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CHAPTER 1

Introduction

Computational fluid dynamics (CFD) is the standard method for simulating fluid flow through and around

various flow fields. The main drawbacks to CFD are the labor-intensive setup required to produce accurate

results and the high computational costs to run a single simulation. Accurate CFD results require high resolu-

tion meshes, containing millions of mesh elements. The governing fluid dynamic equations are the continuity,

moment, and energy equations which are used to derive the Navier-Stokes equation (Anderson, 1992). The

governing equations are iteratively solved for every mesh element. Reaching suitable convergence can take

thousands of iterations. This lends itself to computationally expensive simulations that can take days to com-

plete. Current methods for speeding up CFD analysis without compromising the accuracy of the solution

include domain decomposition, parallel processing, or utilizing supercomputers (Moureau et al., 2011).

One use of CFD is to find an optimal geometric design through design space exploration. For example,

when designing an aircraft, a geometry with low drag is desired. To find a design to accomplish this requires

testing different fuselage lengths, nose cone shapes, wing sizes, and location of the wings along the fuselage.

Currently, doing this entails running separate CFD solutions for each geometric variation. To do so with

high-resolution CFD simulations is extremely time consuming. Machine learning can be used in conjunction

with CFD to reduce computational times. There are two main approaches for using machine learning to

create surrogates for CFD simulations. The first is using physics-based machine learning algorithms. In this

approach, fluid dynamic equations are integrated into the neural networks to aid the network’s predictive

abilities (Brunton et al., 2020). Another approach is to train the neural networks with physics-based models

or images using a network without integrated physics knowledge (Thuerey et al., 2020). This paper proposes

two versions of the latter approach to create surrogates for CFD analysis. The objective of this work is

to develop fast methods for computing an estimate of the system model, given pre-computed component

solutions and system specifications. The surrogates considered are polynomial regression and convolutional

neural network machine learning algorithms. The polynomial regression surrogate uses the dimensions of the

geometry under consideration to predict the drag force, lift force, and moment. The polynomial regression

model performed well but did not generalize to unseen geometries. The CNN surrogate uses pre-computed

pressure contours from each component in the geometry under analysis to predict the surface pressure on the

aggregation of components. This approach allows surface pressure predictions for parametric exploration in

a matter of minutes. The CNN surrogate predicted surface pressure values on geometries seen in the training
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set with 93.96% of the predictions having less than 25% error and unseen geometries with 76.91% of the

predictions having less than 25% error. Additionally, the CNN surrogate demonstrated a 3.5 times decrease

in execution time compared to traditional CFD methods.

1.1 Problem Context

The problem context was based on the Symbiotic Design for Cyber Physical Systems (SymCPS) project

(Wilding, 2022), which proposed using artificial intelligence (AI) to synthesize designs. Figure 1.1 shows

the overall process. As the AI explores the design space, it will create many thousands of candidate designs,

which must be assessed for performance. This assessment is the responsibility of the design oracle (Bapty

et al., 2022), which uses physics-based analysis on the candidate design specification. Given the large number

of candidate designs, there is a significant pressure to minimize the computational expense. It is not the intent

of this thesis to describe the SymCPS capabilities, but instead describe the portion of the SymCPS that was

applicable to CFD. The overall approach, pertinent to CFD, was to explore the design space based on the

Corpus, programmatically generate CAD designs, and to programmatically perform CFD analyses on those

designs. Subsequent sections describe this process in detail. As previously mentioned, the key limitation of

CFD analysis is the considerable time to run a single analysis. If the design space consists of thousands of

design points, then the analysis time becomes a significant barrier. To overcome this barrier, machine learning

was used to create a surrogate for the CFD analysis for the domain represented by the seed designs.

1.2 Machine learning Methodologies

The subsequent sections explain the two approaches to CFD surrogate modeling in further detail. Polynomial

regression algorithms are used to model non-linear relationships between the independent and dependent

variables to predict the drag, lift and moment values. Convolutional Neural Networks (CNNs) are super-

vised deep learning algorithms used to model complex relationships between the independent and dependent

variables to predict the surface pressure values.

1.2.1 Multivariable Polynomial Regression Surrogate

General regression analysis studies the relationship between two or more variables. Polynomial regression

machine learning algorithm is a supervised learning model that is useful for predicting the dependent vari-

able when the independent variable is curvilinearly related. Equation 1.1 shows the equation for polynomial

regression where β is the parameter vector and k is the degree of the polynomial. The degree of the polyno-

mial is preselected based on the complexity of the input data. Multivariable regression, shown in Equation

1.2, refers to regression models with more than one independent variable (Ostertagová, 2012). Combining

2



Figure 1.1: SymCPS Design Synthesis Process (Bapty et al., 2022)

polynomial regression and multivariable regression allows the regression model to learn complex curvilinear

relationships between multiple independent variables and dependent variables.

yi = β0 +β2xi +β3x2
i +β4x3

i + ...+βkxk
i (1.1)

yi = β0 +β1xi1 +β2xi2 +β3xi3 + ...+βkxik (1.2)

The first surrogate approach utilizes multivariable polynomial regression machine learning models to make

fast predictions of the drag force, lift force, and moment given the system specifications and the dimensions

of the geometric model under analysis. The input data for this model is collected by performing CFD analysis

on hundreds of parametric variations of the geometry. The independent variables contain information about

the dimensions and rotations of each component in the system. The dependent variables are the drag, lift,

and moment values from the CFD analysis with the corresponding independent variable parameters. Once

the model is trained, the drag, lift, and moment prediction can be made for combinations of dimensions and

rotations unseen in the training data without the use of CFD analysis.

3



1.2.2 Convolutional Neural Networks Surrogate

CNNs are commonly used in computer vision and image processing applications for classification and re-

gression models (Li et al., 2021). CNNs are a type of feedforward neural network for supervised learning.

CNN image processing consists of a series of convolutional layers and pooling layers. The convolutional

layers produce a set of filters that the neural network can use to learn patterns and key features in the images

(Ameri et al., 2019). Figure 1.2 (b) shows the convolution operation on a 2D image. The typical filter size is

3x3. Each filter is designed to detect edges, corners, or other features in the image. In this example, the 3x3

filter is applied to the top left and bottom right corners of the image. The 3x3 window usually starts at the top

left corner and shifts to the right one column at a time until it has reached the last column in the image. Then

the window will shift down a row and continues this process until the filter has covered the whole image.

Each 3x3 window in the input image is multiplied element-wise by the filter and summed to produce the

final value in the feature map. Convolutional layers are usually followed by pooling layers. Pooling layers

are used to progressively decrease the image dimensions. This also reduces the number of parameters in

the model (O’Shea and Nash, 2015). There are several types of pooling functions including: max pooling,

average pooling, and general pooling. Figure 1.2 (a) shows an example of the 2D max pooling process. In

this case, the pooling kernel size is 2x2. The pooling kernel is applied to 2x2 sections of the input image

with a stride of 2. The max pixel values in each section are gathered to populate the representative feature

map. After the series of convolutions and pooling layers, the image is flattened in preparation for input into

the fully connected neural network layers.

Figure 1.2: Convolution and Pooling Operations
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The second approach to surrogate modeling uses convolutional neural network (CNN) machine learning

models to predict properties of the system model. CNNs learn sequences of patterns in the input images

making them a good candidate for learning the fluid flow patterns found in CFD analysis. The goal is to train

a CNN model to predict the surface pressures on an assembly of parts. The CNN will do so by aggregating

the CFD pressure domains of each individual component in the assembly. The components are known a

priori, and can be analyzed beforehand; however, their combination cannot be known until the system model

is known, which typically involves a full CFD solution. The full CFD solution run would be replaced with the

CNN surrogate that learns how to combine the pressure fields of individual components into a single pressure

field for the assembly, wherein the combined pressure fields would yield similar results as a complete CFD

solution. A system design consists of an interconnection of a fixed set of components, along with values

of parameters for those components that can control their geometric properties (size, rotation, shape, etc.).

