the MD simulations to determine the accuracy of the ML models

(see Figure 4.1). Results are also included for the ML models trained in Summers et al.12 with the same test

set to show a comparison between the two ML models. When applied to the same testing set of nearly 2000
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data points, the Summers et al. models provide R2 values of 0.472 and 0.657 for COF and F0, respectively,

compared to 0.906 and 0.942 by the models trained with data generated in this study. While the R2 values

are considerably lower for the Summers et al. ML models, it is worth noting that the training data set used

in their ML model did not include any information regarding mixed monolayer compositions; as such, the

Summers et al. ML models still demonstrate adequate efficacy. This point is further demonstrated by their

MAPE, where the Summers et al. models could predict the COF of a system with 0.056 (5.6%) error and

predict F0 with 0.266 (26.6%) error. These MAPE values are higher in comparison to those produced by the

new set of models, but are justified by the significant size difference of the training data for the ML models

(nearly 80 times different). We note the prediction of F0 is less accurate in the higher adhesion regime for

the Summers et al. ML models, but the prediction accuracy has been significantly improved in the newer ML

models. This is likely related to the skewed distribution of F0 values (see Figure 3.2 b), which make it more

challenging to study systems in the higher F0 regime for training, especially for smaller scale studies like that

in Summers et al..12

Nonetheless, this result suggests that ML models trained with limited data could still provide meaning-

ful estimations, and that the use of the random forest regressor may lead to models that are predictive for

chemistries and compositions outside of the training set. We note that, this relationship has not been tested

with other forms of study, e.g., different chemical systems and simulations, and would thus require further

evaluation to draw a stronger and more generalized conclusion about ML models. We also note that for lower

values of COF or F0, both models deviate slightly in the positive direction, meaning they predict a slightly

higher value compared to simulation; as the value of either COF or F0 increases, a negative deviation is ob-

served with the ML models predicting slightly better performance than is observed in the MD simulations.

This trend is more apparent when looking at the prediction results from the Summers et al. models (see

Figure 4.1 a and b). This skew in the predictions suggests that for favorable tribological conditions (i.e., low

COF and low F0), the model will tend to overestimate the values, thus reducing the likelihood of incorrectly

identifying poor performing films as viable options. Given that this behavior of the model minimizes the

chances of exaggerating the performance of high performing systems (i.e., those with low COF and F0), this

suggests the predictive ML models can be confidently used to screen over potential film candidates for pos-

sible applications. We also note that while the R2 values for COF models are lower than those of F0 models,

giving an impression that the latter models outperform their COF counterparts. However, their MAPE values

indicate the opposite; the F0 models exhibit significantly greater percentage errors than the COF. This dispar-

ity is attributed to the difference in the range of these two properties; while COF values span a small range

of values from roughly 0.08 to 0.2, F0 can take values from 0 nN to 8 nN (see Figure 3.2 and Figure 3.1),

which may affect how these metrics are calculated. Hence, it is important to recognize that using either R2
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or MAPE values to directly compare the predictive ability of the COF and F0 models may be challenging

and potentially misleading, though these metrics are useful to compare the performance of ML models of a

similar type.

Figure 4.2: Feature importance of Summers et al., model for (a) COF and (b) F0 in comparison with those of
ML models trained with data generated from this study for (c) COF and (d) F0

Feature importance score in the random forest algorithm is calculated by measuring the impurity of the

nodes of each decision tree that use a specific feature. The more impurity decreases, the more important

the feature is considered.51 The feature importance scores are normalized to add up to 1, and can be used to

identify the most important features that have been utilized by the random forest predictive model. For our

study, this means ranking the most important chemical/physical properties, described as cheminformatics,

that have the most significant effects on the lubricating properties of the thin film design. Here, we can

compare the feature importance of two models, one that trained with 100 data points from Summers et al.,

and the other with nearly 8000 data points generated during the course of this study. This analysis can tell us if

there is any major shift in trends, that is, only captured when sufficiently large enough data sets are provided.

Comparing between COF models (Figure 4.2 a and c), we can see that the highest ranking feature, the hk-

alpha, remains consistent, leaving the other feature importances order shuffled around. The adjustments in

the feature importance ranking reflect the changes that occur as the forest decisions find descriptors that better

classify the data, resulting in more accurate models. Between F0 models (see Figure 4.2 c and d), we note

the position of the two highest ranking features, hbonds and tpsa-min, remain unchanged. However, there is
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some rearrangement among the lower ranking features. Despite the conclusions drawn from these two sets of

models, the work from Summers et al. and the newly trained models, remain consistent for both COF and F0.

Specifically, the COF is mostly impacted by the shape and size of the terminal group chemistries. Signifying

those with smaller size and linear organization, i.e., having sp hybridization, yields the lowest values. While,

F0 is strongly impacted by the terminal group charge distribution and ability to form hydrogen bonds.

4.2 Screening of A Small Molecule Library

Figure 4.3: Distribution of (a) COF and (b) F0 predicted by the ML models for 193,131 unique systems
created with molecules from ChEMBL small molecules library.

