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CHAPTER 1: INTRODUCTION 

Introduction to the Immune System 

 As metazoans developed from single-cellular organisms, specialized cells in tissues and 

organs were eventually organized and sequestered within greater, multicellular organisms 

spanning trillions of cells. Through this concentration of cells within a greater body, vertebrates 

no longer required single-cells to be autonomous, independent organisms for nutrient acquisition. 

Metazoans gained a permissive, homeostatic interior environment that allowed for the 

specialization of tissues and organs to fit the needs of new, macrobiological niches. Individual 

cells now had their metabolic needs supplied by the internal multicellular environment, with a 

greater chance of survival in the context of the collective than alone. While the multicellular 

organism format came with many advantages, an unescapable challenge arose in the need to 

patrol and protect the greater organism from opportunistic single-celled and multicellular 

pathogens, cancer cells derived from mutated somatic and gametic cells, dead and dying cells, 

and other microscopic threats to the macroscopic body.  

 Metazoans responded to these challenges with the development of different forms of 

innate immune systems between species, composed of specialized innate immune cells equipped 

to repel most pathogens from the body and aid in repairing damaged tissues. Commonalities 

between innate immune systems include external mucous secretions and specialized skin and 

mucosa to form a barrier between the interior and the environmental frontier, humoral innate 

immunity composed of antipathogenic proteins and peptides such as lysozyme, complement, and 

cytokines, and cell-mediated innate immune cells that will be discussed in greater detail in 

following sections. 
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 Immune systems range widely in metazoans from relatively simplistic catch-all “innate” 

systems designed to respond to several hundred common patterns known as damage-associated 

molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) to complex 

systems found only in jawed vertebrates that comprise innate responses and adaptive T and B 

cell responses. T cell subsets strengthen innate immune responses and perform direct cell killing, 

while B cells secrete antibodies that bind and opsonize cell surface antigens to facilitate 

complement activation, engage Fc-receptors on innate immune cells, and potentially neutralize 

foreign bodies. These adaptive immune cells both hone a custom immune response targeting 

trillions of potential molecular patterns associated with cellular damage or pathogens (1, 2).  

For the remainder of this dissertation, attention will be paid to the innate and adaptive 

immune systems of H. sapiens and its common immune vertebrate model counterpart, M. 

musculus. In chapter 2, M. musculus will be discussed, while in chapter 3, H. sapiens will be 

discussed, unless otherwise indicated.   

 The human immune system comprises adaptive and innate immune responses and has 

evolved to combat a wide range of pathogens and stressful stimuli (3-5). Functionally and 

genetically diverse between and within individuals, human immunity spans dozens of distinct 

types and argued subtypes of innate and adaptive immune cells and leverages its cellular 

diversity to respond to various pathogens and stresses in the body. Human immune systems vary 

widely furthermore between individuals based on family, sex, age, and ethnic background. In the 

largest study of multigenerational heritability of immune variation, the median heritability for 

immune variation was 37%. This low percentage of heritable immune variation indicates that 

most genetic drivers of immune variation are not shared between parent and offspring. The 

human leukocyte antigen (HLA) loci encode peptide-presenting proteins expressed in all cells to 
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facilitate immune surveillance and are the most polymorphic genes in the human genome, with 

over 6,400 alleles identified (6). More broadly, over 7,000 distinct loci associated with basic 

hematologic traits have been identified via genome-wide association studies (GWAS) within the 

human population that further contribute to population-wide immune diversity (7).  

 Immune diversity in humans can be also seen between males and females. 47% of HLA 

class I and II genes are expressed at different levels following stimulation by a common PAMP 

lipopolysaccharide (LPS), a significantly greater difference than the genomic average. 

Additionally, immune genes such as the regulatory T-cell transcription factor (TF) FOXP3 and 

the pattern recognition receptor (PRR) TLR7 are both present on the X chromosome. Differences 

in allosome allocation and hormone activity between sexes thereby result in higher type I 

interferon induction by innate plasmacytoid dendritic cells and reduced number and suppressive 

capacity of adaptive regulatory T-cells (Tregs) in females (7, 8).  

 The immune system is also affected by age, and trends towards systemic inflammation 

and away from naïve lymphocyte phenotypes as individuals age. Age-associated 

immunodeficiency is thought to be due to a combination of increased senescence of immune 

cells, decreased activity of hematopoietic stem cells that repopulated the immune system, altered 

lineage differentiation, depletion of the thymus, depletion of leukocytes, accumulation of 

mutations, and mitigated antiviral responses. Postzygotic somatic mutations and age-related 

chromosomal alterations (mCAs) are enriched at transcriptional regulatory sites for immune cells 

and have been observed in CD8+ T-cells in elderly people with multiple sclerosis and 

rheumatoid arthritis (9).  

 Immunomodulatory gene variants present in ethnic and regional communities globally 

further result in immune system differences that are relevant to health. Some examples of this 
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phenomenon include a missense variant in IL7 present in South Asians that results in increased 

lymphocyte count (10). In African American men, allelic variants in immune-associated genes 

such as IL-12β and IFN-γ can contribute to an immunosuppressive tumor microenvironment, 

possibly leading to more aggressive prostate cancer progression and poorer disease outcomes 

vis-à-vis Caucasian Americans that receive the same standard of care therapy (11).   

 Within individuals, immunity is distributed and diversified between innate cells such as 

monocytes, macrophages, and neutrophils, adaptive immune cells like T-cells and B cells, and 

humoral immunity that includes soluble factors contained within the circulating blood and lymph 

such as complement, antibodies, and lysozyme. In the event of infection by opportunistic 

pathogens, innate immune cells and baseline humoral immunity serve as front-line sentinels that 

contain the infection in the short term before the immune response is dominated by the activity 

of adaptive T and B cells. In most circumstances, immune responses successfully resolve within 

weeks; however, exceptional pathogens such as human immunodeficiency virus (HIV) may 

persist for years with a sustained, unresolved immune response that culminates in adaptive 

immune exhaustion (12, 13).  

 Innate immune cells circulate within the vasculature or are tissue-resident and respond to 

tissue damage or infection by opportunistic pathogens and cooperate with adaptive immune cells 

to resolve immune challenges. Damaged tissue secretes DAMPs while opportunistic pathogens 

secrete PAMPs into the vasculature. Both DAMPs and PAMPs bind to PRRs on immune cell 

membranes to activate innate immune cells. Common human PRRs can be divided into thirteen 

Toll-like receptors (TLRs), two Nucleotide-binding oligomerization domain-like receptors 

(NLRs), 3 RIG-I-like receptors (RLRs), two C-type lectin receptors (CLRs), and one Absent in 

melanoma-2-like receptors (ALRs) that bind to PAMPs such as single-stranded RNA, flagellin, 
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and peptidoglycan that are uniquely associated with opportunistic bacteria, viruses, and fungi. 

When cognate ligands bind TLRs, NLRs, RLRs, CLRs, and ALRs, these receptors initiate 

signaling via MyD88 and/or TRIF, RIP2-TAK1-NF-κB, MAVS-TRAF6-NF-κB/TBK1, and the 

inflammasome-pyroptosis pathways, respectively. PRR activation results in effects that facilitate 

immune response escalation comprising the release of cytokines, leukotrienes, vasodilating 

factors, chemokines, hormones, and growth factors. The release of these factors is often 

accompanied by the induction of chronic or acute inflammatory responses, inflammatory 

remodeling of local vasculature, initial pathogen killing by innate immune cells, rebalancing of 

host microbiota, and/or the elimination of dead or mutated cells (14).  

 Opportunistic pathogens can be intracellular or extracellular in nature, and the methods 

by which innate immune cells eliminate these pathogens include phagocytosis, bombardment 

with reactive oxygen and nitrogen species (ROS and RNS), and induced apoptosis of infected 

cells. The “professional phagocytes”: monocytes, macrophages, neutrophils, dendritic cells, 

osteoclasts, and eosinophils perform phagocytosis. Phagocytosis is initiated by recognition of 

pathogens by PRRs and the resulting signaling cascade. Opsonic receptors may also initiate 

phagocytosis after recognition of host-derived opsonins that include antibodies, complement, 

fibronectin, mannose-binding lectin, and lactadherin. These opsonins are part of humoral 

immunity and bind to exterior molecules on the pathogen surface, impede interaction between 

the pathogen and surrounding host tissue, and can even immobilize and “neutralize” pathogens. 

Opsonic receptors include fragment crystallizable receptors (FcRs) that recognize constant 

regions of pathogen-bound antibodies and complement receptors (CRs) that recognize deposited 

complement factors such as iC3b. The phagocyte remodels its cell membrane and actin 

cytoskeleton and extends its cell membrane around the offending particle. The particle is then 
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internalized in the phagocyte within a vacuole known as the phagosome which matures over time 

in a process mediated by Rab5, Rab7, SNARE proteins, VAMP7, VAMP8, V-ATPases, and 

other factors. Maturation of the phagosome results in the formation of the phagolysosome which 

degrades the internalized particle by low pH ~4.5, hydrolytic enzymes like cathepsins, scavenger 

molecules like lactoferrin, and superoxides and ROS generated by NADP oxidase (15). Nonself-

peptides derived from the phagolysosome may also be processed by factors associated with the 

endoplasmic reticulum (ER) including class II-associated invariant chain peptide (CLIP), HLA-

DO, and HLA-DM and presented on antigen-presenting cell (APC) membranes in combination 

with major histocompatibility complex II (MHC-II). Antigens presented by professional APCs 

such as dendritic cells, B cells, macrophages, and thymic epithelial cells are presented to antigen-

specific CD4+ T-cells that eventually result in CD4+ T-cell clonal expansion and refinement of 

B cell-mediated humoral immunity that is crucial to adaptive immune response and resolution 

(16). Similarly, MHC-I is expressed on all nucleated vertebrate cells and indicate the health 

status of the presenting cell to surveilling CD8+ cytotoxic T-cells. If a peptide corresponding to a 

normally occurring endogenous protein (“self”) is presented to CD8+ T-cells via MHC-I, the cell 

is treated as healthy. However, if a nonself-peptide is presented via MHC-I, surveilling CD8+ T-

cells may initiate cell killing via Fas ligand (FasL), perforin, granzymes, and other effector 

molecules to eliminate the infected, mutated, or otherwise damaged cell (17, 18). T-cell clonal 

expansion will be discussed in greater detail in a later section. In addition to phagocytosis, the 

immune system may employ ROS/RNS and antimicrobial peptides in the extracellular 

environment to clear opportunistic pathogens. 

 In addition to these immune effector mechanisms, specific classes of immune cells have 

unique traits that enhance the immune system’s ability to clear pathogens. Neutrophils, as well as 
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other select immune cells, may undergo neutrophil extracellular trap (NET) formation, also 

known as NETosis, to kill and slow the spread of extracellular pathogens. NETs consist of 

modified chromatin studded with bactericidal proteins from the cytoplasm and cellular granules 

and can be produced by “classical” NETosis in which the cell undergoes programmed cell death 

(PCD) or by “vital” NETosis after which the cell retains its effector ability and viability (19).  

Mast cells, basophils, and eosinophils have unique roles to play in anti-parasitic 

immunity and allergic response. Mast cells and basophils store and release basophilic granules 

and eosinophils store and release eosinophilic granules in response to parasitic helminth infection 

(20-22). Each of these cell types releases its granules in abundance to combat helminth infection. 

Eosinophilic granules contain major basic protein (MBP), ribonuclease cationic protein (RCP), 

and eosinophil-derived neurotoxin (21). Basophilic granules contain many of the same effector 

molecules but contain uniquely high levels of serine proteases in the same family as 

trypsin/chymotrypsin-related serine proteases, heparin, and histamine (23). All three types of 

cells also express Fcε receptors, with the high-affinity FcεRI expressed on Mast cells and 

basophils and the low-affinity FcεRII expressed on eosinophils. These receptors bind to the Fc 

regions on IgE class-switched antibodies, the lowest-concentrated immunoglobulin subtype, 

which is closely associated with the allergic response in addition to parasitic infections like 

schistosomiasis (24). These three cell types are thereby uniquely active in the “Type 2” immune 

response against parasites and the propagation of an allergic response.  

 The immune system coordinates which responses to mobilize and where to mobilize them 

through molecules secreted into the vasculature including cytokines, chemokines, and hormones. 

These immune communication molecules may act on the cell that secreted them in an autocrine 

fashion, on cells purely in the local vicinity in a paracrine fashion, or on distant, nonself cells 
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within reach of the circulatory system in an endocrine fashion. Cytokines encompass many 

soluble proteins with molecular weights between 6 and 70 kDa and are secreted by lymphocytes, 

macrophages, natural killer cells, Mast cells, stromal cells, and more. Similarly, cytokines act on 

many target cells to promote macrobiological programs and induce individual cells to alter 

intracellular processes that promote or inhibit immune responses. Cytokines may be classified as 

pro-inflammatory, anti-inflammatory, or both, but cytokines also can be classified by their 

cellular source. Type 1, 2, and 3 cytokines are secreted by cells including adaptive immune 

CD4+ Th1 cells, CD4+ Th2 cells, and CD4+ Th17 cells, respectively, and promote immune 

programs for specific pathogenic contexts (25).  

Type 1 cytokines include IL-2, IL-12, IL-18, IFN-γ, and TNF-β and promote the 

inflammatory response to clear intracellular pathogenic stimuli. Type 2 cytokines include IL-4, 

IL-5, IL-6, IL-10, and IL-13, IL-33 among others, and they decrease the inflammatory response 

after pathogen clearance and can initiate tissue repair (26). Tissue repair is mediated by tissue 

macrophages, tissue stem cells, CD4+ Th2 cells, anti-inflammatory + anti-fibrotic macrophages 

(M(IL-10)-like), pericytes, dendritic cells, neutrophils, and Mast cells and is promoted by IL-4, 

IL-10, and IL-13. These cells collectively phagocytose cellular debris, close the wound if open to 

the frontier, and remodel the extracellular matrix to heal the wound (27). 

Type 2 cytokines, as mentioned before, may also potentiate the immune response against 

extracellular parasites and allergic stimuli (28, 29). Type 2 cytokine release also improves barrier 

defenses by promoting mucus production, smooth muscle contractility, and intestinal epithelium 

turnover (29). Type 3 cytokines can also be produced by Th17/Th22 cells and include IL-17A, 

IL-17F, IL-22, and IL-26 and accelerate extracellular bacterial clearance and promote tissue and 

microbiome homeostasis (30, 31).  
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 Adaptive CD4+ T-cells are prominent sources of cytokines, and innate cells are just as 

important for cytokine production. Inflammatory macrophages, NK cells, and group 1 innate 

lymphoid cells (ILC1) frequently secrete type 1 cytokines (32, 33). Type 2 cytokines may be 

produced by basophils, Mast cells, eosinophils, and group 2 innate lymphoid cells (ILC2) (29). 

Type 3 cytokines are commonly secreted by neutrophils, Mast cells, and group 3 innate 

lymphoid cells (ILC3). Innate immune cells release cytokines upon PRR stimulation by 

pathogens to improve the function of innate cells and adaptive cells in the site of inflammation to 

quicken the clearance of the inflammatory stimulus (or tamp it down for inhibitory Type 2 

cytokines). The interaction between innate and adaptive immune cells that both produce 

inflammatory or anti-inflammatory cytokines may lead to a feed-forward loop that intensifies or 

a feed-back loop that diminishes an immune response. Th1 cells and macrophages both secrete 

IFN-γ in inflammatory contexts, and IFN-γ acts on both cell types to increase IFN-γ secretion 

and impact them and their neighbors in other ways. IFN-γ increases the cell membrane 

expression of MHC-II on APCs and MHC-I on non-APCs while perpetuating Th1 lineage 

commitment and intensifying the pathogenic killing capacity of macrophages. This is 

accomplished through the activation of the NADPH-dependent phagocyte oxidase system, nitric 

oxide production, and upregulation of lysosomal enzymes (34). While other immune contexts 

have different propagating effects, this innate-adaptive immune coordination through cytokines 

can also be seen in Type 2 immunity between Th2 cells and eosinophils, basophils, and Mast 

cells through IL-4 and in Type 3 immunity between Th17 and neutrophils through IL-17A (35, 

36). In extreme cases, inflammatory feed-forward loops may bloom into cytokine release 

syndrome (CRS), in which site-specific inflammation spreads system-wide and leads to ever-
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increasing cytokine release, inflammation, vascular endothelium breakdown, organ failure, and 

eventual death if left untreated (37). 

While T-cells mediate cell-mediated immunity against pathogens, B cells that produce 

antigen-specific antibodies in mass quantities enervate immune effector cells via humoral 

immunity. B cells, T follicular helper (Tfh) cells, follicular dendritic cells (FDCs), and other 

APCs and stromal cells cooperate within the lymph node to hone and refine humoral immunity 

in a process known as somatic hypermutation (SHM). Tfh differentiation is promoted early on by 

IL-6 and the costimulatory molecule ICOSL which among other signals activates lineage-

committing transcriptional programs driven by the TF BCL6. Tfh differentiation typically 

requires priming by both DC and B cell APCs and is inhibited by IL-2/IL-2R signaling that 

activates Blimp-1 and STAT5-mediated transcriptional programs. T-cells that are primed to 

become Tfh cells up-regulate CXCR5 and downregulate CCR7. This altered expression of 

chemokine receptors allows for T-cell migration to the T-B border. At the T-B border, Tfh-

primed T-cells interact with B cells through ICOS-ICOSL and pMHC-II interactions to promote 

the formation of germinal centers (GCs). Tfh cells will eventually localize beyond the T-B 

border into GCs (GC-Tfh) by repressing PSGL1 and the chemotaxis-mediating receptor Ebi2. 

These changes are accompanied by altered S1P receptor expression patterns, SLAM family 

receptors, and integrins (38). 

Specialized cells with dendritic morphology that reside in the light zone of the lymph 

node GC are known as FDCs. FDCs uptake nonself antigens in their native form and present 

them to B cells via complement receptor 1 (CR1) in combination with survival signals. B cells 

also interact with nonself pMHC-II on lymph node APCs via their surface B cell receptors 

(BCRs), upon which interaction they may localize to the T-B border, interact with Tfh cells, and 
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migrate into GCs of lymph nodes to undergo SHM. SHM improves the specificity of secreted B 

cell receptors (i.e., antibodies) for their cognate nonself antigen as well as class-switch antibody 

production to optimize the innate immune response triggered by interaction with Fc-regions of 

antigen-bound antibodies.  

During SHM, B cells oscillate between the “light” zone and the “dark” zone of a lymph 

node GC, as specificity for native-conformation nonself antigens is refined. The light zone 

contains FDCs and GC-Tfh cells that present native antigens and monitor pMHC-II presentation 

via surface-expressed TCRs, respectively; both cells provide survival signals to those B cells 

which best bind native antigens and present that antigen-derived peptides in abundance on 

MHC-II. Those B cells bind and present antigens less competently will not receive survival 

signals and will be outcompeted and perish. After competent B cells in the light zone receive 

survival signals, they migrate into the dark zone which induces the processive enzyme 

activation-induced cytidine deaminase (AID). AID deaminates cytosines in B cell 

immunoglobulin (Ig) genes which encode for antigen-specificity-determining regions of the B 

cell receptor.  

AID activity is necessary for the initiation of SHM and class switch recombination 

(CSR), the process by which rearrangement within the Ig heavy constant region allows isotype 

changes to B cell clonotypic antibodies to change the antibodies’ effector functions and tissue 

distribution (39). The different types of antibody classes include those associated with naïve B 

cells, IgM and IgD, and those associated with activated, mature B cells: IgG, IgE, and IgA (40). 

Over time, GC B cells differentiate into long-lived plasma cells which secrete great amounts of 

class-switched antibodies and memory B cells to respond to future antigenic stimulation. Plasma 

cells reside primarily in the bone marrow while memory B cells are localized to secondary 
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lymphoid organs (SLOs) (41). Successful SHM and CSR in GC B cells will produce cells that 

secrete antibodies that effectively bind to nonself antigens to coat, or opsonize, pathogens to tag 

them for elimination by phagocytes through engagement with FcRs through the Fc region of the 

bound antibody. Secreted antibodies may also “neutralize” pathogens, in which pathogens have 

severe difficulty in spreading or are completely unable to interact with the surrounding tissue 

(42).  

 Chemokines allow immune cells to localize to sites of inflammation to overwhelm 

pathogens and accelerate the immune response. Classified into four main subfamilies, CXC, CC, 

CX3C, and C, chemokines interact with G protein-linked transmembrane receptors known as 

chemokine receptors and induce transcriptional programs to remodel cellular membrane 

composition and intracellular cytoskeletal elements to promote cell trafficking to sites of 

inflammation (43, 44). The multitude of chemokines allows for the precise tuning of immune 

cells recruited to an inflammatory site, among other functions. To name a few examples, CXCR4 

acts to retain marginated neutrophils within the lung vasculature, CCL11 acts on eosinophils and 

basophils to promote their migration from the embryonic gastrointestinal (GI) tract into the 

periphery, CXCR2 promotes intestinal Mast cell localization and residence in the intestine, 

tissue-resident macrophages associate closely with CXCL14-producing fibroblasts in the skin 

and lamina propria, and CCL20 promotes migration of CD14+ dendritic cells (45). Immune cells 

follow the molecular “signal flare” of chemokines to go where they are most needed. Localized 

cytokine milieus present at inflammatory sites then help program the exact type of immune 

response needed from those localized cells. 

  Hormones complement cytokines and chemokines as another humoral regulator of 

immune outcomes. Hormones are secreted locally but permeate into the bloodstream to act on 
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local and distant cell populations. Classic examples of immunomodulatory hormones include 

immunosuppressive testosterone and immunoenhancing estrogen. Estrogen impairs autoreactive 

B cell negative selection and promotes CD4+ Th2 responses. Testosterone on the other hand can 

promote CD4+ Th1 responses, CD8+ cytotoxic T-cell responses, and anti-inflammatory IL-10 

while tamping down NK cell responses and TNF-α secretion. The effects of 

testosterone/estrogenic impacts on sex-based immune differences can be seen in the higher 

Th1:Th2 ratio found in men compared to women (46). 

 The introduction of major components of the immune system now will allow the basic 

overview of an immune response from initiation to resolution using an idealized example of a cut 

in the skin that permits invasion and infection by an opportunistic, extracellular bacterium 

followed by successful clearance and resolution. In the first minutes of the infection, secreted 

humoral factors such as lysozyme, complement, and antibodies may opsonize, neutralize, and/or 

kill the infiltrating pathogen. Assuming the pathogen survives this phase, its secreted PAMPs 

will trigger PRR activation on tissue-resident macrophages, dendritic cells, and other innate 

immune cells. During this phase, nucleated cells will begin the presentation of bacterial nonself-

peptides on MHC-I for surveillance by antigen-specific CD8+ cytotoxic T-cells.  

Driven by PRR activation, innate immune cells release inflammatory cytokines, 

chemokines, and other factors to recruit circulating immune cells to the site of inflammation. 

These secreted factors facilitate extravasation into the inflamed site by loosening the endothelial 

cell-cell adhesion and intensify the inflammatory functions of immune cells in the inflammatory 

site. Resident and recruited phagocytes will phagocytose the offending live pathogen, dead 

fragments of the pathogen, and dead or dying infected cells. Phagocytotic APCs will lyse 

phagocytosed pathogens and present their nonself-peptides on their MHC-II molecules for 
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surveillance by antigen-specific CD4+ T-cells. Upon presentation of nonself-peptides on MHC-

II (nonself pMHC-II), dendritic cells will then traffic to the nearest draining lymph node through 

afferent lymphatic vessels, allowing the billions of clonal T-cells to examine the DC’s nonself 

pMHC-II (47). Once an antigen-specific T-cell binds to the nonself pMHC-II through 

interactions with an antigen-specific T-cell receptor (TCR) and CD4, that T-cell will undergo 

activation, clonal expansion, and differentiation over days into billions of antigen-specific T-cell 

subsets depending on the cytokine milieu and localize to the site of inflammation.  

Upon interaction with a myeloid professional APC that presents nonself pMHC-II, T-

cells may differentiate into the previously mentioned T effector cells such as Th1, Th2, and Th17 

or into Tfh cells to promote GC formation and assist B cells in SHM (48). Antigen-specific Tfh 

cells will then assist GC B cells in SHM and CSR and eventually differentiate into plasma cells 

and memory B cells. Plasma cells will then produce vast quantities of class-switched antibodies 

that will seek out and opsonize the pathogen. Pathogen-bound antibodies then alert local 

phagocytes via FcR signaling and possibly neutralize the pathogen entirely. Production of B and 

T lymphocytes results in the characteristic swelling of lymph nodes over 3-4 days, after which T-

cells relocate to the periphery, plasma cells to the bone marrow, and memory B cells to SLOs 

(49). After immune cells cooperate to eradicate the opportunistic pathogen and inflammatory 

stimuli disappear, the immune response shifts to tamp down the inflammatory response through 

CD4+ Treg cells, CD4+ Th2 cells, M(IL-10)-like macrophages, and other effector cells which 

secrete growth factors, lay down ECM, and contribute to wound healing. Simultaneously, the 

mobilized B and T lymphocytes deplete over time or form their memory B and T counterparts as 

inflammatory stimuli and antigen-specific innervation wane (50). In most cases, immune 

responses resolve over 14 days post-infection (51). 
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Introduction to Hematopoiesis 

 Hematopoiesis is the process that allows an organism to produce and maintain key 

populations of immune and blood cells throughout its life. In a single day, adult humans produce 

on average ~4-5 × 1011 hematopoietic cells comprising innate immune cells, adaptive immune 

cell precursors, and other blood cells. The hematopoietic cell types include but are not limited to 

osteoblasts, osteoclasts, macrophages, monocytes, dendritic cells, neutrophils, basophils, 

eosinophils, Mast cells, thrombocytes, erythrocytes, platelets, and common lymphoid progenitors 

which further develop into natural killer, T, and B cells (52, 53). While a portion of tissue-

resident immune cells including select Mast cell and macrophage populations is fetal-derived and 

self-maintains separate from hematopoiesis, the vast majority of immune cells and blood cells 

originate from hematopoiesis (54).   

 Hematopoietic cells stem from a small population of long-term hematopoietic stem cells 

(LT-HSCs) with the ability to self-renew asymmetrically. LT-HSC asymmetric self-renewal 

replenishes the LT-HSC in cell division and simultaneously produces a daughter cell which 

differentiates into a mature hematopoietic cell itself or further begets progenitors with more 

limited asymmetrical self-renewal characteristics such as multi-potent progenitors (MPPs). In 

classical models of hematopoiesis, investigators envisioned a hierarchical process with LT-HSC 

giving rise to MPPs, then to common myeloid progenitors (CMPs) and multi-lineage progenitors 

(MLPs) which bifurcated the fate decision between myelo-erythroid and lymphoid, respectively. 

CMPs were seen to differentiate into megakaryocyte-erythroid progenitors (MEPs) and 

granulocyte-macrophage progenitors (GMPs). MLPs were postulated to give rise to mature DCs, 

pre-B cell/Natural Killer (PreB/NK) progenitors, and early T-cell precursors (ETPs). MEPs, 
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GMPs, PreB/NK, and ETPs would then differentiate into mature hematopoietic cells in an 

irreversible and non-overlapping fashion (55).  

 However, research published over the last decade has challenged this simplistic “family 

tree” of hematopoiesis. For example, it has been shown that lineage choice occurs in the 

primitive HSC compartment rather than further down a differentiation hierarchy (56, 57). 

Additionally, MPPs which were formerly seen as distinct from HSCs have been shown to share 

similar HOXB6/HOXA2/PRDM16-driven gene modules but differ in metabolic characteristics. 

Whereas HSCs are more metabolically quiescent, MPPs have greater cell cycle activation, gene 

expression, protein biosynthesis, and increased cell respiration (58). A more detailed vision of 

metabolic influences on hematopoiesis will be discussed in a later section.  

 Newer models of hematopoiesis mitigate the former unidirectional hierarchy in the self-

renewing HSCs and MPPs and reveal new connections between progenitor groups in more 

mature descendant populations. For example, lymphoid-myeloid primed progenitor cells 

(LMPPs) denoted by Lin-CD34+CD38-CD90-/loCD45RA+CD10- are a recent addition to the 

model that are distinct from MPPs and MLPs with both myeloid and lymphoid potential. In 

previous models, unless an MPP had committed to myeloid lineage through CMP, there was no 

hematopoietic route to generate polymorphonuclear leukocytes (PMNs) such as neutrophils, 

eosinophils, basophils, and Mast cells (57). Hematopoietic progenitor groups are also now 

presented as less monolithic and more heterogeneous than in previous models with the aid of 

new single-cell sequencing techniques. HSCs and MPPs appear not to be limited to “vertical” 

hierarchical transitions through hematopoiesis but are capable of lineage bias in which the pool 

of HSCs and MPPs may express gene programs driven by TFs associated with certain lineages. 
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These include GATA2 and MESP1, which are correlated with erythroid and lymphoid 

trajectories, respectively (56). 

Certain “master regulator” TFs have been identified that drive the production of 

hematopoietic precursors, regardless of those precursors’ heterogeneity. These TFs include those 

which help determine initial fate choices in the HSC/MPP compartment: NFE2, GATA2, FLT3, 

CBPE, STAT1, and TCF4. NFE2/GATA2 induction contributes to MK/erythrocyte fate, FLT3 to 

myeloid fates through CMPs, and CBPE/STAT1/TCF4 induction may route HSCs/MPPs into 

LMPP, DC, and/or MLP fates. To briefly illustrate the diversity of hematopoietic transcriptional 

programs, I will examine several major TFs and how they contribute to lineage specification. 