The interconnection of the components specifies how their shapes are placed/constrained relative to each

other. The CNN surrogate executes very quickly, and thus allows the orientation and dimensions of the

components to easily be modified and revaluated. This approach to design space exploration addresses the

issue previously mentioned for performing CFD analysis on models with slight variations in order to find

an optimal configuration of parts in the assembly. Since the parts are known a priori, and are typically used

at known orientations, the expensive CFD analysis can be done once, and reused a large number of times,

amortizing the computational cost.
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CHAPTER 2

Related Work

Thuerey et al. (2020) used a modernized U-net CNN architecture to analyze the accuracy of pressure and

velocity distribution predictions for Reynolds-averaged Navier–Stokes (RANS) solutions. The paper repre-

sented the CFD flow fields of 2D airfoils using Cartesian grids. They intentionally refrain from integrating

physics based priors into the CNN architecture. This is done to gauge purely the CNN’s predictions per-

formance of the non-linear behavior of the Navier-Stokes equations without outside information. The CNN

takes as input 128x128x3 images. Channel one of the input image contains the freestream velocity in the x-

direction, channel two holds the freestream velocity in the y-direction, and channel three contains a masking

image. The masking image, a binary image, indicates the regions of the flow field containing the airfoil and

the regions containing the fluid. This paper investigated multiple models and found that its top performing

model yielded predictions with less than a 3% relative error. Kashefi et al. (2021) identified the drawbacks of

using a Cartesian grid system to represent 2D CFD flow fields. Those drawbacks included decreased order

of accuracy from interpolation or extrapolation, uniform mesh density throughout the whole domain, and the

coarsening of smooth surfaces on the model. To avoid these sources of error, Kashefi et al. (2021) proposes a

regression adaptation of the novel point-cloud architecture developed by Qi et al. (2017) for classification and

segmentation. The point-cloud grids allow for an unstructured representation of the CFD grid. This mitigates

the drawbacks seen in the Cartesian grid approach by distributing more node points close to the geometry and

wake region and less in the far-field. The point-cloud grid approach follows the mesh distribution generated

from the CFD mesh. The CNN was trained on the pressure and velocity flow field of seven different shapes at

various Reynolds numbers. The network’s prediction successfully captured flow separation and generalized

well to geometric shapes unknown to the CNN. Zhao et al. (2020) proposed a CFD-driven machine learning

approach for predicting high-pressure wake mixing seen in turbomachines. These types of flow conditions

are usually simulated with high-fidelity turbulence models such as large-eddy simulations (LES) or direct

numerical simulations (DNS) (Zhao et al., 2020). These types of simulations are more computationally ex-

pensive than RANS, but also provide more accurate results. The paper uses gene-expression programming

machine learning algorithms to enhance the flow predictions and increase the accuracy of RANS models for

use in high-fidelity applications. The CFD-driven method was found to improve the accuracy in wake mixing

predictions.
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CHAPTER 3

Multivariable Polynomial Regression Approach

3.1 Model: Remus UUV

The Remus unmanned underwater vehicle (UUV) was modeled with computer-aided design (CAD) software

1 using the dimensions described in Prestero (2001). The Remus model is shown in Figure 3.1. The model is

composed of seven components: the nose section, midbody section, tail section and four fins. The dimensions

of the Remus model are shown in Table 3.1. The objective is to create a model-based design space exploration

of UUV’s, composing of systems using a corpus of components. This is done with the help of OpenMeta to

systematically create hundreds of permutations of the Remus geometry, run CFD analysis using Ansys Fluent

2, and compute the drag force, lift force, and moment on the geometry.

Figure 3.1: Remus UUV Model

3.2 OpenMeta Test Bench

The OpenMeta CFD test bench resides in an OpenMeta model. The test bench invokes three programs:

CyPhy2CAD, CreateAssembly, and Run AnsysFluent.py. The CyPhy2CAD interpreter creates files that de-

scribe the CAD assembly and test bench parameters. The CreateAssembly program generates a Creo assem-

bly and exports it as a STEP file based on the geometry format specifications detailed in the test bench. The

Run AnsysFluent.py program opens an Ansys workbench and executes the geometry, meshing, and analysis

steps, and then produces drag, lift, and moment calculations. The OpenMeta CFD test bench is composed

of the geometric system under test, parameters, metrics, a code block (i.e. Python script), and Cyphy2CAD

interrupter. Figure 3.2 shows the layout of the test bench. The parameters are grouped according to their

purpose. The enclosure parameters, shown in 3.3, control the dimension of the fluid enclosure and the refine-

ment region enclosure. Each enclosure offset value is the distance from the edge of the geometry to the wall

1PTC Creo Parametric 3.0 was used for all CAD modeling
2Ansys® Academic Research Fluent, Release 21.1
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Table 3.1: Remus Dimensions

PARAMETER VALUE UNITS

NOSE SECTION 0.19 METERS

MIDBODY SECTION 0.654 METERS

TAIL SECTION 0.541 METERS

MAXIMUM HULL DIAMETER 0.191 METERS

TAIL ANGLE 0.436 RADIANS

of the enclosure. For example, the enclosure offset in the negative x-direction is measured from the furthest

point of the Remus in the negative x-direction to the wall of the respective enclosure. The meshing parame-

ters, shown in 3.4, govern the mesh cell sizes in various regions of the mesh. The mesh element size and max

element size parameters control the global cell sizes, the body of influence element size parameter controls

the refinement region cell sizes, the mesh curvature normal angle and curvature min size parameters control

the cell size around the geometry. The Fluent parameters dictate the CFD inputs for Ansys Fluent solver. The

inputs include inlet velocity, the type of fluid, the maximum number of iterations the solver should execute,

and the drag, lift, and gravity direction relative to the geometry. The metrics are the post-processing results

collected in a CSV file after the CFD analysis is completed. Figure 3.5 shows the internal components of the

system under test. The system under test contains the seven CAD parts and all the necessary information to

assemble the parts relative to each other. Each of the CAD components has additional parameters that control

the part dimensions. The geometric parameters can be automatically varied in a Parametric Exploration Test

(PET) run to generate and test hundreds of variations.

3.3 Machine Learning On Remus Model

A multivariable polynomial regression algorithm was used to predict the drag, lift, and moment values. Data

was collected by running the OpenMeta PET for 175 iterations. 70% of the data was used to train the model

and 30% of the data was used to test the model. The independent variables in the data include the nose length,

midbody length, tail length, rotations about the x, y, and z axes, and inlet velocities. The dependent variables

are the drag force, lift force, and moment. The independent variables are the parametric dimensions under

exploration. Any outlier values in the data were removed to prevent additional error. Figure 3.6 shows the

actual values compared with the predicted machine learning values of the drag force, lift force and moment.

Table 3.2 shows the R-squared score of the plotted actual vs. predicted results. The drag predictions showed

the best results with an R-squared value of 0.992. The lift force showed slightly lower prediction performance

with an R-squared value of 0.912. The moment prediction had the lowest accuracy with an R-squared value
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Figure 3.2: OpenMeta CFD Test Bench

Table 3.2: Polynomial Regression Results

PREDICTION R SQUARED SCORE

DRAG FORCE 0.992
LIFT FORCE 0.915
MOMENT 0.562

of only 0.562. The data set used to train and test the Polynomial Regression model was relatively small.

Increasing the number of training points may increase the accuracy of the lift and moment prediction.
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Figure 3.3: Remus Enclosure

Figure 3.4: Remus Meshing Metrics

Figure 3.5: System Under Test
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Figure 3.6: Polynomial Regression Results
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CHAPTER 4

Convolutional Neural Network Surrogate

4.1 Model: Cube-Cylinder-Sphere

The model selected to train and test the CNN consists of simple parts with known drag and lift values. This

particular geometry was selected because it captures multiple fluid flow phenomenon such as the formation

of turbulent boundary layers, the detachment and reattachment of the boundary layers, transitions between

laminar and turbulent flow, recirculation regions, and the turbulent interactions between the fluid flow around

each component. For this reason the geometry is a good test for evaluating the abilities of the CNN to predict

complex fluid flows. The sphere, cylinder, and cube are 3-dimensional CAD parts. The geometry is shown

in Figure 4.1 with the dimensions listed in Table 4.1. Three variations of this geometry are used. The cube

and sphere dimensions are constant throughout the three models. The length of the cylinder is the parametric

component under evaluation. This allows the machine learning model to be exposed to different turbulent

interactions as a result of the different cylinder lengths. The x-axis aligns with the cylinder center line and

each model is symmetric about the y-axis and z-axis.

Figure 4.1: Assembly Geometry
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Table 4.1: Geometry Dimensions

DIMENSION VALUE UNITS

CUBE HEIGHT 175 MM

CUBE WIDTH 175 MM

CUBE DEPTH 175 MM

CYLINDER LENGTH 1 150 MM

CYLINDER LENGTH 2 250 MM

CYLINDER LENGTH 3 350 MM

CYLINDER DIAMETER 30 MM

SPHERE RADIUS 150 MM

4.2 CFD Analysis

The CFD analysis process consists of four steps: geometry set up, mesh generation, fluent solver, and post-

processing.