As a proof-of-concept of using ML to pre-screen the design space, we perform a screening study using

the above ML models. The chemical space for this screening was constructed using small molecule, whose

molecular weight is between 4 and 99 amu, from the ChEMBL library.34,35 This list of 981 small molecules

undergo further filtering to remove irrelevant group, such as those containing metallic elements and those

that cannot be processed by the RDKit library, e.g., chiral or charged molecules, resulting in 621 unique

chemistries. With these 621 groups, we created 193,131 unique systems in which each made up of two ho-

mogeneous monolayer (i.e., containing only one species); mixed monolayer chemistries were not considered

here due to the shear volume of data that would be generated. This simpler approach of using dual homoge-

neous monolayers was chosen to allow for consideration of more unique chemistries. Molecular descriptors

of the 621 terminal groups were identified using their SMILES strings and the RDKit library53; these descrip-

tors were then used to construct the ”fingerprint” for each of the 193,131 unique dual-monolayer system (as

described in subsection 2.4.2). The ”fingerprint” was used as input to the ML models, which in turn, provided

estimation of tribological properties of corresponding system. This screening process evaluated 385,641 sys-

tems total since duplicate systems (i.e., systems whose top and bottom monolayers inverse of each other)

were not removed. This screening took approximately 24 hours to predict on a standard laptop, or roughly
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0.22 seconds per system, which is about 5 orders of magnitudes faster than the time required to perform a

single MD simulation and without the need for expansive computational resources like a computing cluster.
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Table 4.1: 20 best performing systems as determined by the intersection of the top 2000 systems ranked by
coefficient of friction (COF) and the top 2000 systems ranked by adhesive force (F0). The properties were
predicted using the ML models trained with 7816 data points, as described in section 4.1.

Terminal Group A Terminal Group B COF F0 (nN)
1 cyano propyl 0.1144 0.7257
2 cyano cyclopropyl 0.1151 0.4631
3 methyl cyano 0.1153 0.5532
4 acetylene 1,1-difluoroethyl 0.118 0.7699
5 cyano ethyl 0.1206 0.649
6 fulminic acid cyclopropyl 0.1236 0.7117
7 ethylene 1,1-difluoroethyl 0.1244 0.7341
8 bromoethyl 1,2-diformylhydrazine 0.125 0.7695
9 methyl fulminic acid 0.126 0.7704
10 cyano difluoroethyl 0.1265 0.7279
11 bromoethyl malononitrile 0.1269 0.7098
12 acetylene ethyl 0.127 0.7254
13 1,1-difluoroethane propene 0.1271 0.729
14 propyl 2,2-difluoroacetamide 0.128 0.7423
15 acetylene propyl 0.1281 0.7777
16 methyl acetylene 0.1281 0.7405
17 bromoethyl 1,2-dicyanoethyl 0.1282 0.7737
18 fulminic acid ethyl 0.1283 0.7725
19 cyclopropyl acrylonitrile 0.1283 0.7152
20 allyl but-2-yne 0.1283 0.7546
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The distribution of COF and F0 of the systems estimated by the ML model are shown in Figure 4.3.

We note the distributions differ from that of the data set screened using MD simulations (see Figure 3.2),

which may be explained by expanded chemical design space. Using the first quartile of the COF distribu-

tion (0.1280) and F0 distribution (0.8966 nN) obtained from MD high-throughput screening as a reference,

the new data set has 5121 systems that can be considered to have good COF and 10,598 systems with good

F0. Two shortened lists of 2000 systems with lowest COF and 2000 systems with lowest F0 are compiled.

We were then able to reduce to the 20 most interesting systems by intersecting these two lists, and reported

them in Table 4.1. We note that many of the chemistries that were surveyed in our MD screening studies (see

Table 3.1) are found here; specifically, systems 2, 3, and 16 overlap with Summer et al..12 The result also sug-

gests several other chemistries to examine in future studies, such as various alkenes (allyl, propene), alkynes

(acetylene, but-2-yne), halocarbons (1,1-difluoroethyl, bromoethyl, vinyl chloride), and nitriles (cyano, mal-

ononitrile, acrylonitrile). We note that none of the systems reported here (in Table 4.1) provide better lu-

bricating properties comparing to those identified in Table 3.1 through the MD high-throughput screening.

This is potentially because the systems in Table 4.1 consist of 2 homogeneous monolayers, and hence, do

not reap the benefits offered by the mixed monolayers, as discussed earlier. Nonetheless, this highlights the

feasibility of combining ML with MD database screening to reduce computational cost and identify favorable

candidates for further study via reducing the vast design space of mixed monolayer systems.

4.3 Integration of ML to Accelerate High-throughput Screening

As previously discussed, the capability of current high-throughput screening with MD can be highly restricted

by available computing resources and can become impractical as the parameter space is expanded. Given the

significant speed up that the machine learning models provide, we believe the further integration of ML

techniques can help high-throughput screening processes be conducted more efficiently. Hence, with the

available data, we experiment with a hypothetical scenario where the ML technique is integrated during an

earlier stage of the high-throughput screening process. This encourages only those systems that have high

potential of producing favorable lubricating properties to be examined. Specifically, we start by training a

model with only 100 data points, randomly sampled from the available data set, and utilized the said predictive

models to estimate tribological properties of remaining systems in the pre-designed parameter space. From

the estimation, the top 100 systems with the most favorable tribological properties, i.e., those with lowest

COF and lowest F0, will be appended to the previous data set, which in turn, is used to train subsequent ML

models. This process can be done in an iterative fashion until a computing resource cutoff is reached.