The MK lineage requires PBX1/VWF induction, the erythrocyte lineage requires GATA1/KLF1 

induction, the macrophage lineage requires CEBPD/IRF8 induction, the PMN lineage requires 

sequential CEBPD/CEBPE/CEBPD induction, the DC lineage requires STAT1/IRF8 induction, 

and T-cells, B cells, and NK cells require TCF4/ID3 induction. A more detailed list of TFs 

required for T-cell differentiation will follow in a later section and reviewed (58).  

Hematopoiesis requires high throughput to maintain homeostasis while retaining dynamic 

regulation of dozens of hematopoietic differentiation pathways. Mammalian systems accomplish 

this through spatial and metabolic characteristics of the hematopoietic niche combined with a 

diverse set of stromal cells that facilitate maintenance, retention, and proliferation of HSCs 

through secreted factors, direct cell contact, and indirect action on neighboring stromal cells. 

Thought to localize to the endosteal layer of bone that divides central bone marrow (BM) from 

outer bone, HSCs are regulated by endothelial cells, perivascular mesenchymal stem cells 

(MSCs), adipolineage cells, MKs, macrophages, osteoblasts, sympathetic nervous system (SNS) 

nerves, and Treg cells (59).  
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A variety of cells regulate HSCs. First among these stromal cells are nestin (Nes)-GFP+ 

perivascular cells which express CXCL12 and SCF which bind to CXCR4 and KIT, respectively. 

These cells also express regulatory factors like ANGPT1, OPN, IL-7, and VCAM1, and similar 

populations can be isolated from non-transgenic mouse BM and human fetal BM via the surface 

markers PDGFRα and CD51. Hematopoietic-lineage cells like macrophages, MKs, neutrophils, 

and Tregs also act to regulate HSCs. Macrophages may secrete DARC and TGF-β to directly 

impact HSCs and OSM to indirectly regulate HSCs through Nes-GFPlow cells, LEPR+ cells, or 

CXCL12-associated reticulocytes (CAR cells) which are closely associated with BM sinusoids 

and arterioles. These vasculature-associated cells can also secrete CXCL12 and SCF to provide 

survival and maintenance signals to HSCs and IL-7 to promote lymphoid progenitor, T-cell, and 

B cell maintenance. MKs are also potent regulators of HSC quiescence and secrete CXCL4, 

TGF-β, and THPO. While depletion of MKs from transgenic mice does not affect overall HSC 

abundance in the BM, Vwf-GFP+ HSCs which are myeloid lineage-primed to become platelets 

closely associated with MKs and selectively expand upon MK depletion in mice. Neutrophils 

may also impact HSCs indirectly through the secretion of TNF into the vasculature, which 

accelerates vascular recovery following BM niche stressors such as irradiation. Treg cells can 

endow the BM niche with a degree of immune privilege through the secretion of 

immunomodulatory IL-10. Transplanted allogeneic HSCs were shown to colocalize with 

FOXP3+ Tregs in mice which further promotes allo-HSC longevity through CD39-catalyzed 

production of adenosine in the HSC niche. The absence of Tregs leads to rapid loss of allo-

HSCs.  

Osteolineage cells, endothelial cells, nonmyelinating Schwann cells, SNS nerves, and 

adipocytes also regulate HSC maintenance. Osteoblasts secrete molecules associated with 
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hematopoietic maintenance: osteopontin (OPN), CXCL12, thrombopoietin (TPO), and 

angiopoietin 1 (ANGPT1). However, 3D-imaging studies have demonstrated that osteoblasts and 

HSCs do not closely associate. Furthermore, other cell types have been shown to produce greater 

amounts of these molecules, suggesting that osteoblasts do not directly regulate HSC activity 

(60). Endothelial cells lining BM sinusoids and arterioles may secrete CXCL12, Notch ligands, 

pleiotrophin, and SCF to regulate HSCs. Nonmyelinating Schwann cells are glial cells that 

insulate artery-tracing nerves and promote HSC quiescence through TGF-β and SMAD 

signaling. SNS signals can stimulate the release of the neurotransmitter noradrenaline into the 

HSC niche, which facilitates the establishment of a CXCL12 gradient in the BM to facilitate 

progenitor egress into peripheral organs. SNS signals are also crucial for an intact osteocyte 

network and repopulation of the hematopoietic compartment following genotoxic stress. Finally, 

adipocytes may also negatively impact HSC maintenance. In humans, BM adiposity increases 

with age while HSCs become less abundant. Adipocyte-secreted adiponectin impairs progenitor 

proliferation in vitro, HSC engraftment in A-ZIP/F1 “fatless” mice is faster than WT 

counterparts, and antagonism of peroxisome proliferator-activated receptor γ (PPARγ) in mice to 

inhibit adipogenesis further accelerates BM recovery following transplantation or chemotherapy 

(60).  

Osteoblasts, MSCs, and endothelial cells further enable HSC maintenance and 

differentiation via JAGGED-NOTCH interactions in mice and humans. It has been suggested 

that NOTCH signaling is especially important for lymphoid differentiation; Notch1 is expressed 

at much higher levels in committed lymphoid progenitors than in purified murine HSCs. Also, 

inhibited NOTCH signaling in xeno-HSC-engrafted mice results in reduced engraftment and 

human HSC frequency. The exact function of this interaction is still debated (61). HSCs have 
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also been shown to change localization patterns with age. In mice, HSCs were shown to localize 

close to Cxcl12+ stromal cells and further from sinusoids and megakaryocytes at 3 weeks than 

HSCs and progenitor cells at 5 weeks and older (62). 

Mutations acquired at any stage in hematopoiesis can lead to impaired differentiation, 

accelerated self-renewal, and resulting hematologic malignancies and leukemias. Leukemia 

accounts for ~309,000 annual deaths globally as the 15th most diagnosed cancer and the 11th 

greatest cause of global cancer mortality (63). More minor malignancies such as myelodysplastic 

syndrome (MDS) can occur which is a chronic health burden that can devolve into leukemia. 

Both are severe health outcomes that can occur when hematopoiesis goes awry (64). The 

ultimate triggers of genetic mutations that cause leukemias such as acute myeloid leukemia 

(AML) are unknown, but risk factors include radiation therapy, chemotherapy, smoking, and 

pollutants (63). Common mutations that underlie AML include many of the same genes that 

transduce signaling to regulate hematopoietic differentiation and proliferation such as FLT3, 

KRAS, NRAS, PTPN11, NF1, and KIT. Collectively, these genes are mutated in roughly two-

thirds of AML cases. Other major gene groups represented in recurrent AML mutations are 

epigenetic modifiers like DNMT3A, nucleophosmin (NPM1), TF gatekeepers of lineage like 

CEBPA and RUNX1, tumor suppressors like TP53, spliceosome complex members like SRSF2, 

and cohesin complex genes like RAD21 (65). 

 

 

Steady-state vs. Emergency Hematopoiesis 

 In addition to steady-state homeostatic functions, hematopoiesis can dynamically respond 

to secreted cytokines, chemokines, and metabolites to supply cell types that are urgently needed 

through stressed or “emergency” hematopoiesis. Infection, irradiation, and chemical stress leads 



 
 

21 
 

to inflammation that can trigger emergency hematopoietic processes to facilitate immune 

responses to clear the inflammatory stimuli. The dearth of a given hematopoietic cell type may 

also trigger emergency production of that cell type until the need is met. 

 Infection by opportunistic pathogens can trigger emergency myelopoiesis and/or 

granulopoiesis that generates a greater number of innate immune monocytes and neutrophils to 

respond to the pathogen. Bacterial challenges may trigger endothelial cell secretion of 

granulocyte-colony stimulating factor (GCSF). Stromal cells and hematopoietic stem and 

progenitor cells (HSPCs) within the BM respond to GCSF binding to its receptor GCSFR. GCSF 

acts on the BM stroma to reduce the number of osteoblasts and macrophages which results in 

increased mobilization of murine and human HSCs and progenitors into the periphery. Human 

HSPCs proliferate and activate TLR signaling in response to GCSF to increase neutrophilic 

differentiation. In addition to pathogenic stimuli, emergency myelopoiesis can be artificially 

triggered by the administration of PAMPs like LPS, polyI:polyC (pIpC), and others (61). 

Production of cytokines like TNF-α may boost myelopoiesis through inhibiting other 

hematopoietic pathways like erythropoiesis. TNF-α also blocks HIF1α signaling that could 

promote erythropoiesis by activation of NFκB and Gata2-mediated transcriptional programs 

(66).  

Viral infections are also likely to trigger emergency myelopoiesis. In the case of SARS-

CoV-2 (COVID-19) infection, human patients with severe disease have characteristically 

elevated inflammatory markers IL-6 and c-reactive protein (CRP) and increased emergency 

myelopoiesis compared to patients with more favorable outcomes. This emergency myelopoiesis 

produces primarily monocytes and neutrophils which may or may not be fully mature and 

functional. Neutrophils profiled from patients with severe COVID-19 tended to be more 
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immature than other contexts, indicated by lower expression of CD10 and CD16. Monocytes 

from severe COVID-19 patients expressed less HLA-DR, with both neutrophils and monocytes 

positively correlated with each other. A potential mechanism to promote immature populations 

could be a response to monocyte pyroptosis following COVID-19-mediated inflammasome 

activation (67). 

Irradiation and chemical stressors can also initiate emergency hematopoiesis. 

Administration of ionizing radiation or chemotherapy increases expression of fibroblast growth 

factor 2 (FGF2) in the BM which can expand Nestin+ and other stromal cells that produce 

increased HSPC-expanding. At higher doses at ~2 Gy for human total body irradiation (TBI), 

irradiation is capable of devastating hematopoietic stem cells, progenitors, and stromal cells, 

though stromal cells can recover rapidly via expanded osteoblast-lineage cells and 

megakaryocytes at the bone endosteal surface. Removal of host HSPCs allows for repopulation 

with autologous and allogeneic hematopoietic stem cell transplants for the treatment of 

hematologic malignancies, certain immune disorders, and more (61). Treatment with chemical 

stressors like 5-fluorouracil (5-FU) targets cells in S-phase to induce HSPC cycling and 

differentiation via MEK/ERK, PI3K, and AKT/mTORC1 signaling, among other pathways (66).  

Aside from infection, irradiation, and chemical stressors, steady-state hematopoiesis may 

be pushed into a stressed state to compensate for a rapid loss of cells. For example, acute or 

excessive blood loss and the resulting loss of erythrocytes needed to supply oxygen to peripheral 

tissues can induce stress erythropoiesis. Hypoxia in the bone marrow can activate hypoxia-

inducible genes mediated by VHL repression and resulting stabilized HIF1α. These include 

BMP, GDF15, glucocorticoid receptor, and erythropoietin (EPO). These factors act on HSPCs 

and stromal cells to dramatically promote the production of erythroid-restricted stress erythroid 
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progenitors (SEPs) that rapidly repopulate erythroid populations. While both rely on 

inflammatory signals to activate, emergency myelopoiesis is promoted over emergency 

erythropoiesis after induction of TLR signaling that signals through MyD88 to NFκB to increase 

inflammatory cytokine production (66). 

 

Metabolism, Differentiation, and Function in Hematopoietic Stem Cells 

 

Figure 1.1. Metabolic Requirements of Quiescent and Cycling Hematopoietic Stem 

Cells. To preserve stemness, quiescent HSCs upregulate fatty acid oxidation (FAO), branched-

chain amino acid (BCAA) metabolism, autophagy/mitophagy, and anaerobic glycolysis. 

Conversely, cycling HSCs that are primed for differentiation may be activated following 

increased oxygen concentration or inflammatory cytokines. This activation then leads to greater 

OXPHOS, ATP and ROS production, protein synthesis, and more aerobic glycolytic metabolism. 

 

In addition to cytokines, chemokines, and other secreted factors that influence HSC 

behavior and fate, cellular metabolism is also an important regulator of hematopoietic 

“stemness” and differentiation potential. “Stemness,” or the ability of HSCs and certain 
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progenitor cells to self-renew over a given time frame, indeed requires tight regulation of cellular 

metabolic processes for lifelong maintenance. While metabolic changes in HSCs may be induced 

by cytokine, chemokine, and other secreted factor-induced signaling, fluctuation to HSC 

microenvironmental nutrients and O2 can potently alter HSC behavior and function. Overall, 

HSCs utilize and regulate anaerobic glycolysis, ROS, mitophagy, electron transport chain 

management, amino acid metabolism, and lipid metabolism to preserve quiescence and 

“stemness”.  

 Due to their residence in the hypoxic bone marrow niche, with an estimated 32 mm Hg 

pO2 in live mice, HSCs mainly derive energy production from anaerobic glycolysis. Low pO2 

allows for the repression of the E3 ligase Von Hippel-Lindau (VHL) and stabilization of 

hypoxia-inducible factors HIF-1α and HIF-2α, which then heterodimerize to promote 

transcription of genes like Epo, Vegfa, and Glut1 that promote glycolytic metabolism. HIF-

signaling has also been shown to promote GLUT1 localization to the cell membrane (68-70). 

While Hif-1α and Hif-1β are dispensable for HSC self-renewal in some genetic mouse model 

studies, loss of their transcriptional activator Meis Homeobox 1 (Meis1) results in increased 

mitochondrial metabolism, increased ROS levels, and loss of quiescence and repopulation 

potential after transplantation. HSCs also exhibit high expression of pyruvate dehydrogenase 

kinase (Pdk) which inhibits pyruvate dehydrogenase (PDH)-mediated conversion of pyruvate to 

acetyl-CoA to down-regulate aerobic glycolysis. Glucose uptake levels are lower in HSCs than 

in subsequent progenitors and more mature hematopoietic cells in the BM. Proliferative HSCs 

display greater glucose uptake, however, than quiescent HSCs. Furthermore, inhibition of V-

ATPase, an enzyme required for the establishment of proton gradients across the electron 
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transport chain, results in increased HSC quiescence, ex vivo maintenance of HSCs, and 

competitive repopulation ability upon transplantation (71).   

 ROS are a consequence of high metabolic activity and can also trigger HSC entry into the 

cell cycle and exit quiescence if not properly controlled. HSCs exhibit reduced function in 

genetic mouse models with increased ROS production resulting from deletions in Ataxia 

telangiectasia mutated, Tuberous sclerosis complex subunit 1, or Forkhead box (FoxO). To 

scavenge and limit ROS and to preserve quiescence, HSCs utilize antioxidant enzymes such as 

superoxide dismutase (SOD) and tamp down on mitochondrial oxidative phosphorylation 

(OXPHOS). HSCs prioritize shunting glycolytic intermediates into the pentose phosphate 

pathway (PPP) and away from the TCA cycle to avoid excessive OXPHOS, which converts 

roughly 0.1-0.2% of oxygen processed in the electron transport chain (ETC) into ROS (71).  

 Though HSCs utilize minimal OXPHOS for their bioenergetic needs, recent evidence has 

demonstrated that HSCs possess high mitochondrial content, high mitochondrial membrane 

potential (ΔΨm), and high mitochondrial turnover. Contradicting conclusions from older studies, 

recent staining of HSCs with tetramethylrhodamine methyl ester perchlorate (TMRM) has 

revealed that HSCs have the greatest ΔΨm among hematopoietic populations, after correcting for 

xenobiotic transporter activity which exports TMRM out of the cell. Xenobiotic efflux pump is 

higher expressed in HSCs than in mature hematopoietic populations, and the lack of control for 

that variable had led to biased results in the past when assessing HSC ΔΨm. Using similar 

xenobiotic efflux correction in measuring mitochondrial mass, HSC mitochondrial mass was 

shown to be as great or greater than other hematopoietic cells by mitotracker green (MTG) 

staining and corroborated by 3D image-based assessment of mitochondrial structure in HSCs 

(72, 73). 
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 HSCs regulate mitochondrial turnover, fusion, and fission to maintain the balance 

between quiescent self-renewal and metabolically active differentiation. Mitochondria 

dynamically divide (fission) and combine (fusion) to respond to metabolic and environmental 

cell stressors to create new mitochondria and partition off damaged or defective mitochondria 

(74). In HSCs, the mitochondrial fusion-promoting protein Mitofusin 2 (Mfn2) is required for 

lymphoid-primed HSC maintenance while myeloid-primed HSCs do not require it. HSC 

mitochondrial fission-promoting Dynamin-related protein 1 (Drp1) is important for HSC 

quiescence. Loss of Drp1 results in loss of HSC self-renewal potential but retention of HSC 

quiescence. Furthermore, the clearance of damaged or defective mitochondria through 

mitophagy is needed to maintain HSC self-renewal capacity. Recruitment and inhibition of 

Parkin, a key promoter of mitophagy, results in increased HSC expansion and limited HSC self-

renewal, respectively. Without these mitochondrial quality control mechanisms to ensure healthy 

mitochondria for HSC daughter cells, HSC self-renewal potential erodes (71).  

 Although HSCs primarily rely on anaerobic glycolysis, they possess high mitochondrial 

mass and high ΔΨm that is facilitated by unique regulation of HSC ETC components, and low-

level OXPHOS is required for their normal function. For example, HSPCs exhibit greater 

expression and activity of ETC complex II compared to ETC complex V in most mature cell 

types. Increased proton pumping into the mitochondria by ETC complex II and decreased proton 

flux by complex V can explain this heightened ΔΨm. When this ΔΨm is lowered by deficiencies 

in subunits of complex III and complex II, HSCs experience loss of quiescence, long-term 

repopulating capability, or decreased myeloid progenitors (71). 

 HSCs also make selective use of amino acid metabolism to facilitate homeostasis, 

primarily glutamine and branched-chain amino acids (BCAAs). Glutamine is the most prevalent 



 
 

27 
 

amino acid in mice and humans by concentration and is a critical fuel for the TCA cycle. The 

enzyme glutaminase (Gls) catalyzes its conversion into glutamate, and subsequently, glutamate 

dehydrogenase (Gdh) catalyzes glutamate into α-ketoglutarate (α-KG) for entry into the TCA 

cycle (75). Switching of glutaminase (Gls) isoforms promotes HSC cell cycle activation, and 

glutamine-dependent de novo nucleotide biosynthesis is required for HSC erythroid 

specification. BCAAs are also important for normal HSC function. HSC proliferation and 

maintenance rely on the BCAA valine, and BCAA metabolism is an important regulator of HSC 

proliferation. Mutations in the BCAA-associated enzymes IDH1 and IDH2 that catalyze 

isocitrate into α-KG can lead instead to the production of the oncometabolite 2-hydroxyglutarate 

(2-HG). 2-HG can induce accelerated HSC self-renewal and leukemogenesis partially through 

inhibition of TET2, a key demethylation enzyme that will be discussed in more detail in a later 

section. Other BCAAs like purine, aspartate, and asparagine are also capable of regulating 

hematopoietic self-renewal capacity.  

 HSCs also utilize fatty acid oxidation (FAO) to regulate self-renewal and differentiation. 

FAO involves the breakdown of long-chain fatty acids in a process that ranges from activation in 

the cytosol, transport via the carnitine shuttle system into the mitochondria, and the progressive 

cleavage from the fatty acid of two carbons at a time to produce acetyl-CoA, NADH, FADH2, 

and ATP. Deletion of a regulator of fatty acid transport, peroxisome-proliferator activated 

receptor (Ppar) delta in HSCs impairs HSC reconstitution capability. The PPAR-FAO pathway 

also promotes Parkin recruitment to the mitochondria, and Parkin promotes mitophagy that is 

needed to preserve HSC quiescence. Other members of the PPAR family regulate HSC and 

progenitor behavior; Ppar γ inhibition results in increased expansion of HSPCs derived from 

human cord blood. Furthermore, stromal cells that store fatty acids in the bone marrow called 
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bone marrow adipocytes (BMA) are a major source of Scf secreted in the bone marrow after 

irradiation and are important for the engraftment of HSC transplants (71). 

 De novo fatty acid synthesis supplies cells with fatty acids, with the first synthetic step 

performed by the enzyme fatty acid synthase (FASN) that uses acetyl-CoA as a substrate. 

Acetyl-CoA can be derived from glycolysis, and the enzymes ATP citrate lyase (ACLY) and 

acyl-CoA synthetase short-chain family member 2 (ACSS2) are major acetyl-CoA suppliers 

through citrate and acetate catalysis, respectively. While there are no studies that examine the 

role of ACSS2 on hematopoietic stem cell differentiation, ACSS2 has been shown to regulate 

adipocyte and neuronal differentiation through its supply of acetyl-CoA to histone acetylation 

(76). Supply of acetyl-CoA from ACLY is crucial for de novo fatty acid synthesis and histone 

acetylation in HSCs, and ACLY is dynamically regulated throughout myeloid differentiation. 

Acly expression decreases during macrophage differentiation from bone marrow precursors and 

is one of the primary subjects of this dissertation (77).  
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Introduction to Epigenetic Regulation of Gene Expression in Hematopoietic Cells 

 

 

Figure 1.2. Overview of Epigenetic Regulation of Gene Expression in Hematopoietic Cells. 

Hematopoietic cells undergo epigenetic regulation of gene expression via DNA methylation, 

histone methylation, histone acetylation, miRNA-mediated degradation of mRNA transcripts, 

and more. While DNA methylation may open or close chromatin accessibility depending on the 

locus and type of modification, histone acetylation promotes chromatin accessibility. Histone 

methylation marks on H3K4, H3K36, and H3K79 are associated with open chromatin while 

H3K9, H3K27, and H4K20 modifications are associated with closed chromatin structures. 

Interactions between metabolites and epigenetic enzymes may lead to changes in hematopoietic 

cell fate and function. 

 

Hematopoiesis relies on epigenetic regulation to dynamically modify cell gene expression 

programs and respond to stimuli including cytokines, chemokines, hormones, and metabolic 

changes. “Epigenetics” encompasses all cellular heritable features that result in phenotypic 

alterations that are non-genetic. Through the main epigenetic mechanisms modification of DNA, 

modification of histones, and microRNA (miRNA), cells are both able to restrict the expression 

of genes to specialize their type and to alter gene expression to respond to environmental stimuli. 

DNA and histones may be modified to alter the transcriptional activity of genes proximal in 

space to the modification. While DNA modification is limited to methylation at the 5’-position 
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of cytosine residues, histones may be modified through numerous processes that include 

acetylation, methylation, ubiquitination, phosphorylation, and sumoylation which commonly 

target conserved lysine residues on histone tails (78). There are many different epigenetic 

regulatory processes; however, this introduction will focus on miRNA, DNA methylation, 

histone acetylation, and histone methylation. 

miRNAs are small, non-coding RNA molecules that primarily bind to mRNA molecules 

through complementary base pairing to mediate translational inhibition and mRNA decay (79). 

While not a direct focus of this dissertation, miRNA also regulates hematopoietic stem cell 

behavior and can trigger leukemogenesis when improperly active. For instance, the miRNA Let-

7 acts as a tumor suppressor targeting KRAS, HMGA2, MYC, IMP1, and other transcripts for 

degradation. Let-7b expression is decreased in pediatric AML patients and is associated with c-

Myc dysregulation (78). Degradation of miRNA-bound mRNAs is mediated by the RNA-

induced silencing complex (RISC) primarily composed of members AGO, DICER, TRBP, 

PACT, and GW182 (80).  

Collective epigenetic processes allow for short-term responses to stimuli and can be 

interpreted as a cellular “memory” of stimuli that a cell and its predecessors experienced. 

Modifications to histones and DNA are constantly updated by “writers” and “erasers” to respond 

to stimuli in the short-term. However, certain modifications have longer half-lives than others, 

meaning that they remain in place longer after deposition. While histone lysine methylation has 

half-lives in the order of hours to days, histone acetylation and phosphorylation may only last 

minutes (81). Longer still, DNA methylation may be stable for months to years. In a clinically 

relevant example, individuals prenatally exposed to the Dutch Hunger Winter famine in 1944-45 

had less DNA methylation at the IGF2 gene compared to their unexposed same-sex siblings 
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which contributed to their heightened disease risk. These DNA methylation changes were 

observable six decades post-exposure, demonstrating the potential longevity of DNA 

methylation. The different timescales of epigenetic half-lives illustrate several epigenetic short, 

medium, and long-term tools that cells possess to respond to their environment (82).  

In eukaryotes, DNA methylation most commonly appears as 5’-methylcytosines present 

at cytosine-guanine (CpG) dinucleotides on both DNA strands and is associated with 

transcriptional repression and activation depending on the modified locus. When clustered in 

gene promoters, methylated CpG dinucleotides are associated with transcriptional repression. 

Conversely, DNA methylation is associated with actively transcribed genes when enriched in the 

gene body. DNA methylation represents a common method by which gene transcription can be 

repressed when one considers the prevalence of CpG islands (CGIs) as a gene regulatory 

element. CGIs are clusters of CpG dinucleotides that measure ~1 kb that are enriched at gene 

promoters; more than two-thirds of promoters in mammals are CGIs while nearly all 

housekeeping genes have CGIs. CGIs are generally unmethylated and correspond to actively 

transcribed genes; however, methyltransferases such as DNMT3B perform de novo methylation 

at CGIs that may allow for transient or durable repression of corresponding genes. In the case of 

germline genes, 5% of all genes which are sequentially activated or deactivated during 

organismal development, DNA methylation is required for lifelong somatic silencing through 

methylation of CGIs at gene promoters. The precise mechanism by which DNA methylation 

results in transcriptional inhibition is not agreed upon, though it is known that DNA methyl 

marks may be bound by writers and erasers of other epigenetic marks like histone methylation 

and acetylation to cooperatively promote or activate transcription (83). 
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Epigenetic modifications may result in transcriptional activation or repression depending 

on the nature and site of the modification. While histone acetylation is typically associated with 

transcriptional activation through charge-based conformational changes, histone methylation 

may activate or repress transcription depending on the nature of the methylation (84). For 

example, while modifications to H3K4 (histone 3, lysine residue 4), H3K36, and H3K79 may be 

associated with active, open chromatin, methylation at H3K9, H3K27, and/or H4K20 is 

commonly associated with repressed, closed chromatin. Histone lysine tails may also be mono-, 

di-, or tri-methylated with each variant possessing different regulatory attributes (85). Epigenetic 

regulation of gene expression is particularly consequential for hematopoietic stem and progenitor 

cells, as it is the primary means by which cells specialize phenotypically from monolithic 

hematopoietic stem cells into the panoply of mature hematopoietic populations. Indeed, save for 

a select few mechanisms that modify germline DNA such as V(D)J-recombination in T-cells and 

SHM in B-cells, epigenetic regulation of gene expression is the main method available to permit 

the specialization of cells in the body. 

Trained immunity, the process by which innate immune cells like macrophages, 

monocytes, natural killer cells, and their BM progenitors produce enhanced responses to 

secondary immune challenges, makes use of epigenetic changes to record the “memory” of 

initial stimulation. Innate immune cells and progenitors durably regulate chromatin accessibility 

to facilitate trained immunity through deposition of new histone modifications at H3K4me3 to 

mark active promoters, H3K4me1 to denote distal enhancers, and H3K27ac that indicate both 

active promoters and enhancers (86). For example, vaccination with the Bacillus Calmette-

Guérin (BCG) vaccine in mice induced trained immunity in HSPCs partially through epigenetic 

modifications. Post-vaccination, HSPCs exhibit H3K27ac and H3K4me1 deposition which 
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“prime” enhancers of genes involved in protection against Mycobacterium tuberculosis. This 

priming following BCG-induced IFN-γ stimulation predilected HSPCs to myelopoiesis and 

macrophage differentiation (87). A similar epigenetic priming effect can also be observed in 

human responses to BCG vaccination (88). Epigenetic processes have also been implicated in 

trained immunity priming in response to β-glucan, which can potentiate increased granulopoiesis 

through increased accessibility at genes implicated in IFN-I signaling in BM granulocyte-

macrophage progenitors (GMPs). Furthermore, HSCs appear to accumulate epigenetic marks 

throughout an organism’s life to potentiate HSCs to express genes regulated by inflammatory 

signaling-related transcription factors like the ATF family, STAT family, and CNC family TFs. 

Deposition of H3K4me1/H3K27ac at active enhancers, H3K4me1 at primed enhancers, and 

absence of either mark at inactive enhancers produce differentially accessible regions (DARs) of 

chromatin that enhance the response to secondary immune challenge compared to young HSCs. 

While remaining inconclusive, there is speculation that transcriptional dysregulation resulting 

from these accumulated epigenetic changes could be linked to stress-induced HSC depletion 

and/or leukemogenesis in older individuals (89).  

Epigenetic regulation cooperates with extraneous stimuli-induced signaling and internal 

metabolic processes to potentiate enhanced immune responses through altered HSPC gene 

regulation. In a response to IFN-γ signaling, for instance, regulatory elements of genes 

implicated in M. tuberculosis immune response are modified in HSPCs following BCG 

vaccination through the action of epigenetic writer and eraser enzymes to enhance future 

responses. Many of these writer and eraser enzymes utilize substrates or are regulated by small-

molecule metabolites derived from the TCA cycle, one-carbon metabolism, NAD metabolism, 

and/or acetate and citrate metabolism. While histone acetyltransferases use acetyl-CoA derived 
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from glucose, fatty acids, and amino acid metabolism as an acetyl donor substrate, histone and 

DNA methyltransferases use S-adenosylmethionine (SAM) as a methyl donor substrate (90, 91). 

Eraser enzymes also are regulated by metabolites; α-KG promotes histone demethylase activity 

while succinate and fumarate inhibit demethylase activity. Meanwhile, histone deacetylases are 

promoted by high NAD+ to NADH ratios and are inhibited by β-hydroxybutyrate. The 

availability of these substrates and regulatory metabolites within the cell can dictate the velocity 

of these enzymes with consequences for epigenetic homeostasis and overall gene expression 

regulation. 