4.2.1 OpenMeta

Similar to the Remus model, an OpenMeta CFD test bench was created to perform the CFD analysis for

assemblies 1, 2, and 3. The configuration of the assembly model is specified in the system under test. The

test bench parameters are grouped into four categories: enclosure parameters, meshing parameters, Fluent

parameters, and export parameters. The enclosure parameters dictate the dimensions of the fluid enclosure

and the mesh refinement region. The meshing parameters control the sizes of the mesh elements in each

region of the fluid domain. The Fluent parameters provide the necessary information to the Fluent CFD

solver, such as the inlet velocity and fluid properties. Finally, the export parameters tell the CAD software

the desired export format (e.g. STEP). The test bench also includes output metrics collected from the CFD

analysis.

4.2.2 CFD Setup

To model the fluid flow around the selected geometry, the Reynolds-Averaged Navier–Stokes (RANS) turbu-

lence model and k-ε viscous model for incompressible flow were used with a constant inlet velocity of 1.5

m/s. These are the typical CFD setting used for this category of fluid flow problems. The boundary condi-

tions are shown in Figure 4.3. Two enclosures were created around the geometry. The smaller enclosure

labeled “Mesh Refinement Region” is only for meshing purposes and does not affect the boundary condition.

The inlet is located to the left of the enclosure and is given the velocity inlet boundary condition. The outlet

is on the opposing end of the enclosure and is given the pressure outlet boundary condition. The exterior

enclosure walls are assigned a slip boundary condition to simulate an unbounded fluid. The exterior of the

geometry is given a no-slip boundary condition. Water was selected for the incompressible fluid. The lengths
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Figure 4.2: CFD OpenMeta Test Bench

of the assemblies are all slightly greater than half a meter. CFD analysis was performed on each of the three

assemblies and each individual part in the assemblies (i.e. cube, cylinder in each of its three characteristic

dimensions, and sphere) using the same boundary conditions, viscous model, and inlet velocity. The mesh

and meshing metrics, shown in Figure 4.4 and Table 4.2, were used for CFD analysis on each of the assem-

blies and each of the individual parts. Tetrahedral meshing elements were used throughout the fluid domain.

Element size indicates the general mesh size. The max element size indicates the largest size of any mesh

element in the domain. The body of influence element size is the general size of the mesh element in the body

of influence refinement region. The mesh curvature normal angle controls the mesh refinement level around

curved features in the geometry. Finally, the mesh curvature min size limits the size of mesh elements refined

based on the curvature normal angle. The most refined mesh is contained in the regions closest to the model

allowing the CFD analysis to produce accurate results while still being relatively efficient computationally.

Each CFD simulation was run for 600 iterations allowing the residual error to be reduced.

4.2.3 OpenMeta CFD Test Bench Execution Times

The time to run the OpenMeta CFD test bench for each of the three assemblies and each component in the

assemblies is shown in Table 4.3. The execution time includes the CAD model generation, CFD enclosure

set up, CFD meshing, and the time for the CFD solver to complete 600 iterations.
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Figure 4.3: CFD Setup

Figure 4.4: CFD Mesh

4.2.4 Model Flow Fields

Selecting a non-streamline model adds additional complexity in the CFD analysis. Having the cube at the

forefront of the model creates a high pressure region on the front face of the cube normal to the fluid flow.

This also creates a large pressure gradient between the front face of the cube normal to the flow and the four

neighboring faces. Figures 4.5 and 4.6 show the velocity and pressure contours respectively for the three

assembly models. In each figure, the top contour is of assembly 1, the middle of assembly 2, and the bottom

of assembly 3. Changing the length of the cylinder has a noticeable impact on the velocity and pressure

contours of each model variation. Assembly 1 has the shortest cylinder length; therefore, the turbulence

created from the cube has the largest impact on the cylinder and sphere. Assembly 3, on the other hand,

has the largest cylinder length, and therefore the turbulent interaction between the cube and the cylinder and

sphere is the smallest. Even though the three models only differ in one dimension, the pressure and velocity

contours still vary significantly. The fluid flow around the cube, shown in the velocity contours for each
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Table 4.2: Meshing Metrics

MESHING METRIC VALUE UNITS

ELEMENT SIZE 10 MM

MAX ELEMENT SIZE 30 MM

BODY OF INFLUENCE ELEMENT SIZE 2.5 MM

MESH CURVATURE NORMAL ANGLE 28 MM

MESH CURVATURE MIN SIZE 0.9 MM

Table 4.3: OpenMeta CFD Test Bench Execution Times

CFD ANALYSIS TIME TO COMPLETE (MINUTES)

ASSEMBLY 1 179.2
ASSEMBLY 2 183.0
ASSEMBLY 3 224.0
CUBE 125.3
CYLINDER 1 13.0
CYLINDER 2 16.4
CYLINDER 3 16.6
SPHERE 103.3

assembly, undergoes the same fluid interactions. Assembly 1 has a slightly wider low-velocity region in the

flow field directly behind the sphere, opposed to assembly 3’s narrower low velocity region. In assembly 1

the sphere is in the wake of the cube, whereas in assembly 3 the sphere is far enough from the cube that the

effects of fluid flow around the sphere are seen separately from the cube. The pressure contours show the

same general trends. The most noticeable difference is seen in the high pressure region preceding the sphere.

Assembly 1 has the smallest of the high pressure regions, as a result of the close proximity to the low pressure

region behind the cube. As the length of the cylinder increases, the length of the high pressure region also

increases. In assembly 3, a more prominent negative pressure region is seen around the middle of the sphere.

4.2.5 Drag, Lift, and Moment Calculations

The CFD mesh is composed of tetrahedral mesh elements that represent the fluid domain and the interface

between the fluid and solid domain. Figure 4.5 shows a single tetrahedral mesh element. Each tetrahedral

element consists of four faces connected by four vertices. Each face of the tetrahedral element has a normal

vector that represents the magnitude of the force on that face. The magnitude of a vector is the root sum

squared of its x, y, and z components. The direction of the normal vector is determined using the right hand

rule. In other words, if the vertices are numbered in a clockwise ascending order then the normal vector

will point towards the element face. If the nodes are ordered in a counter-clockwise ascending order the
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Figure 4.5: Velocity Contours

normal vector will point away from the element face. The drag and lift forces on an assembly are found by

summing the forces on the surface of the model with respect to the desired axes. For example, the drag forces

for assembly 1 would be computed by summing the forces on the surface of the model in the x-direction.

Likewise, the lift force on assembly 1 would be computed by summing the forces on the model in the y-

direction. The forces on the model can be derived from the surface pressures that the surrogate predicts.

Pressure is a force distributed over an area. The force on each face is computed by taking the product of the

pressure and surface area of the face, which results in a force in the direction of the normal vector. Computing

the drag and lift forces can be done by writing a program to sum the forces in each direction or by using CFD

post-processing software.

4.3 Data Collection

Data samples were collected based on the number of surface points in each model from the CFD meshes.

Due to the unstructured nature of the CFD meshes, each assembly contains a different number of surface

points. Samples were collected across a quarter section of the model. Since the models are symmetric, a
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Figure 4.6: Pressure Contours

quarter section is used to reduce computational time. 80% of the data was used for training and the remaining

20% was used for testing. Python was used for all of the data collection and pre-processing. Due to the large

amount of data, the data was stored in tables within a database 1. Using a database allows the data to be stored

in database files for future use.

4.4 CFD

CFD analysis was performed for each of the three models (assembly 1, assembly 2, and assembly 3), and

for each individual part (cube, cylinder in each of its three characteristic dimensions, and sphere). All of the

mesh points in the fluid and on the surface of the model are exported from the Ansys Fluent solver. Each

point contains the x, y, z coordinates, x, y, z velocities, and pressure. The goal is to predict fluid properties

on the surface of the model, so only the surface pressure values will be predicted. As a result of the no-slip

boundary condition on the surface of each model, all velocity values on the surfaces are 0 m/s. The CFD grid

for the model assembly is centered about the (0,0,0) coordinate point of the CAD assembly. This is also true

for the CFD grids of the individual cube, cylinder, and sphere. To allow the coordinate points selected from

the cube, cylinder, and sphere parts to reflect their positions in the assembly, each mesh is translated without

1SQLite3
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Figure 4.7: Tetrahedral Mesh Element

rotation into the position it would occupy in the model assembly.