Here, we perform a hypothetical 25 iterations as our cutoff, with an increment of 100 data points, creating

2,500 systems to be ”simulated”. The outcome is plotted in Figure 4.4, which quantifies the top 500 systems
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Figure 4.4: The amount of systems in the top 500 systems, ranked by either their simulated COF properties
or F0 properties, that is captured by a hypothetical iterative integration of ML model to the high-throughput
screening process.

of the pre-designed parameter space that would have been ”simulated” during this hypothetical process. The

presented data is averaged from 3 trials, each differing by the initial 100 randomly seeded training data. So for

example, Figure 4.4 shows that after 5 iterations, we were able to ”simulate” 200 out of the 500 best systems

in the entire workspace. Therefore, as the number of iterations increases, we approach and accumulate the

top 500 systems. The COF is 406±9 systems from the top 500 systems, or 81±2% at the 13th iteration and

471± 13, or 94± 3% at the 25th iteration. For F0, we observe a nearly identical trend, though slightly less

impressive, with this approach being able to include 403± 10 systems, or 89± 2% at the 16th iteration and

452±5 systems, or 90±1% at the final iteration.

In other words, this approach allows us to determine more than 80% of the most interesting systems by

only simulating 1300-1600 systems, or 13-16% of the intended parameter landscape. We can achieve more

than 90% of the best systems if 2500 simulations, or roughly a quarter of the entire landscape, is simulated.

However, we note that these models will significantly under-perform on regimes of higher COF or F0, due

to the skewed training data. Nonetheless, this approach shows the benefit of scanning for properties on both

extremes for screening processes.
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4.4 Conclusion

We have demonstrated several key benefits of utilizing ML models for high-throughput screening processes.

Applying iterative ML techniques to a traditional MD screening workflow can significantly improve the

efficiency of the screening process by targeting regions of vast parameter spaces with the most favorable

properties. The predictive ML models also allow for further extrapolation outside of the screened parameter

space, extending the impact of the screening process.
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Appendix A

Accessing the source code and data

A.1 Using the released Repository

To install conda to a local machine, run the following commands in your terminal based on your operating

system (note that the initial “$” is meant to denote a line on the command line):

A.1.1 MacOS

$ cd ${HOME}

$ curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh

$ /bin/bash Miniconda3-latest-MacOSX-x86_64.sh

A.1.2 Linux

$ cd ${HOME}

$ curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

$ /bin/bash Miniconda3-latest-Linux-x86_64.sh

A.2 Cloning the repository and creating the python environment

Once the conda package manager has been installed, the reader can proceed to clone the repository and

create a working environment. We note, due to the sheer size of the simulation data, only the analysis

routines, along with the summarized data, is hosted on GitHub for easy access; the full simulation workflow

is archived and uploaded Zenodo.

MacOS and Linux:

$ git clone https://github.com/daico007/iMoDELS-supplements.git

$ cd iModels-supplements

$ conda install -c conda-forge mamba

$ mamba env create --file env.yml

$ conda activate screeni

A.3 Utilizing the repository

The iModels-supplements repository includes the summarized data generated from the MD simula-

tions and routines used to train and evaluate the efficacy of the ML models. The raw data contains in-

formation regarding the systems as well as the calculated tribological properties, while the analysis rou-

tines can be found in a collection of Python scripts (used to perform the training and evaluation of the

ML models) and Jupyter notebooks (used to plot and visualize data). We have set up a Jupyter
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notebook, named Data-Lookup.ipynb, to specifically assist with 1) Looking up data generated from

MD and 2) utilize the trained ML models to predict tribological properties of new systems. More de-

tails of the structure of the repository can be found on the GitHub page accompanied the paper at htt ps :

//github.com/daico007/iMoDELS− supplements/.
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Appendix B

Additional Force Field Details

This study utilized the Optimized Potential for Liquid System - All Atom, consistent with that used in Sum-

mers et al., study12,42,45. Beyond parameters for chemistries studied in the previous work, interaction param-

eters for the three new chemistries (toluene, phenol, and difluoromethyl) are presented below. The complete

list of parameters is stored in a foyer-compatible XML file, named oplsaa.xml, and included with the

workflow repository at https://github.com/daico007/iMoDELS-supplements/.

B.1 Toluene

Table B.1: Toluene nonbonded parameters.

Nonbonded parameters

Atom Type Element Charge Sigma, Å Epsilon, kcalmol−1 Reference

opls 140 H 0.06 2.5 0.03 [42]
opls 148 C -0.065 3.5 0.066 [42]
opls 145 C -0.115 3.55 0.07 [42]
opls 146 H 0.115 2.42 0.03 [42]

Table B.2: Toluene bonded parameters.