Referring to Michaelis-Menten enzyme kinetics, the turnover rate for an enzyme 

(velocity: V), representing the rate of reaction catalysis, increases in response to increased 

substrate concentration, [S]. Km is a standardized constant representing the enzyme-specific 

affinity for its substrate and is the value of [S] that corresponds to half of the maximum velocity 

of the enzyme (1/2 Vmax). Idealized enzyme velocity can increase as [S] increases, albeit with 

diminishing returns, to the enzyme’s maximum velocity, Vmax, after which velocity no longer 

increases with [S] (92). While enzyme classes like kinases and E3 ligases possess intracellular 

[S] ranges that maintain constant enzyme velocity at or near Vmax, DNA methyltransferases, 

histone methyltransferases, and histone acetyltransferases, and other classes of epigenetic writer 

enzymes may have their velocities limited by low substrate availability. HATs, for instance, 

possess Km values between 0.0002-0.046 mM with acetyl-CoA intracellular concentrations that 

range from 0.002-0.013 mM. While these ranges overlap, high enzyme Km value combined with 

low substrate concentration can result in reduced enzyme velocity with consequences for 

epigenetic homeostasis (91). 
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In Treg cells, increased glycolysis experienced during immune activation results in 

greater acetyl-CoA production and altered histone acetylation. Elevated lactate dehydrogenase 

(LDHA) activity results in high acetyl-CoA concentration that facilitates transcription of Ifng. 

The deficiency of LDHA in Scurfy mice compensates for the Scurfy phenotype to foster reduced 

systemic inflammation through altered H3K9ac and H3K27ac modifications (93). 

While not hematopoietic cells, embryonic stem cells (ESCs) can be forced into 

differentiation through the manipulation of metabolic-epigenetic interactions. Short-term 

deprivation of methionine in human primed ESCs results in the depletion of SAM pools that 

serve as the substrate for methyltransferases. This deprivation resulted in the activation of 

differentiation. Alternatively, naïve ESCs’ self-renewal capability is preserved by the 

upregulation of nicotinamide N-methyltransferase which also depletes SAM pools (94).  

ACLY/Acly and ACSS2/Acss2 are major sources of acetyl-CoA and link metabolism and 

epigenetic processes. Activity of these enzymes is also consequential for HSC self-renewal and 

priming. In the context of hematopoietic reconstitution following 5-FU treatment, high Acly 

expression enhanced HSC proliferation and engraftment via the promotion of global H3K27ac 

levels. EPCRHighCD150+CD48−c-Kit+Sca1+lineage− (ESLAM KSL) HSCs possess greater 

Acly activity than EPCRLow counterparts which promoted differentiation into CD48+ progenitor 

cells while steady-state HSCs suppress Acly expression and have greater potential to 

differentiate into progenitors (95). ACLY activity that generates acetyl-CoA from mitochondrial-

derived citrate is also crucial for H3K9/K27 acetylation increases that delay early differentiation 

in human pluripotent stem cells (hPSCs) and murine ESCs (mESCs) (96). Though fewer studies 

connect ACSS2 to changes in hematopoietic cell fate and function, ACSS2 localization to the 

nucleus has been implicated in promoting lysosomal biogenesis and autophagy in a human 
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glioblastoma (GBM) cell line that correlates with AMPK activity (97). ACSS2’s role in 

autophagy promotion could thus be important for HSC self-renewal maintenance. However, 

Acss2-/- ESCs do not display altered differentiation patterns compared to Acss2WT counterparts 

(98). 

One of the most clinically relevant examples of epigenetic-metabolic interaction is 2-HG, 

an oncometabolite that may be produced from isocitrate by mutated isocitrate dehydrogenase 1 

or 2 (IDH1/2). Common mutations that lead to D-2-HG production are IDH1 R132 and IDH2 

R172 and are oncogenic, with especially high mutation rates in GBM and AML. 2-HG is thought 

to trigger oncogenesis through the inhibition of DNA and histone demethylases containing α-

KG-dependent domains such as TET2 and Jumonji-C (JmjC). Other enzymes containing Jumonji 

domains and other domains that utilize α-KG for regulation or substrate are also affected by 2-

HG. Examples of IC50 values of 2-HG for enzymes include 79 ± 7 μM for the histone 

demethylase JMJD2C and 1500 ± 400 μM, demonstrating that 2-HG is a weak antagonist of α-

KG at steady-state and does not significantly inhibit α-KG-dependent enzymes. However, mutant 

IDH1/2 can produce 3-35 mM of D-2-HG and potently inhibits relevant enzymes. 2-HG 

production from mutant IDH1/2 results in hypermethylation with consequences that can 

exacerbate genotoxic stress. For example, 2-HG can inhibit the histone demethylase KDM4B 

that results in hypermethylated DNA break loci, which prevents proper recognition of H3K9me3 

signals that enable homology-driven repair (HDR) complex recruitment. 2-HG inhibition of 

DNA repair could thus explain the hypersensitivity of IDH1/2-mutant colorectal carcinoma and 

astrocyte cell lines to genotoxic ionizing radiation or H2O2 compared to IDH1/2-wt counterparts. 

2-HG treatment by itself can recapitulate hematopoietic stem cell differentiation block and 

cytokine-independent proliferation caused by IDH1/2 mutation. While 2-HG-induced DNA 
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hypermethylation is known to trigger oncogenesis and cause sensitivity to DNA damage, more 

research is required to identify the precise mechanism by which IDH1/2 mutations reliably 

transform hematopoietic and glial populations (99).  

Epigenetic processes, metabolism, cytokines, chemokines, PAMPs, DAMPs, and other 

sources of external stimuli collectively influence cells to establish and regulate cell identity. 

While long-term chromatin accessibility regulation facilitates cell type specialization, short-term 

changes in chromatin accessibility mediated by modifications like histone methylation and 

acetylation promote rapid gene regulation to respond to hematopoietic cell type needs for HSCs, 

developmental constraints for ESCs, or immune-challenge related differentiation in T-cells. 

 

Introduction to T-cells and V(D)J Recombination 

Hematopoiesis is responsible for the population of B- and T-lineage lymphoid cells that 

comprise adaptive immunity. While B cells are responsible for the production of secreted, 

circulating immunoglobulins (antibodies) that bind to, opsonize, and potentially neutralize 

specific peptide sequences, T-cells mobilize cell-based immunity through T-cell receptor (TCR) 

interactions with pMHC-I or pMHC-II mediated by CD8 or CD4, respectively. As stated in a 

previous section, T-cell adaptive immunity is relevant for Type 1 immune responses against 

intracellular pathogens (Th1), type 2 immune responses against extracellular parasites and 

helminths, and allergic response and tissue repair (Th2), and type 3 responses against 

extracellular bacteria (Th17). T cells also facilitate refined humoral immunity through B cell 

cooperation in lymphoid germinal centers (Tfh) (100). Regulatory T-cells (Tregs) also act to 

terminate immune responses through the secretion of immunomodulatory cytokines like IL-10, 

among other mechanisms (8). Naïve CD4+ T-cells may differentiate into Th1, Th2, Th17, Treg, 
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or Tfh cells through the induction of transcriptional programs mediated by the transcription 

factors T-bet, Gata3, Rorgt, Foxp3, and Bcl6, respectively, following activation by an APC in the 

periphery (101, 102). While numerous T-cell subsets have been examined in recent years (e.g. 

Th22) and non-conventional T-cells such as invariant NKT (iNKT) and γδ T-cells, the discussion 

here will be limited to CD8+ T-cells and CD4+ Th cells Th1, Th2, Th17, Treg, and Tfh (102, 

103). 

APC activation of naïve CD4+ T-cells in the periphery results in differentiation into 

subsets which amplify the cytokine regime in the site of inflammation and can secrete additional 

cytokines to potentiate or circumscribe immune responses. In general, exposure to IL-12 and 

IFN-γ during APC activation may potentiate naïve CD4+ T-cells into Th1 cells, IL-4 to Th2, 

TGF-β, IL-6, IL-21, and IL-23 to Th17, IL-6 and IL-21 to Tfh, and TGF-β and IL-2 to Tregs. 

Th1 cells produce IFN-γ, Th2 produce IL-4, IL-5, and IL-13, Th17 produce IL-17A, IL-17F, IL-

21, and IL-22, Tfh produce IL-21, whereas Tregs produce IL-10 and TGF-β. While this is true in 

the ideal sense, in vivo conditions may produce a range of T-cell subsets. The composition of the 

T cell response depends on the total composition of the cytokine milieu. For example, TGF-β can 

induce both Th17 and Treg differentiation depending on the nature of the cytokine milieu. In the 

presence of other inflammatory cytokines IL-6 and IL-21, Th17 differentiation is promoted while 

in the absence of inflammatory cytokines, Treg differentiation prevails (104).  

CD8+ T-cells have distinct transcriptional programs and immune surveillance roles that 

promote direct T-cell killing of cells expressing nonself pMHC-I when activated in an 

inflammatory context. Upon activation, CD8+ T-cells expand and differentiate into cytotoxic 

effector T-cells that mediate target cell death. Cell death can be initiated via death receptor-

ligand interactions through FAS and TRAIL, inflammatory IFN-γ and TNF cytokine production, 
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exocytosis of cytotoxic granules, and/or cytotoxic enzymes contained within granules such as 

perforin and granzymes (105). Transcription factors that are consequential for CD8+ T-cell 

function include inhibitory/repressive factors which promote exhaustion or limit effector 

differentiation like T-cell factor 1 (TCF1) and thymocyte selection-associated high mobility 

group box protein (TOX). Inflammatory transcription factors NFAT and FOS-JUN dimers (AP-

1) allow for the production of cytokines like IL-2 and IFN-γ in CD8+ T-cells (105).  

In αβ T-cells, the TCR is composed of an α and β subunit that each have three portions: a 

cytoplasmic, transmembrane, and cytoplasmic. The extracellular component of the TCR contains 

a variable immunoglobulin-like (V) domain that confers sequence-specific antigen recognition to 

the TCR via a complementarity-determining region (CDR) (106). A constant immunoglobulin-

like (C) domain and connecting peptides in the extracellular TCR are common features among 

all TCRs (107).  

The TCR interacts with cofactors that enable rapid signal transduction of APC activation 

through pMHC-I or pMHC-II interactions with the TCR. CD3 is the primary non-covalently 

associated cofactor of TCRs that form various heterodimers and homodimers to recruit other 

factors and transduce TCR signaling. CD3εδ and CD3εγ heterodimers associate with the TCR 

and span the cellular membrane with extracellular regions and intracellular regions with one 

immunoreceptor tyrosine-based activation motif (ITAM) on each subunit that recruits other 

transducing factors. CD3ζζ homodimers contain a transmembrane region and an intracellular 

region with three ITAMs. Upon antigen binding to αβ TCR, these ITAM domains are 

phosphorylated by the kinase Lck. The kinase ZAP-70 then binds phosphorylated ITAMs via its 

SH2 domains and is also phosphorylated and activated by Lck. ZAP-70 and Lck then 

phosphorylate additional signaling proteins to activate TCR-CD3-mediated signaling cascades 
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(108). Distal signaling pathways activated by TCR-CD3 complex signaling include the Ca2+–

calcineurin–NFAT pathway, the PKCθ–IKK–NF-κβ pathway, the RASGRP1–RAS–ERK1/2–

AP1 pathway, p38, and JNK pathways, and the TSC1/2–mTOR pathway (107). TCR-CD3 

complex activation after antigen binding also recruits Nck SH3.1 domains to the proline-rich 

sequence (PRS) in CD3ε. This interaction is not completely understood, but mutations in Nck 

that prevent the interaction result in impaired CD3ζ phosphorylation and reduced ZAP-70 

binding and subsequent phosphorylation. Nck is also recruited to SLP-76 where it facilitates 

actin rearrangement, a necessary step in the formation of the immunological synapse. Nck also 

cooperates with its cofactor WASP in an interaction that is not well understood. TCR-CD3 

signaling can be impeded by its cofactor Numb, which interacts with the E3 ligase Cbl and a site 

on CD3ε which crowds out Nck binding and facilitates internalization and degradation (108).  

T-cell activation and differentiation also require the engagement of costimulatory 

molecules on T-cells with their corresponding ligands on APCs and unhealthy cells like tumor 

cells. These can be broadly classified as costimulatory molecules which promote T-cell 

activation and inhibitory molecules which inhibit activation or diminish active immune 

responses. Costimulatory-axis interactions like CD80/86-CD28, OX40-OX40L, 4-1BB-4-1BBL, 

GITR-GITRL, and CD40-CD40L cooperate with TCR signaling to potentiate T-cell response 

and survival. Inhibitory-axis interactions including PD-1-PD-L1, Tim-3-Galectin-9, CEACAM-

1-CEACAM-1, and BTLA-HVEM, and CTLA4-CD80/CD86 impede T-cell activation when 

triggered. The balance between co-stimulatory and co-inhibitory molecules on T-cells ensures 

appropriate activation and eventual resolution of immune responses (109).  

T-cell development begins with hematopoietic production of Lin- c-Kitlo Sca-1lo CD127hi 

IL-7Rαhi Flt3hi common lymphoid progenitor (CLP) cells and Lin- c-Kithi Sca-1hi Flt3hi CD127- 
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LMPPs which localize into the thymus via CCR9-mediated chemotaxis (110). Once in the 

thymus, interactions with thymic epithelial cells (TECs) and other stromal cells guide T-cell 

development through multiple stages. Immature T-cells, known as thymocytes, proceed through 

several stages of thymic differentiation (thymopoiesis) during which they express different 

canonical surface surrogate markers and are exposed to different microenvironments. αβ 

thymocytes proceed from double negative 1 (DN1) to DN3, over which time thymocytes 

modulate CD25 and CD44 expression from CD44+ CD25- “DN1”, CD44+ CD25+ “DN2”, to 

CD44- CD25+ DN3. DN1-DN3 thymocytes undergo V(D)J recombination at TCRβ chain genes 

that form half of the TCR. After TCRβ chain formation, thymocytes proceed to CD25- CD44- 

DN4, CD8+ CD4- ISP8, and to CD4+ CD8+ double positive (DP) stages. Over this period, 

TCRα chain genes recombine via V(D)J recombination. Combined TCRα and TCRβ chains are 

then tested for recognition of pMHC molecules; if assembled αβ TCRs fail to recognize pMHC 

molecules with high affinity, cells undergo apoptosis in a process deemed positive selection. 

Assembled TCRs are also tested for reactions against MHC molecules that present self-peptides. 

If TCRs are reactive against self-MHC, T-cells bearing those TCRs are removed via apoptosis 

through negative selection. Cells undergo positive and negative selection until they transition 

from DP to single-positive (SP) CD4+ or CD8+ T-cells (111). There is disagreement about the 

precise mechanism by which T-cells’ CD4+ or CD8+ fate decision is regulated. There are two 

overall classes of models; the first model paints CD4/CD8 choice as dependent on instructive 

signals from MHC-I or MHC-II interactions with CD8 or CD4 coreceptors or as a random, 

stochastic choice between SP CD4+ or CD8+ (112). The second model postulates that DP 

thymocytes will downregulate Cd8 only if CD8-dependent TCR signaling is lost, upon which 

Cd4 will be upregulated to facilitate SP CD4+ T-cell development (113). 
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Promiscuous gene expression (pGE) of antigens associated with most tissues and cell 

types in the body by TECs allows for the establishment of central tolerance that eliminates self-

reactive T-cells through negative selection and retains T-cells with TCRs reactive against 

nonself-peptides (114). Mediated by Aire and Fezf2, pGE-mediated presentation by TECs and 

thymic DCs offers a wide selection of self-antigens that if selectively bound by thymocyte TCRs 

cause autoreactive thymocytes to undergo apoptosis and be removed by thymic phagocytes 

following rapid calcium flux, migratory arrest, and Caspase 3 activation (115).  

In V(D)J recombination, novel TCRα and TCRβ chains are generated that confer antigen 

specificity for T-cells through TCR-pMHC interactions. While TCRα chains are composed of 

variable (V) and joining (J) genes like antibody light chains, TCRβ chains are composed of V, J, 

and diversity (D) gene segment products in a structure analogous to antibody heavy chain 

construction (106). Catalytic action by recombination activating genes (RAG) 1 and 2 mediate 

DNA cleavage at recombination signal sequences (RSSs) that flank V(D)J regions on the 

chromosome. DNA breaks then recruit non-homologous end-joining (NHEJ) DNA repair 

machinery. Ku heterodimer binding to double-strand breaks (DSBs) precedes and enables DNA-

PKcs, XRCC4, and XLF binding which help align DNA ends. However, due to the nature of the 

DSB, reconstitution of the original sequence is not possible. Artemis and TdT polymerase 

activity that elongates 3’ overhangs offer additional opportunities for diversity at V(D)J 

junctions. The final ligation of DSBs is performed by DNA ligase IV (116). T-cells that exit the 

thymus following V(D)J recombination of TCRα and TCRβ make up the T-cell pool with a 

diversity estimated to exceed 106 TCR sequences in humans (113).  
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T-cell Clonality, Diversity, and TIL-Peripheral Overlap in Antitumor Immune Response 

 T-cell responses play a key role in antitumor immunity by CD4+ T-cell amplifying 

inflammatory signaling to enervate innate immune tumor cell killing and CD8+ T-cell direct 

tumor cell lysis. Through V(D)J recombination, the endogenous T-cell pool consists of many 

unique “clonotypes” that each possesses a TCR that recognizes a unique peptide sequence that 

could correspond to any nonself-peptide presented on an MHC molecule. These TCR ligand 

peptides may be expressed in tumors and trigger immune responses that attempt to eliminate the 

tumor. Tumors may exclusively present antigens via MHC-I called tumor-specific antigens 

(TSAs) or present antigens that may also be presented on non-malignant tissue known as tumor-

associated antigens (TAAs). Antigens may be wild-type sequences or possess non-synonymous 

amino acid substitutions resulting from somatic mutations including single-nucleotide variants 

(SNVs), nucleotide insertions and/or deletions (indels), and/or frameshift mutations. T-cells may 

recognize wild-type or mutant TSAs and TAAs as pathogenic and initiate immune responses 

against presenting cells.  

While wild-type TSAs and TAAs have unaltered amino acid sequences, their 

corresponding proteins may still be unknown to the immune system and trigger nonself immune 

reactions. Tumor cell mutations and/or chromatin remodeling may lead to the reactivation of 

ontogenic expression that had been silenced since early organismal development. Mutant TSAs, 

also known as neoantigens, are also novel to the immune system and can similarly trigger T-cell 

immune responses. However, expression of co-inhibitory molecules such as PD-L1 on tumor 

cells may inhibit T-cell activation and allow tumor cells to elude T-cell-mediated cell killing. 

Furthermore, immune cell killing of tumor cells presenting TSAs, known as immune 

surveillance, may select for tumor mutations that confer resistance to T-cell immunity. These 
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adaptations include the downregulation or complete loss of expression of the TSA that drove the 

initial immune response and the downregulation of MHC molecules. Tumor cells that develop 

these adaptations may “escape” immune surveillance and proliferate with less or no immune 

impediments (117, 118).  

T-cell antitumor responses are mediated through the clonal expansion of T-cells that 

recognize novel TSAs/TAAs, and the diversity of clonal responses represents a prognostic factor 

for cancer patients. T-cell TCR repertoires possess diversity and clonality, which are understood 

as the number of unique T-cell clones and the degree to which T-cell clones expand, respectively 

(119). The clonality and diversity of T-cell clonal responses can be assessed using single-cell 

resolution sequencing with cell barcodes, and single-rearrangement resolution sequencing with 

UMI barcodes for each primed gene, among other methods (120, 121). T-cell responses that are 

dominated by a single expanded clone are monoclonal and can be observed in T-cell responses in 

OT-I and OT-II mouse models which generate CD8+ and CD4+ T-cells, respectively. OT-I and 

OT-II cells overwhelmingly recognize the ovalbumin-derived peptide sequences SIINFEKL and 

ISQAVHAAHAEINEAGR, respectively (122). These monoclonal T-cell models represent the 

greatest clonality in T-cell responses. At the other extreme, idealized polyclonal T-cell responses 

have evenly distributed T-cell clonal expansion among all clonotypes. Idealized polyclonal T cell 

responses represent the T-cell response with the least clonality. In the clinic, T-cell antitumor 

clonal responses lie in between monoclonal and polyclonal expansion with the nature of the 

expansion suggesting the tumor antigenic profile and patient prognosis (118). 

There is great diversity in potential TAAs/TSAs, but common, “public” TAAs/TSAs may 

be shared between patients. For example, chronic cytomegalovirus (CMV) and Epstein-Barr 

Virus (EBV) may lie dormant within cells for years and emerge during times of stress, 
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compromised immunity, and/or throughout aging. Through their onco-modulatory properties, 

CMV and EBV can directly contribute to oncogenesis (123). CMV and EBV-associated antigens 

are capable of mounting profound oligoclonal T-cell responses (124). For instance, T-cell 

responses against CMV and EBV may expand specific CD8+ T-cell clones to up to 40% of the 

peripheral repertoire (124). 

In a 2020 study that examined T-cell clonal responses in ovarian cancer patients, the 

Odunsi group determined that tumor-infiltrating lymphocyte (TIL) clonality helps predict patient 

outcomes. For patients with a detectable immune response, represented by TAA-specific T-cell 

clonal expansion and TAA-specific antibody seropositivity, against the known TAA NY-ESO-1, 

greater TIL clonality conferred a favorable prognosis. However, without a detectable immune 

response against NY-ESO-1, greater TIL clonality was associated with negative outcomes. TILs 

may be retained in the periphery; the degree of overlap between TILs and peripheral T-cell 

clones may also serve as a prognostic factor. For NY-ESO-1 seropositive patients, greater 

overlap of TIL and peripheral T-cell clones is associated with a favorable prognosis while the 

opposite is true in seronegative patients (118). Greater expansion of tumor-periphery overlapping 

clones in response to immune checkpoint blockade (ICB) appears to correlate with favorable 

patient outcomes (119). 

However, due to factors including differing analytical techniques, variation in T-cell 

repertoires between individuals, and diversity in tumor pathology, there is no consensus opinion 

about the prognostic potential of peripheral T-cell repertoire clonality and diversity. Contrasting 

with the Odunsi group’s ovarian cancer findings, the Lawrence Fong group observed greater 

diversity and lesser clonality in peripheral TCR repertoires in non-small-cell lung cancer 

(NSCLC) patient responders to anti-PD-1 therapy (125). In clear cell renal cell carcinoma 
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(ccRCC), examined in Chapter 3 of this dissertation, the Leibowitz group determined that cancer 

recurrence was correlated with lower intratumoral T-cell clonality but made no claims on overlap 

with the periphery (126). While there is variability in interpretations, T-cell clonality and 

diversity play a role in determining the success of antitumor immune responses. 

 

T-cell Metabolism in Immune Checkpoint Blockade 

 Upon T-cell antigen recognition, T-cells activate metabolic pathways that enable 

accelerated proliferation and increased immune effector molecule production. Activated T-cells 

transition from naïve to effector cells and shift from catabolic to anabolic metabolism to supply 

their bioenergetic needs. Upregulation of aerobic glycolysis and glutaminolysis supplies 

activated T-cells with a greater carbon pool to fuel the synthesis of complex biomolecules 

needed for the proliferation and fulfillment of effector programs. These pathways experience 

increased flux via increased expression of the glucose transporter GLUT1 and the glutamine 

transporter ASCT2 combined with upregulation of pathway catalytic enzymes HK2, PDK1, and 

LDHA among others (127). Activated T-cells also increase mitochondrial membrane potential 

(ΔΨm) in part to facilitate the production of inflammatory cytokines like IFN-γ and granzyme B 

by CD8+ T-cells, though activated CD4+ T-cells have been shown to increase ΔΨm to a greater 

degree than activated CD8+ T-cells (128, 129).  

Activated T-cells share metabolic reprogramming aspects with cancer cells and compete 

for biosynthetic precursors to enable proliferation in the nutrient-deficient tumor 

microenvironment (TME). Indeed, T-cell activation is constrained by the lack of nutrients in the 

TME that results in antitumor immune suppression, metabolic reprogramming, and T-cell 

exhaustion. CD8+ T-cells in the TME are impacted by oxygen and nutrient scarcity and may 
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become exhausted, switching from glycolysis to FAO. Exhausted CD8+ T-cells also 

downregulate glutaminolysis and mitochondrial biogenesis while increasing ROS production 

(127).  

Metabolic reprogramming of T-cells in the TME also alters lipid metabolism. Increases 

in lipid uptake and production of lipid and cholesterol pathway metabolic enzymes may even 

result in cell death. Upregulation of acyl-CoA synthetase long-chain family member 4 (ACSL4) 

may lead to ferroptosis because of lipid peroxide buildup (130). Furthermore, cholesterol 

metabolism modulation in TME T-cells through cholesterol acyltransferase (ACAT) and 3-

hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) has been implicated in T-cell 

exhaustion (131, 132). Metabolic limitations in the TME thus represent a major challenge to the 

effectiveness of T-cell immunotherapies that are intended to amplify T-cell antitumor responses 

such as immune checkpoint blockade (ICB). 

ICB immunotherapy attempts to increase the antitumor potential of the immune system 

by abrogating or mitigating inhibitory signaling that tumor cells employ that allows them to 

escape immune surveillance. Common immunotherapies used in the clinic in patients with 

various advanced solid cancers include anti-PD-1, anti-PD-L1, and anti-CTLA4 monoclonal 

antibodies. These mAbs may be used in conjunction with traditional chemotherapies or with each 

other, and they act by binding immunosuppressive molecules on immune cells and tumor cells. 

By competing with the immunosuppressive intended ligands, ICB allows the immune system to 

ignore, to some extent, PD-1/PD-L1 and CLTA4-mediated immunosuppression. While ICB is a 

promising tool to treat cancer, the overall response rate of treated patients remains ~15-30%. 

Some molecules such as mismatch repair deficiency (dMMR) are used to predict patient 

response to ICB, but currently used biomarkers are relatively inaccurate and unreliable. The lack 
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of biomarkers that can reliably predict patient response to ICB represents a major unmet need in 

ICB therapy. Potential biomarker candidates may be found in T-cell metabolism, and the reversal 

of metabolic reprogramming of TME T-cells may be the key to increasing the effectiveness of 

ICB (127).   

 

Figure 1.3. Metabolic Consequences of Select Co-Inhibitory Signaling Cascades in T-cells. 

Signaling through PD-1, CTLA-4, TIGIT, and TIM-3 generally results in decreased metabolic 

activity and reduced mitochondrial fitness. However, TIGIT signaling has been shown to 

increase GLUT1 and hexokinase expression. Treatment with α-CTLA-4/α-PD-1 ICB abrogates 

signaling through PD-1 and CTLA-4. 

 

During immune checkpoint signaling, T-cell antitumor immune responses are 

undermined in part through changes to cellular metabolism. PD-1 signaling results in reduced 

OXPHOS and mitochondrial fitness through reduced expression of cristae junction-stabilizing 

MICOS-associated proteins. PD-1 binding also results in decreased expression of Bhlhe40, a TF 

that maintains the fitness of mitochondria in B16 melanoma model TILs (133). T-cells also rely 

less on branched-chain amino acids (BCAAs) and glutamine and elevate FAO metabolism in 

response to PD-1 signaling (134, 135). Signaling through another immune checkpoint, CTLA4, 
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similarly decreases glycolytic activity without affecting FAO (134). Immune checkpoints TIGIT 

and Tim3 also modulate T-cell metabolism to impair antitumor activity. TIGIT receptor-ligand 

interactions with CD155 reduce mTOR and Akt signaling and result in glycolytic enzyme 

expression, including GLUT1 and hexokinase (HK1/HK2) (136). Tim3-mediated signaling 

inhibits glycolytic activity via the STAT1 pathway and could also modify mTOR activity (137). 

The amplitude of immune checkpoint expression on T-cell membranes can be influenced by the 

metabolic characteristics of the TME beyond the aspects of hypoxia and nutrient deficit. High 

concentrations of cholesterol, lactate, and tryptophan and its metabolites in the TME promote the 

expression of T-cell PD-1 that abrogates antitumor responses (131, 138, 139).  

 While ICB alters T cell metabolism, metabolic biomarkers that accurately correlate with 

positive patient responses to ICB remain elusive. However, as more prospective studies are 

performed that examine new patient characteristics in new cancers, a paradigm of metabolic 

biomarkers for ICB response is emerging. In ICB-responding melanoma patients, peripheral 

blood mononuclear cells (PBMCs) exhibited greater glycolysis, FAO, tryptophan, and BCAA 

metabolism that serves to strengthen mitochondria in stressful environments, such as the TME. 

Those patients’ CD8+ T-cells upregulated the glucose transporter 14 (SLC2A14) and lactate 

dehydrogenase C (LDHC), enzymes that both support greater glycolytic activity. Conversely, 

another study monitored overall LDH expression in melanoma patients receiving α-PD1 therapy 

and identified an association between higher LDH expression and mitigated patient survival. 

These contrasting results on the role of LDH as a prognostic factor indicate that care must be 

taken in future studies to isolate metabolic characteristics associated with specific immune 

subsets, such as the CD8+ T-cells in the former study. Additionally, urological cancer patients 

with elevated serum long-chain fatty acids and increased very long-chain acyl-CoA synthetase 
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(SLC27A2) expression responded more favorably to nivolumab. This is hypothesized to be due 

to VLC fatty acid-induced peroxisomal signaling that induces fatty acid catabolism. VLCFA 

supplementation therefore could be used in the future to potentiate urological cancer patients 

with more favorable ICB responses (140).  