4.5 Sampling

Samples are collected at every n surface point in the assembly. Where n is the specified increment between

selected surface points. The increment size is selected based on the desired number of the training and

testing points in the datasets. This allows for a representative sampling of the pressures at the surface of

geometry. Evenly spaced 16× 16× 16 Cartesian grids, referred to as probe volumes, are generated around

each selected surface point. A probe volume is generated for each part in the assembly. In this case, probe

volumes are created for the cube, cylinder, and sphere for each selected surface point on the assembly. The

probe volumes are an interpolation method to convert a non-uniformly spaced mesh into a uniformly spaced

grid. An n×n×n box that encompasses the probe volumes is created around the coordinates of the selected

surface point. The pressure values in that region are then collected from the cube, cylinder, and sphere CFD

component grids. The pressure values from each part are then projected onto each respective probe volume.

The probe volume stores each point’s x, y, z coordinate relative to the assembly and the pressure value at

each coordinate. The points are projected by selecting the points in the CFD grid within a specified radius

of each evenly spaced point. A weighted sum, based on the distance from the probe volume point, is used to

approximate the value on the evenly spaced grid. The CFD points closer to the probe volume grid points will,

therefore, have a larger influence on the projected values than those farther away. Using the probe volume

approach provides the CNN with a consistent number of input points. Figure 4.8 shows probe volumes

created at various surface points throughout the geometry. The purple points at the center of the squares

represent the selected surface points, and the purple square surrounding the point shows a 2D depiction of

the size and shape of the 3D probe volume. Since the probe volumes are centered around the surface point,

portions of those volumes are composed of the fluid and the other portion of the solid region. The pressure

data is only present in the fluid domain and on the surface of the model. The lack of pressure data in the solid
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domain can be used to identify the solid and fluid regions.

Figure 4.8: Probe Volumes

The top row of Figure 4.9 shows the points selected from the CFD meshes of the cube, cylinder, and sphere

grids within the n×n×n box around the surface point. In this example, the selected surface point lies on the

sphere in the assembly, so only the outline of the sphere is shown in the sphere’s plot. The point lies in the

fluid flow region of the cube and cylinder grids, which explains why the sphere outline is not shown in those

CFD mesh plots. In the model assembly, the flow around the cube and cylinder affects the flow around the

sphere because both objects are upstream from the sphere. Therefore, the cube and cylinder CFD points are

still relevant for the machine learning model. The second row shows the CFD grid points projected onto the

evenly spaced probe volume. The probe volumes maintain the pressure gradients seen in the CFD grids with

fewer points. Projecting the points onto the sparser grid will lose some of the detail found in the original grid,

but should provide enough information for the machine learning model. The curvature of the sphere is shown

in each of the probe volume plots because the goal is to evaluate the surface point relative to the assembly. In

this case, the area inside the sphere does not contain pressure values.

Figure 4.9: CFD and Probe Volume Grids
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The cube, cylinder, and sphere fluid domains overlap, but not in all regions in the assembly fluid domain.

The fluid domains of each part are shown in Figure 4.10, where the yellow region indicates the cube fluid

domain, the blue region is the cylinder fluid domain, and the green region shows the sphere fluid domain.

A surface point selected on the front face of the cube would only exist within the cube fluid domain. For

this point, probe volumes will be created for all three parts, but only the cube probe volume will be assigned

pressure values. Similarly a surface point selected on the back half of the cube would only lie within the cube

and cylinder fluid domain. If the surface point is located on the edge of the cylinder domain there may not

be sufficient mesh points to represent pressures in that region. To accommodate for this, a buffer region is

created at the outer portion of each component’s fluid domain. The buffer region ensures that the points will

not be projected onto the probe volume for any surface point inside the buffer region of each component’s

fluid domain. In other words, only surface points inside the component’s fluid domain but not within the

component’s fluid domain buffer will be projected onto the probe volume. In the case where the surface point

is outside of one or more of the part’s CFD grids, the probe volume is created with NULL values at each

point in the probe volume. This prevents inaccurate pressure values from being collected in regions of the

CFD mesh containing few to no grid points. The pressure fields of the component in that scenario would have

minimal impact on the pressure at the selected surface point because the component is spatially distant from

the selected surface point.

Figure 4.10: Overlapping Grids

4.6 Data Pre-Processing

CNNs take images as input and use a series of convolutional filters to process the images and identify key

patterns. Typically, CNNs are used on 2D images; however, the CNN for the purpose of this paper will use

3D images. The input images are composed of three probe volumes, one for the cube, one for the cylinder,

and one for the sphere. An additional masking image is provided as input, which indicates whether or not a

point is in the fluid domain or within a component/solid region. Each probe volume and masking image is first
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converted into a 16x16x16x1 grayscale image. The conversion process between probe volumes and grayscale

images is explained further in the following section. Each image is then stacked on top of each other to make

the final 16x16x16 image with four channels. The surface pressure values from the CFD assembly models

are treated as the ground truth values. The CFD pressure values at each surface point, corresponding to a

probe volume set, are collected and stored in an array for training and testing of the CNN model.

4.7 Image Generation

An image is essentially an array of pixel values. To store the desired 16x16x16x4 input image, an empty

n× 16× 16× 16× 4 array is created. Where n is the number of data samples collected. Four channels

were selected to store information on the masking layer and the three components in the assembly. The first

channel in the image holds the grid mask. The mask is an image used to identify the regions of the grid that

contain points in the solid and the fluid domain. A pixel value of one is assigned to all points in the fluid

region and a value of zero is given to all points in the solid region. Channels one, two, and three contain the

cube, cylinder, and sphere probe volume images respectively. To convert each probe volume into an image,

the probe volumes are first normalized to have a mean of zero and a standard deviation of one. This is a

necessary step to help reduce the losses in the CNN. Each point in the probe volume with NULL values is

set to zero. This indicates the point is within the part and therefore would not have a pressure value. Since

these volumes are being treated as images, each point must have a value. Setting all NULL values to zero

satisfies this constraint and creates a dark region in each image that the neural network can use to identify the

space that the component occupies. The pixel values in the fluid regions are assigned the normalized pressure

values at each respective point in the probe volume. The probe volumes have the same dimensions as the

input images, so each point in the probe volume maps to a single pixel in the input image. The masking

image and each probe volume image are then copied into the empty array in the desired channels and sample

position. This process is repeated until images have been generated from each sample and added to the input

data array. A second n×1 array is created to store all of the CFD ground truth surface point values. The input

to the CNN is the n×16×16×16×4 image containing four channels. A 2D grayscale image only contains

one channel. Typical multiple channels are used in RGB images, where the image contains three channels.

The first channel is for the red rendering of the image, the second for green, and the third channel for blue.

In this case, the channels are used to store the mask and the different parts in the assembly.

4.8 Machine Learning

The architecture of the CNN plays a significant role in the model’s performance. A shallow, but wide network

could lend itself to underfitting of the model. On the other hand, a deep and narrow network could result in
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overfitting of the model. Underfitting occurs when the model encounters high bias and low variance (O’Shea

and Nash, 2015). This can cause the model to perform poorly on the training and testing data. Overfitting

occurs when the neural network learns characteristics specific to the training dataset that do not generalize to

the testing dataset. This presents itself as high accuracy on the training data and low accuracy on the testing

data (Jabbar and Khan, 2015).

4.9 CNN Architecture

The CNN architecture was implemented in Python using the TensorFlow Keras library. A CNN with an

input layer, four convolutional layers, two pooling layers, two fully connected layers, and an output layer

was selected for use in predicting the pressure at a surface point on the model. Figure 4.11 shows this

architecture in more detail. The first two convolutional layers have 16 filters with a 3x3x3 kernel size. These

layers are followed by a pooling layer with a pool kernel size of 2x2x2. The pooling layer decreases the

dimensionality of the image. The pooling layer is followed by two more convolutional layers with 32 filters

each. The first convolutional layer has a kernel size of 3x3x3 and the second has a kernel size of 1x1x1.

These convolutional layers are followed by another pooling layer with a 2x2x2 pooling kernel size. The

images are then normalized using batch normalization and flattened. The flattened data is then fed into three

fully connected dense layers, with drop out layers in between. The final layer is the output layer which

produces the prediction of the surface pressure value of the point of the assembly. To train the model, the

ADAM optimizer is used with a learning rate of 0.001. Additionally, a batch size of 128 and 1,000 epochs

are used to fit the data.