Harmonic Bond parameters

Bond Elements k, kcalmol−1 Å−2 r0, Å Reference

opls 149-opls 140 C-H 340 1.09 [42]
opls 145-opls 148 C-C 317 1.51 [42]
opls 145-opls 145 C-C 469 1.4 [42]
opls 145-opls 149 C-C 317 1.51 [42]
opls 140-opls 148 H-C 340 1.09 [42]

Table B.3: Toluene angle parameters.

Harmonic Angle parameters

Angle Elements k, kcalmol−1 deg−2
θ0, deg Reference

opls 149-opls 145-opls 145 C-C-C 70 120 [42]
opls 140-opls 149-opls 145 H-C-C 35 109.5 [42]
opls 136-opls 149-opls 145 C-C-C 63 114 [42]
opls 148-opls 145-opls 145 C-C-C 70 120 [42]
opls 145-opls 148-opls 140 C-C-H 35 109.5 [42]
opls 145-opls 145-opls 145 C-C-C 63 120 [42]
opls 145-opls 145-opls 146 C-C-H 35 120 [42]
opls 140-opls 148-opls 140 H-C-H 33 107.8 [42]
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Table B.4: Toluene dihedral parameters.

Dihedral parameters

Dihedral Elements k1 k2 k3 k4 Reference
kcalmol−1

opls 149-opls 145-opls 145-opls 145 C-C-C-C 0 7.25 0 0 [42]
opls 149-opls 145-opls 145-opls 146 C-C-C-H 0 7.25 0 0 [42]
opls 140-opls 149-opls 145-opls 145 H-C-C-C 0 0 0 0 [42]
opls 136-opls 149-opls 145-opls 145 C-C-C-C 0 0 0 0 [42]
opls 140-opls 136-opls 149-opls 145 H-C-C-C −1.2×10−6 0 0.462 0 [42]
opls 148-opls 145-opls 145-opls 145 C-C-C-C 0 7.25 0 0 [42]
opls 148-opls 145-opls 145-opls 146 C-C-C-H 0 7.25 0 0 [42]
opls 145-opls 145-opls 145-opls 145 C-C-C-C 0 7.25 0 0 [42]
opls 145-opls 145-opls 145-opls 146 C-C-C-H 0 7.25 0 0 [42]
opls 145-opls 145-opls 148-opls 140 C-C-C-H 0 0 0 0 [42]
opls 146-opls 145-opls 145-opls 146 H-C-C-H 0 7.25 0 0 [42]

Table B.5: Toluene improper parameters.

Improper parameters1

Improper1 Elements Kφ , kcalmol−1 n γ , deg Reference

opls 148-opls 145-opls 145-opls 145 C-C-C-C 1.1 2 180 [42]
opls 145-opls 145-opls 145-opls 146 C-C-C-H 1.1 2 180 [42]
opls 149-opls 145-opls 145-opls 145 C-C-C-C 1.1 2 180 [42]

1 Dihedral OPLS parameters are converted from Ryckaert-Bell parameters stored in the “oplsaa.xml”.
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B.2 Phenol

Table B.6: Phenol nonbonded parameters.

Nonbonded parameters

Atom Type Element Charge Sigma, Å Epsilon, kcalmol−1 Reference

opls 145 C -0.115 3.55 0.07 [42]
opls 166 C 0.15 3.55 0.07 [42]
opls 167 O -0.585 3.07 0.17 [42]
opls 146 H 0.115 2.42 0.03 [42]
opls 168 H 0.435 10 0.0 [42]

Table B.7: Phenol bonded parameters.

Harmonic Bond parameters

Bond Elements k, kcalmol−1 Å−2 r0, Å Reference

opls 145-opls 149 C-C 317 1.51 [42]
opls 145-opls 145 C-C 469 1.4 [42]
opls 145-opls 166 C-C 469 1.4 [42]
opls 167-opls 166 O-C 450 1.364 [42]
opls 146-opls 145 H-C 367 1.08 [42]
opls 168-opls 167 H-O 553 0.945 [42]

Table B.8: Phenol angle parameters.

Harmonic Angle parameters

Angle Elements k, kcalmol−1 deg−2
θ0, deg Reference

opls 149-opls 145-opls 145 C-C-C 70 120 [42]
opls 140-opls 149-opls 145 H-C-C 35 109.5 [42]
opls 136-opls 149-opls 145 C-C-C 63 114 [42]
opls 145-opls 145-opls 145 C-C-C 63 120 [42]
opls 145-opls 145-opls 146 C-C-H 35 120 [42]
opls 145-opls 145-opls 166 C-C-C 63 120 [42]
opls 145-opls 166-opls 145 C-C-C 63 120 [42]
opls 145-opls 166-opls 167 C-C-O 70 120 [42]
opls 166-opls 145-opls 146 C-C-H 35 120 [42]
opls 166-opls 145-opls 145 C-C-C 63 120 [42]
opls 166-opls 167-opls 168 C-O-H 35 113 [42]

Table B.9: Phenol dihedral parameters.