 Beyond biomarkers that can be used to predict response to ICB, metabolism in T-cells 

has been targeted in preclinical studies to enhance the effectiveness of ICB. Metabolic areas of 

interest that have been examined include lipid, glucose, amino acid, and adenosine-implicated 

metabolic pathways. Inhibition of the human cholesterol esterifying enzyme ACAT results in the 

reversal of T-cell exhaustion and enhanced patient response to PD-1 blockade in hepatocellular 

carcinoma (141). Glucose-derived lactate also impacts ICB response; inhibition of the lactate 

transporter monocarboxylate transporter 1 (MCT1) results in greater antitumor activity resulting 

from ICB resulting from decreased Treg activity in the TME (138). Another avenue available to 

augment antitumor activity is through amino acid metabolism modulation; deficiency in tumor 

methionine transporter SLC43A2 increases antitumor efficacy by T-cells. A final example of 

successful metabolic modulation that unlocks greater ICB antitumor potential is adenosine 

metabolism. Primarily derived from adenosine triphosphate (ATP) catabolism, adenosine is 

enriched in the TME and inhibits T-cell antitumor activity in part through an intracellular 

buildup of cAMP. Inhibitors of the adenosine catabolizing enzymes CD73 and CD39 have 

shown perhaps the greatest potential of metabolic modulation to increase ICB-related outcomes. 

Inhibition of CD73 in advanced colorectal or pancreatic cancer patients combined with α-PD-L1 

therapy durvalumab achieved clinical efficacy. Similarly, the anti-CD73 mAb BMS-986179 

combined with nivolumab has shown efficacy in the treatment of advanced solid tumors, with 7 

patients out of 59 achieving a partial response and 10 patients achieving stable disease (142). In 
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summary, many ongoing studies are attempting to identify potential biomarkers and metabolic 

interventions to respectively predict and amplify responses to ICB. 

 

T-cell-Based Therapies for Clear Cell Renal Cell Carcinoma (ccRCC) 

 Renal cell carcinoma (RCC) is the 3rd most common global urological cancer, 

representing 3% of all female cancers and 5% of all male cancers with an incidence of ~400,000 

new global cases annually. The most common subtype of RCC is clear cell renal cell carcinoma 

(ccRCC) which makes up 75% of all RCC cases, with the other major subtypes being papillary 

(20%) and chromophobe (5%) RCC (143). ccRCC is frequently associated with loss-of-function 

driver mutations in VHL, found in 82% of patients, which result in the accumulation of HIF-2α 

and constitutive hypoxic signaling and transcriptional programs in the absence of hypoxia (144). 

HIF activation leads to characteristically high angiogenesis and tumor vascularity through 

increased expression of anti-hypoxic genes such as VEGF (145). 3-6% of patients may also have 

mutations in MTOR, PTEN, or PIK3CA that informs the pursuit of mTOR inhibitors for the 

treatment of ccRCC (146). ccRCC also is associated with a high 40% mutational rate of 

Polybromo 1 (PRBM1), which encodes for the chromatin remodeler BAF180 that stabilizes 

SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF) (147). ccRCC tumors are 

characteristically immunogenic (“hot”) and contain a large amount of infiltrating immune cells 

including TILs that can be harnessed to enhance antitumor immune responses against ccRCC 

tumors (148). 

 The standard of care for ccRCC has evolved, with new biologic monotherapies and 

combination therapies approved by the FDA for first-line and second-line-plus treatment of 

ccRCC. VEGF-pathway tyrosine kinase inhibitors (TKIs) sunitinib, pazopanib, and cabozantinib 
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have been approved as monotherapies or combinations from the sunitinib approval for first-line 

therapy in January 2006 to combination cabozantinib/nivolumab approved in January 2021 

(149). Given that 23-56% of ccRCC tumors express PD-L1, depending on assay type, there is 

potential benefit from ICB therapies as monotherapies or in combinations such as 

axitinib/pembrolizumab for all-risk patients that was approved for treatment of advanced RCC in 

April 2019 (150-152). Nivolumab (α-PD-1) monotherapy has been approved for second-line 

monotherapy, while nivolumab/ipilimumab (α-CTLA4) combination therapy (Ipi/Nivo) serves as 

the standard first-line treatment for intermediate/poor risk disease ccRCC patients (153, 154). 

Sunitinib may be preferable as a first-line therapy for patients with less aggressive disease, 

however (155). Other variations of ICB therapy combinations have also been approved for 

ccRCC therapy; pembrolizumab (α-PD-1) / nivolumab combination therapy is one such example.  

 

 Figure 1.4. Ipilimumab/Nivolumab Immune Checkpoint Blockade Increases 

Intratumoral T-cell activation. (A) Tumor cells may upregulate PD-L1 to inhibit CD8+ T-cell 



 
 

53 
 

activation through binding to PD-1 that triggers immunoinhibitory signaling. CD80/86 expressed 

on antigen presenting cells (APCs) then preferentially binds to CTLA-4 which similarly inhibits 

CD8+ T-cell activation. (B) Treatment with α-CTLA-4 (Ipilimumab) and α-PD-1 (Nivolumab) 

binds to CTLA-4 and PD-1, idealistically preventing their binding to their usual ligands. The 

resulting lack of inhibitory signaling and the added co-activation signal from CD28 binding to 

CD80/86 increases CD8+ T-cell activation and cytotoxic capability.  

 

For patients with relevant mTOR-pathway RCC driver mutations, the mTOR inhibitor 

temsirolimus was approved for first-line therapy in intermediate/poor-risk RCC patients (156). 

Also, while not approved for first-line treatment, the 2nd generation VEGFR TKIs tivozanib and 

axitinib were approved for the second-line-plus treatment of ccRCC patients (157, 158). Finally, 

combined therapy with axitinib/avelumab (α-PD-L1) was approved for all-risk patients with 

advanced RCC in May 2019 (159). While many options are available for ccRCC treatment, 

ccRCC has an overall poor prognosis with a high risk of metastasis; 30% of RCC patients have 

metastases when diagnosed while another 30% of RCC patients will develop metastatic disease 

during follow-up visits (143). While strictly localized RCC has high five-year survival rates 

between 70-90% dictated by disease stage, metastatic disease has an all-time five-year survival 

rate of 15.3% (160). New therapies are currently being assessed in clinical trials that harness T-

cell antitumor potential against ccRCC to improve clinical patient disease outcomes. 

 The development of chimeric antigen receptor (CAR) T-cells may yield an effective 

therapy to treat ccRCC and improve patient outcomes. CAR-T-cells are engineered to directly 

recognize cell surface antigens and do not require MHC peptide presentation or costimulation to 

induce T-cell activation. While four generations of CAR-T-cells have been developed, CARs 

generally are composed of an extracellular single-chain variable fragment (scFv) that confers 

antigen specificity, an extracellular linking region, a membrane-spanning region, and a signaling 

domain within the cell. The CAR signaling domain contains ITAMs and other elements such as 

1+ costimulatory molecules or cytokine inducers depending on the CAR generation that 
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increases the depth of T-cell activation. CAR-T-cells specific for CD19 are FDA approved for 

the treatment of hematological cancers with an impressive 90% CR rate in patients with CD19-

positive B-acute lymphoblastic leukemia. However, exhaustion of CAR-T-cells may result in 

sub-optimal outcomes in certain cancers following CAR-T upregulation of coinhibitory receptors 

like PD-1, T-cell immunoglobulin, mucin domain-3, and LAG3. Furthermore, toxicities 

associated with CAR-T-cell therapy remain to be resolved in the clinic, comprising cytokine 

release syndrome (CRS), tumor lysis syndrome (TLS), neurological toxicity, off-target effects, 

and anaphylaxis (153, 161-163).   

 CAR-T-cell candidates for RCC therapy target tumor cells expressing ROR2, VEGFR2, 

CD70, c-MET, CalX, and Mucin 1 cell surface-associated C-terminal and are all either Phase I or 

Phase II clinical trial stage in development. The rationale behind these targets is usually based on 

antigenic targets that are highly expressed in ccRCC or are associated with negative outcomes in 

ccRCC. While no data is available yet relating to ccRCC patient response rate to CAR-T-cell 

therapy, trials examining the products P-MUC1C-ALLO1, CCT301 ROR2 CAR-T, COBALT-

RCC CD70 CAR-T, TRAVERSE CD70 CAR-T, CalX CAR-T, Anti-VEGFR2 CAR-T will have 

endpoints that will provide some level of patient response documentation in the coming years 

(153).  

 

Introduction to Single-cell Resolution Sequencing Techniques 

 Invented in 2009, single-cell resolution RNA sequencing (scRNA-seq) captures gene 

expression on a single-cell level, allowing for the discovery and interrogation of rare populations 

that may be consequential for disease pathogenesis (164). scRNA-seq involves the procedural 

isolation of individual cells or nuclei from a suspension, lysis of those individual cells, reverse 
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transcription of single-cell transcriptomes into cDNA, amplification of cDNA, library 

preparation, and finally deep sequencing of the library. Library preparation steps may vary 

between scRNA-seq modalities while cells may be isolated through microfluidics, microwell, or 

droplet-based technology. Individual RNA molecules can be traced back using random n-mer 

adaptors called unique molecular identifiers (UMIs) introduced during the reverse transcription 

(RT) step. Similarly, all RNA molecules captured from a single-cell may be barcoded back to 

that individual cell. By using UMI barcodes associated with individual RNA molecules and 

origin single-cells, scRNA-seq is now able to compensate for amplification-associated bias that 

formerly arose in poly(A)/poly(C) 5’ DNA end ligation to provide common amplification 

adaptors as well as IVT as used in CEL-seq, MARS-seq, and inDrop-seq. The formerly most 

common method of cDNA amplification method relies on SMART technology based on 

Moloney Murine Leukemia Virus reverse transcriptase to introduce template-switching oligos 

during RT for future PCR amplification. During RT, the introduction of universal PCR 

amplification adaptors allows for less biased and more easily normalized cDNA amplification 

(165). 

 Data obtained from scRNA-seq experiments are high-dimensional, and analysis of that 

data is computationally expensive. Assuming a general yield of ~10K cells with thousands of 

genes quantified per cell, data can easily consist of millions of individual datapoints that must be 

quality-controlled, normalized, and dimensionally reduced to be comprehensible. While 

standards differ between groups, general guidelines for scRNA-seq quality control (QC) include 

percent mitochondrial gene filtering, number of detected genes (nGenes) filtering, and number of 

UMIs (nUMIs) filtering. QC parameters may need to be adjusted from defaults depending on the 

experiment-specific or cell type-specific gene and UMI distribution. Example parameters for QC 
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from a 2018 Nature Methods paper by Lambrechts et al. are 100 ≤ nGenes ≤ 6000, ≤ 200 UMIs, 

and ≥ 10% mitochondrial genes (166). While nGenes and nUMI cutoffs are intended to remove 

low-quality cells with inefficient overall gene capture, percent mitochondrial gene content is 

limited to eliminate cells from the analysis that are dead or dying. Enrichment of mitochondrial 

transcripts is associated with cell stress, apoptotic, and/or low-quality cells (167). However, 

attention must be paid to the specific cell type being examined, as certain cells like 

cardiomyocytes may naturally express higher mitochondrial gene content ranging from 58-86% 

of total transcripts that does not necessarily indicate cell stress (168).  

 After initial QC, scRNA-seq is often normalized to mitigate technical noise and 

dimensionally reduced using a combination of principal component analysis (PCA) followed by 

either t-distributed stochastic neighbor embedding (t-SNE) or uniform manifold approximation 

and projection (UMAP) that collectively reduces the thousands of potential dimensions into two 

graphically accessible t-SNE/UMAP dimensions. PCA overcomes technical noise to identify 

“principal components” (PCs) which represent a linear set of experimental variables that are 

uncorrelated within the dataset, with most of the information contained within the first 

components. t-SNE and UMAP then take these PCs and reduce them to two dimensions for ease 

of visualization, gene expression overlays, cell clustering, and more. UMAP has certain 

advantages over the older t-SNE, including faster run times, greater preservation of the global 

transcriptional structure, and more consistency in cell clustering patterns between different runs; 

however, t-SNE remains popular due to different aesthetics, integration in older platforms, and 

familiarity vis-à-vis UMAP (165).  

 Following PCA, t-SNE, and/or UMAP-based dimensional reduction, cells are clustered 

using algorithms like SC3, Seurat, and FlowSOM. Clustering is intended to capture biologically 
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relevant cell subpopulations with similar gene expression profiles. In general, cells with more 

similar transcriptomes will cluster together, while cells with disparate transcriptomes will be 

more distant from one another in UMAP/t-SNE space (165).  

 Additional steps may be performed depending on experiment-specific analysis goals. 

Common steps following clustering include expert gating of cell populations to identify what cell 

types are contained within each cluster. Expert gating may involve graphically overlaying cell 

type surrogate marker gene expression on t-SNE/UMAP space and differential gene expression 

analysis to identify most upregulated or downregulated genes vs. other clusters. Expert gating 

can also be assisted by algorithms capable of autonomous clustering and assigning cell types to 

cells in t-SNE/UMAP space. These include algorithms Seurat, scmap, SingleR, CHETAH, 

SingleCellNet, scID, Garnett, SCINA, CP, and RPC, which were profiled in a 2020 paper by 

Huang et al (169). Of these, Seurat performed the best at identifying major cell types but 

performed worse at identifying rarer cell populations as well as telling the difference between 

relatively similar cell types (169). 

 The wealth of data supplied by scRNA-seq has allowed for the development and 

utilization of algorithms that can assess overall transcriptional programs through TF motif 

identification, cell development trajectories in pseudotime space, infer intercellular 

communication networks, and much more. SCENIC is an algorithm implemented in R and 

python script which identifies TF motifs on recovered RNA molecules. While computationally 

expensive, SCENIC can infer the activity of TFs that may have low mRNA expression at any 

point in time (170). Additionally, exploratory algorithms can compare the differentiation state 

between all cells in a scRNA-seq experiment to identify consensus trajectories that originate in 

more naïve clusters and terminate in more differentiated cell clusters. Cell processes such as 
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hematopoiesis and thymopoiesis can be examined using these algorithms, including p-Creode 

and Monocle with the potential of finding rare progenitor and/or transitory cell populations (171, 

172). A final example of exploratory algorithms in scRNA-seq is cell-cell communication 

analysis algorithms like CellChat, CellPhone DB, and SingleCellSignalR. These algorithms have 

individual strengths and weaknesses that integrate information on the relative expression of 

receptors and cognate ligands, receptor/ligand structural composition, and regulation by 

stimulatory or inhibitory cofactors to infer intercellular communication networks at single-cell 

resolution (165). 

 Single-cell technology has also evolved to characterize cellular features beyond RNA, 

such as chromatin accessibility, methylation, and cell surface protein expression on a single-cell 

basis. Single-cell assay for transposase-accessible chromatin (scATAC-seq) can reveal 

consequential changes to chromatin accessibility resulting from epigenetic modifications (173). 

Complementing that assay, single-cell methylome and transcription sequencing (scMT-seq) can 

be used to assess DNA methylation and RNA transcription from single-cells (174). CITE-seq 

may be used to complement traditional scRNA-seq by quantifying individual cells’ cell 

membrane protein expression. Differences between single-cell RNA and protein may reveal 

underlying post-transcriptional or post-translational processes that are biologically relevant 

(175). A final example of novel single-cell technologies is single-cell V(D)J-seq (scV(D)J-seq), 

which can sequence T-cell receptor-encoding genes from individual cells. High-resolution 

sequencing of T-cell responses using scV(D)J-seq can be used to understand T-cell responses in 

detail. This technology may be used to identify public T-cell clones, tumor-associated T-cell 

clonal sequences, clonality and diversity of T-cell clonal responses, and public antigens if there 
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is a small enough pool of potentially immunogenic peptides (176). Individual B cell receptor 

sequences in B cells can similarly be profiled using technology like LIBRA-seq (177).  

 While single-cell technology offers many benefits, the in-silico findings from these 

experiments must be reinforced and confirmed by in vitro and/or in vivo examination of the 

identified cell phenotype. Like any other experimental modality, single-cell technology is also 

subject to potential technical pitfalls that limit interpretations of data beyond the quality control 

measures mentioned earlier. Inefficient capture of RNA molecules post-lysis may miss a 

significant portion of cellular RNA pools, leading to biases in downstream amplification (178). 

Low-to-moderately expressed genes may also be detected sparsely in cells of the same type in a 

phenomenon known as “dropout”. While genes may be stochastically expressed between cells of 

the same type, inefficiencies in mRNA capture confound whether dropout is biologically 

relevant or a technical artifact. Analysis programs attempt to address dropouts using implicit 

methods like dimension reduction or explicit methods like imputation, a process that attempts to 

assign appropriate expression values of dropout genes based on the expression patterns of highly 

variable genes in a dataset (179). While single-cell methods have the potential to identify rare 

populations that contribute to disease pathogenesis, much work remains before single-cell 

methods may be used as a standalone tool in biological research.  

 

Outstanding Questions and Rationale for Dissertation Research 

 The intersection between hematopoietic metabolism, differentiation, and cell function 

remains incompletely understood. While it is known that HSCs and T-cells both regulate 

metabolic pathways to influence their differentiation potential and functional programs, targeting 

hematopoietic cell metabolism is largely untested and has the potential to improve their immune 
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function and/or therapeutic efficacy. Furthermore, deciphering the relationship between 

metabolic flux and epigenetic regulation of gene expression could reveal tools to direct HSC 

self-renewal and fate decisions and preserve T-cell effector function despite immunosuppressive 

metabolic headwinds experienced in the TME. 

 Metabolic regulation of HSCs is necessary for hematopoietic lineage commitment and 

the maintenance of self-renewal capabilities. Metabolic interventions in the hematopoietic 

compartment offer the potential for enhancing a desired fate decision or enhancing or prolonging 

HSC capacity for self-renewal. In the case of autologous and allogeneic stem cell transplant 

(ASCT) recipients, myelopoiesis post-transplant is already enhanced through treatment with G-

CSF and/or chemotherapy to quickly replenish the innate immune compartment. However, for 5-

40% of ASCT recipients, these conventional mobilization agents generate insufficient peripheral 

immune cells (180). In Chapter 2, we demonstrate the myeloproliferative effects of in vitro Acly 

inhibition on murine hematopoietic stem cells and progenitors that could serve as a model for 

future metabolism-based ASCT mobilization regimens.  

 The mechanisms that connect epigenetic regulatory and metabolic systems are also 

poorly understood. While metabolic enzymes like ACLY and ACSS2 both supply acetyl-CoA as 

a substrate to epigenetic modifiers, deficiencies in those enzymes may result in site-specific 

changes to histone acetylation marks at certain genes which potentially influences cell 

development (76, 181, 182). Acly expression can be increased in response to high concentrations 

of carbohydrates and is downregulated in response to high-fat feeding in rats and mice, 

respectively (183, 184). The metabolic microenvironment in the hematopoietic niche may 

impede epigenetic enzymes’ activities and/or expression, contributing to hematopoietic 

maintenance and fate decisions. 



 
 

61 
 

 In Chapter 3, we present our preliminary findings regarding T-cell clonal responses to 

ccRCC and factors which correlate to positive patient outcomes. Robust biomarkers that allow 

for the prediction of ccRCC patient response to ICB have not been identified, and the discovery 

of response prognostic factors would offer great utility to ccRCC patients. While previous 

studies have examined ccRCC patients’ tumors and periphery using single-cell methods, we 

employ a novel multi-omic approach that integrates several single-cell methods to answer 

outstanding questions about how mitochondrial membrane potential (ΔΨm) influences T-cell 

responses in ccRCC. While some studies have shown that ΔΨm low CD8+ T-cells have 

increased antitumor immunity and longer survival in vivo, others have demonstrated that co-

culture of tumor cells with CD8+ T-cells resulted in a lowering of ΔΨm and the development of 

dysfunctional mitochondria. Furthermore, low and high extremes of ΔΨm are associated with 

cytochrome c-mediated apoptosis and increased ROS, respectively, with both being negative 

indicators for CD8+ T-cell function (185-187). Our examination of ΔΨm in T-cell responses to 

ICB in ccRCC patients will help determine the role of ΔΨm in this context.   

Our findings may apply to metabolic influences on T-cell immunity in cancers beyond 

ccRCC and could inform questions on how to potentiate the CAR-T-cell therapies being 

developed for ccRCC treatment for improved antitumor immune responses. Furthermore, 

combined multi-omic profiling of ccRCC patient T-cells may reveal common TCRs shared 

between patients, the metabolic characteristics and gene signatures of tumor-associated 

peripheral T-cells, and patient differences in clonality of T-cell responses to ICB. Collectively, 

these studies offer insight into the role of mitochondrial metabolism on hematopoietic cell 

differentiation and function.  
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CHAPTER 2: ACLY DEFICIENCY ENHANCES MYELOPOIESIS THROUGH 

ACETYL-COA AND METABOLIC-EPIGENETIC CROSSTALK 
 

This chapter is adapted from “Acly Deficiency Enhances Myelopoiesis through Acetyl 

Coenzyme A and Metabolic-Epigenetic Cross-Talk” published in Immunohorizons and has been 

reproduced with the permission of the publisher and my co-authors.  

Originally published in Immunohorizons. Dalton L. Greenwood, Haley E. Ramsey, 
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Introduction 

Cell differentiation allows long-term maintenance of populous short-lived cell types 

derived from more durable and rare stem cells. Stem cells respond to a combination of cytokine 

innervation, metabolic activation, and epigenetic changes to generate various cell types as 

needed (189-191). Hematopoietic stem cells (HSCs) reside within hypoxic, perivascular bone 

marrow (BM) niches surrounded by mesenchymal stromal cells, non-myelinating Schwann cells, 

megakaryocytes, macrophages, CXCL12-abundant reticulocytes, and other cells (192). These 

cells and local nutrients provide the mixture of microenvironmental metabolites and cytokines 

that promote hematopoiesis. Step-by-step relationships between hematopoietic progenitors 

demarcated by surrogate markers have been painstakingly established over time. However, 

hematopoiesis is a fluid landscape with a gradient of differentiation regulated by intersecting 

systems of cellular metabolism and epigenetic homeostasis that remain incompletely understood. 

Metabolic hubs including the tricarboxylic acid cycle (TCA-cycle) are closely connected to 

epigenetic regulation of gene expression and supply essential substrates such as S-adenosyl 

methionine, acetyl-CoA, and α-ketoglutarate which facilitate methylation, acetylation, and 

demethylation respectively (91). Understanding how metabolic and epigenetic stimuli influence 
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hematopoiesis will help build a more comprehensive paradigm of cellular development and 

stimulate new therapeutic approaches against disease. 

 While cytokines are the primary drivers of hematopoiesis, metabolic activation, and 

epigenetic intervention also influence these pathways to guide hematopoietic cell fate decisions 

(193, 194). It has been recognized that metabolic activation itself can also decrease stem cell 

potential and induce differentiation. Acetyl-CoA provides the substrate for lipid synthesis and 

protein acetylation reactions and derives from numerous bioenergetic pathways including 

glycolysis, fatty acid oxidation, amino acid deamination, TCA cycle flux, and acetate. Histone 

acetyltransferases (HATs) catalyze the addition of acetyl groups to histone tails and are sensitive 

to changes in the concentration of their primary substrate, acetyl-CoA. When the intracellular 

concentration of acetyl-CoA is at its nadir, the enzyme velocities of HATs decrease to alter the 

steady-state maintenance of histone acetylation and chromatin accessibility (91). Aberrant 

acetylation in hematopoiesis by HATs such as GCN5, CBP/p300, and MOZ has been implicated 

in transforming healthy hematopoietic stem cells and precursors into hematologic malignancies 

(195-197). 

ATP Citrate-Lyase (Acly) catalyzes the reaction of ATP, citrate, and coenzyme A (CoA) 

into ADP, inorganic phosphate, acetyl-CoA, and oxaloacetate. Acly reactions are key 

contributors to the cytosolic nuclear pools of acetyl-CoA and are the primary path for acetyl-

CoA derived from mitochondrial citrate. Acly represents one of several sources of cellular 

acetyl-CoA that contribute to histone acetylation (198, 199). The relative roles of these 

pathways, however, are poorly understood. Acly expression may play an important role in 

myeloid differentiation and myeloid cell function, as increased PU.1 was associated with reduced 

Acly expression and regulation of the cell cycle in a myeloid cell line (77). The impact of Acly is 
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not limited to myeloid cells as Acly has been noted as a regulator of CD8+ T-cell function, early 

CD8+ T-cell differentiation, and osteoclast differentiation (181, 200, 201).  

Here we sought to test the role of Acly in the differentiation of primary hematopoietic 

stem and progenitor cells. Inhibiting Acly with the small-molecule inhibitor SB-204990 (SB2) or 

genetically deleting Acly in lineage-depleted and c-Kit enriched HSPCs led to increased myeloid 

differentiation in cytokine-replete methylcellulose media. Single-cell RNA and Assay for 

Transposase-Accessible Chromatin (ATAC) sequencing of HSPCs treated with SB2 showed 

altered gene expression and chromatin accessibility with increased myeloid cell abundance 

consistent with a role for Acly in the epigenetic regulation of HSPCs. Mechanistically, multiple 

members of the C/EBP TF family were affected and may contribute to increased myelopoiesis. 

Acly inhibition resulted in increased Cebpe and reduced Cebpa and Cebpb gene expression by 

qRT-PCR and increased chromatin accessibility at C/EBP TF binding sites by scATAC-seq. 

Mitochondrial metabolism was also altered and acetate restored normal myeloid differentiation 

to suggest that Acly inhibition resulted in limiting levels of acetyl-CoA. Acly thus contributes as 

one pathway to acetylation in hematopoiesis and can regulate myeloid differentiation through 

metabolic regulation of epigenetic marks and myeloid gene expression.  
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Results 

Inhibition of ATP Citrate Lyase promotes myelopoiesis

 

Figure 2.1. Acly inhibition drives CD11b expression in Methylcellulose-cultured Lin- 

HSPCs. (A) Whole BM cells were compared to lineage-depleted and lineage-negative, c-Kit 

enriched HSPCs by flow cytometry and evaluated for viability and CD11b expression with 

representative histograms (n = 3 mice). (B, C) MC-cultured HSPCs cultured with vehicle or 

Aclyi (SB204990) were analyzed by flow cytometry for viability and (B) stem cell markers (n = 

3 mice) and (C) myeloid integrin CD11b (n = 6 mice) with representative histograms. 

Significance was judged using Student’s two-tailed parametric t-test. Error bars represent 

standard deviation. 

 

To test the role of Acly in hematopoiesis, hematopoietic stem and progenitor cells 

(HSPCs) were fist isolated by lineage depletion and c-Kit enrichment. We depleted cells 

expressing a surrogate marker for myeloid differentiation CD11b from BM (Figure 2.1A) (202-

204). HSPCs were then cultured in cytokine-replete methylcellulose media (MC-cultured) for 

two weeks in the presence of vehicle or Acly inhibitor (Aclyi) SB204990 at 30 μM, a 

concentration previously used to provide a near-complete inhibition of glucose-derived lipid 

synthesis (205, 206). Cells were stained for lineage markers αCD3, αGr-1, αCD11b, αCD45R, 

and αTer-119 as well as Sca-1 and c-Kit that indicate the canonical LSK compartment that is 

enriched in stem cells (206, 207). Aclyi resulted in a significant decrease in lineage-negative, 
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Sca-1+, c-Kit+ (LSK+) cells (Figure 2.1B). We then asked which lineages Aclyi increased by 

assessing CD11b expression in MC-cultured HSPCs. Despite a modestly decreased viability, live 

cell numbers were unchanged and Aclyi significantly increased the frequency and number of 

myeloid CD11b+ cells to indicate a shift toward myelopoiesis in culture (Figure 2.1C). This 

effect was observed as early as day 4 of cell culture with high doses of SB204990 (Figure 2.2).  

 

Figure 2.2- Aclyi increases HSPC CD11b expression at Days 3-5 in culture 1E4 Lin-

depleted, c-Kit+ HSPCs were cultured in methylcellulose for 3, 4, and 5 days with Vehicle, 30 

μM Aclyi, and 300 μM Aclyi. n=3 mice per treatment group, monitored over 3, 4, and 5 days. 

Significance was judged using Student’s two-tailed parametric t-test. Error bars represent 

standard deviation. 
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Genetic deletion of ATP Citrate Lyase promotes CD11b+ myelopoiesis while suppressing Mast-

like cells

 
Figure 2.3. Acly deficiency drives CD11b while suppressing CD117 expression in 

Methylcellulose-cultured Lin- HSPCs. UBC-Cre ERT2; Acly f/f and Acly f/f HSPCs were 

treated with combinations of 4-hydroxytamoxifen (4-OHT), Aclyi, and DMSO and cultured for 

two weeks (n = 3 mice). Cells were assessed for CD11b, CD117, and viability by Fixable 

Viability Dye e780 by flow cytometry. Significance was judged using Student’s two-tailed 

parametric t-test. Error bars represent standard deviation. 

 

To corroborate that small-molecule inhibition of MC-cultured HSPCs resulted in 

increased myeloid differentiation, we tested if acute genetic deletion of Acly led to similar shifts 

toward myelopoiesis (Figure 2.3). Acly was genetically deleted using a UBC-Cre-ERT2 +/- Acly 

f/f model with tamoxifen-inducible Acly deletion by treating isolated HSPCs with 4-

hydroxytamoxifen (4-OHT). Deleting Acly resulted in a significant increase in the percentage of 

CD11b+ cells that mirrored the percentage of CD11b+ myeloid cell increases induced by Acly 

small-molecule inhibition. Small-molecule inhibition of Acly in combination with Acly-deletion 

further increased the proportion of myeloid CD11b+ cells in MC-cultured HSPCs. This additive 

effect may be due to incomplete deletion of Acly or non-Acly effects of SB204990. Interestingly, 

while inhibition of Acly did not result in decreased overall cell numbers, treatment with 4-OHT 

and genetic deletion of Acly reduced total live cell numbers although with an increased 

frequency of CD11b+ cells. Both Aclyi and genetic deletion of Acly resulted in a significant 

reduction in the numbers and percentage of c-Kit (CD117) expressing cells (Figure 2.3). These 



 
 

68 
 

CD117+ cells most likely represent stem and progenitor or Mast cells, which often comprise 

HSPC-descended cells in methylcellulose cultures (208, 209).  