Figure 4.11: CNN Architecture

4.10 Information Flow

The information flow is shown in Figure 4.12. The OpenMeta CFD test bench exports files containing

the pressure values at each mesh element in the fluid domain and on the surface of the geometry. The

CFD solution files are loaded into the python environment. The solution data is then pre-processed, and

probe volumes are generated for training and testing the CNN. The probe volumes are randomly shuffled and
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divided into training and testing datasets. The CNN is then trained using the training dataset. The trained

CNN can then be used to make surface pressure predictions in the testing dataset.

Figure 4.12: Information Flow Diagram

4.11 Results

The results of the CNN surrogate with and without the masking layer included in the probe volume are re-

ported in the subsequent sections. The model’s prediction accuracy is evaluated by the percent error between

the actual and predicted pressure values. The percent error is given by Equation 4.1 where xi is the predicted

surface pressure value and x̂i is the ground truth surface pressure values. The root mean squared deviation

(RMSD) is an additional parameter used to evaluate the models performance that quantifies the similarity be-

tween the true value and the predicted values. The RMSD is shown in Equation 4.2 where xi is the predicted

surface pressure value, x̂i is the ground truth surface pressure values, and N is the number of testing data

points. The CFD surface pressure plot shows the pressure values for all points on the surface of the model

computed from CFD analysis. The CFD surface pressure values are the ground truth values from which sam-

ples were taken. The actual surface plot shows the CFD surface pressure values for only the surface points

included in the testing dataset. The predicted surface pressure plot shows the CNN’s predictions for each

point in the test set. The first error plot shows errors between the actual and predicted values for each point

in the testing set with the same scale as the CFD pressure, actual surface pressure, and predicted surface

pressure plots. The second error plot shows the same error values displayed with a smaller scale in order to

bring attention to the high error regions that are often not seen in the first error plot.

PercentError = |xi − x̂i

x̂i
| ∗100 (4.1)

RMSD =

√
∑(xi − x̂i)2

N
(4.2)

24



Table 4.4: Hardware Configuration

HARDWARE CONFIGURATION

AMD RYZEN 7 5800X CPU, 8 CORE, 3.81 GHZ

128 GB MEMORY

The hardware configuration of the computer used to run all CFD analyses and machine learning models are

detailed in Table 4.13

4.11.1 Original Approach

The original approach for predicting the surface pressures did not include the masking layer in the input

image. The input image used for this model was an n× 16× 16× 16× 3 image where n is the number

of samples and the three channels held the cube, cylinder, and sphere probe volume images. The solid

regions of each image were represented by a pixel value of zero. The pixels in the fluid regions contained the

representative pressure values. The hope was that the CNN would identify the regions of the image containing

pixel values of zero as the solid region without additional information. The drawback to this approach is that

the pressure values in the fluid region can be zero or close to zero. This may make it difficult for the CNN

to differentiate between the solid regions and fluid regions with pressure values close to zero. Figure 4.13

shows the CNN’s predictions compared to the actual CFD surface pressures and the associated prediction

errors. The actual and predicted surface pressure plots appear to have the same high pressure region on the

front surface of the cube and follow the same patterns in the pressure contour throughout the rest of the

geometry. Table 4.5 shows the average percent difference between the actual and predicted surface pressure

values and the percentage of the testing samples that have a percent difference above and below 25% error.

The normalized data category represents the testing data that was normalized to have a mean of zero and

standard deviation of one. This normalization is done to improve the CNNs predictions. The non-normalized

category represents the values of the testing data after being converted back to its original pressure values

that are measured in pascals. The average percent error for the normalized and non-normalized data was

20.96% and 27.68%. 89.53% of the testing data points had percent errors less than 25% for the normalized

data and 93.01% of the testing data points had errors less than 25% for the non-normalized data. Most of the

prediction error from this model was concentrated on the cube surfaces.

4.11.2 Improved Approach

Improvements in the previously described approaches are detailed in this section.
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Figure 4.13: Train and Test on Assembly 1 (Without Masking Image) Predictions

Table 4.5: Train and Test on Assembly 1 (Without Masking Image) Results

NORMALIZED DATA NON-NORMALIZED DATA

AVERAGE PERCENT ERROR 20.96% 27.68%
PERCENT OF SAMPLES WITH ERRORS BELOW 25% 89.53% 93.01%
PERCENT OF SAMPLES WITH ERRORS ABOVE 25% 10.47% 6.99%

4.11.2.1 Train and Test on Assembly 1

The previous approach to predicting the surface pressure values was improved by adding a masking image

to the input image. Masking layer provides additional information to the CNN model to aid in discerning

between the solid and fluid regions of the images. Figure 4.14 shows the actual pressure values, predicted

pressure values, and the error. From inspection, both the actual and predicted pressures look similar. Both

plots show the high pressure on the front surface of the cube, and the gradual increase in pressure along the

top surface of the cube. The two error plots have different scales to show different perspectives of the error.

The majority of the error is seen on the front and top surfaces of the cube. Relatively lower error values are

seen on the cylinder and sphere. Table 4.6 shows the quantitative error measurements. The average percent

error between the actual and predicted values for the normalized and non-normalized data was 16.64% and

9.17% respectively. 86.82% of the normalized samples in the testing set had less than a 25% error and 94.56%

of samples in the testing set had less than a 25% error when the pressure values were converted back into

Pascals. The normalized and non-normalized data had RMSD of 0.079 and 72.16 respectively.

4.11.2.2 Train and Test on Assembly 2

Figure 4.15 and Table 4.7 show the results for the CNN model trained and tested on assembly 2. The actual

and predicted pressure plots follow the same pressure gradient patterns. The majority of the prediction error is

seen on the front face of the cube. The normalized data had an average percent error of 11.18% with 94.29%

of the prediction having a percent error less than 25%. The average percent error for the non-normalized

data is 9.71% with 93.96% of predictions having errors below 25%. The RMSD for the normalized and
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Figure 4.14: Train and Test on Assembly 1 Predictions

Table 4.6: Train and Test on Assembly 1 Results

NORMALIZED DATA NON-NORMALIZED DATA

AVERAGE PERCENT ERROR 16.64% 9.17 %
PERCENT OF SAMPLES WITH ERRORS BELOW 25% 86.82% 94.56%
PERCENT OF SAMPLES WITH ERRORS ABOVE 25% 13.18% 5.44%
RMSD 0.079 72.16

non-normalized data was 0.046 and 42.07 respectively.

4.11.2.3 Train and Test on Assembly 3

Figure 4.16 and Table 4.8 show the results for the CNN model trained and tested on assembly 3. This

assembly has the longest cylinder length. The actual and predicted surface pressure plots have no clear

differences between them. The error in the predictions is seen toward the back corners of the cube. Low error

is seen on the front surface of the cube, on the cylinder surface, and on the sphere surface. The normalized

data had an average percent error of 20.98% with 84.40% of the prediction having a percent error less than

25%. The average percent error for the non-normalized data is 19.39% with 88.65% of predictions having

errors below 25%. Additionally, the normalized data had an RMSD of 0.13 and the non-normalized data had

an RMSD of 120.

4.11.2.4 Train on Assembly 1, Test on Assembly 2

To evaluate the generalizability of the model, the CNN was trained on assembly 1 and tested on assembly

2. The results are shown in Figure 4.17 and Table 4.9. The trained CNN showed no noticeable differences

between the actual and predicted surface pressure plots. The majority of the errors in the model predictions
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Figure 4.15: Train and Test on Assembly 2 Predictions

Table 4.7: Train and Test on Assembly 2 Results

NORMALIZED DATA NON-NORMALIZED DATA

AVERAGE PERCENT ERROR 11.18% 9.71 %
PERCENT OF SAMPLES WITH ERRORS BELOW 25% 94.29% 93.96%
PERCENT OF SAMPLES WITH ERRORS ABOVE 25% 5.71% 6.04%
RMSD 0.046 42.07

are seen on the back half of the cylinder and front surface of the sphere. These are more reasonable results

as the change in the length of the cylinder affects the fluid flow in these regions. The average predictive

error for the normalized and non-normalized testing data was 147.43% and 70.45% respectively. 68.03% of

the normalized testing points had percent errors less than 25%. and 73.75% of the non-normalized data had

errors less than 25%. The normalized and non-normalized data had RMSD of 0.19 and 176.38 respectively.

4.11.2.5 Train on Assembly 1 and Assembly 2, Test on Assembly 1

A CNN model was trained on data points from assembly 1 and assembly 2 and tested on unseen data points

from assembly 1. The goal is to assess the CNN model’s performance when training on data from multiple

assemblies. The results are shown in Figure 4.18 and Table 4.10. The only error seen in the predictions

was localized to the front surface of the cube. The average percent error was 35.66% and 23.58% for the

normalized and non-normalized data respectively. 90.66% of the normalized testing data points had predic-

tion errors below 25% and 94.1% of the non-normalized testing data points had prediction errors below 25%.