Dihedral parameters

Dihedral Elements k1 k2 k3 k4 Reference
kcalmol−1

opls 149-opls 145-opls 145-opls 145 C-C-C-C 0 7.25 0 0 [42]
opls 149-opls 145-opls 145-opls 146 C-C-C-H 0 7.25 0 0 [42]
opls 140-opls 149-opls 145-opls 145 H-C-C-C 0 0 0 0 [42]
opls 136-opls 149-opls 145-opls 145 C-C-C-C 0 0 0 0 [42]
opls 140-opls 136-opls 149-opls 145 H-C-C-C -1.20E-06 0 0.46199928 0 [42]
opls 145-opls 145-opls 145-opls 166 C-C-C-C 0 7.25 0 0 [42]
opls 145-opls 145-opls 145-opls 146 C-C-C-H 0 7.25 0 0 [42]
opls 145-opls 145-opls 145-opls 145 C-C-C-C 0 7.25 0 0 [42]
opls 145-opls 145-opls 166-opls 145 C-C-C-C 0 7.25 0 0 [42]
opls 145-opls 145-opls 166-opls 167 C-C-C-O 0 7.25 0 0 [42]
opls 145-opls 166-opls 145-opls 145 C-C-C-C 0 7.25 0 0 [42]
opls 145-opls 166-opls 145-opls 146 C-C-C-H 0 7.25 0 0 [42]
opls 145-opls 166-opls 167-opls 168 C-C-O-H 0 1.68200048 0 0 [42]
opls 166-opls 145-opls 145-opls 146 C-C-C-H 0 7.25 0 0 [42]
opls 167-opls 166-opls 145-opls 146 O-C-C-H 0 7.25 0 0 [42]
opls 146-opls 145-opls 145-opls 146 H-C-C-H 0 7.25 0 0 [42]
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Table B.10: Phenol improper parameters.

Improper parameters1

Improper1 Elements Kφ , kcalmol−1 n γ , deg Reference

opls 149-opls 145-opls 145-opls 145 C-C-C-C 1.1 2 180 [42]
opls 145-opls 145-opls 145-opls 146 C-C-C-H 1.1 2 180 [42]
opls 145-opls 166-opls 145-opls 146 C-C-C-H 1.1 2 180 [42]
opls 145-opls 145-opls 166-opls 167 C-C-C-O 1.1 2 180 [42]
opls 166-opls 145-opls 145-opls 146 C-C-C-H 1.1 2 180 [42]

1 Dihedral OPLS parameters are converted from Ryckaert-Bell parameters stored in the “oplsaa.xml”.

45



B.3 Difluoromethyl

Table B.11: Difluoromethyl nonbonded parameters.

Nonbonded parameters

Atom Type Element Charge Sigma, Å Epsilon, kcalmol−1 Reference

opls 140 H 0.06 2.5 0.03 [42]
opls 962 C 0.24 3.5 0.066 [42]
opls 965 F -0.12 2.95 0.053 [42]

Table B.12: Difluoromethyl bonded parameters.

Harmonic Bond parameters

Bond Elements k, kcalmol−1 Å−2 r0, Å Reference

opls 136-opls 140 C-H 340 1.09 [42]
opls 140-opls 136 H-C 340 1.09 [42]
opls 136-opls 140 C-H 340 1.09 [42]
opls 140-opls 136 H-C 340 1.09 [42]
opls 1004-opls 140 C-H 340 1.09 [42]
opls 140-opls 1004 H-C 340 1.09 [42]
opls 962-opls 136 C-C 268 1.529 [42]
opls 965-opls 962 F-C 367 1.332 [42]
opls 965-opls 962 F-C 367 1.332 [42]
opls 140-opls 962 H-C 340 1.09 [42]

Table B.13: Difluoromethyl angle parameters.

Harmonic Angle parameters

Angle Elements k, kcalmol−1 deg−2
θ0, deg Reference

opls 136-opls 962-opls 965 C-C-F 50 109.5 [42]
opls 136-opls 962-opls 140 C-C-H 37.5 110.7 [42]
opls 140-opls 136-opls 962 H-C-C 37.5 110.7 [42]
opls 136-opls 136-opls 962 C-C-C 58.3500239 112.7 [42]
opls 965-opls 962-opls 965 F-C-F 77 109.1 [42]
opls 965-opls 962-opls 140 F-C-H 40 107 [42]

Table B.14: Difluoromethyl dihedral parameters.

Dihedral parameters

Dihedral Elements k1 k2 k3 k4 Reference
kcalmol−1

opls 140-opls 136-opls 962-opls 965 H-C-C-F 0 0 0.4 0 [42]
opls 140-opls 136-opls 962-opls 140 H-C-C-H 0 0 0.3 0 [42]
opls 136-opls 136-opls 962-opls 965 C-C-C-F 0.3 0 0.4 0 [42]
opls 136-opls 136-opls 962-opls 140 C-C-C-H 0 0 0.3 0 [42]
opls 140-opls 136-opls 136-opls 962 H-C-C-C 0 0 0.3 0 [42]
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Appendix C

Additional High-throughput Screening Result

The entirety of the MD high-throughput data can be presented as heatmap. In in the sections below, the

terminal group of the bottom monolayer, i.e., the uniform monolayer, will be held constant, while the corre-

sponding terminal group combinations in the top monolayer, i.e., the mixed monolayer, will be shown as the

x and y axis of each heatmap. Also, their relative composition will be denoted on the individual axes.