 

Figure 2.4 - Acly deficiency increases CD16/32 expression at Week 2 in a BM transplant. 

Whole BM from either Acly f/f or Acly f/f Vav1-cre+/- animals were transplanted into CD45.1 

recipients. Recipients were taken down every week post-transplant to determine the viability and 

percent of cells expressing CD16/32 (FcγRIII). n=5 mice per treatment group per week. 

Significance was judged using Student’s two-tailed parametric t-test. Error bars represent 

standard deviation. 

 

To determine the role of Acly in vivo, we assessed demand-induced myelopoiesis in 

Acly-deficient BM chimeras using hematopoietic-specific, Acly f/f Vav1-cre+/-, Acly deficient 

BM chimeras. Acly f/f Vav1-cre+/- or Acly f/f BM was transplanted into lethally irradiated BL/6 

CD45.1 hosts, and recipient BM was characterized by flow cytometry at 14 and 21 days post-

transplant. Acly deficiency in Acly f/f Vav1-cre+/- BM recipients resulted in a modest initial 

increased CD16/32 (FcγRIII) expression consistent with Acly suppression of myelopoiesis, 

although B and NK cells may have also contributed to increased CD16/32 expression (Figure 

2.4). One week later, myelopoiesis had increased in both control and Acly-deficient cultures and 

this difference was no longer apparent. The effect of genetic Acly-deficiency was modest and 

transient, demonstrating that Acly-independent pathways can compensate for Acly loss to 

generate cytosolic acetyl-CoA in vivo. Acly may thus act in concert with other pathways, such as 
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Acyl-CoA synthetase short-chain family member 2 (Acss2)-mediated conversion of acetate to 

acetyl-CoA, to influence hematopoietic differentiation under stressful or non-steady-state 

conditions following stem cell transplant with the effect of Acly compensated over time.  

 

Acly inhibition promotes macrophage and neutrophil differentiation.  

 

Figure 2.5. Acly inhibition drives Macrophage differentiation in Methylcellulose-cultured 

Lin- HSPCs. Lineage-negative HSPCs were cultured for two weeks with vehicle or Aclyi and 

assessed using single-cell RNA-seq. Cells from scRNA-seq are plotted in UMAP dimensional 

reduction depicting (A) original treatment sample IDs and (B) cell types defined by SingleR. (C) 

SingleR-defined cell types were quantified and graphed as a proportion of total cells per 

treatment. (D) Canonical cell type-associated gene expression from SingleR-identified cell types 

was plotted in a heatmap. (E) Canonical cell type-associated gene expression was overlaid over 

UMAPs. 
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To better understand how Aclyi affected HSPC cell populations and gene expression, single-cell 

RNA and ATAC sequencing (scRNA-seq and scATAC-seq) were performed. Freshly isolated 

and lineage-depleted C57BL/6 BM and MC-cultured lineage-depleted BM cells were treated 

with either Aclyi or vehicle before scRNA-seq (Figure 2.5A-C). Cell cluster identities were 

assigned using the software package SingleR, which compares scRNA-seq transcriptomes to 

bulk RNA-seq transcriptomes of expert-gated, sorted immune populations from the ImmGen 

database (210, 211). While the use of SingleR assigns clusters of differentiating cells from our 

cultures to defined and often mature cell populations that may not be fully equivalent, it 

nevertheless provides an unbiased approach to infer cell lineage and identity. These clusters 

consisted of B cells, basophils, eosinophils, macrophages, Mast cells, monocytes, neutrophils, 

HSPCs, and “other,” with “other” comprising a minority of cells that had no viable comparisons 

to the ImmGen database using SingleR (Figure 2.5B, C). Most cells in the vehicle-treated 

HSPCs were categorized as Mast cells, and treatment with Aclyi increased the proportion of 

macrophages while suppressing Mast cell differentiation (Figure 2.5C). These MC-cultured 

HSPCs share gene expression similarities with canonical myeloid gene expression profiles and 

expert gating of scRNA-seq data revealed that expression of cell type-associated genes correlated 

with SingleR-identified cell type clusters (Figure 2.5D, 3E) (212). 
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Table 2.1 - SCENIC-identified Transcription Factor binding motifs reveal enrichment of 

Cebp-family, Nfe2l2 enrichment in Macrophages and Aclyi. scRNA-seq data was assessed for 

TF binding motif enrichment in SingleR-defined cell types and original treatments using 

SCENIC. TF activity was defined using the mean area under the curve (AUC).  

 

  Cell Type 

  Mast Cells Macrophages Basophils Neutrophils HSPCs 

Rank-ordered 
Average 
Regulon AUC TF 

Mean 
AUC TF 

Mean 
AUC TF 

Mean 
AUC TF 

Mean 
AUC TF 

Mean 
AUC 

1 Creb3l1 1.202 Mafb 1.786 Klf5 1.678 Ets2 2.238 Hdac2 1.87 

2 Hes1 1.196 
Bhlhe4
1 1.747 Nfil3 1.532 Relb 2.203 E2f4 1.834 

3 Ahr 1.177 Atf3 1.74 Ets1 1.458 Irf7 2.08 Tfdp1 1.808 

4 Pgr 1.125 Maf 1.729 Xbp1 1.303 Ltf 2.075 Myc 1.774 

5 Patz1 1.119 Usf2 1.678 Creb3l2 1.295 Nfkb2 2.073 Trp53 1.729 

6 Egr1 1.107 Mef2a 1.677 Arnt2 1.234 Cebpd 2.037 Klf1 1.726 

7 Fosb 1.089 Nfe2l2 1.673 Foxq1 1.139 Pparg 1.958 Cebpz 1.715 

8 Tal1 1.078 Etv1 1.516 Cebpa 0.981 Cebpe 1.875 Gtf2f1 1.551 

9 Fos 1.077 Irf5 1.505 Zfp467 0.962 Fosl1 1.854 Ezh2 1.548 

10 Gata1 1.074 Tcf7l2 1.42 Creb3 0.943 Stat2 1.806 Myb 1.367 

 

  Cell Type 

  Eosinophils Other Monocytes B Cells 

Rank-ordered 
Average 
Regulon AUC TF 

Mean 
AUC TF 

Mean 
AUC TF 

Mean 
AUC TF 

Mean 
AUC 

1 Gm5294 3.361 Lef1 5.318 Klf8 1.529 Bhlha15 12.286 

2 Tcf7l1 1.824 Tbx21 5.211 Klf4 1.453 Prdm1 10.989 

3 Arid3a 1.667 Runx2 2.549 Bcl3 1.343 Pou2af1 10.841 

4 Srebf1 1.636 Nfkb1 2.183 Irf5 1.254 Foxp2 9.204 

5 Nfat5 1.587 Tcf7 2.153 Irf4 1.191 Ppard 4.353 

6 Foxn2 1.576 Bmyc 2.126 Cebpd 1.161 Atf6 4.215 

7 E2f2 1.548 Irf8 2.051 Irf8 1.022 Irf4 4.063 

8 Cebpe 1.538 Sox4 1.68 Runx2 1.011 Hivep2 3.804 

9 Nfe2 1.375 Irf9 1.671 Sap30 0.953 Foxo1 3.301 

10 Sp4 1.297 Foxp4 1.647 Tfec 0.952 Xbp1 3.111 

 

  Treatment 

  
Fresh Lin-
Depleted Vehicle ACLYi 

Rank-ordered 
Average 
Regulon AUC TF 

Mean 
AUC TF 

Mean 
AUC TF 

Mean 
AUC 

1 Hdac2 2.2 Ahr 0.821 Spi1 0.581 

2 Myc 2.132 Creb3l1 0.819 Cebpb 0.573 

3 Cebpz 2.04 Fosb 0.818 Atf3 0.555 

4 Gtf2f1 1.943 Atf4 0.816 Nfe2l2 0.519 

5 Tcf3 1.917 Bhlhe40 0.814 Maf 0.503 

6 E2f4 1.913 Junb 0.807 Bhlhe41 0.498 

7 Sox4 1.832 Egr1 0.803 Cebpd 0.469 

8 Ezh2 1.819 Fos 0.801 Creb3 0.458 

9 Trp53 1.754 Batf 0.786 Usf2 0.454 

10 Klf1 1.752 Crem 0.721 Mafb 0.45 
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Although the HSPC-descended cell types did not fully match canonical immune cell 

transcriptomes, we refer to each based on SingleR categorization. TF binding-motif analysis of 

differentially expressed genes using SCENIC identified a variety of transcriptional drivers of 

myeloid differentiation in the presence of Aclyi that corroborated the SingleR-assigned cell 

clusters. These included the macrophage-associated TF-coding genes Spi1, as well as Nfe2l2 

(NRF2) and binding partners Maf, and Mafb (213-215) (Table 2.1).  

 

Figure 2.6. Acly inhibition provokes chromatin accessibility changes to drive Macrophage 

differentiation. Lineage-negative HSPCs were cultured for two weeks with vehicle or Aclyi and 

assessed using single-cell ATAC-seq. Cells from scATAC-seq are plotted in UMAP dimensional 

reduction depicting (A) original treatment sample IDs and (B) cell types identified with SingleR 

and ArchR (C) Gene scores were calculated for each identified cell type and plotted via heatmap 

(D) SingleR/ArchR-defined cell types were quantified and graphed as a proportion of total cells 

per treatment. (E) Gene scores of cell type-associated genes were calculated and overlaid on 

scATAC-seq UMAP plot. 

 

Chromatin accessibility was measured by scATAC-seq and closely matched the scRNA-

seq results. Cells from the same sample subjected to scRNA-seq were split and assessed by 

scATAC-seq with the freshly isolated and lineage-depleted murine BM clustering separately 

from the MC-cultured, lineage-depleted BM (Figure 2.6A). The software package ArchR was 
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used to map the gene expression signatures of the SingleR-identified populations from the 

scRNA-seq onto the scATAC-seq data (216). SingleR identified populations that correlated with 

expected populations based on scRNA-seq. HSPCs were enriched in the fresh lineage-depleted, 

undifferentiated sample, while mature myeloid populations like basophils, eosinophils, Mast 

cells, neutrophils, and macrophages were concentrated in the MC-cultured, lineage-depleted 

conditions (Figure 2.6B).  

 Gene scores, as defined by ArchR to measure chromatin accessibility within 100,000 

base pairs of genes of interest, were used to uncover populations with distinct regions of 

chromatin accessibility (Figure 2.6C) (216). When overlaid onto the UMAP plot, expression of 

cell type-associated genes including Cd34, Mmp8, and Itgam (CD11b) revealed a close 

association with canonical cell-type gene expression patterns (Figure 2.6D, E). As in the 

scRNA-seq dataset, the proportion of Mast cells in the vehicle was significantly reduced while 

macrophages increased in the presence of Aclyi. Furthermore, one of the most differentially 

expressed genes between vehicle and Aclyi and between fresh lineage-depleted and Aclyi was 

Gpnmb, with an average 4.65-fold increase in expression with Aclyi compared to fresh lineage-

depleted and a 3.34-fold increase in expression with Aclyi compared to vehicle, respectively. 

Gpnmb, or glycoprotein nonmetastatic B, is a soluble glycosylated transmembrane protein highly 

expressed in macrophages that negatively regulates inflammation (217, 218). There was also 

evidence that Aclyi promoted neutrophil differentiation, as the top differentially expressed gene 

between fresh lineage-depleted and Aclyi was Ngp, a gene coding for neutrophilic granule 

protein that accumulates in the cytoplasmic granules of neutrophilic precursors. Furthermore, 

Ngp is known to be regulated by C/EBPε and PU.1, which have TF motifs enriched in the Aclyi 

scATAC-seq condition (219). Our single-cell data demonstrate a pro-myelopoietic effect of 
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Aclyi that promotes macrophage and neutrophil differentiation by altering chromatin 

accessibility and gene expression in MC-cultured HSPCs. 

 

Acly inhibition drives Cebpe and suppresses Cebpa and Cebpb expression 

 

Figure 2.7. Aclyi drives expression of Cebpe while depressing Cebpa and Cebpb. (A) 

Transcription factor motif chromatin accessibility heatmap was derived from scATAC-seq 

showing TF motif chromatin accessibility enrichment in fresh lineage-depleted, Aclyi, and 

vehicle. (B) HSPCs were cultured for two weeks in methylcellulose with vehicle or Aclyi and 

assayed for Ceb/p family member mRNA expression by qPCR (n=3). (C) Gene score for Cebpe 

was overlaid on scATAC-seq UMAP (D) scATAC-seq chromatin accessibility tracks of Cebpe 

from Neutrophils and HSPCs were plotted from each treatment group. Values are normalized to 

β-actin. Significance was judged using Student’s two-tailed parametric t-test. Error bars 

represent standard deviation. 

 

After Aclyi was found to promote macrophage differentiation at the expense of Mast cell 

development, scATAC-seq of Aclyi-induced myeloid differentiation was analyzed to identify 
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potential sequence motifs and transcriptional regulatory families that may respond to Aclyi. 

Through ArchR-based analysis of scATAC-seq data, TF motifs were identified that were 

enriched in fresh lineage-depleted, Aclyi-treated, and vehicle-treated MC-cultured lineage-

depleted murine BM. ArchR searched for TF binding motifs enriched in the open chromatin of 

analyzed samples. ArchR identified several TFs, including Nfe2l2 and the Cebpa, Cebpb, Cebpg, 

Cebpd, Cebpe, and Cebpz members of the C/EBP family of TFs as enriched in the Aclyi 

condition (Figure 2.7A). These TFs are considered master regulators of hematopoiesis and 

cellular differentiation (220). C/EBP family TFs are also known regulators of the top 

differentially expressed gene between fresh lineage-depleted and Aclyi by scRNA-seq, Ngp 

(221). (Table 2.2). While all family members share a high binding affinity for the promoter 

CCAAT box sequence, each member has unique structural elements which render its function 

unique, and all play a role to balance hematopoiesis (222). 
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 Table 2.2 - Aclyi increases expression of Wfdc17, Gpnmb, and Ngp and others vs. 

vehicle treatment. Most differentially expressed genes between Vehicle and Aclyi from scRNA-

seq. avg_log2FC indicates the log fold change of the average expression between Vehicle and 

Aclyi. Positive values indicate higher expression in Vehicle while negative values indicate 

higher expression in Aclyi. Pct.1 indicates the percentage of cells where the gene is detected in 

Vehicle, while Pct.2 indicates the percentage of cells where the gene is detected in Aclyi. 

P_val_adj indicates the adjusted p-value calculated using Bonferroni correction using all genes in 

the dataset. 

 

To identify which C/EBP family member was most changed in expression in response to 

Aclyi, we performed RT-qPCR for Cebpa, Cebpb, Cebpg, Cebpd, Cebpe, and Cebpz on RNA 

  avg_log2FC pct.1 pct.2 p_val_adj 

Chil3 4.24453518 0.22 0.097 4.14E-42 

Hbb-bs 3.5309971 0.107 0.025 2.85E-37 

Tph1 2.44016678 0.698 0.146 0 

Tpsb2 2.41439743 0.695 0.241 0 

Ly6a 2.24196157 0.725 0.383 1.37E-273 

Cma1 2.22524205 0.723 0.19 0 

Ctla2a 2.13666877 0.819 0.356 0 

Fcer1a 2.10031164 0.794 0.368 0 

Junb 2.02584097 0.947 0.829 0 

Ier2 1.98170566 0.941 0.838 0 

Gzmb 1.97214833 0.402 0.075 1.28E-204 

Mcpt2 1.97209339 0.263 0.047 2.25E-126 

Prtn3 -2.1626459 0.034 0.275 1.51E-126 

Elane -2.1966255 0.01 0.169 4.59E-85 

Anxa1 -2.3199197 0.464 0.898 0 

Prg2 -2.350247 0.014 0.4 4.56E-248 

Mmp12 -2.3724861 0.089 0.392 3.60E-153 

Ctss -2.4609955 0.184 0.446 4.93E-124 

Ctsb -2.6754073 0.778 0.926 2.95E-229 

Lyz2 -3.023029 0.174 0.757 0 

Fabp5 -3.0867374 0.21 0.63 7.30E-260 

Ngp -3.2872571 0.084 0.718 0 

Gpnmb -3.339636 0.065 0.418 8.96E-209 

Wfdc17 -3.5555623 0.073 0.464 2.07E-239 
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isolated from MC-cultured HSPCs treated with Aclyi or vehicle. Aclyi resulted in significant 

reductions in Cebpa and Cebpb with a simultaneous significant increase in Cebpe (Figure 2.7B). 

Furthermore, Cebpe’s chromatin region is most open in neutrophils and HSPCs retained in 

methylcellulose culture when the gene score is overlaid on the UMAP plot (Figure 2.7C). 

Though the proportion of neutrophils is consistent between Vehicle and Aclyi, the substantial 

increase in Ngp expression and enrichment of Cebpe binding motif accessibility with Aclyi 

suggest that Aclyi could promote neutrophil differentiation (Figure 2.7A, Table 2.2). 

Additionally, neutrophils and HSPCs from Aclyi had greater chromatin accessibility at its Cebpe 

locus compared to vehicle and fresh lineage-depleted BM cells, suggesting Aclyi may open 

chromatin at Cebpe and poise HSPCs for neutrophilic differentiation (Figure 2.7D). These data 

support a potential role for C/EBP TFs to drive macrophage differentiation in response to Acly, 

but Cebpe is not essential for this process upon Acly inhibition. 

 

Acly inhibition impacts mitochondrial health and superoxide production. 
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Figure 2.8. – Acly deficiency alters the metabolic behavior of MC-cultured HSPCs. (A) MC-

cultured HSPCs cultured with either Aclyi or vehicle were assessed for OCR and ECAR using an 

extracellular flux mitostress test (n = 6 mice). (B) MC-cultured HSPCs cultured with either Aclyi 

or vehicle were assessed for mitochondrial membrane potential using tetramethyl rhodamine 

ester (TMRE) by flow cytometry (n = 6 mice). (C) HSPCs were assessed for general oxidative 

stress using 2’,7’-dichlorodihydrofluorescein diacetate (DCFDA) by flow cytometry (n = 6 

mice). (D) HSPCs were assessed for superoxide concentration using MitoSOX staining by flow 

cytometry (n = 6 mice). (E) HSPCs were assessed for mitochondrial mass using mitotracker 

green staining by flow cytometry (n = 6 mice). Significance was judged using Student’s two-

tailed parametric t-test. Error bars represent standard deviation. 

 

Acly catalyzes the conversion of mitochondrially-derived citrate to acetyl-CoA and 

inhibition of this pathway may affect mitochondrial metabolism. C/EBP-family TFs are also 

known regulators of cellular metabolism, differentiation, and immune function (223, 224). We 

thus tested if Aclyi altered metabolic and mitochondrial characteristics of MC-cultured HSPCs 

by measuring extracellular flux. The oxygen consumption rate (OCR) and extracellular 

acidification rate (ECAR) of MC-cultured HSPCs were not significantly altered with Aclyi 

(Figure 2.8A). While the respective rates of oxidative phosphorylation and glycolysis did not 

change, the mitochondrial potential sensitive dye tetramethylrhodamine ester (TMRE) MFI 

significantly decreased with Aclyi, showing that mitochondrial membrane potential and electron 

transport chain efficiency was decreased (Figure 2.8B). General oxidative stress as measured by 

DCFDA MFI was not also significantly changed with Aclyi (Figure 2.8C), but mitochondrial 

superoxide and mass increased with Aclyi, suggesting a worsening of mitochondrial quality and 

health (225) (Figure 2.8D, E). 
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Acss2 inhibition, ROS, and α-ketoglutarate do not affect myelopoiesis. 

 

Figure 2.9. Acetate supplementation reverses Aclyi-driven myeloid differentiation. (A) 

Primary enzymes supplying acetyl-CoA are Acly using citrate as a substrate and Acss2 using 

acetate (n = 3 mice). (B) MC-cultured HSPCs cultured with either Aclyi or vehicle were 

supplemented with 1.25, 2.5, or 5 mM N-acetylcysteine and assessed for viability and CD11b 

expression by flow cytometry supplementation (n = 3 mice). (C) MC-cultured HSPCs cultured 

with either Aclyi or vehicle were supplemented with 1, 2, or 4 mM dimethyl 2-oxoglutarate and 

assessed for viability and CD11b expression by flow cytometry (n = 3 mice). (D) MC-cultured 

HSPCs cultured with either Aclyi, Acss2i, vehicle, or a combination of Aclyi and Acss2i and 

assessed for viability and CD11b expression by flow cytometry (n = 3 mice). (E) MC-cultured 

HSPCs cultured with either Aclyi or vehicle were supplemented with 5 mM acetate and assessed 

for viability and CD11b expression by flow cytometry (n = 3 mice). Significance was judged 

using Student’s two-tailed parametric t-test. Error bars represent standard deviation. 

 

Acly catalyzes the reaction between cytosolic citrate derived primarily from the TCA 

cycle into acetyl-CoA in an ATP-dependent manner. Acss2 can also generate cytosolic acetyl-
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CoA from cytosolic acetate and may complement Acly to replenish cellular acetyl-CoA from 

acetate in an ATP-dependent reaction (226) (Figure 2.9A). When MC-cultured HSPCs were 

treated with Acss2i, the proportion of CD11b+ cells did not increase as with Aclyi. Two 

metabolic signaling mechanisms that may be influenced by Aclyi and failure to convert citrate to 

acetyl-CoA are reactive oxygen species (ROS) or accumulation of citrate and conversion to α-

ketoglutarate, which regulates histone and DNA demethylation reactions and has been shown to 

impact hematopoietic differentiation. MC-cultured HSPCs were supplemented with N-

acetylcysteine (NAC), a precursor to the ROS/RNS scavenger molecule glutathione. No 

significant effect of NAC was observed on myeloid differentiation as measured by the frequency 

of cells expressing CD11b (Figure 2.9B). Similarly, cultures supplemented with dimethyl α-

ketoglutarate to directly increase α-ketoglutarate had no significant difference in the frequency of 

cells expressing CD11b+ cells in MC-cultured HSPCs vs. vehicle (Figure 2.9C). 

In addition, combining Acss2i and Aclyi resulted in a trend towards increased frequency 

and number of myeloid CD11b+ cells relative to Aclyi alone (Figure 2.9D). While Acss2i alone 

did not impact myelopoiesis in our MC-cultured HSPCs, we next tested if Acss2 could rescue the 

Aclyi-induced myelopoiesis in the presence of exogenous acetate. MC-cultured HSPCs were 

then treated with Aclyi with or without exogenous acetate. Culture media supplemented with 5 

mM exogenous acetate reversed the increase in the frequency and number of myeloid CD11b+ 

cells even in the presence of Aclyi to levels comparable to vehicle. These data suggest that 

although Acss2 is not essential, it can replenish lost acetyl-CoA and compensate for Acly-

deficiency if cells are provided excess acetate (Figure 2.9E). 
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Discussion 

Hematopoiesis balances extracellular stimuli including cytokines and 

microenvironmental nutrients to affect intracellular changes to metabolism and gene expression 

that regulate stemness and differentiation of blood cells. In this study, we investigated the role of 

citrate metabolism and Acly in the hematopoietic differentiation of HSPCs cultured in cytokine-

replete methylcellulose. Small-molecule inhibition and LoxP-cre mediated genetic deletion of 

Acly similarly demonstrated that Acly deficiency promotes increased myeloid differentiation. 

We characterized the methylcellulose-based differentiation system of HSPCs by flow cytometry 

for specific cell markers and by single-cell RNA-seq and single-cell ATAC-seq for 

transcriptional and chromatin markers. Acly-deficiency was found in each approach to promote 

the differentiation of cells that transcriptionally resemble macrophages when assessed using 

SingleR. In contrast, LSK+ cells were decreased in number and frequency by Aclyi when cell 

surface markers were directly measured by flow cytometry yet increased by Aclyi when assessed 

transcriptionally by scRNA-seq or scATAC-seq and SingleR. Together, these data show that 

Acly-deficiency can promote myeloid differentiation although effects on HSPCs remain 

uncertain. 

 Cytosolic acetyl-CoA can be produced through several mechanisms. Most notably, Acly 

and Acss2 produce acetyl-CoA from citrate or acetate, respectively. While Aclyi led increased 

myelopoiesis in vitro, the effect of Acly-deficiency was modest and transient in vivo following 

bone marrow transplant. These data suggest that Acss2 may have compensated for Acly-

deficiency in vivo. Consistent with Acss2-mediated compensation for Acly-deficiency, 

supplementation with the Acss2 substrate acetate could reverse the effects of Aclyi in vitro. 

Because Aclyi is under study as a potential therapeutic in cancer and inflammatory diseases, it 
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may be important to consider potential compensation, although this may also reduce the on-

target toxicity of such drugs. 

Acly regulated several genes that may promote or influence myelopoiesis. Inhibition of 

Acly in MC-cultured HSPCs resulted in increased expression of Cebpe and decreased expression 

of Cebpa and Cebpb with concomitant increases in chromatin accessibility for C/EBP-family TF 

binding sites. Aclyi also increased the activity of the TF Nfe2l2, enriched in the SingleR-

identified macrophage population in the scRNA-seq data and the Aclyi condition in the 

scATAC-seq data. The increased Nfe2l2 activity suggests a role for redox regulation in Aclyi-

promoted myelopoiesis (227-229). It will be important in future studies to further examine genes 

affected by Aclyi to determine which change directly in response to decreased cytosolic acetyl-

CoA and which changes as a secondary consequence of cell differentiation. 

 Endogenous citrate derived from mitochondrial TCA cycle enzyme citrate synthase can 

catalyze the reaction of oxaloacetate and acetyl-CoA into citrate. Transported into the cytosol by 

citrate transporter protein (CTP) and converted back into oxaloacetate and acetyl-CoA in the 

cytosol by Acly, citrate serves as a convenient acetyl-CoA shuttle from its mitochondrial origin 

to the cytosol and adjacent compartments (205, 230). After acetyl-CoA is derived from citrate in 

the cytosol, acetyl-CoA can then go on to serve as substrates in reactions including de novo lipid 

synthesis, and histone acetylation (90). Intracellular acetyl-CoA when present in low 

concentrations limits the reaction rate of histone acetyltransferases (HATs), with the potential to 

alter histone acetylome homeostasis, chromatin accessibility, and TF binding patterns (91, 231). 

Altered acetylation and chromatin accessibility have also been shown to change stem cell 

behavior and fate (232). Acly itself has been recognized as a key regulator of hematopoiesis, 

disease outcome in hematologic malignancies, and mature myeloid cell effector ability to clear 
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atherosclerotic plaques (95, 233, 234). Acetyl-CoA derived from citrate and other sources has 

wide-ranging intracellular activity, and the above results demonstrate an impact of Acly on 

chromatin accessibility patterns which result in altered gene expression and stem cell 

differentiation. 

 Cytokine-replete methylcellulose has been extensively used to assess in vitro 

hematopoietic stem cell differentiation and self-renewal (209, 235-238). The current 

classification of differentiation outcomes relies on light microscope-based colony morphology 

assessment, more recently aided by advances in imaging interpretation software (239). Potential 

lineages include but are not limited to: granulocytic (CFU-G), erythrocytic (CFU-E), 

macrophage (CFU-M), and multipotent progenitor (CFU-GEMM) (240). While flow cytometry 

has instead been used in the past to assess in vitro hematopoietic differentiation outcomes, this 

study to our knowledge represents the first application of single-cell RNA-seq and single-cell 

ATAC-seq to characterize populations derived from cytokine-replete methylcellulose culture 

(241). Several populations were identified in steady-state (vehicle) and perturbed (Aclyi) 

conditions using these methods, comprising cell types that transcriptionally resemble neutrophils, 

eosinophils, basophils, macrophages, monocytes, HSPCs, and Mast cells. Our characterization 

represents a quantitative evaluation of the methylcellulose method that can be used to support 

traditional and computer-aided imaging techniques.  

 These data highlight a role for Acly and cytosolic acetyl-CoA in the epigenetic regulation 

of HSPC and myeloid differentiation. When Acly is inhibited and acetyl-CoA production CoA 

decreases, macrophage differentiation is favored whereas Mast cell differentiation occurs when 

Acly is active and cytosolic acetyl-CoA is not limiting. Two limitations to the study are that 

acetyl-CoA can be generated through multiple means that may compensate in context-specific 
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manners and that Acly inhibitors may have off-target effects. The use of Acly genetic deletion, 

however, supports a direct and at least partially non-redundant role for Acly-derived acetyl-CoA 

in myelopoiesis. These data are like those of Rhee et al. 2019, who showed that Acly played a 

role to regulate the proliferation of myeloid cells in part through the TF PU.1 (77). It will be 

important in future studies of metabolic regulation of epigenetic marks, gene expression, and cell 

differentiation to further establish these associations and how these pathways may be modulated 

to promote myelopoiesis or differentiation of myeloid precursor cells.  

 

Future Directions 

 In this study, we established that Acly deficiency results in increased CD11b+ 

myelopoiesis in MC-cultured HSPCs through altered transcriptional programs, mitochondrial 

metabolism, and chromatin accessibility. However, many questions remain regarding the role 

that Acly plays in murine hematopoiesis and the role that ACLY plays in human hematopoiesis. 

Future experiments should address the impact of Acly/ACLY inhibition and deficiency on the 

self-renewal capacity of Lin-, c-Kit+ HSPCs and more granular stem populations, the specific 

mature hematopoietic populations that result from Acly/ACLY-deficient hematopoiesis, and the 

site-specific histone acetylation and non-histone protein acetylation patterns that change across 

hematopoietic lineages with Acly/ACLY deficiency.  