The normalized and non-normalized data had RMSD of 0.05 and 47.40 respectively. It can be concluded that

training the CNN on multiple models does not decrease the CNN’s performance when making predictions

for just one of the assemblies that data points where sampled from for the training.
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Figure 4.16: Train and Test on Assembly 3 Predictions

Table 4.8: Train and Test on Assembly 3 Results

NORMALIZED DATA NON-NORMALIZED DATA

AVERAGE PERCENT ERROR 20.98% 19.39%
PERCENT OF SAMPLES WITH ERRORS BELOW 25% 84.40% 88.65%
PERCENT OF SAMPLES WITH ERRORS ABOVE 25% 15.60% 11.35%
RMSD 0.13 120

4.11.2.6 Train on Assembly 1 and Assembly 2, Test on Assembly 3

To further evaluate the generalizability of the model, the CNN was trained on samples from assembly 1 and

assembly 2 and tested on data points from assembly 3. The results are shown in Figure 4.19 and Table

4.11. The actual and predicted surface pressure plots show the similar pressure values on each surface on the

geometry. The highest prediction error is seen on the front surface of the sphere. There are also errors in the

predictions on the cube. The average error in the prediction for the normalized and non-normalized data was

55.87% and 122.16% respectively. 68.25% of the normalize data had errors less than 25% and 76.91% of the

non-normalized data had prediction errors less than 25%. The normalized data had a RMSD of 0.19 and the

non-normalized data had a RMSD of 179.05.

4.11.3 Model Accuracy Analysis

The effect that the number of training samples has on the model accuracy was evaluated. Just over 12,000

probe volume samples were collected from assembly 2. The same CNN model was trained and tested using

different train-test split ratios. The training sample size analysis results are shown in Figure 4.20. The CNNs

trained with fewer data points had a higher prediction error than the CNNs trained with 6,000 or more data

points. The error in the prediction accuracy decreases for CNNs trained with 0 to 6,000 data points. After
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Figure 4.17: Train on Assembly 1, Test with Assembly 2 Predictions

Table 4.9: Train on Assembly 1, Test with Assembly 2 Results

NORMALIZED DATA NON-NORMALIZED DATA

AVERAGE PERCENT ERROR 147.43% 70.45%
PERCENT OF SAMPLES WITH ERRORS BELOW 25% 68.03% 73.75%
PERCENT OF SAMPLES WITH ERRORS ABOVE 25% 31.97% 26.43%
RMSD 0.19 176.38

6,000 data points, the prediction error levels out. This indicates that 6,000 training samples is the optimal

number of samples. The number of data points used to train the CNN model is directly proportional to the

time to train the model. Using 6,000 training data points offers a balance between the time required to train

the model and a lower prediction error.

4.11.4 Execution Time

The execution times for training and testing the CNN Surrogate are shown in Table 4.12. Training the CNN

is the most time-consuming aspect of the surrogate. Training the CNN model with 6,000 data points takes

approximately 129 minutes. This is a one-time cost as the model only needs to be trained once. Once trained,

the model can make 6,000 surface pressure predictions in just under 3.5 minutes. Deriving the drag and

lift forces requires surface pressure predictions at every mesh element included in the aggregation of CFD

components for either a quarter section of the geometry or the whole geometry. Assembly 2 for example,

contains approximately 98,000 mesh elements throughout the whole model and 24,000 mesh elements in a

quarter section of the geometry. The trained CNN takes 56 minutes to make a prediction for every point in

assembly 2 and approximately 14 minutes to predict every point in a quarter section of the geometry.

30



Figure 4.18: Train on Assembly 1 and Assembly 2, Test with Assembly 1 Predictions

Table 4.10: Train on Assembly 1 and Assembly 2, Test with Assembly 1 Results

NORMALIZED DATA NON-NORMALIZED DATA

AVERAGE PERCENT ERROR 35.66% 23.58%
PERCENT OF SAMPLES WITH ERRORS BELOW 25% 90.66% 94.1%
PERCENT OF SAMPLES WITH ERRORS ABOVE 25% 9.34% 5.90%
RMSD 0.05 47.40

Figure 4.19: Train on Assembly 1 and Assembly 2, Test with Assembly 3 Predictions

Table 4.11: Train on Assembly 1 and Assembly 2, Test with Assembly 3 Results

NORMALIZED DATA NON-NORMALIZED DATA

AVERAGE PERCENT ERROR 55.87% 122.16%
PERCENT OF SAMPLES WITH ERRORS BELOW 25% 68.25% 76.91%
PERCENT OF SAMPLES WITH ERRORS ABOVE 25% 31.75% 23.09%
RMSD 0.19 179.05
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Figure 4.20: Training Size Analysis

Table 4.12: CNN Surrogate Execution Times

TASK TIME TO COMPLETE (MINUTES)

TRAIN CNN WITH 6,000 DATA POINTS 129
PREDICT 6,000 DATA POINTS 3.43
PREDICT DATA POINTS IN QUARTER SECTION 14.0
PREDICT DATA POINTS IN WHOLE MODEL 56.0
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CHAPTER 5

Discussion

The two proposed CFD surrogates both have advantages and disadvantages that are explored in the following

sections. Additionally, each method is usefully for different applications of CFD analysis in regards to para-

metric explorations of a design space given a corpus of components and seed designs. Each of the methods

approach surrogate modeling from unique perspectives.

5.1 Polynomial Regression Surrogates

The results, limitations, and advantages of the polynomial regression surrogates are discussed in this section.

5.1.1 Results

The polynomial regression model had the highest performance when predicting the drag force with an R-

squared score of 0.992 for the correlation between the actual and predicted values. This model also per-

formed well when predicting the lift force with an R-squared score of 0.912. The moment prediction had

the highest variance in predictions and the lowest accuracy with an R-squared score of 0.562. The prediction

performances for each of the dependent variables indicate that the polynomial regression surrogate model can

make accurate drag and lift predictions for a single parametric model under exploration. The moment value

predictions, while less accurate, are still useful for a fast estimate of the system.

5.1.2 Limitations

The largest limitation was in collecting data for the polynomial regression machine learning model. This

limitation is not related to the polynomial regression machine learning approach, but rather a shortcoming of

the automated analysis tool. Traditionally, the use of CFD analysis software is performed manually, where

mesh generation issues are resolved by the software user. Data is collected by running the PET with the

desired parameters for ideally 1000+ iterations. The two errors encountered when doing this were either

the mesh locking or the mesh failing to generate. The mesh locking result in no progress in the meshing

process even when allowing the meshing to run for multiple days. If this happens, the PET run must be

manually aborted and restarted. The mesh fails when the geometry is oriented in a manner that causes one

or more components to fail to mesh. When this happens, the analysis does not produce any drag, lift, and

moment values, but the PET will keep running. Collecting input data for machine learning requires a full CFD

analysis for each variation of the model making it an inherently time-consuming process even when errors are
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not encountered. The polynomial regression model knows the dimensions and rotation of each component in

the system, but does not have a sense of how the components are oriented relative to each other. This means

that the polynomial regression surrogate will not perform well on configurations of the geometry that were

not seen in the training data. Additionally, the input features are tailored to the number of dimensions and

rotation parameters applicable to the model under test. This makes generalizing to geometries with more or

less parameters impractical.

5.1.3 Advantages

The time to train the polynomial regression surrogate is relatively quick. The training time is proportional to

the number of training samples. Only a small number of training samples are needed compared to the large

datasets required for deep learning models. Once the surrogate is trained, the model can make reasonably

accurate drag, lift, and moment predictions extremely fast.

5.2 CNN Surrogates

The results, limitations, and advantages of the CNN surrogates are discussed in this section.

5.2.1 Results

The results of the CNN surrogates are discussed in this section.

5.2.1.1 CNN Without Masking Layer vs. With Masking Layer

The original approach to formatting the input data to the CNN did not include a masking channel. While

this model did perform well if given enough training data, there was no clear distinction between the fluid

and the solid regions. The solid regions of the probe volume were assigned pixel values of zero, and the

pixels in the fluid regions were assigned the respective pressure values from the CFD meshes. This approach

distinguishes between the fluid and solid regions as long as the pressure values are not zero or close to zero.