C.1 Hydroxyl Terminated Monolayer
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Figure C.1: Heatmaps showing the COF (a, c) and F0 (b, d) of systems whose bottom monolayer consists
of only hydroxyl terminal group (chemistry C in Figure 2.2 a), while the top monolayer is a mixture of two
different terminal groups (group A and B in Figure 2.2 a). Their relative composition annotated in each
individual figure
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C.2 Methyl Terminated Monolayer
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Figure C.2: Heatmaps showing the COF (a, c) and F0 (b, d) of systems whose bottom monolayer consists
of only methyl terminal group (chemistry C in Figure 2.2 a), while the top monolayer is a mixture of two
different terminal groups (group A and B in Figure 2.2 a). Their relative composition annotated in each
individual figure
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C.3 Isopropyl Terminated Monolayer

hy
dr

ox
yl

m
et

hy
l

iso
pr

op
yl

ni
tro

pe
rfl

uo
ro

m
et

hy
l

flu
or

op
he

ny
l

ca
rb

ox
yl

di
flu

or
om

et
hy

l
ph

en
ol

to
lu

en
e

ac
et

yl
am

in
o

cy
an

o
cy

clo
pr

op
yl

et
hy

le
ne

m
et

ho
xy

ni
tro

ph
en

yl
ph

en
yl

py
rro

le

Terminal Group B (0.5)

pyrrole
phenyl

nitrophenyl
methoxy
ethylene

cyclopropyl
cyano
amino
acetyl

toluene
phenol

difluoromethyl
carboxyl

fluorophenyl
perfluoromethyl

nitro
isopropyl

methyl
hydroxylTe

rm
in

al
 G

ro
up

 A
 (

0.
5)

a

hy
dr

ox
yl

m
et

hy
l

iso
pr

op
yl

ni
tro

pe
rfl

uo
ro

m
et

hy
l

flu
or

op
he

ny
l

ca
rb

ox
yl

di
flu

or
om

et
hy

l
ph

en
ol

to
lu

en
e

ac
et

yl
am

in
o

cy
an

o
cy

clo
pr

op
yl

et
hy

le
ne

m
et

ho
xy

ni
tro

ph
en

yl
ph

en
yl

py
rro

le

Terminal Group B (0.5)

pyrrole
phenyl

nitrophenyl
methoxy
ethylene

cyclopropyl
cyano
amino
acetyl

toluene
phenol

difluoromethyl
carboxyl

fluorophenyl
perfluoromethyl

nitro
isopropyl

methyl
hydroxylTe

rm
in

al
 G

ro
up

 A
 (

0.
5)

b

hy
dr

ox
yl

m
et

hy
l

iso
pr

op
yl

ni
tro

pe
rfl

uo
ro

m
et

hy
l

flu
or

op
he

ny
l

ca
rb

ox
yl

di
flu

or
om

et
hy

l
ph

en
ol

to
lu

en
e

ac
et

yl
am

in
o

cy
an

o
cy

clo
pr

op
yl

et
hy

le
ne

m
et

ho
xy

ni
tro

ph
en

yl
ph

en
yl

py
rro

le

Terminal Group B (0.75)

pyrrole
phenyl

nitrophenyl
methoxy
ethylene

cyclopropyl
cyano
amino
acetyl

toluene
phenol

difluoromethyl
carboxyl

fluorophenyl
perfluoromethyl

nitro
isopropyl

methyl
hydroxylTe

rm
in

al
 G

ro
up

 A
 (

0.
25

)

c

hy
dr

ox
yl

m
et

hy
l

iso
pr

op
yl

ni
tro

pe
rfl

uo
ro

m
et

hy
l

flu
or

op
he

ny
l

ca
rb

ox
yl

di
flu

or
om

et
hy

l
ph

en
ol

to
lu

en
e

ac
et

yl
am

in
o

cy
an

o
cy

clo
pr

op
yl

et
hy

le
ne

m
et

ho
xy

ni
tro

ph
en

yl
ph

en
yl

py
rro

le

Terminal Group B (0.75)