 While we demonstrate in Figure 2.1B that Acly deficiency significantly reduces the 

proportion of canonical stem Lin-, Sca-1+, c-Kit+ (LSK) cells, serial replating and serial 

transplantation experiments are required to determine the functional self-renewal consequences 

of Acly/ACLY deficiency. Knocking down the transcription factors identified through SCENIC 

analysis that are most active in HSPCs such as Hdac2, E2f4, and Tfdp1 (and human homologs as 

appropriate) in Table 2.1 in conjunction with Acly/ACLY deficiency could further inform the 
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nature of Acly/ACLY influence on HSC functional self-renewal capacity. Similarly, further 

investigation into SCENIC-identified TFs in SingleR-annotated other more mature 

hematopoietic populations could reveal methods to limit or promote specific cell type 

differentiation.  

 We identify cell types present in our single-cell datasets in Figure 2.5 and Figure 2.6 

that most closely resemble mature bulk hematopoietic cell transcriptomes contained in the 

ImmGen database. Future work should examine in vivo hematopoietic populations in the blood 

and bone marrow of Acly deficient animals to ascertain, again, more functional results of Acly 

deficiency. Furthermore, transplantation of ACLY-deficient human HSCs into humanized mice 

could further inform the field about the role of ACLY in human hematopoiesis.  

 Furthermore, while we depict site-specific changes to chromatin accessibility in single-

cells in Figure 2.6 and Figure 2.7, we lack data regarding the exact histone and other protein 

residues that change acetylation state with Acly/ACLY deficiency. There is an understanding 

that general metabolic flux through glycolysis results in site-specific changes to histone 

acetylation (242). Performing mass spectrometry on histones and other proteins using a method 

like Sidoli et al. would reveal which specific epigenomic and general protein acetylation patterns 

change following Acly/ACLY deficiency (243). Assessing the relative contribution of 

Acss2/ACSS2 using the same method may reveal disparate roles between the two enzymes in 

promoting site-specific histone and general protein acetylation in hematopoiesis.   
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CHAPTER 3: MITOCHONDRIAL MEMBRANE POTENTIAL REGULATES TUMOR-

ASSOCIATED T-CELL RESPONSES TO CLEAR CELL RENAL CELL CARCINOMA 
 

Introduction 

Clear cell renal cell carcinoma (ccRCC) is one of the most common urological cancers, 

with 400,000 new global cases diagnosed each year. ccRCC oncogenesis can most often be 

traced to loss-of-function mutations in the tumor suppressor Von Hippel-Lindau (VHL) which 

leads to stabilization of HIF-2α and resulting in constitutive hypoxic signaling (144). Activation 

of HIF-2α signaling induces angiogenesis, increased tumor vascularity, and growth via VEGF, 

CCND1, ANGPTL4, EGLN3, ENO2, GLUT1, GFBP3, and other HIF-responsive genes (244). 

ccRCC standard of care (SOC) that deviates from traditional chemotherapy approaches centers 

around tyrosine kinase inhibitors (TKIs) against VEGF-pathway enzymes and increasingly 

leverages T-cell antitumor immunity through immune checkpoint blockade (ICB)-based 

therapies. Historically, while 70-90% of localized RCC patients survive to five years, only 

15.3% of metastatic RCC patients survive out to five years (160). Identification of patient 

features that predict response to ICB could increase the efficacy of ICB therapy in ccRCC.  

ccRCC tumors are immunogenic solid tumors with high numbers of tumor-infiltrating 

lymphocytes (TILs); ccRCC tumors possess the highest TIL score across tumor types in The 

Cancer Genome Atlas (TCGA) (245, 246). Harnessing the T-cell population for increased 

antitumor immunity offers great promise for improving patient treatment outcomes. Indeed, 

monotherapies and combination therapies that utilize monoclonal antibodies antagonizing the T-

cell coinhibitory surface markers PD-1, PD-L1, and CTLA4 have been approved for therapy 

against ccRCC, with the first drug, nivolumab (α-PD-1), approved in 2015 (247). ICB was first 

tested for use in ccRCC therapy in the US in 2007 with the assessment of the α-CTLA4 mAb 

monotherapy ipilimumab, in which treatment with ipilimumab showed an overall response rate 
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(ORR) of 12.5% and nearly 50% survival at 5 years in 40 patients (248). The current SOC for 

first-line treatment of intermediate/poor risk ccRCC is nivolumab (α-PD-1) combined with 

ipilimumab (Ipi/Nivo), approved for ccRCC therapy in 2018 (249). However, SOC has room for 

improvement in patient outcomes compared to VEGF inhibitors. In the currently ongoing 

CheckMate 214 clinical trial examining 1096 patients treated either with Ipi/Nivo or the VEGF 

pathway inhibitor sunitinib, interim data revealed that Ipi/Nivo-treated patients showed a 42% 

ORR and a median progression-free survival (PFS) of 11.6 months while sunitinib-treated 

patients showed a 27% ORR and 8.4 months median PFS in the intermediate/poor risk category 

(154). While ICB-treated patients demonstrated greater ORR and PFS than sunitinib-treated 

patients, more work is needed to further increase the efficacy of ICB.  

While ccRCC immune infiltrate has a significant macrophage component, CD4+ and 

CD8+ T-cells have been shown as the primary immune populations in ccRCC tumors (250, 251). 

Both CD4+ and CD8+ T-cells clonally expand in response to T-cell receptor (TCR) engagement 

with tumor-associated antigen (TAA) peptides presented on MHC-II and MHC-I molecules, 

respectively, in conjunction with costimulatory signaling through molecules like CD28 to 

mediate antitumor immunity. ccRCC patient tumors exhibit greater TIL clonality than non-

ccRCC renal tumors. In a study examining tumors resected from 14 treatment-naïve ccRCC 

patients, 9 out of 14 patients exhibited TIL repertoires with a single T-cell clone that made up 

4.6% to 24% of the total identified sequences. T-cell “clones” are T-cells with a unique 

combination of T-cell receptor α (TRA) and β (TRB) complementarity determining region 3 

(CDR3) sequences that confer sequence-dependent specificity for a unique cognate antigen 

(252). 
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Clonality of T-cell responses has been shown to correlate with positive outcomes and 

affect the balance of intratumoral CD4+ and CD8+ TIL populations. For example, less 

abundance and clonality of T-cell responses in ccRCC tumors are associated with increased 

recurrent disease (126). Analysis of ccRCC TIL repertoires indicates that expanded T-cell clones 

are most typically CD8+ while “singletons”, clones only found once, are often CD4+, suggesting 

that CD8+ T-cells play an important role in ccRCC antitumor immunity with tumor-associated 

antigens (TAAs) potentially promoting TAA-specific CD8+ T-cell expansion (252).  

To facilitate clonal expansion, T-cells increase metabolic flux through glycolysis and 

glutaminolysis pathways and increase mitochondrial membrane potential (ΔΨm). T-cell 

metabolic activation supplies biosynthetic intermediates to sustain prolonged immune activity, 

including the production of inflammatory cytokines and direct T-cell killing (128, 129). 

Dysregulation of T-cell metabolism caused by nutrient scarcity in the tumor microenvironment 

(TME) can result in the suppression of antitumor immunity through the accumulation of 

mitochondria with low ΔΨm that coincides with T-cell exhaustion (253).  

ΔΨm further impacts T-cell responses to immune checkpoint blockade and antitumor 

immunity. Adoptively transferred T-cells with low ΔΨm persist longer in vivo and eradicate 

tumors more effectively compared to high ΔΨm T-cells in the murine B16 melanoma model. 

B16 melanoma tumor-bearing mice receiving T-cells with high ΔΨm saw tumors grow nearly 

three times as large at 35 days post-transfer compared to their ΔΨm low T-cell recipient 

counterparts (254). In melanoma patients, the presence of ΔΨm high CD8+ T-cells with elevated 

OXPHOS correlates with resistance to ICB. These ΔΨm high T-cells upregulate CD8, PD-1, 

CD38, and CD39 and are enriched in the periphery of nonresponders compared to treatment-

naïve patients (255).  
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In ccRCC, CD4+ and CD8+ T-cells utilize metabolic flux in different ways, with 

consequences for patient outcomes. Ex vivo activated ccRCC patient CD8+ TILs, unlike ccRCC 

patient CD4+ T-cells, fail to increase glucose uptake even with intact Glut1 and HK2 expression, 

suggesting subset-specific metabolic reprogramming in the TME (256). Metabolic activity in T-

cell populations has been shown to stratify patients by disease outcome. Single-cell resolution 

RNA sequencing (scRNA-seq) and mass cytometry profiling of 68 ccRCC patient tumors have 

revealed a subset of proliferative CD8+ T-cells with higher metabolic activity indicated by 

greater expression of glycolysis and TCA cycle pathway genes and elevated CTLA4, ICOS, 4-

1BB, TIM3, HLA-DR, and CD38 surface protein expression. Assigning patients based on that 

gene signature to a 267 primary tumor testing dataset categorized patients into groups with 

different disease outcomes. Patients that had less enrichment in this gene signature, representing 

~25% of the 267-patient cohort, saw ~25% overall survival at 10 years. Compared to ~60% 

overall survival at 10 years for patients with greater enrichment of that gene signature, the 

presence of metabolically active CD8+ T-cells correlates with positive outcome in ccRCC 

patients (246). The identification of robust T-cell biomarkers based on ΔΨm, T-cell subsets, gene 

expression, and T-cell clonal expansion that can predict patient response to ICB, however, 

remains an unmet need in ccRCC.  

To ascertain the role of ΔΨm on CD4+ and CD8+ T-cell clonal expansion and gene 

expression as a potential biomarker for patients with ccRCC on α-PD-1/α-CTLA-4 ICB, we 

performed scRNA-seq and single-cell V(D)J-sequencing (scV(D)J-seq) on ΔΨm Low and ΔΨm 

High peripheral blood T-cells, and TIL. In addition, peripheral blood samples from patients with 

ccRCC on PD1/CTLA4 treatment were analyzed for cell surface protein expression by cytometry 

time of flight (CyTOF). Clinical responses to ICB included partial response, mixed/partial 
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response, stable disease, and progressive disease. Across all patient peripheral T-cells, we 

identify an association between low ΔΨm and greater clonal expansion in CD4+ and CD8+ T-

cells. Furthermore, ΔΨm Low and ΔΨm High populations had divergent CD8+ and CD4+ gene 

expression profiles and patient response-dependent relationships between peripheral and tumor 

T-cell repertoires. In short, ΔΨm Low T-cells express greater CD8A, CD8B, PRF1, CTSW, 

CCL4, KLRB1, KLRD1, and KLRK1 and ΔΨm High express greater CD4, LMNA, S100A11, and 

ITGB1. We identified populations of T-cells with shared TRA and TRB CDR3 sequences 

between peripheral blood and TILs that associated with a distinct T-cell activated gene signature 

found in the patient with partial responder to ICB. Finally, we identified a small number of T-cell 

clones shared between patients that preferentially expand into the ΔΨm Low T-cell population. 

Collectively, through the assessment of ccRCC patient T-cell gene expression, cell surface 

protein, and T-cell clonality in single-cell resolution, our preliminary results constitute a 

conceptual framework for assessing the relationship between ΔΨm in T-cells and patient 

response to ICB.  
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Results 

scRNA-seq, scV(D)J-seq, and ArcherDx VDJ-seq applied to ccRCC patient tumor TILs and 

PBMCs identify predominantly ΔΨm High T-cells. 

 

 

Figure 3.1. Single-cell Resolution Assessment of ccRCC Patient Tumor and Peripheral T-

cells Before and After Immune Checkpoint Blockade. Primary ccRCC patient tumors were 

resected and preserved. Following the development of metastatic disease, PBMCs were extracted 

from patient blood before ICB with α-PD-1/α-CTLA4 and three weeks after ICB. PBMCs were 

preserved. Live, CD45+ cells were isolated from tumors via FACS and were subjected to CyTOF 

using 44 different metal-conjugated antibodies. Live, CD3+ cells were also isolated from the 

tumors and were subjected to single-cell resolution V(D)J sequencing using ArcherDx 

Immunoverse. Live, CD3+, TMRE low and Live, CD3+, TMRE hi cells were isolated from 

patient PBMCs via FACS. These cells were examined for gene expression and TCRα and TCRβ 

sequences with scRNA-seq and scV(D)J-seq.   
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To assess the impact of mitochondrial membrane potential on T-cell responses to ccRCC, 

we performed ArcherDx V(D)J-seq on CD3+ cells from formalin-fixed paraffin-embedded 

(FFPE) tumors resected from four ccRCC patients. We performed scRNA-seq and scV(D)J-seq 

on Live, CD3+, ΔΨm hi and Live, CD3+, ΔΨm Low PBMCs isolated from patient blood taken 

before and three weeks after administration of ICB. Live, CD45+ PBMCs from the blood of 

patients before and after ICB as well as a healthy control were subjected to CyTOF stained with 

a 44-member metal-antibody panel. Eight patients with progressive disease, four patients with 

stable disease, one patient with a mixed/partial response to ICB, seven patients with a partial 

response to ICB, and one healthy control were included in the CyTOF experiment. One patient 

each with progressive disease, stable disease, mixed/partial response to ICB, and partial response 

to ICB from the CyTOF cohort were then examined using scRNA-seq and scV(D)J-seq. The 

assessment of patient T-cells with single-cell transcriptomic and cell surface protein modalities 

allows for corroboration between techniques, reinforcing the findings of both.  

These patients each presented with different outcomes in response to the treatment. 

Patient “2020-01” demonstrated a progressive response, indicating that their disease progressed 

after ICB. Patient “2020-103” presented with stable disease, with ccRCC neither expanding nor 

contracting in response to ICB. “2021-03” responded to ICB with a mixed/partial response, 

demonstrating that some disease sites regressed while other sites either were stable or expanded. 

“2020-139” was the only patient to experience a partial response to ICB, as their disease 

regressed in response to treatment. (Figure 3.1). 
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CyTOF characterization of ccRCC Patient Live, CD45+ PBMCs Reveals Distinct Immune 

Populations that Change Between Patients Before and After ICB. 

  

 To determine differences in cell surface protein expression between non-lymphoid 

immune populations, we isolated Live, CD45+ cells from patient blood and subjected those cells 

to CyTOF using a 44 metal-conjugated antibody panel. This panel consisted of hematopoietic 

lineage markers such as CD3, CD11b, CD4, and CD8, chemokine receptors like CCR4, CCR6, 

and CXCR3, coactivation and coinhibitory receptors like CD28, PD-1, and CTLA4, the proteins 

associated with cell proliferation Ki67, and three proteins implicated in cellular metabolism, 

CPT1A, GRIM-19, and GLUT1. We applied the machine learning workflow algorithm Tracking 

Responders Expanding (T-REX) combined with Marker Enrichment Modeling (MEM) to our 

data and characterized populations that expanded or contracted by ≥95% across six different 

comparisons (257, 258). MEM labels identify surface proteins that change in expression the most 

in that population, with labels reported between 0 (no expression or enrichment) to +10 (greatest 

enrichment). CD8+, CD4+, and γδ T-cells are assessed in the T-cell plots in Figure 3.2A, B, E, 

and F, while B cells, NK cells, and pan-myeloid cells are contained in the Non-T-cell plots 

Figure 3.2C and D.  

Comparing T-cells from patients with progressive disease before and after ICB, we 

identified two populations which are at least 95% enriched in pre-ICB T-cells patients with 

progressive disease, with total marker lists depicted in the figure. Based on the surface protein 

expression of CD3, TIGIT, TCRγδ, CPT1A, CD4, Ki67, and/or CD44 in both populations, these 

cells are most likely 1) exhausted γδ T-cells and 2) exhausted CD4+ T-cells with elevated fatty 

acid metabolism and low-level proliferation. Upon chronic antigen stimulation, T-cells will up-

regulate TIGIT which correlates with T-cell exhaustion (259). (Figure 3.2A). In short, these data 
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suggest patients with progressive disease possess exhausted, yet proliferative peripheral γδ and 

CD4+ T cell populations that significantly contract after ICB.  
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Figure 3.2. CyTOF Examination of ccRCC Patient PBMCs Reveals Distinct Cell Subset 

Changes with ICB and Patient Response. t-SNE plots of ccRCC patient Live, CD45+ PBMCs 

assessed using the T-REX platform along several axes of comparison. (A) T-cell surface protein 

expression differences between Pre and Post ICB in the patient with progressive disease. (B) T-



 
 

96 
 

cell surface protein expression differences between Pre and Post ICB in the partial responder. 

(C) Non-T-cell surface protein expression differences between Pre and Post ICB in the patient 

with progressive disease. (D) Non-T-cell surface protein expression differences between Pre and 

Post ICB in the partial responder. (E) pre-ICB T-cell surface protein expression differences 

between progressive and partial responders. (F) post-ICB T-cell surface protein expression 

differences between progressive and partial responders.  

 

Examining that same comparison between pre- and post-ICB T-cells from partial 

responders this time, we instead see an enrichment of a single population in post-ICB T-cells. 

This population is enriched in CD45, CD4, CD28, CD127, CTLA4, CD44, CD3, CD45R0, 

CPT1A, ICOS, TIGIT, CD95, HLADR, and CCR5 and is at least 95% enriched in post-ICB 

partial responder T-cells. Based on these markers, these cells also appear to be exhausted CD4+ 

T-cells with elevated lipid metabolism. However, this population is more enriched in CD38 and 

CCR5 and less enriched in CD95, CCR4, CXCR3, and Ki67 than the CD4+ T-cell population 

identified from patients with progressive disease (Figure 3.2B).  

Next, we examined the non-T-cell populations in patients with progressive disease that 

change between pre- and post-ICB. We identified six populations that were enriched in post-ICB 

cells and one population that was enriched in pre-ICB cells. Based on their surface protein 

expression enrichment patterns, populations 1, 2, 3, and 7 are different types of 

monocytes/macrophages, while 4, 5, and 6 are different types of granulocytes (Figure 3.2C). 

The only population enriched in pre-ICB non-T-cells in patients with progressive disease is a 

granulocyte cluster enriched in CD66b, CTLA4, CPT1a, CXCR4, and other lower-enriched 

markers.  

Conversely, non-T-cells from partial responders only possessed three populations 

enriched in post-ICB cells and none enriched in pre-ICB. Of these, populations 1 and 3 are 

immunosuppressive myeloid cells enriched in CD11b, CD14, CD64, CTLA4, and TIGIT. 

population 3 is notable for Ki67 enrichment, indicating recent cellular proliferation. Population 2 
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consists of B cells enriched for CD20, CD44, CTLA4, CD19, CXCR4, CCR7, and other markers 

(Figure 3.2D).  

We then sought to determine key differences in immune populations between the patients 

with progressive disease and the partial responders to ICB. In pre-ICB T-cells, we identified four 

populations that were enriched in patients with progressive disease (1, 2, 5, and 6) and three 

enriched in the partial responder (3, 4, and 7). In this comparison, the patients with progressive 

disease showed enrichment in exhausted CD8+, TIGIT+ T-cells in populations 1 and 2, effector 

TCRγδ+, CD28+, CD44+, CTLA4+ γδ-T-cells in population 5, and CD4+, CD28+, CD27+, 

CD127+, CCR7+, CTLA4+ T-cells with low-level TIGIT enrichment in population 6. 

Populations 3, 4, and 7 were enriched in pre-ICB partial responder T-cells and consisted of 

different types of CD4+ T-cells, with population 3 with greater enrichment of CCR7 and low-

level TIGIT, population 4 without TIGIT, relatively reduced CTLA4, and relatively reduced 

CD44, and population 7 enriched in CXCR3, CXCR4, TIGIT, and CD57 (Figure 3.2E). Overall, 

pre-ICB T cells from patients with progressive disease are enriched with TIGIThi CD57hi CD8+ 

T cells, γδ T cells, and CD28hi CD44hi TIGITlo CD4+ T cells, while the partial responders’ pre-

ICB T cells are enriched with CD4+ T cells only. These CD4+ T cells that are enriched in the 

partial responders pre-ICB are CCR7hi TIGITlo, CD62Lhi CCR7hi, and CD62Lhi CTLA4hi 

CD127hi TIGITlo T cell populations. This suggests that peripheral exhausted CD8+ T cells and γδ 

T cells pre-ICB may negatively influence ccRCC patient response to ICB.  

In post-ICB T-cells, we also identified four populations that were enriched in patients 

with progressive disease and three enriched in the partial responders to ICB. These populations 

are 1, 2, 3, and 5. Post-ICB T-cells from patients with progressive disease were enriched with 

exhausted CD8+, TIGITHi, CTLA4High T-cells in populations 1-3 and CD4+, CD28+, CCR7Hi, 
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TIGITLo effector T-cells in population 5. Post-ICB T-cells from partial responders exhibited 

more modest enrichment in TIGIT expression across the three populations. Cluster/population 4 

is CD4+, CD57+ CTLA4Mid, CD44Mid T-cells, and population 7 is also a CD4+ T-cell cluster 

with much greater enrichment in CD27, CCR7, and CD127 in comparison to population 4. 

Population 6 consists of CD8+, CD57+, CTLA4Lo T-cells that lack TIGIT expression (Figure 

3.2F). It is important to note that T-cell and non-T-cell populations before and after ICB had 

varying degrees of difference in overall gene expression profile in patients with progressive 

disease compared to the partial responders. While T-cells between pre- and post-ICB had a 

0.036% degree of difference in progressive disease, the partial responders showed a lesser 

0.0029% degree of difference. More strikingly, non-T-cells compared between pre- and post-ICB 

had a 1.99% degree of difference in patients with progressive disease while the partial 

responders exhibited a 0.379% degree of difference, suggesting that greater gene expression 

changes occur after ICB in patients with progressive disease.  
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CyTOF characterization of ccRCC Patient Live, CD45+ PBMCs Reveals Response-Specific 

Upregulation of Metabolic Protein Expression 

 

 
Figure 3.3. Progressive Response to ICB is Associated with Higher Cell Surface Expression 

of Metabolic Proteins CPT1a, GRIM-19, and GLUT1. (A) Asinh-normalized mean cell 

surface metabolic protein expression of combined pre- and post-ICB ccRCC Live, CD45+ 

PBMCs. (B) Relative mean cell surface metabolic protein expression of combined pre- and post-

ICB ccRCC Live, CD45+ PBMCs. 

 

 

After identifying immune populations that were most enriched in partial responders and 

patients with progressive disease and between pre- and post-ICB, we examined GLUT1, CPT1a, 

and GRIM-19 expressed on cell surface to determine the role of glycolysis, fatty acid oxidation 

(FAO), and oxidative phosphorylation (OXPHOS), respectively, in patient peripheral T-cells. 

GLUT1 transports glucose into the cell to fuel glycolysis and has been shown to enhance 

production of IFN-γ in effector subsets with different expression patterns between CD4+ and 

CD8+ T-cells (260). CPT1a is the rate-limiting enzyme for FAO, catalyzing the carnitine 

additive reaction to palmitoyl-CoA that permits entry into the mitochondrial matrix for additional 

steps of FAO; CPT1a has been shown to regulate T-cell function (261). GRIM-19 encodes for 

the NADH: ubiquinone oxidoreductase subunit A13 (NDUFA13) of Complex I of the ETC that 
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pumps four protons from the mitochondrial matrix into the intermembrane space through 

oxidation of NADH to NAD+ and H+. As the activity of other ETC members Complexes II 

through IV rely on Complex I activity to establish a proton gradient across the mitochondrial 

inner membrane, GRIM-19 is crucial to the maintenance of ΔΨm and OXPHOS. Deficiency in 

GRIM-19 results in disrupted ΔΨm and greater sensitivity to apoptotic stimuli (262).   

We noticed that many of our identified populations had some level of enrichment in 

CPT1A while GRIM19 and GLUT1 were more sparsely represented, suggesting that CPT1A 

was higher expressed than GRIM19 and GLUT1. Comparing asinh-normalized mean gene 

expression between ccRCC patients and healthy control, CPT1A is indeed expressed at a higher 

level than GRIM19 or GLUT1 (Figure 3.3A). While some differences are evident between 

patients using the asinh-normalized protein expression data, scaling each protein using its own 

mean and standard deviation across the dataset provides a clearer graphical depiction of how 

each protein is expressed between each patient. Using scaled protein expression, patients with 

progressive disease exhibited a greater relative expression of all three genes, followed by the 

stable responders. The healthy control had the lowest relative expression of all profiled metabolic 

genes (Figure 3.3B).  
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scV(D)J-seq on Live, CD3+ PBMCs Pre- and Post-ICB reveals effects of ΔΨm on T-cell Clonal 

Responses to ICB. 

 

 
Figure 3.4. ΔΨm Exerts Response-Specific Influence on Tumor-Peripheral T-cell 

Repertoire Overlap, Cosine Similarity, and Clonality. Assessment of (A) normalized 

repertoire overlap, (B) cosine similarity, (C) the number of T-cell unique clones in the 

repertoire’s top 12%, and (D) relative abundance of rare, small, medium, large, and 

hyperexpanded binned clones between ccRCC patient peripheral and tumor T-cells. 

 

After examining the cell surface protein expression differences in pre- and post-ICB 

patient Live, CD45+ PBMCs, we next turned to assess the TCR clonal composition of the Live, 

CD3+ T-cell response to ccRCC and ICB in single-cell resolution. We performed scV(D)J-seq of 

pre- and post-ICB ccRCC patient ΔΨm Hi, Live, CD3+ T-cells and ΔΨm Lo, Live, CD3+ T-

cells from peripheral blood and ArcherDx V(D)J-seq on Live, CD3+ T-cells isolated from 
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patient tumors resected before PBMCs were taken for the pre-ICB timepoint. Using this 

approach, we were able to characterize the similarities between peripheral and tumor T-cell 

TCRα clonal repertoires and determine the effects of ΔΨm on the clonality of peripheral T-cell 

responses to ccRCC. While all the results presented here reflect T-cell clonality determined using 

TCRα CDR3 sequences, the TCRβ sequences mirror the results of the presented TCRα data.  

Using the overlap coefficient metric, defined as the number of shared TCRα nucleotide 

sequences divided by the smaller of the two repertoires, we determined that the partial 

responder’s combined pre- and post-ICB peripheral T-cell repertoire had the greatest normalized 

overlap to the tumor T-cell repertoire at 0.16. Baseline overlap coefficient measurements 

comparing T-cell peripheral repertoires in 36 healthy patients was reported in 2021 by Hou et al. 

to range between 0.001 and 0.085 (263). While this is promising and reflects results in the field 

that show that increased peripheral-tumor T-cell repertoire overlap is associated with positive 

responses to ICB, the second-highest normalized overlap was between the periphery and tumor 

repertoire of the progressive disease patient (Figure 3.4A). Next, we examined cosine similarity 

between ΔΨm Low T-cells and ΔΨm High T-cells in the periphery and the TIL repertoire for 

each patient. Cosine similarity is another normalized metric of repertoire overlap that measures 

the vector angle between two repertoires. Cosine similarity is a continuous score between 0, 

representing no similarity at all, and 1, indicating completely equivalent repertoires. A baseline 

cosine similarity score is difficult to determine experimentally in ccRCC patients, as a “control” 

repertoire would represent a set of peripheral and tumor T-cell repertoires that share little 

antigen-specific clonal expansion. However, computational approaches incorporating parameters 

of V(D)J recombination and thymic selection have produced synthetic T-cell clonal repertoires 

with mean cosine similarity scores less than 0.01 when compared with real naïve, central 
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memory, effector, and regulatory T-cell subsets (264). Cosine similarity is best used here as a 

relative comparison between patients and not as an absolute difference metric. 

We determined that the ΔΨm Low peripheral T-cell repertoire was more like the tumor 

T-cell repertoire than ΔΨm High peripheral T-cells were in the partial responder, with cosine 

similarity scores of 0.18 and 0.14, respectively. Conversely, ΔΨm High peripheral T-cells were 

more like the tumor T-cell repertoire than ΔΨm Low peripheral T-cells by a much wider margin, 

with scores of 0.12 and 0.019 (Figure 3.4B).  

We then determined that ΔΨm influences the clonality of T-cell responses in the 

periphery. Examining the number of unique clonotypes in the top 12% of all T-cells, we found 

that ΔΨm Low peripheral T-cells had fewer unique clones, at 2, represented in the top 12% 

(more clonal) while ΔΨm High T-cells had more unique clones, at 4, represented in the top 12% 

of pre- and post-ICB peripheral T-cell repertoires across all patients (Figure 3.4C). The 

threshold of 12% was chosen arbitrarily, yet it captures the dynamic differences in clonal 

proportion between the extremes of 1 and 18. While there was variability in that metric on a 

patient-by-patient basis, when we looked at the proportion of hyperexpanded clones that make up 

1-100% of the entire T-cell repertoire, ΔΨm Low peripheral T-cells had a greater proportion of 

hyperexpanded clones than ΔΨm High peripheral T-cells across all patients (Figure 3.4D).  
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ccRCC Patient T-cell Transcriptional Programs Diverge with Patient Response, ΔΨm, and ICB 

 

 
 

Figure 3.5. ccRCC Patient Peripheral T-cells are Predominantly ΔΨm hi. UMAP plots and 

cell category pie charts of ccRCC peripheral T-cells by (A) patient response, (B) ΔΨm hi vs. 

low, and (C) Pre vs. Post ICB. 

 

In the scRNA-seq data assessing Live, CD3+, ΔΨm High and Live, CD3+, ΔΨm Low 

cells from pre- and post-ICB patient blood, we recovered 2116 to 5245 cells from each patient 

post quality control (Figure 3.5A). These cells were predominantly ΔΨm Hi, representing 76.5% 

of all cells identified, while ΔΨm Low cells made up 23.5% of cells from all patients and 

conditions (Figure 3.5B). Although the gating strategy succeeded in capturing the top (ΔΨm Hi) 

and bottom (ΔΨm Lo) 50% of Live, CD3+ patient PBMCs by TMRE fluorescence, greater 

numbers of ΔΨm Low cells than ΔΨm High cells were removed from the scRNA-seq data 

following quality control. Since ΔΨm is closely tied to mitochondrial DNA (mtDNA) which 

encodes for components of the electron transport chain (ETC), mtDNA may play different 

functional roles in ΔΨm High and ΔΨm Low cells, although less mtDNA transcription has been 
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associated with a failure to maintain ΔΨm (265). The use of mtDNA cutoffs for QC may need to 

be further assessed for biological relevance beyond as an indicator for poor cell health. Slightly 

more cells were recovered from post-ICB patient T-cells, with post-ICB cells making up 57.3% 

of all patient T-cells (Figure 3.5C). 