Pressures could be close to zero in some cases; and thus, using pressure to identify solid geometry is error

prone. It is important to distinguish between the solid and fluid regions because the goal is to only analyze

the fluid flow around the geometry; and therefore, the internal structures of the geometry are irrelevant. When

performing fluid analysis for this application, the pressure values within the solid region are ignored. Without

this distinction being made in the input images there could be unrealistic flow patterns learned by the CNN.

5.2.1.2 Training and Testing on the Same Assembly

Training and testing the CNN model on points sampled from the same assemblies showed good surface

pressure predictions. The average percent error ranged from 11.18% to 20.98% on the normalized data for
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each of the three assemblies. The normalized RMSD ranged from as low as 0.046 to 0.13. This indicates that

the CNN is able to learn the surface pressure values at a single point on the geometry from the pressure probe

volumes of each competent in the assembly.

5.2.1.3 Training and Testing on Different Assemblies

The CNN model was trained on points sampled from assembly 1 and tested on points sampled from assembly

2. This is a higher error then seen when training and testing on points from the same assembly. The average

error for the normalized and non-normalized data were 147.43% and 70.45% higher respectively than the

average percent errors seen from the CNN model trained and tested on assembly 2. This indicates that

training the CNN on one assembly may not be sufficient to generalize to unseen data. Next the CNN was

trained on points sampled from assembly 1 and assembly 2 and tested on points from assembly 1. This CNN

model had an average percent error of 35.66% on the non-normalized data. This indicates that including

samples from the same assembly that the testing data was collected from in the training set improves the

prediction performance. This additionally indicates that that a model trained on multiple assemblies can still

perform well when making predictions on just one of the assemblies seen in the training data set. Finally,

to test the generalizability, the CNN was trained on data points from assembly 1 and assembly 2 and tested

on assembly 3. This model had an average percent error of 55.87% and RMSD of 0.19 on the normalized

data. This is a slightly higher prediction accuracy than the model trained on assembly 1 and assembly 2 and

tested on assembly 1. This CNN model is making prediction on unseen data, so it was reasonable to see a

higher error in the predictions compared to a model making prediction that had a samples drawn from the

same assembly in the training and testing set.

5.2.2 Model Accuracy

The number of data points used to train the CNNs has a large influence over the prediction accuracy of the

models. An inadequate number of training points may not provide a sufficient representation of the pressure

interaction between components. Additionally, more complex geometries or more complex flow conditions

will likely require more training points to achieve high prediction accuracies. Using too many training points,

on the other hand, will increase the time to train the models. Determining the optimal number of training

points will produce a CNN model with a high prediction accuracy while still having a relatively low time

to train the CNN model. The ideal number of training points for assemblies 1, 2, and 3 was found to be

approximately 6,000 data points. Training a CNN model with 6,000 points takes approximately 2 hours. The

model, however, only needs to be trained once. The trained model can make 6,000 surface point predictions

in just under 3.5 minutes.
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5.2.3 Execution Time

The full CFD execution times are shown in Table 4.3 and the CNN surrogate time are shown in Table 4.12.

Training the CNN model with 6,000 points takes 129 minutes, which is less than the time to perform a full

CFD analysis on a single assembly model. The model only needs to be trained once, so this is a one-time

cost. After the model is trained, the surrogate can make predictions for the whole model and quarter section

of the model in 56 minutes and 14 minutes respectively. Given a pre-computer set of component the surrogate

model is approximately 3.5 times faster than the average time to perform CFD analysis on each of the three

assemblies.

5.2.4 Challenges

Challenges encountered while implementing the CNN surrogates are discussed in this section.

5.2.4.1 Probe Volumes

The grid points in the generated CFD mesh are not evenly distributed. It is common to see the grid points

close together near the geometry where the fluid flow undergoes the majority of changes such as turbulent

eddies, detachment points, boundary layer formation, and potentially strong coupling. The mesh grid points

farther from the model usually have larger spacing because these regions mostly experience slow changes in

pressure and velocity. The non-uniform spacing poses a challenge when integrating machine learning with

CNNs. CNNs require a constant number of input pixels. This can be achieved through two approaches. The

first and most common is creating an evenly spaced Cartesian grid. This is the simplest approach, but comes

with some known drawbacks. The first being that the decrease in the precision of the CFD representation is

a result of interpolation or extrapolation. In order to capture a relatively accurate representation of the CFD

domain, the evenly spaced grid must be extremely refined uniformly. This will undoubtedly increase the

computational time. On the other hand, a coarser grid is computationally faster, but is unable to capture the

curved surfaces of a geometry (Kashefi et al., 2021).

5.2.4.2 Data Storage

The data files exported from Ansys Fluent were too large to import into the Python environment directly. As

a work around, a database was used to store all of the data. This allowed the data to be saved in database files

for future use. Using databases in Python requires a cursor to execute all database operations, which is known

to be slower then executing the commands directly. Each of the assembly and component models has data

files, generated by Fluent containing an entry for every mesh element. The number of mesh elements in each

model was roughly between 10 million to 20 million elements. The cursor, along with the large number of
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data points made the traversal of the database extremely slow. Performing one iteration of the probe volume

generation algorithm would take up to 24 hours. In order to make this a usable algorithm, the iteration time

needed to be decreased significantly. To achieve this, indexes were created for the tables on the x, y, and z

coordinates to speed up table searches. Additionally, temporary tables were created to store a subset of the

mesh points with only the relevant values. This decreased the table search time by creating a smaller search

space. The CFD fluid domain for each part extends further than necessary for this application. The large

fluid domain is used to fully capture the fluid flow as standard practice in CFD applications. For predicting

only the surface values, regions of the fluid domain far away from the component would never be used to

generate probe volumes. For this reason, the outer regions of the domains were removed from the search

space. To reduce the table sizes even further, quarter sections of the models were used to collect samples

from the model. The algorithms to generate the probe volumes were also optimized. After these steps,

approximately 2,000 samples could be produced in 17 hours. Likewise, collecting approximately 12,000

samples took around 3.5 days. Further algorithm optimization could be performed to further reduce the time

to create probe volumes.

5.2.5 Limitations and Advantages

The limitations to the probe volume approach are discussed in this section.

5.2.5.1 Predictions

In order to make predictions, a masking layer and probe volumes must be generated relative to the surface

point of interest for each part in the assembly. Generating probe volumes requires performing a complete

CFD analysis for each part in the assembly. Performing CFD analysis on a single part should take less time

than performing CFD analysis on the whole assembly due to the reduced complexity.

5.2.5.2 Unknown Number of Assembly Parts

One application for predicting the surface pressure might be to evaluate the effect that adding or removing a

particular component has on the drag and lift force. The CNN model is currently set up to use input images

of size n× 16× 16× 16× 4. The four image channels are used to store the cube, cylinder, sphere probe

volume images and the masking image. The CNN model only accepts images with these dimensions, which

limits the geometries that can be used to ones comprised of three parts. One approach to enable use of

geometries with more or less than three parts is to modify the input layer and convolution layer dimensions

of the neural network. For example, increasing the number of channels in the input layer from four to six

would allow training and testing on geometries containing five parts. The downside is that the new model
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would now be limited to geometries containing five parts. Another work around would be to specify the CNN

input dimension to maximum number of parts in the assembly. To evaluate the effect of removing a part

in the assembly, a probe volume containing all zero values could be used as a place holder for the missing

part. Additionally, the masking layer would need to reflect the solid region without the removed part. The

drawback to this approach is the unnecessarily high dimensionality which will come at a computational cost.

This is especially true from geometries containing a high number of parts.

5.2.5.3 Models with Large Numbers of Parts

The more parts in a model the more layers (e.g. the more 16x16x16 images) in the input image. An accurate

model requires thousands of input data points. This increases the time to train the CNN model and make

predictions. One approach would be to lump parts together. For example, if the goal was to determine the

optimal fin placement on an underwater vehicle, then a simplified representation of the model could be used

to reduce it to only two parts. All parts in the underwater vehicle assembly excluding the fin could be lumped

together and represented as one part. This would leave the fin to be the other part used to generate probe

volumes. Since the goal is to only modify the position of the fin, it would be the only part in the assembly

under parametric exploration.

5.2.6 Probe Volume Approach Advantages

The polynomial regression model used with the Remus data was restricted to a single assembly configuration.

The regression model was learning the effect of changing the dimensions, but has no knowledge of the

orientation of the dimensions or components relative to each other. The probe volumes approach, however,

uses a 3D image rendering of sections of the model to avoid this problem. Instead of learning the dimensions,

the deep learning CNN model learns the patterns of pressure contours in different regions of the model. This

provided a more robust surrogate model.