pyrrole
phenyl

nitrophenyl
methoxy
ethylene

cyclopropyl
cyano
amino
acetyl

toluene
phenol

difluoromethyl
carboxyl

fluorophenyl
perfluoromethyl

nitro
isopropyl

methyl
hydroxylTe

rm
in

al
 G

ro
up

 A
 (

0.
25

)
d

0.08

0.10

0.12

0.14

0.16

0.18

0

1

2

3

4

5

6

7

0.08

0.10

0.12

0.14

0.16

0.18

0

1

2

3

4

5

6

7

Figure C.3: Heatmaps showing the COF (a, c) and F0 (b, d) of systems whose bottom monolayer consists
of only isopropyl terminal group (chemistry C in Figure 2.2 a), while the top monolayer is a mixture of two
different terminal groups (group A and B in Figure 2.2 a). Their relative composition annotated in each
individual figure
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C.4 Nitro Terminated Monolayer
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Figure C.4: Heatmaps showing the COF (a, c) and F0 (b, d) of systems whose bottom monolayer consists of
only nitro terminal group (chemistry C in Figure 2.2 a), while the top monolayer is a mixture of two different
terminal groups (group A and B in Figure 2.2 a). Their relative composition annotated in each individual
figure
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C.5 Perfluoromethyl Terminated Monolayer
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Figure C.5: Heatmaps showing the COF (a, c) and F0 (b, d) of systems whose bottom monolayer consists of
only perfluoromethyl terminal group (chemistry C in Figure 2.2 a), while the top monolayer is a mixture of
two different terminal groups (group A and B in Figure 2.2 a). Their relative composition annotated in each
individual figure
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C.6 Fluorophenyl Terminated Monolayer
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Figure C.6: Heatmaps showing the COF (a, c) and F0 (b, d) of systems whose bottom monolayer consists
of only fluorophenyl terminal group (chemistry C in Figure 2.2 a), while the top monolayer is a mixture of
two different terminal groups (group A and B in Figure 2.2 a). Their relative composition annotated in each
individual figure
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C.7 Carboxyl Terminated Monolayer
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Figure C.7: Heatmaps showing the COF (a, c) and F0 (b, d) of systems whose bottom monolayer consists
of only carboxyl terminal group (chemistry C in Figure 2.2 a), while the top monolayer is a mixture of two
different terminal groups (group A and B in Figure 2.2 a). Their relative composition annotated in each
individual figure
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C.8 Difluoromethyl Terminated Monolayer
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Figure C.8: Heatmaps showing the COF (a, c) and F0 (b, d) of systems whose bottom monolayer consists of
only difluoromethyl terminal group (chemistry C in Figure 2.2 a), while the top monolayer is a mixture of
two different terminal groups (group A and B in Figure 2.2 a). Their relative composition annotated in each
individual figure
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C.9 Phenol Terminated Monolayer
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Figure C.9: Heatmaps showing the COF (a, c) and F0 (b, d) of systems whose bottom monolayer consists
of only phenol terminal group (chemistry C in Figure 2.2 a), while the top monolayer is a mixture of two
different terminal groups (group A and B in Figure 2.2 a). Their relative composition annotated in each
individual figure
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C.10 Toluene Terminated Monolayer
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Figure C.10: Heatmaps showing the COF (a, c) and F0 (b, d) of systems whose bottom monolayer consists
of only toluene terminal group (chemistry C in Figure 2.2 a), while the top monolayer is a mixture of two
different terminal groups (group A and B in Figure 2.2 a). Their relative composition annotated in each
individual figure
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C.11 Acetyl Terminated Monolayer
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Figure C.11: Heatmaps showing the COF (a, c) and F0 (b, d) of systems whose bottom monolayer consists
of only acetyl terminal group (chemistry C in Figure 2.2 a), while the top monolayer is a mixture of two
different terminal groups (group A and B in Figure 2.2 a). Their relative composition annotated in each
individual figure
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C.12 Amino Terminated Monolayer
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Figure C.12: Heatmaps showing the COF (a, c) and F0 (b, d) of systems whose bottom monolayer consists
of only amino terminal group (chemistry C in Figure 2.2 a), while the top monolayer is a mixture of two
different terminal groups (group A and B in Figure 2.2 a). Their relative composition annotated in each
individual figure

59



C.13 Cyano Terminated Monolayer
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Figure C.13: Heatmaps showing the COF (a, c) and F0 (b, d) of systems whose bottom monolayer consists
of only cyano terminal group (chemistry C in Figure 2.2 a), while the top monolayer is a mixture of two
different terminal groups (group A and B in Figure 2.2 a). Their relative composition annotated in each
individual figure
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C.14 Cyclopropyl Terminated Monolayer
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Figure C.14: Heatmaps showing the COF (a, c) and F0 (b, d) of systems whose bottom monolayer consists
of only cyclopropyl terminal group (chemistry C in Figure 2.2 a), while the top monolayer is a mixture of
two different terminal groups (group A and B in Figure 2.2 a). Their relative composition annotated in each
individual figure
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C.15 Ethylene Terminated Monolayer
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Figure C.15: Heatmaps showing the COF (a, c) and F0 (b, d) of systems whose bottom monolayer consists
of only ethylene terminal group (chemistry C in Figure 2.2 a), while the top monolayer is a mixture of two
different terminal groups (group A and B in Figure 2.2 a). Their relative composition annotated in each
individual figure
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C.16 Methoxy Terminated Monolayer
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Figure C.16: Heatmaps showing the COF (a, c) and F0 (b, d) of systems whose bottom monolayer consists
of only methoxy terminal group (chemistry C in Figure 2.2 a), while the top monolayer is a mixture of two
different terminal groups (group A and B in Figure 2.2 a). Their relative composition annotated in each
individual figure
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C.17 Nitrophenyl Terminated Monolayer
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Figure C.17: Heatmaps showing the COF (a, c) and F0 (b, d) of systems whose bottom monolayer consists
of only nitrophenyl terminal group (chemistry C in Figure 2.2 a), while the top monolayer is a mixture of
two different terminal groups (group A and B in Figure 2.2 a). Their relative composition annotated in each
individual figure
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C.18 Phenyl Terminated Monolayer
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Figure C.18: Heatmaps showing the COF (a, c) and F0 (b, d) of systems whose bottom monolayer consists
of only phenyl terminal group (chemistry C in Figure 2.2 a), while the top monolayer is a mixture of two
different terminal groups (group A and B in Figure 2.2 a). Their relative composition annotated in each
individual figure