 

 avg_log2FC pct.1 pct.2 p_val_adj 

HLA-DRB1 1.01932738 0.398 0.22 2.97E-103 

SMDT1 0.98296662 0.61 0.301 1.29E-294 

XIST 0.96208255 0.312 0.046 1.34E-266 

TNFAIP3 0.77522674 0.614 0.455 2.82E-84 

SOCS3 0.72778529 0.471 0.244 3.57E-141 

RPS4X 0.7117718 0.977 0.968 0 

TRBV7-6 0.69867294 0.141 0.037 9.53E-72 

HLA-DRA 0.68274276 0.163 0.062 8.87E-59 

CXCR4 0.63180956 0.701 0.513 1.92E-110 

BHLHE40 0.62638788 0.317 0.207 5.56E-41 

TRAV29DV5 0.60815824 0.171 0.091 2.48E-31 

FGFBP2 0.5492536 0.314 0.296 0.00205681 

CST7 -0.5759672 0.473 0.567 1.00E-39 

PRKY -0.5765092 0.008 0.177 3.47E-188 

TIGIT -0.6777843 0.111 0.284 2.63E-111 

TNF -0.6989611 0.298 0.414 2.98E-36 

USP9Y -0.7016254 0.014 0.227 1.95E-237 

UTY -0.7133159 0.009 0.223 4.32E-248 

RPS26 -0.7377342 0.957 0.971 1.19E-271 

GZMK -0.8338997 0.153 0.279 1.54E-54 

CMC1 -0.8876655 0.205 0.381 2.67E-108 

EGR1 -1.0888042 0.183 0.347 2.69E-90 

DDX3Y -1.2033755 0.021 0.398 0 

RPS4Y1 -2.4230884 0.063 0.812 0 

 

Table 3.1. T-cells from the Patient with Progressive Disease Expresses Significantly More 

TIGIT and TNF and Less HLA-DRB1 and HLA-DRA Compared to Partial Responder. 

Top differentially expressed genes between all partial response and patient with progressive 

disease T-cells, with genes enriched in the patient with progressive disease in gray. Avg_log2FC 

indicates the average log 2-fold change in gene expression between conditions, pct.1 indicates 

the number of cells expressing a gene in the partial responder, and pct.2 indicates the number of 

cells expressing a gene in the patient with progressive disease. p_val_adj indicates the adjusted 

p-value via the Bonferroni method of multiple-testing correction.  
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 To assess gene expression differences on the mRNA level that could shed light on the 

differences in T-cell responses between the partial responder and the patient with progressive 

disease, we performed differential gene expression analysis on our scRNA-seq data. Examining 

the top differentially expressed genes, we found that pre- and post-ICB combined peripheral T-

cells from the patient with progressive disease expressed significantly more TIGIT, TNF CST7, 

and GZMK while partial responder peripheral T-cells expressed greater HLA-DRB1, HLA-DRA, 

TNFAIP3, SOCS3, TRBV7-6, TRAV29DV5, BHLHE40, and CXCR4, among other genes (Table 

3.1).  

 avg_log2FC pct.1 pct.2 p_val_adj 

LINC02446 0.91142735 0.287 0.09 1.29E-223 

TYROBP 0.7727689 0.11 0.027 6.36E-104 

CD8B 0.74636607 0.536 0.288 3.34E-182 

KLRB1 0.69699288 0.274 0.178 1.71E-44 

CD8A 0.6376742 0.618 0.339 1.86E-185 

KLRD1 0.59778823 0.386 0.201 7.10E-116 

KLRK1 0.58737804 0.543 0.3 1.63E-152 

TRAV1-2 0.58041928 0.104 0.019 2.36E-126 

CCL5 0.51817211 0.684 0.56 2.24E-67 

PRF1 0.4930864 0.494 0.349 2.19E-62 

CTSW 0.48568609 0.757 0.575 2.54E-112 

CCL4 0.47730608 0.357 0.276 4.98E-18 

SESN3 -0.3256865 0.122 0.185 4.38E-17 

CD82 -0.3274776 0.114 0.204 2.07E-34 

GSTK1 -0.3359684 0.801 0.826 2.01E-54 

LINC00861 -0.344403 0.542 0.59 2.85E-11 

CD4 -0.36472 0.136 0.248 1.17E-46 

GPR183 -0.3665174 0.196 0.297 1.35E-32 

FXYD5 -0.3822887 0.869 0.879 1.82E-76 

ARID5B -0.3938314 0.215 0.334 3.65E-44 

LMNA -0.398181 0.092 0.138 9.47E-12 

S100A11 -0.399802 0.497 0.584 3.46E-37 

RPS26 -0.5150154 0.907 0.945 6.65E-99 

ITGB1 -0.7821007 0.4 0.583 3.30E-112 

 

Table 3.2. ΔΨm Correlates with CD4 and CD8A/CD8B Differential Gene Expression. Top 

differentially expressed genes between all ccRCC patient ΔΨm hi and ΔΨm low T-cells, with 
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genes enriched in ΔΨm hi T-cells in gray. Avg_log2FC indicates the average log 2-fold change 

in gene expression between conditions, pct.1 indicates the number of cells expressing a gene in 

ΔΨm lo, and pct.2 indicates the number of cells expressing a gene in ΔΨm hi. p_val_adj 

indicates the adjusted p-value via the Bonferroni method of multiple-testing correction. 

 

 T-cell responses to ccRCC also possess divergent transcriptional programs depending on 

ΔΨm status. While ΔΨm hi T-cells in combined pre- and post-ICB T-cell populations possessed 

greater ITGB1, S100A11, LMNA, ARID5B, GSTK1, and CD4 expression, ΔΨm Low T-cells 

comparatively up-regulate genes associated with cytotoxicity including CTSW, PRF1, KLRB1, 

KLRD1, KLRK1, CD8A, and CD8B, among others (Table 3.2).   

 avg_log2FC pct.1 pct.2 p_val_adj 

CCR7 0.48375145 0.453 0.329 1.50E-68 

PIM1 0.32126266 0.524 0.418 1.34E-47 

MYC 0.30899161 0.286 0.188 1.84E-48 

CISH 0.30880648 0.32 0.223 4.36E-44 

LEF1 0.25588994 0.474 0.373 7.82E-35 

HLA-C -0.2510332 0.973 0.973 6.21E-43 

CD99 -0.2538246 0.729 0.777 6.96E-36 

PLAAT4 -0.2547179 0.644 0.68 4.96E-26 

TUBB4B -0.2549999 0.381 0.428 2.22E-14 

GZMA -0.2558082 0.424 0.507 5.77E-23 

SRGN -0.2566034 0.717 0.743 1.68E-29 

CMC1 -0.2567081 0.241 0.279 1.19E-07 

EGR1 -0.3035207 0.21 0.253 2.11E-07 

RPS4Y1 -0.3097993 0.508 0.652 3.03E-61 

HLA-DPA1 -0.316627 0.323 0.408 3.65E-32 

SH3BGRL3 -0.3223686 0.898 0.913 1.03E-61 

UBE2S -0.32299 0.441 0.489 8.10E-23 

CD74 -0.3894272 0.782 0.808 1.69E-41 

GZMH -0.4240105 0.309 0.394 7.31E-31 

GNLY -0.4426422 0.32 0.393 5.66E-23 

JUN -0.4453586 0.657 0.674 3.15E-25 

CCL5 -0.4549479 0.545 0.622 2.62E-43 

CST7 -0.4812344 0.419 0.511 2.60E-44 

NKG7 -0.5589945 0.471 0.56 2.79E-47 

 

Table 3.3. ICB in Four ccRCC Patients Significantly Reduces CCR7, PIM1, MYC, CISH, 

and LEF1 while Increasing Gene Expression Associated with Cytotoxicity and Antigen 

Presentation. Top differentially expressed genes between all ccRCC patients pre- and post-ICB 
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T-cells, with genes enriched in post-ICB T-cells in gray. Avg_log2FC indicates the average log 

2-fold change in gene expression between conditions, pct.1 indicates the number of cells 

expressing a gene in pre-ICB T-cells, and pct.2 indicates the number of cells expressing a gene in 

post-ICB T-cells. p_val_adj indicates the adjusted p-value via the Bonferroni method of 

multiple-testing correction. 

 

 We then examined DE genes between pre- and post-ICB peripheral T-cells in all patients 

combined. Only five genes were identified that were significantly upregulated in pre-ICB 

peripheral T-cells in aggregated patient data: CCR7, PIM1, MYC, CISH, and LEF1. On the other 

hand, several genes are upregulated post-ICB. The top significantly upregulated genes post-ICB 

by average log2 fold change were genes associated with cytotoxicity, chemotaxis, and 

inflammation: NKG7, CST7, CCL5, JUN, and GNLY (Table 3.3).   

 

Periphery-TIL Shared T-cell Clones are Found Primarily in the Partial Responder, Have Lower 

ΔΨm than Average, and Have a Distinct Gene Expression Program 

 

Integrating our scRNA-seq, scV(D)J-seq, and ArcherDx VDJ-seq data, we discovered a 

subset of cells in the periphery that shared both a TRA and TRB CDR3 amino acid sequence 

with those found in the tumor. These cells often clustered together, indicating they are guided by 

transcriptional programs distinct from other T-cell populations in the experiment (Figure 

3.6A+B). Out of 17002 total cells that passed QC for scRNA-seq and scV(D)J-seq, 1996 cells 

representing 11.7% of the total T-cells profiled shared TRA and TRB CDR3 sequences with 

tumor T-cells. Of these, 69% were derived from the partial responder, 14.7% from the stable 

responder, 9.9% from the patient with progressive disease, and 6.3% from the mixed/partial 

responder (Figure 3.6C). Furthermore, these cells had lower ΔΨm than the average T-cell in this 

experiment. While 642/1996 (32.2%) of shared peripheral-tumor T-cells had low ΔΨm, the 

aggregate of all sequenced peripheral T-cells had 4001/17002 (23.5%) of cells with low ΔΨm 

(Figure 3.6D). This enrichment of low ΔΨm in shared peripheral-tumor T cells suggests that low 
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ΔΨm is important for tumor-specific T cells that expand into the periphery and could predict 

positive response to ICB in ccRCC patients.  

 

 

Figure 3.6. Shared Peripheral-Tumor T-cell Clones are ΔΨm hi and found in the Partial 

Responder to ICB. UMAP and cell proportion plots of ccRCC patient peripheral T-cells, 

highlighting the distribution of T-cell clones found in both the tumor and peripheral repertoires. 

A) UMAP stratified by patient response, with T-cells that share both TRA and TRB CDR3 

amino acid sequences with ccRCC tumor-associated T-cells circled in red. (B) UMAP labeling 

shared peripheral-tumor T-cells as TRUE and other cells as FALSE. (C) ccRCC patient T-cell 

proportional abundance by patient response. (D) ccRCC patient T-cell proportional abundance 

by ΔΨm status.  

 

 We examined the DE genes between shared peripheral-tumor T-cells and periphery-

exclusive T-cells, and we determined that shared peripheral-tumor T-cells upregulated genes 

associated with cytotoxicity and antigen presentation while downregulating genes associated 

with naïve T-cells and T-cell stemness. These DE genes also possessed a wide difference in 

mean expression and percent expression in each population. Notable genes associated with 
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cytotoxicity upregulated in shared peripheral-tumor T-cells are GNLY, FGFBP2, GXMH, NKG7, 

PRF1, GZMB, KLRD1, and KLRC1. Shared peripheral-tumor T-cells also upregulated the 

chemokine ligand CCL4 and the specific TRA and TRB genes TRAV29DV5 and TRBV7-6. 

Conversely, periphery-exclusive T-cells significantly upregulate CCR7, TCF7, LEF1, SELL, and 

IL7R. These cells also upregulate the TNF family gene LTB (Table 3.4).  

 avg_log2FC pct.1 pct.2 p_val_adj 

GNLY 1.97323205 0.818 0.301 0 

FGFBP2 1.80124977 0.699 0.181 0 

TRAV29DV5 1.78757488 0.39 0.063 0 

CCL4 1.62811549 0.62 0.252 2.31E-273 

TRBV7-6 1.56526023 0.328 0.034 0 

GZMH 1.55988186 0.876 0.289 0 

NKG7 1.55237159 0.979 0.461 0 

PRF1 1.51897421 0.841 0.322 0 

HLA-DRB1 1.49415941 0.646 0.21 0 

GZMB 1.43791091 0.657 0.198 0 

KLRD1 1.43471959 0.659 0.189 0 

KLRC1 1.39674225 0.3 0.016 0 

TRAT1 -0.8333682 0.137 0.389 3.61E-104 

LDHB -0.8992466 0.624 0.796 1.74E-177 

NOSIP -0.9506618 0.352 0.587 1.38E-120 

IL7R -0.9951737 0.6 0.802 3.15E-137 

RCAN3 -1.0049444 0.074 0.37 8.04E-143 

MAL -1.0071728 0.036 0.321 2.74E-145 

SELL -1.1001808 0.306 0.567 1.57E-126 

RPS4Y1 -1.1490139 0.249 0.636 2.03E-201 

LEF1 -1.33235 0.11 0.457 1.05E-188 

TCF7 -1.4045782 0.25 0.647 1.46E-265 

CCR7 -1.6455971 0.045 0.427 7.35E-225 

LTB -1.8998645 0.419 0.777 0 

 

Table 3.4. Peripheral T-cells that share TCRs with Tumor T-cells Significantly Upregulate 

Cytotoxicity, Antigen-Presenting Genes and Downregulate Naïve T-cell Genes. Top 

differentially expressed genes between all ccRCC patient peripheral T-cells that share TCRs with 

tumor T-cells and peripheral T-cells that do not share TCRs with tumor T-cells, with genes 

enriched in periphery-exclusive T-cells in gray. Avg_log2FC indicates average log 2-fold change 

in gene expression between conditions, pct.1 indicates the number of cells expressing a gene in 

peripheral-tumor shared T-cells, pct.2 indicates the number of cells expressing a gene in 
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periphery-exclusive T-cells. p_val_adj indicates the adjusted p-value via the Bonferroni method 

of multiple-testing correction. 

 

 

 

Periphery Shared Peripheral-Tumor T-cells Expand or Contract from the Tumor to the 

Periphery Depending on Patient Response 

 

 We next examined the pattern of expansion of shared peripheral-tumor T-cell clones from 

the tumor into the periphery. To do this, we first determined the percent representation of each 

clone within the tumor T-cell repertoire and combined all the clones’ percent representation in 

the tumor repertoire to represent the total shared clone representation in the tumor. Next, we 

followed that same process for shared clone proportion in peripheral pre-ICB and post-ICB T-

cells in Figure 3.7 and peripheral ΔΨm Low and ΔΨm High T-cells in Figure 3.8. If the 

representation of all shared clones increased in the periphery, those clones expanded. If the 

representation of all shared clones decreased in the periphery, those shared clones contracted. T-

cells that were not contained in all three groups were excluded from this analysis.  

 We determined that each patient response exhibited a different pattern of expansion and 

contraction into pre-ICB and post-ICB peripheral T-cell populations. The partial responder’s 

shared peripheral-tumor T-cells expanded in repertoire proportion from the tumor into pre-ICB 

T-cells while maintaining overall representation in the post-ICB periphery. However, certain 

clones including the clone with the TRA CDR3 amino acid sequence CVTDQTGANNLFF 

expanded significantly in both pre-ICB and post-ICB peripheral T-cell repertoires. The partial 

responder also exhibited the most shared peripheral-tumor unique T-cell clones, 57, compared 

with the other patients who did not have tumor shrinkage. The partial responder also had the 

greatest percent representation of shared clones in the tumor and periphery (Figure 3.7A). 

Conversely, the mixed/partial responder had fewer shared clones, less representation of those 
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shared clones in the tumor repertoire, and a contraction of those clones into both pre-ICB and 

post-ICB peripheral T-cell repertoires. The mixed/partial responder also had the second least 

number of unique shared peripheral-tumor T-cell clones at 14 clones (Figure 3.7B). The stable 

responder had the least overall percent representation of shared peripheral-tumor T-cell clones in 

the tumor. While the overall representation of shared clones contracted in pre-ICB peripheral T-

cells, overall shared clonal representation nearly tripled from tumor to post-ICB periphery. The 

stable tumor also had the second most unique shared peripheral-tumor T-cell clones out of the 

four patients at 21 clones (Figure 3.7C). The patient with progressive disease had only three 

shared peripheral-tumor T-cell clones, with the overall representation of those clones decreasing 

roughly 7-fold in both pre-ICB and post-ICB periphery (Figure 3.7D).  
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Figure 3.7. Peripheral-Tumor Shared T-cell Clones Expand in Partial Responder and 

Recede in the Patient with Progressive Disease Before ICB. Percent representation of 

peripheral-tumor shared T-cell clones pre- and post-ICB in patients with (A) partial, (B) 

mixed/partial (C) stable, and (D) progressive responses to ICB. 
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 Next, we examined the role of ΔΨm on clonal expansion in the periphery by binning both 

the pre-ICB and post-ICB peripheral T-cell repertoires together and dividing all cells based on 

ΔΨm Low and ΔΨm Hi. We compared the representation of the same shared peripheral-tumor T-

cell clones in the tumor, ΔΨm Lo, and ΔΨm High in Figure 3.8 in a similar fashion to the tumor, 

pre-ICB, and post-ICB in Figure 3.7. Generally, a greater overall representation of shared 

peripheral-tumor T-cell clones in the ΔΨm Low than in ΔΨm High is seen in the partial and 

mixed/partial responders, whereas greater representation in ΔΨm High than in ΔΨm Low 

characterizes the more negative outcomes: progressive and stable response patients. The partial 

responder has greater clonal representation in peripheral ΔΨm Low cells than both tumor T-cells 

and peripheral ΔΨm High cells (Figure 3.8A). While the mixed/partial responder had roughly 

the same clonal representation in pre-ICB and post-ICB T-cells with overall representation 

shrinking in the periphery, peripheral ΔΨm Low cells have greater overall shared clonal 

representation than ΔΨm High peripheral cells (Figure 3.8B). The stable responder, conversely, 

had a greater overall shared clonal representation  
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Figure 3.8. Peripheral-Tumor Shared T-cell Clone Enrichment in ΔΨm Low Population is 

Associated with Positive Responses to ICB. Percent representation of peripheral-tumor shared 

T-cell clones in the tumor, ΔΨm lo, and ΔΨm hi in patients with (A) partial, (B) mixed/partial 

(C) stable, and (D) progressive responses to ICB. 
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in peripheral ΔΨm High cells than ΔΨm Low cells, with the clones with TRA CDR3 amino acid 

sequence CAMTGGTSYGKLTF, CALSEAGWLAMRF, and CAPPRGATNKLIF much more 

represented in ΔΨm High than ΔΨm Low cells (Figure 3.8C). Next, peripheral T-cells from the 

patient with progressive disease showed roughly three times more overall representation from 

shared peripheral-tumor clones in the ΔΨm High fraction than the ΔΨm Low fraction. Compared 

to the more even representation of the three shared clones in the pre-ICB vs. post-ICB axis, this 

difference is much more pronounced (Figure 3.8D).   

 Finally, we identified a handful of public T-cell clones shared between the tumor 

repertoire of one patient and at least two other patients’ peripheral repertoires. While the 

complexity of the overall peripheral T-cell repertoire could render these public clones a 

coincidence, two of these clones exhibit expansion between the tumor and the periphery which 

suggests a tumor-specific ontology for these public clones. The top two public clones that were 

identified were clones with the TRA CDR3 nucleotide sequence 

TGTGTCACCGATCAAACTGGGGCAAACAACCTCTTCTTT (denoted PC1), found in the 

partial responder tumor repertoire, and 

TGTGCAGGGAGATCTAGCAACACAGGCAAACTAATCTTT (denoted PC2), also found in 

the partial responder tumor repertoire. PC1 was shared between the partial responder’s tumor 

repertoire, the progressive peripheral repertoire, and the mixed/partial peripheral repertoire and 

was identified in 27 total cells in the combined progressive and mixed/partial responder 

peripheries. PC2 was shared between the partial responder’s tumor repertoire and the peripheral 

repertoire of the patient with progressive disease, and it was identified in 5 total cells in the 

patient with progressive disease’s periphery.  
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We then examined the expansion patterns of these shared clones from the tumor into 

ΔΨm Lo, ΔΨm Hi, pre-ICB, and post-ICB peripheral T-cell repertoires in the partial responder. 

By dividing the percent repertoire representation of the clone of interest in a peripheral fraction 

by its percent representation in the tumor, we determined that both clones expanded considerably 

from the tumor into the periphery. PC1 was 29.36 times more represented in the pre-ICB fraction 

and 32.39 times more represented in the post-ICB fraction compared to its representation in the 

tumor repertoire. Comparing along the ΔΨm axis, PC1 expanded to 41.22 times its tumor 

repertoire representation in the ΔΨm Low repertoire while expanding to a lesser 27.84 times its 

tumor representation in ΔΨm Hi. PC2 expanded to a greater degree in the periphery from the 

tumor. In the pre-ICB repertoire, PC2 expanded 56.46 times while it expanded 46.06 times in the 

post-ICB repertoire. We see a striking difference when compared to the expansion patterns 

bifurcated by ΔΨm status, however, as PC2 expanded 115.9 times into the ΔΨm low fraction and 

a lesser 29.78 times into the ΔΨm hi fraction (Table 3.5).  

 

Discussion and Future Directions 

 ccRCC patient T-cells increase metabolic flux through glycolysis, oxidative 

phosphorylation, and other pathways and increase ΔΨm to facilitate antitumor responses. 

However, the field lacks consensus as to the role of ΔΨm in ccRCC antitumor T-cell immunity, 

T-cell clonality, and T-cell gene expression programs. In this study, we investigated the role of 

ΔΨm on T-cell responses in ccRCC patients treated with the ICB α-CTLA4/α-PD-1 (Ipi/Nivo) 

using scRNA-seq and scV(D)J-seq analysis of peripheral ΔΨm High and ΔΨm Low T-cells 
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before and after ICB, ArcherDx VDJ-seq analysis of ccRCC patient tumor TILs, and CyTOF 

analysis of ccRCC patient PBMCs.  

We determined that ccRCC patient peripheral T-cells were ΔΨm High by a roughly 3:1 

margin. We also identified significantly differing populations before and after ICB and between 

partial and progressive disease by CyTOF in peripheral immune populations through T-REX and 

MEM analysis. The patient with progressive disease had a greater proportion of exhausted 

TIGIT+ γδ T-cells and exhausted TIGIT+ CD4+ T-cells with low Ki67 enrichment post-

resection and before ICB. The partial responder gained a population of similarly exhausted 

TIGIT+ CD4+ T-cells with comparatively greater expression of CD38 and CCR5 with reduced 

CD95, CCR4, CXCR3, and Ki67. The greater enrichment of CD95 (Fas) and Ki67 in the patient 

with progressive disease suggests this T-cell population may be more proliferative and prone to 

FasL-mediated signaling than its partial responder corresponding populations. Fas-FasL 

signaling in this population could lead to inhibition or activation of CD3-TCR signaling given 

the dose of FasL. Alternatively, greater Fas in the patient with progressive disease population 

could indicate a greater sensitivity to Fas-FasL mediated apoptosis (266). Given the high 

expression of CTLA4 and the presence of TIGIT-inducible proteins like CXCR3, CCR4, and 

CCR5, these CD4+ populations could be distinct types of Tregs that serve different functions in 

different patients. In the patient with progressive disease, their enrichment pre-ICB suggests they 

could limit the antitumor T-cell response to ICB, while their enrichment in post-ICB in the 

partial responder could indicate that these cells emerge to limit the effective immune response 

potentiated by ICB (267).  

We also observed the emergence of four monocyte/macrophage populations and two 

granulocyte populations combined with the contraction of a single granulocyte population in the 
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patient with progressive disease post-ICB. In the partial responder, ICB induced two 

monocyte/macrophage populations and a single B cell population, suggesting that B cell 

responses may be a factor in determining response to ICB. The granulocyte populations present 

in the patient with progressive disease were each enriched with CD66b, CTLA4, and CD11b. 

Interestingly, the granulocyte population enriched in pre-ICB PBMCs lacked the adhesion 

molecule CD44, while the post-ICB granulocyte populations gained CD44 expression, 

suggesting different population capacities for extravasation (268). Comparing pre-ICB T-cells 

from the patient with progressive disease to the partial responder, the patient with progressive 

disease was enriched with exhausted TIGIT+ CD8+ T-cell populations and a γδ T-cell 

population while the partial responder was enriched in CD4+ cell populations with lower TIGIT 

enrichment. The pre-ICB patient with progressive disease was also enriched in one CD4+ T-cell 

population with elevated activation proteins and the chemokine receptors CCR4 and CXCR4.  

Comparing post-ICB progressive vs. partial, the patient with progressive disease again is 

enriched in three populations of exhausted CD8+ T-cells with high TIGIT enrichment and a 

CD4+ T-cell population with higher CTLA4 enrichment than the partial responder. The partial 

responder gained two CD4+ T-cell populations and one CD8+ T-cell population with low TIGIT 

enrichment. One CD4+ population and the CD8+ T-cell population also had mid to high 

expression of CD57, a marker associated with heightened antitumor capacity in CD8+ T-cells 

responding to non-small cell lung cancer (NSCLC) (269). CD4+, CD57+ T-cells also exhibit 

transcriptional programs like CD8+ T-cells in the context of HIV infection (270). While there is 

great variation among identified populations, the noted trends associated with TIGIT and CTLA4 

as well as CD4, CD8, and γδ T-cell populations may influence response to ICB in ccRCC 

patients. Furthermore, heightened PBMC metabolic activity through glycolysis and fatty acid 
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oxidation, inferred through greater surface expression of CPT1a and GLUT1, correlates with 

progressive disease in response to ICB. More characterization of these populations is needed to 

make firm conclusions on their etiologies. 

We also characterized the role of ΔΨm on T-cell clonal responses in our four patients, 

indicating that expansion of tumor-associated T-cell clones into ΔΨm High fractions may be 

associated with progressive response. Furthermore, ΔΨm Low cells are associated with greater 

clonal responses across patients and increase the proportion of hyperexpanded clones in each 

patient. The greatest similarity between the peripheral T-cell repertoire and the tumor T-cell 

repertoire was found in the partial responder, a finding that is consistent with results published 

by the Matsushima group in 2021, which indicate that greater overlap between tumor and 

peripheral repertoires is associated with positive outcomes to ICB in GI cancer (119). The next 

largest similarity between peripheral and tumor T-cell repertoires was found in the patient with 

progressive disease. However, ΔΨm hi cells from the patient with progressive disease were most 

like tumor T-cells, suggesting a CD4+ T-cell dominated expansion, while the partial responder’s 

ΔΨm Low T-cells were most like their tumor T-cell repertoire suggesting a preferential CD8+ T-

cell response with a significant CD4+ T-cell component.  

We next identified gene expression programs enriched across partial responder vs. patient 

with progressive disease, ΔΨm status, and pre-ICB vs. post-ICB T-cells. While the partial 

responder upregulated genes associated with antigen presentation and specific TCR genes, the 

patient with progressive disease had greater expression of TIGIT, TNF, and GZMK, all genes that 

are known to be associated with poorer clinical outcomes in cancer (271, 272). GZMK is 

enriched in a clonal population of exhausted-like, senescent CD8+ T-cells present in aged mice 

and humans that potentially contribute to systemic inflammation and dysregulated immune 
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responses in the elderly. The enrichment of GZMK expression in the patient with progressive 

disease suggests that this population of T cells may also contribute to negative responses to ICB 

(273). Furthermore, the partial responder exhibited significantly greater expression of the TF 

BHLHE40 compared to the patient with progressive disease. BHLHE40, mentioned in the 

introduction of this dissertation, has been reported as necessary for reinvigorating TIL 

mitochondrial fitness and function following α-PD-L1 ICB (133).  

Interestingly, ΔΨm appears to influence CD4+ vs. CD8+ T-cell responses, as ΔΨm Low 

cells expressed greater CD8A/B while ΔΨm High cells expressed greater CD4, which can be 

inferred by CD4+ T-cells' greater capacity to upregulate glycolysis compared to CD8+ T-cells 

upon activation. ΔΨm Low T-cells also upregulate genes associated with chemotaxis and 

cytotoxicity compared to ΔΨm High T-cells.  

Most significant to the field, we identified a population of peripheral T-cells with shared 

TCR sequences with tumor T-cells preferentially found in the partial responder and greater ΔΨm 

Low T-cells than the experimental average. The DE gene expression profile of these shared 

peripheral-tumor T-cells indicates that they are more chemotactic through CCL4 and upregulate 

cytotoxic genes like NKG7, PRF1, GNLY, and GZMB. They are also competent for antigen 

presentation through the upregulation of HLA-DRB1 and significantly upregulate specific TCR 

genes TRAV29DV5 and TRBV7-6. These TCR genes were previously reported as prognostic 

factors in melanoma, with hazard ratios of 0.79 and 0.76 and p-values of 0.018 and 0.016, 

respectively (274). However, these TCR genes have not been reported as prognostic in ccRCC. 

The gene signatures of shared peripheral-tumor T-cells and periphery-exclusive T-cells match 

closely with previously reported results establishing gene expression profiles of peripheral-tumor 

shared T-cell clones in the blood in the murine MC38 model and human melanoma patients. 
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Pauken et al. reported in 2021 that these “TM” cells exhibited reduced markers associated with T 

central memory cells like LTB, CCR7, TCF7, SELL and elevated effector markers GZMB, NKG7, 

and PRF1, just like the peripheral-tumor shared T-cells reported here (275). However, while they 

shared genes with the ones reported here, they did not report increased expression of GNLY, 

FGFBP2, and GZMH on their TM cells.  