38



CHAPTER 6

Conclusion

The conclusions for polynomial regression surrogate and the CNN surrogate are presented in this section.

6.1 Polynomial Regression Surrogate

This paper demonstrates that a polynomial regression surrogate models can accurately predict the drag, lift,

and moment values for parametric exploration of a single seed model. Training the polynomial regression

model requires pre-computed CFD analysis for hundreds of permutations of the seed model. This approach

would be useful when analysis is required for thousands of design points. After CFD analysis has been

performed for a couple hundred design points, the polynomial regression surrogate can then be trained and

employed for analysis on the remaining design space. The approach, however, is sub-optimal for parametric

exploration of a design space in which the corpus of components that the model under analysis is composed

of is not fixed. For example, if the goal of parametric exploration is to analyze the changes in drag, lift,

and moment of using different propellers on a UUV, the dimensions alone may not be sufficient for describ-

ing differences between these complex components. The approach, however, is sub-optimal for parametric

exploration of a design space in which point designs have varying number of components.

6.2 CNN Surrogate

This paper demonstrates that surrogates can be developed given pre-computed component solutions and sys-

tem specifications to compute a fast estimate of the system model. The surrogate is composed of the CFD

probe volumes and CNN generated algorithm to predict the surface pressure values on seen geometries with

91.72% of the points in the testing set having prediction errors less than 25% and 75.53% of the points in the

testing set having prediction errors less than 25% on unseen geometries.

6.2.1 Applications

The surrogate for surface pressure prediction does not replace the need for CFD analysis, but instead greatly

reduces the number of times CFD analysis is needed during the parametric exploration process. Previously,

CFD analysis was performed for each parametric variation of the geometry. The number of times CFD

analysis is performed is minimized with the use of the surrogate model. CFD analysis is initially performed

on each part in the geometry and the assembly of components. These sets of CFD grids are used to train

and test the models. Once the CNN model has been trained sufficiently, the surrogate model can be used to
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quickly estimate the surface pressure on the model. The drag and lift forces can be derived from the predicted

surface pressure values, providing a quick approximation of these forces on the model. At this point, the

top parametric variations for optimum drag and lift force can be selected and additional CFD analysis can be

performed if more precise values are needed. This approach cuts down on the size of the design space from

performing CFD analysis on hundreds to thousands of models to only performing CFD analysis on a few of

the top performing geometries determined by the surrogate model.

6.2.2 Surrogate vs CFD Execution Times

The number of points in the training dataset for the CNN influences the accuracy of the model and the time

to train the model. Training a CNN with 6,000 training data points takes approximately 2 hours. The model,

however, only needs to be trained once. The surrogate takes approximate 3.5 minutes to make 6,000 surface

point predictions. Performing a full CFD analysis on one of the assemblies takes approximately 3.25 hours.

Figure 6.1 shows the time to evaluate 100 design points in the parametric exploration space using the Open-

Meta CFD test bench to perform the full CFD solution compared to using the surrogate model. Performing

the full CFD analysis on 100 geometric permutations of the assembly took considerably longer than using the

surrogate. The OpenMeta CFD test bench has automated the CAD generation and CFD analysis processes

making it considerably faster than manually performing CFD analysis for each of the 100 models. The sur-

rogate model has an initial startup time, which is represented by a non-zero time for zeroth design points.

The startup time includes the time to run the prerequisite CFD analyses (each component separately and at

least one assembly) and to train the CNN surrogate model. The time to generate the input probe volumes is

not included in the startup time. Generating thousands of probe volumes can take hours to days, however,

there is considerable room for improvement in the computational efficiency of these algorithms. The focus

of this work was not to optimize the algorithms involved in generating the probe volumes. For that reason,

the probe volume generation time was not included in the startup time for the CNN surrogate model. The

full CFD solution does not have any initial overhead and thus the zeroth design points takes zero time. The

CNN surrogate for the full and quarter models shows the time to predict surface pressure values for every

point in the original CFD mesh and a quarter section of the CFD mesh. For example, assembly 2 contains

approximately 98,000 surface points across the whole model, and approximately 24,000 surface points in a

quarter section of the model. After approximately 10 design points, the surrogate model becomes more com-

putationally efficient than the OpenMeta CFD test bench. Assuming CFD component solutions have been

pre-computed, the surrogate model demonstrated a 3.5 times decrease in execution time compared to the full

CFD analysis.
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Figure 6.1: OpenMeta Vs. Surrogate Time Complexity

41



CHAPTER 7

Future Work

This section describes several areas where future work would potentially make significant improvements in

the overall approach.

7.1 Improving Model Prediction Accuracy

The CNN model trained on points from assembly 1 and assembly 2 and tested on points from assembly

3 showed that 76.91% of the training points had prediction errors less than 25%. The average percent error

between the actual and predicted values for all of the testing data was 122.16% on the non-normalized dataset.

This indicates that the 23.09% of the points in the testing set with percent errors greater than 25% are much

greater than 25%. To further improve the prediction results on unseen geometries, additional variations of

the cube, cylinder, and sphere assembly should be added. It is likely that training a CNN model on three or

more assembly variations would decrease the overall prediction error on unseen data. Ideally more than 90%

of the testing data would have prediction errors less than 25%.

7.2 Testing on Arbitrary Shapes

The proposed CNN model and probe volume approach made reasonable surface pressure value predictions

on an unseen model permutation after being trained on data points sampled from two model variations. Next

steps for this project include testing the CNN trained on permutations of one model and testing it on either

a completely different model or a model composed of the same parts, but in a new configuration. These set

of tests will indicate the extent of the training data needed for the CNN to be able to generalize on unseen

complex geometries. The scalability of this approach is discussed in Sections 5.2.5.2 and 5.2.5.3.

7.3 Testing on Range Velocities

The CFD analysis for assembly 1, assembly 2, and assembly 3 was performed with a constant inlet velocity

of 1.5 m/s. The inlet velocity was held constant to simplify fluid flow conditions for the inputs to the machine

learning model. The next steps include testing the CNN’s ability to learn over a range of velocities. This

would possibly require input data sampled from CFD models with varying inlet velocities. Introducing

different inlet velocities adds a level of complexity to the flow regime. Velocity is directly proportional to

the Reynolds number. Low Reynolds numbers are characterized by laminar flow, whereas, higher Reynolds

numbers indicate turbulent flow. Turbulent flow undergoes irregular fluctuations and eddies, compared to
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laminar which is more controlled and predictable. Velocity and pressure are inversely proportional to each

other, so an element of the velocity is represented in the pressure data. The goal of testing the CNN on a

range of inlet velocities is to identify additional limitations of the current CNN model and evaluate methods

for improving the current approach.

7.4 Drag and Lift Forces

The main application for predicting the surface pressure of the model geometry is to derive the drag and lift

forces from the predictions. Drag force is essentially the sum of all forces in the direction parallel to the

inlet flow. Likewise, the lift force is the sum of forces normal to the inlet flow. For the assembly models, the

drag and lift forces are the sum of forces in the x-direction and y-direction respectively. The pressure surface

values indicate the force distributed over an area of the model. One possible approach to obtain the drag and

lift forces from the surface pressure values would be to format the predicted surface pressure values into a file

compatible to Ansys Fluent’s CFD Post post-processing software. CFD Post computes the drag and lift forces

in the function calculator tab. To calculate the drag and lift forces, the exterior wall of the model geometry is

selected as the location. Next, the variable should be set to pressure and either x or y should be selected for

the direction depending on which force calculation is desired. The CFD Post software would then be able to

compute the drag and lift values. This would essentially cut out the time-consuming geometry set up, mesh

generation, and Fluent solver steps of the traditional CFD analysis process. Automating the file formation

and CFD Post drag and lift calculation would allow hundreds of geometric variations of the same model in

order to find the optimal model configuration. Another approach to computing drag, moment, and lift would

be to develop a program that performed the computations as described in Section 4.2.4.

7.5 Modifying the Window Size

One possible approach to improve the CNN’s prediction accuracy would be to increase the probe volume

size. Increasing the probe volume size would give insight into the other parts in the assembly around the

surface point of interest. In the proposed approach, the probe volume sizes are small relative to the geometry.

Generally, each probe volume only contains the solid region of one part in the model. The exception being

surface points that are close to or on the intersection between parts. Using a small probe volume size relies

primarily on pressure values of each part and does not provide the CNN with additional insight to where each

part in the model is located relative to each other.
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