65



C.19 Pyrrole Terminated Monolayer
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Figure C.19: Heatmaps showing the COF (a, c) and F0 (b, d) of systems whose bottom monolayer consists
of only pyrrole terminal group (chemistry C in Figure 2.2 a), while the top monolayer is a mixture of two
different terminal groups (group A and B in Figure 2.2 a). Their relative composition annotated in each
individual figure
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Appendix D

Molecular Descriptors

Table D.1: Molecular descriptors from RDKit .

Molecular descriptor Description Category

Approximate Surface Area Approximation of molecular surface area using the approach defined by

Labute57

Size

Asphericity Measure of molecular shape (from Baumgartner58); A = 0 for spherical

shape, A = 1 for highly prolate shapes, and A = 0 : 25 for oblate shapes

Shape

Balaban J Related to connectivity, degree of branching59 Complexity

Bertz CT Measure of molecular complexity through connectivity60 Complexity

Chi0, Chi1 Connectivity indices61 Complexity

Chi0n - Chi4n Connectivity indices over various molecular fragments (0=atoms, 1=one

bond fragments, 2=two bond fragments, etc.)61

Complexity

Chi0v - Chi4v Valence connectivity indices (0=atoms, 1=one bond fragments, 2=two bond

fragments, etc.)61

Complexity

Eccentricity Shape descriptor calculated from the inertiamatrix (0=spherical, 1=linear),

from Arteca62

Shape

Hall-Kier alpha Modifying term for kappa descriptors, related to shape/flexibility63 Shape

Hall-Kier kappa1 Alpha-modified topological shape descriptor; related to complexity/number

of cycles (rings) in the bond graph63

Shape

Hall-Kier kappa2 Alpha-modified topological shape descriptor; related to degree of star-like

bond graph vs.linearity63

Shape

Hall-Kier kappa3 Alpha-modified topological shape descriptor; related to ”centrality” of

branching63

Shape

Hydrogen bond factor Developed in Summers et al.12 work; related to ability for formation of

inter-monolayer hydrogen bonds

Charge distribution/ Misc.

IPC Complexity/connectivity descriptor estimated from adjacency matrix of bond

graph64

Complexity

Inertial shape factor Characterization of molecular shape from principal moments of inertia

(pm2/(pm1 *pm3), where pm1–3 are the three principal moments), from

Todeschini and Consoni63

Shape

logP Octanol - water partition coefficient estimated through the method of

Wildman and Crippen;65 measure of hydrophobicity

Charge distribution/ Misc.

Molar refractivity Estimation of molecular polarizability; calculated through the method of

Wildman and Crippen65

Size

Molecular weight - Size

67



Molecular weight (heavy atoms) Molecular weight excluding hydrogens Size

Normalized principal moments ratios

(NPR1, NPR2)

Used to characterize molecular shape, from Sauer and Schwarz66 Shape

Number of heavy atoms Number of non-hydrogen atoms Size

Number of rotatable bonds - Size/Shape

Number of valence electrons - Size

Plane of best fit Measure of molecular planarity (0=planar, in-creasing with less planarity)67 Shape

Principal moments of inertia (PMI1,

PMI2, PMI3)

Three principal moments of inertia for the molecule (1=smallest, 3=largest) Shape

Radius of gyration (From Arteca62) Characterizes molecular shape, specifically, elongation Shape/Size

Sphericity Measure of molecular shape (0=spherical, 1=flat), from Robinson et al.68 Shape

Topological polar surface area Estimation of surface area of only polar atoms, from Ertl et al.69 Charge distribution

Total hydrophobic VSA Sum of SA contributions from atoms with −0.20 ≤ q < 0.20 Charge distribution

Total negative van der Waals surface

area (VSA)

Sum of SA contributions from atoms with q < 0.0 Charge distribution

Total negative polar VSA Sum of SA contributions from atoms with q < 0.20 Charge distribution

Total polar VSA Sum of SA contributions from atoms with |q|> 0.20 Charge distribution

Total positive VSA Sum of SA contributions from atoms with q > 0.0 Charge distribution

Total positive polar VSA Sum of SA contributions from atoms with q ≥ 0.20 Charge distribution

Fractional hydrophobic VSA Total hydrophobic VSA / Total VSA Charge distribution

Fractional negative VSA Total negative VSA / Total VSA Charge distribution

Fractional negative polar VSA Total negative polar VSA / Total VSA Charge distribution

Fractional polar VSA Total polar VSA / Total VSA Charge distribution

Fractional positive VSA Total positive VSA / Total VSA Charge distribution

Fractional positive polar VSA Total positive polar VSA / Total VSA Charge distribution
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