Examining these shared cells further, we determined patient-specific expansion patterns 

of shared peripheral-tumor T-cells that correlated with response. Shared T-cells expanded in the 

pre-ICB periphery of the partial responder, suggesting that the presence of these cells influenced 

patient response post-ICB, as many of these clones persisted three weeks later in the periphery at 

similar proportions to pre-ICB. Conversely, all other responses saw shared T-cell representation 

decrease pre-ICB. Only the stable responder saw an expansion of shared T-cells from tumor to 

post-ICB. Finally, we identified several public clones shared between two or more patients. 

These public clones could indicate common tumor-associated neoantigens in ccRCC, but further 

analysis is required to assess that possibility. The two top public clones identified expanded 

preferentially in the ΔΨm Low periphery from the tumor of the partial responder, suggesting that 

ΔΨm Low T-cells serve a unique function against ccRCC public neoantigens.  

These results are preliminary, and more data collection and analysis are required to 

ensure that the effects documented here are robust and maintained in the larger patient 

population. While we document in this chapter the expansion patterns of shared T-cell clones, 

gene expression, and cell surface protein expression that changes based on patient response, we 

record only n = 1 for each patient response. Any differences documented between patients using 

this small sample size could just as likely be based on patient differences exogenous from ICB 

treatment outcomes. Immediate next steps include the scRNA-seq and scV(D)J-seq of ΔΨm 
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High and ΔΨm Low peripheral T-cells and ArcherDx VDJ-seq of tumor T-cells from lung 

adenocarcinoma patients treated with ICB. Comparisons between tumor types would provide our 

study with the potential to identify novel biomarkers that predict response to ICB across cancers. 

Combined with previously reported gene expression profiles of shared peripheral-tumor T-cells 

as in Pauken et al. 2021, we could develop a cell surface protein signature that could assist flow 

cytometry-based blood tests in predicting cancer patient response to ICB (275). Future analysis 

of our existing data includes comparing the gene expression profiles and clonality of pre-ICB 

ΔΨm High and pre-ICB ΔΨm Low T-cells and their post-ICB counterparts, identifying 

differences in gene expression between shared T-cell clones in pre-ICB vs. those in the post-ICB 

periphery, and predicting potential antigens that shared T-cell clone TCRs are specific for.  
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CHAPTER 4: OVERALL DISCUSSION AND FUTURE DIRECTIONS 

Discussion 

 This dissertation investigates the role of mitochondrial metabolism on hematopoietic cell 

fate and function. These projects, while focusing on different species and cell types, are united 

by a focus on mitochondrial-derived metabolic influences on hematopoietic cell differentiation 

and function. Chapter 2 addresses the impact of Acly deficiency on hematopoietic cell fate, 

demonstrating how Acly deficiency results in altered chromatin accessibility, mitochondrial 

metabolism, transcriptional programs, and fate decisions in MC-cultured HSPCs. However, 

competing models in the field combined with the complexity of hematopoiesis and the fragility 

of the BM microenvironment in the context of in vivo ASCT transplant models remain an 

impediment to understanding the nature of Acly’s role across all hematopoietic subtypes. 

Promising research has been published in the last year by Umemoto et al. examining the role of 

Acly in murine HSCs regenerative potential post-5-FU insult, demonstrating that greater Acly 

activity is associated with increased acetylation at H3K27 and increased differentiation potential 

of HSCs into CD48+ progenitor cells using methods similar to those presented here, coupled 

with functional in vivo transplant experiments (95) . However, much work remains to assess the 

role of Acly across the entire spectrum of hematopoiesis, a continuous spectrum of cell 

development from stem to mature that has traditionally been comprehended using surrogate 

markers and functional self-renewal and differentiation experiments. The use of single-cell 

methods to interrogate rare populations and visualize this spectrum is a necessity to gain a 

holistic, systems biology perspective of metabolic-epigenetic crosstalk in hematopoiesis. 

 In chapter 3, we discussed the impact of mitochondrial membrane potential (ΔΨm) on T-

cell clonal responses to α-CTLA4/α-PD-1 immune checkpoint blockade therapy in ccRCC 
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patients. While these results are preliminary, we presented our findings that low ΔΨm results in 

increased general clonal responses in the periphery, greater hyperexpanded clones in each 

patient, single-cell surface protein and transcriptomic changes with ICB and between patient 

peripheral immune populations, patient-specific clonal expansion patterns that appear to 

correlate with response, and a gene expression program associated with shared peripheral-tumor 

T-cell clones in the periphery. Should the results here be replicated in other patients and other 

tumors, as the gene expression pattern associated with shared T-cells already has been as 

outlined previously in the context of murine MC38 and human melanoma, ΔΨm could be 

leveraged with the specific protein and mRNA patterns outlined here to further inform how 

ccRCC patients will respond to ICB.  

 In HSPCs, Acly processes mitochondrially derived citrate into acetyl-CoA to fuel histone 

acetylation, affecting hematopoietic cell fate as has been seen in previously published research. 

The main advantage of our approach in chapter 2 is a detailed glimpse of the long-used 

methylcellulose ex vivo culturing method, revealing key similarities as well as differences with in 

vivo hematopoiesis. In ccRCC patient T-cells, ΔΨm is associated with altered T-cell 

differentiation into effector subsets and shared peripheral-tumor clonal expansion patterns that 

change between patients. ΔΨm extremes indicate CD4 vs. CD8 transcriptional programs and are 

lower than average in shared peripheral-tumor T-cells. While the differentiation from naïve T-

cell into effector T-cell and eventually memory T-cell in antitumor immunity is more 

compartmentalized than broad hematopoiesis, mitochondria influence both systems to affect cell 

fate and function. 

 As more articles are published on the interconnection between metabolism and functional 

consequences that influence hematopoietic cell fate and function, including epigenetic regulation 
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of gene expression and others, it is becoming increasingly clear that metabolism is not merely a 

method of obtaining nutrients but a key arm of macroscopic homeostasis balancing cell 

development and function to meet the needs that situations demand. A better working 

understanding of the interplay between metabolic influences on hematopoietic cell fate and 

function is being developed. In the coming years, therapeutic CAR-T-cells could be 

metabolically conditioned to have longer-lasting and more potent effector functions against 

liquid tumors before becoming exhausted. HSCs could also be primed for more rapid 

reconstitution of the hematopoietic compartment and more robust emergency myelopoiesis. 

Finally, understanding the role of metabolism in HSCs will elucidate the mechanisms behind the 

loss of HSCs associated with aging; learning how HSC loss connects with increased bone 

marrow adiposity could present a therapeutic target to treat aging-associated anemia and 

leukopenia.   

While the contents of this dissertation fall short of immediately enabling these 

therapeutically valuable innovations, future researchers can build on these data to weaponize 

metabolic-epigenetic interplay to eventually fine-tune hematopoietic cells for clinical benefit.  

 

Future Directions 

 There are numerous directions that future researchers could take in elucidating the 

mechanisms and details surrounding both projects presented in this dissertation. For the sake of 

time, concision, budget, and other factors, potentially informative experiments and analyses were 

not performed. Here, I will outline a few immediate future directions to build on the findings 

presented in this dissertation. 
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 For chapter 2, four future directions would provide more detail on the mechanistic and 

functional impacts of Acly deficiency on other hematopoietic precursors and mature cells in vivo 

and in vitro in both murine and human systems. First, researchers could perform genetic 

knockdown/deletion of Acly in murine and ACLY in human stem cell populations defined using 

the strategy used by Umemoto et al.’s ECPR-based definition and perform bone marrow chimera 

transplantation experiments with either cell into appropriate syngeneic or humanized murine 

hosts (95). While human and mouse HSCs may present with different results, assessing how 

hematopoietic progenitors and mature populations are changed by Acly/ACLY genetic 

deficiency would be informative as to the role of Acly.  

Second, researchers could assess the functional "stemness” of Acly-deficient murine 

HSCs by serial replating assays and serial transplantation experiments. While we show that Acly 

inhibition decreases LSK cells while promoting CD11b expression, this functional aspect would 

better inform how HSCs use Acly in the fate decision process. Third, performing ChIP-seq for 

H3K27ac, H3K4ac, and H3K36ac on HSCs with genetically abrogated Acly would reveal site-

specific changes to these epigenetic marks that could corroborate the scATAC-seq findings. 

Finally, assessing changes to organelle-specific acetyl-CoA pools in Acly-deficient 

hematopoietic populations via organelle fractionization could shed more light on the kinetic 

consequences of acetyl-CoA substrate availability on histone and other acetyltransferases 

velocities.  

Future directions for the project in chapter 3, would help validate and expand upon the 

per-patient differences in surface protein expression, gene expression, and clonal expansion that 

depend on the response to ICB and ΔΨm status in our presented findings. An immediate and 

ongoing future direction is the assessment of ΔΨm Low and ΔΨm High T-cell clonal responses 
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to ICB in lung adenocarcinoma patients, performing the same experiments utilized in our 

approach to ccRCC. The identification of cross-tumor phenotypes would lend a second novel 

angle in addition to our novel approach examining ΔΨm Low and ΔΨm High T-cells. Next, 

expanding our analyses in ccRCC to NSCLC patients’ T-cell responses to ICB would offer more 

valuable perspectives on any difference in the role of ΔΨm in pre-ICB vs. post-ICB peripheral T-

cells. Expanding the T-REX/MEM analysis of PBMC CyTOF data to compare not only partial 

response and progressive disease to ICB but also healthy, mixed/partial, and stable disease would 

inform how common our changed populations are between responses and between patients.  

Next, expanding the plots in Figure 3.4 to assess repertoire overlap, cosine similarity, 

clonal proportion, and relative abundance of expanded clones between tumor T-cells and patient-

specific pre-ICB, post-ICB, ΔΨm Hi, and ΔΨm Low fractions would be more informative. 

Further identifying repertoire similarities between tumor T-cells and patient-specific pre-ICB 

ΔΨm Hi, pre-ICB ΔΨm Lo, post-ICB ΔΨm Hi, and post-ICB ΔΨm Low would grant further 

insight into the respective contributions of ΔΨm and ICB in T-cell clonal responses to ICB in 

lung and renal cancer. Finally, validating our gene signature of shared peripheral-tumor T-cells 

in lung cancer patients and assessing that signature’s presence in pre-ICB vs. post-ICB 

populations could serve as a robust biomarker for cancer patient response to ICB if it is present 

in sufficient quantities in pre-ICB correlating with positive patient response. The ultimate goal of 

a qRT-PCR or flow cytometry-based test of the presence of this gene program could be 

translatable into the clinic to grant utility to cancer patients considering treatment with ICB.  
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CHAPTER 5: MATERIALS AND METHODS 

 

Mice 

Wild-type C57BL/6 (The Jackson Laboratory Strain 000664) mice were obtained from 

Jackson Laboratories. Bones from UBC-Cre ERT2; Acly f/f mice were provided by K. Wellen. 

Animals were maintained under specific pathogen-free conditions and handled per the 

Association for Assessment and Accreditation of Laboratory Animals Care international 

guidelines. The Institutional Animal Care and Use Committee at Vanderbilt University approved 

the experiments. Six- to 16-week-old female mice were used in all experiments. 

Bone Marrow Chimeras 

 Acly f/f Vav1-cre+/- and Acly f/f mouse BM were injected into lethally irradiated (2 x 5 

Gy separated by 3 hours), BL/6 CD45.1 (The Jackson Laboratory Strain 002014) recipients and 

were monitored for four weeks post-transplant. Each mouse received 1E7 whole BM cells via a 

retroorbital injection after being placed on sulfamethoxazole/trimethoprim-treated water. Groups 

of five mice per condition (Acly f/f Vav1-cre+/- or Acly f/f) were taken down at 7, 14, 21, and 28 

days post-transplant.  

 

Methylcellulose Culturing of Lin-, c-Kit HSPCs 

 BM was taken from C57BL/6 mouse bones, strained through a MACS Smart Strainer 70 

μm (Miltenyi 130-110-916), and lysed for red blood cells using ACK Lysis Buffer (Thermo 

Fisher Scientific A1049201). Cells were counted and depleted of cells expressing CD5, CD45R 

(B220), CD11b, Gr-1 (Ly-6G/C), 7-4, and Ter-119 using Miltenyi MACS Lineage Cell 

Depletion Kit (Miltenyi 130-090-858) according to the Miltenyi protocol. Cells were then 

counted again and enriched for cells expressing c-Kit/CD117 using Miltenyi MACS CD117 
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MicroBeads (Miltenyi 130-091-224). Unless otherwise stated, cells were counted and 

resuspended at a concentration of 1E4/mL in PBS. Cells were added to tubes of StemCell 

Technologies’ MethocultTM GF M3434, cytokine-replete methylcellulose media to dilute the 

original cell concentration 1:10 for a final cell concentration of 1E3 cells/mL. 1 mL of this 

mixture was then added to a 35 mm culture dish (StemCell 27150) and cultured for two weeks in 

incubators with 5% CO2 at 37 C. Cells were then harvested and resuspended in 2% Fetal Bovine 

Serum (VWR 97068-085) PBS for flow cytometry. When applicable, unless otherwise stated, 30 

uM Aclyi (“Aclyi”), 4 uM (Z)-4-Hydroxytamoxifen, ≥98% Z isomer (Sigma-Aldrich Cat# 

H7904-5MG), 5 mM acetate (Sodium acetate trihydrate, BioXtra, ≥99.0% Sigma-Aldrich 

Cat# S7670-250G), 1.25 – 5 mM N-Acetyl-L-cysteine (≥99% (TLC), powder, Sigma-Aldrich 

Cat# A7250-10G), 1 – 4 mM Dimethyl 2-oxoglutarate (96%, Sigma-Aldrich Cat# 349631-5G), 

and/or 10 uM Acyl-CoA synthetase short-chain family member 2 (Acss2) inhibitor (Selleck 

S8588) were added and vortexed well into M3434 methylcellulose media before cells were 

added.  

 

Staining of cells for Flow Cytometry 

 Cells were Fc-blocked in 1:50 FcX Plus TruStain FcX™ PLUS (BioLegend Cat# 

156604) in 2% FBS PBS for 10 minutes, followed by a stain of at least 30 minutes of 1:200 

CD11b-FITC (Thermo Fisher Scientific Cat# 11-0112-82), 1:400 CD117-PE (Thermo Fisher 

Scientific Cat# 12-1171-82), 1:200 Sca-1-PE/Cy7 (BioLegend Cat# 122514), 1:1000 Ghost 

Dye™ Red 780 Fixable Viability Dye (Cell Signaling Technology #18452), and/or 1:200 

Lineage-FITC (BioLegend Cat# 133301). Cells were then washed twice with 2% FBS PBS and 

run on the flow cytometer. For compensation, UltraComp eBeads™ Compensation Beads 
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(Thermo Fisher Scientific Cat# 01-2222-42) were stained at the same concentration for the same 

amount of time as the cells to be analyzed, washed twice with 2% FBS PBS and run on the flow 

cytometer. For viability dye compensation, an aliquot of cells was stained only with 1:1000 

Ghost Dye™ Red 780 Fixable Viability Dye (Cell Signaling Technology #18452) for the same 

duration as the cells to be analyzed, washed twice with 2% FBS PBS and run on the flow 

cytometer. 

 

Mitochondrial Stains 

 Cells were incubated with CM-H2DCFDA (General Oxidative Stress Indicator) (Thermo 

Fisher Scientific, Cat# C6827), TMRE reagent (Mitochondrial membrane potential) (Thermo 

Fisher Scientific, Cat# T-669), Mitotracker Green (Mitochondrial mass) (Thermo Fisher 

Scientific Cat# M7514), or MitoSOX (Superoxides) (Thermo Fisher Scientific Cat# M36008). 

Cells were incubated for 30 minutes at 37C, covered from light, washed twice with 2% FBS 

PBS, and run on the flow cytometer.  

 

Analysis of Flow Cytometry Data 

 Data were analyzed using FlowJo 10.5.3. %CD11b+ gate indicates live (gated on Ghost 

Dye™ Red 780 Fixable Viability Dye), singlet (gated on FSC-A, FSC-H) cells positive for 

CD11b. 

 

Sample Preparation for scRNA-seq 

 C57BL/6 Lineage-depleted BM cells were seeded at 1E3 cells per 35 mm dish in 

StemCell Technologies’ MethocultTM GF M3434 methylcellulose media and cultured for two 



 
 

133 
 

weeks with either 30 uM SB204990 (Tocris Cat# 4962) or an equivalent volume of DMSO. Cells 

were harvested and resuspended in PBS alongside freshly isolated lineage-depleted BM cells 

from a C57BL/6 mouse. Cells were then stained for viability Ghost Dye™ Red 780 Fixable 

Viability Dye and flow-sorted for viable cells. Cells were then submitted to Vanderbilt 

University’s VANTAGE Core, where they were prepared for single-cell 5’ RNA sequencing 

using the 10x Genomics Chromium system. Libraries were prepared using P/N 1000014, 

1000020, 1000080, and 120262 according to the manufacturer’s protocol. The libraries were 

sequenced using the NovaSeq 6000 with 150 bp paired-end reads. RTA (version 2.4.11; 

Illumina) was used for base calling, and analysis was completed as follows. 

 

Analysis of scRNA-seq Data 

 CellRanger software (v3.0.2, https://github.com/10XGenomics/cellranger) was used with 

default parameters for library demultiplexing, aligning reads, fastq file generation, and unique 

molecular identifier (UMI) quantification to create the gene expression matrix. Gene expression 

matrices containing total numbers of UMIs per cell per gene were filtered to optimize data 

quality. To enrich for live cells, cells were retained with at least 200 genes detected and less than 

5% mitochondrially-derived reads out of total UMIs. All detected genes were retained for the 

following analysis. Principal component analysis (PCA) and Uniform Manifold Approximation 

and Projection (UMAP) and clustering were applied to the filtered matrix using Seurat version 

4.0.3 with default parameters, except the top 20 dimensions of PCA were used for UMAP 

dimensional reduction (276, 277). Cell type assessment was performed using SingleR (v1.8.1) 

(210) inferring the most transcriptionally similar bulk transcriptome from sorted cell populations 

from the ImmGen database (211) executed in tandem with expert gating. Gating validation was 
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performed using Seurat to overlay gene expression onto cell-type clusters and create heatmaps of 

cell-type-associated genes. Data were visualized using Seurat-specific tools or Rathmell lab 

scripts using ggplot2. Datasets have been deposited in Gene Expression Omnibus (GEO) and are 

publicly available under the accession GSE217080 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE217080). 

 scRNA-seq data from chapter 3 were analyzed with Seurat using mostly the same 

procedure with several differences. Viable cells were retained with at least 500 and at most 

10000 detected total mRNA molecules and less than 10% mitochondrially-derived reads out of 

total UMIs. These thresholds were determined using sample-specific nCount_RNA and 

percent.mito distributions. Additionally, 20 samples were hashed into 10 lanes on the 10X 

chromium controller using BioLegend TotalSeq™-C0251 (cat. 394661) and C0252 (cat. 394663) 

Hashtag antibody-oligo conjugates by Rama Gangula in the Immunogenomics, Microbial 

Genetics and Single-cell Technologies core. Hashing of PBMCs was performed for 30 minutes 

on ice using 1 μL of hashtag antibody per sample in 55 μL BioLegend Cell Staining Buffer (Cat. 

#420201) following Fc blocking with Human TruStain FcXTM (BioLegend Cat. #422301). Cells 

were washed 3X in PBS + 2% BSA, centrifuged, and aspirated until 50 μL of buffer remained. 

Cells were then counted, and viability was assessed using Trypan Blue. Viability post-hashing 

was 86-97%, with the median viability of the ten samples at 96.5%.  

Hashed cells were deconvoluted by binning the data derived from the ten sequencing 

lanes into 20 samples based on the ratio of C0251 to C0252 reads. Differential gene expression 

was determined using Seurat’s FindMarkers function.  

 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE217080
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE217080
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SCENIC Analysis 

Regulatory network analysis was performed using the docker image aertslab/pyscenic 

(v0.9.18) using the default parameters. The co-expression modules were based on cisTarget 

databases (mm10: mm10__refseq-r80__10kb_up_and_down_tss.mc9nr.feather). Then the scored 

regulon of cells was imported and integrated into Seurat object with other analyses and 

visualized under R (v3.6.1). 

 

Sample Preparation for scATAC-seq 

 C57BL/6 Lineage-depleted BM cells were seeded at 1E3 cells per 35 mm dish in 

StemCell Technologies’ MethocultTM GF M3434 methylcellulose media and cultured for two 

weeks with either 30 uM SB204990 (Tocris 4962) or an equivalent volume of DMSO. Cells 

were harvested and resuspended in PBS alongside freshly isolated lineage-depleted BM cells 

from a C57BL/6 mouse. Nuclei were then isolated and submitted to Vanderbilt University’s 

VANTAGE Core, where they were prepared for scATAC-seq following the manufacturer’s 

protocol using P/N 1000111, 1000086, and 1000084.  

 

Analysis of scATAC-seq Data 

 Files were imported into R using ArchR (filterTSS = 8, filterFrags = 2819), with 

filterFrags value set based on the distribution of transcription start site (TSS) vs. the log 

transform of unique fragments generated by ArchR (216). The ArchR project was created, 

doublets filtered, LSI dimensional reduction performed, clusters plotted, and UMAP dimensional 

reduction embedded using default settings. Gene scores were also calculated using ArchR, 

representing chromatin accessibility within 100 kb on either side of a gene, using default values. 
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Cell type labels were assigned to scATAC-seq using ArchR’s addGeneIntegrationMatrix 

function. Cells from scATAC-seq were directly aligned with cells from scRNA-seq by 

comparing the scATAC-seq gene score matrix with the scRNA-seq gene expression matrix. 

Chromatin accessibility tracks were plotted using default settings.  

 Other R packages used for data analysis and visualization include Dplyr, Patchwork, 

Formattable, Ggplot2, Gridextra, Sctransform, GenomicRanges, Reticulate, loomR, Scater, 

Pheatmap, Celldex, scRNAseq, scuttle, Stringr, Plyr, scales, Devtools, Rcpp, Presto, Msigdbr, 

Fgsea, SummarizedExperiment, and chromVARmotifs (278-301). 

 

Extracellular Flux Analysis 

 Cells were resuspended in Seahorse XF Media (Agilent Cat# 103576-100) supplemented 

with 2 mM glutamine (Agilent Cat# 103579-100), 1 mM Pyruvate (Agilent Cat# 103578-100), 

and 10 mM glucose (Agilent Cat# 103577-100) at 4E6/mL, seeding 2E5 cells per well in the 

Seahorse assay plate (Agilent Cat# 102416-100). The rest of the protocol was conducted 

according to the manufacturer’s XF Cell Mito Stress Test Kit (Agilent Cat# 103015-100) user 

guide. Seahorse XF Calibrant Solution (Agilent Cat# 100840-000) was used to calibrate the 

extracellular flux analyzer. Values were normalized to bright-field cell counts taken per well by 

Cytek Cytation 5 Cell Imaging Multi-Mode Reader. 

 

qRT-PCR 

 RNA was isolated using Qiagen’s RNeasy Mini Kit (Qiagen Cat# 74104) according to 

the manufacturer’s protocol. cDNA was then synthesized using the Biorad iScript cDNA 

Synthesis Kit (Biorad Cat# 1708890) according to the manufacturer’s protocol. Finally, a 
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quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) was performed using 

the Biorad SsoAdvanced Universal SYBR Green Supermix (Biorad Cat# 1725271) according to 

the manufacturer’s protocol. The amplification program consisted of 95C for 30 seconds 

followed by 40 cycles of the set of 95C for 15 seconds, and Tanneal for 30 seconds. Finally, 95C 

for 5 seconds. Each Cebp isoform’s reaction was run alongside a control β-Actin reaction with 

different Tanneal values for each Cebp isoform, depending on the specific primer characteristics.  

 qRT-PCR primers used include β-Actin (F: AAGTGTGACGTTGACATCCGTAA, R: 

TGCCTGGGTACATGGTGGTA) (302), Cebpa (F: AATGGCAGTGTGCACGTCTA, R: 

CCCCAGCCGTTAGTGAAGAG) (303), Cebpb (F: TTGATGCAATCCGGATCAAACG, R: 

CAGTTACACGTGTGTTGCGTC) (304), Cebpg (F: TTCGTAACCGTCGCTCCTCC, R: 

TCAGAGCAATGTGATCCGAGG), Cebpd (F: GAACCCGCGGCCTTCTAC, R: 

GAAGAGTTCGTCGTGGCACA) (305), Cebpe (F: CCCTTCTAGGTCCCCAGAGT, R: 

TCATTTGGTCCCGACCTTCC), Cebpz (F: AGCCAGATCCCAGTGGATGA, R: 

GTGGGAAGCAGTTGTCGTCT). 

 

Quantification and statistics.  

Statistical analyses were performed with GraphPad Prism software version 8.1.0. For data 

involving 2 groups, analysis was performed using Student’s t-test. 

 

Processing of ccRCC Patient PBMCs 

 PBMCs were isolated from ccRCC patient blood using a Katy Beckermann lab protocol 

developed by Rachel Hongo and Madelyn Landis. Before processing, BC Vacutainer Glass 

Mononuclear Cell Preparation (CPT) Tubes (Fisher Scientific Cat. #02-685-125) containing 
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patient blood were inverted ~5 times and then centrifuged at 1500 x G for 20 minutes at RT. The 

top layer containing plasma was removed, and any remaining plasma and buffy coat were 

transferred into a new 15 mL conical tube, diluted up to the top with PBS, centrifuged at 1500 

RPM for 4 minutes, and the supernatant aspirated. Cells were then resuspended in 1 mL ACK 

lysis buffer for 1 minute followed by the addition of 1 mL PBS. Cells were centrifuged again at 

1500 RPM for 4 minutes followed by repeated ACK lysis until loss of red blood cell pellet 

content.  

Cell viability and number were then determined using Trypan Blue staining assessed 

using the BioRad TC20 cell counter (Cat. # 1450102). 5-10E6 viable cells were then 

resuspended in 1 mL freeze media (88% FBS, 12% DMSO), transferred immediately to a Mr. 

Frosty Freezing Container (ThermoFisher Scientific Cat. #5100-001), and frozen down at -80C 

in each Corning cryovial for PBMCs (Fisher Scientific Cat. #13-700-500). Vials were capped 

using Corning cryovial cap inserts (Fisher Scientific, Cat. #07-202-620). After a minimum of 24 

hours and a maximum of 1 week, the cryovials of PBMCs were then transferred into liquid 

nitrogen for long-term storage.  

 

ccRCC Patient Peripheral T-cell Sort Strategies for scRNA-seq, scV(D)J-seq, and CyTOF 

 ΔΨm High and ΔΨm Low T-cells were isolated from ccRCC patients’ PBMCs following 

the gating strategy: 1) Single-cells gated on FSC-A vs. FSC-H and SSC-A vs. SSC-H, 2) cell 

size scatter based on lymphocyte cell size, 3) viability, 4) CD3+, and 5) TMRE High vs. TMRE 

Lo. TMRE was used as a proxy for ΔΨm with the ΔΨm High vs. ΔΨm Low gate determined 

experimentally by Madelyn Landis. Reagents used for this purpose were αCD3-BV421 

(BioLegend, Cat #317344), TMRE (Life Tech, Cat #T-669), Fixable Ghost Viability Dye e780 
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(Cell Signaling, Cat #18452S). After cell staining and washing, cells were resuspended in 2% 

FBS PBS (FACS buffer) at 1E6 cells/100 μL for flow sorting and flow-sorted using the 70 μm 

nozzle.   

 ccRCC patients’ PBMCs were sorted and processed similarly. Instead of sorting on CD3, 

however, PBMCs were sorted on CD45. Additionally, cells were not sorted according to ΔΨm 

status using TMRE.  

 

RNA Isolation from ccRCC Tumors for ArcherDx VDJ-seq 

 ccRCC patient tumors were taken before the development of metastatic disease and 

embedded into paraffin blocks. 5 μm scrolls were cut by the Translational Pathology Shared 

Resource (TPSR) at Vanderbilt University Medical Center (VUMC). These samples had RNA 

isolated by the VUMC Innovative Translational Research Shared Resource (ITR) core using the 

Maxwell RSC RNA FFPE Kit (Promega Cat #AS1440) and associated protocol.  

 Isolated RNA was then processed using the Immunoverse™-HS TCR 

alpha/delta/beta/gamma Kit, for Illumina® - 8 reactions (Integrated Sciences Cat. #DB0219) kit 

and associated protocol. Sequencing was performed on the Illumina NovaSeq6000 via the (S4) 

PE150 method.  

 

Analysis of scV(D)J-seq and ArcherDx VDJ-seq data 

 TCR α and β nucleotide and amino acid sequences were integrated with the Seurat 

scRNA-seq dataframe based on cell UMI barcode identity between scRNA-seq and scV(D)J-seq. 

Only cells with both α and β genes sequenced were included for analysis.  
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The repOverlap and repClonality functions from Immunarch (0.8.0, 

https://github.com/immunomind/immunarch) were used to assess repertoire similarity and clonal 

expansion of peripheral T-cell responses (306). Repertoire overlap was determined using the 

repOverlap function’s “public” method, cosine similarity was determined using the repOverlap 

function’s “cosine” method, the clonal proportion was determined using the repClonality 

function’s “clonal.prop” method, and relative abundance was determined using the repClonality 

function’s “homeo” method. These methods were applied to a table of 1: TRA clonal sequences 

with 2: the abundance of each sequence in each group of interest (e.g., the “Stable Ψ High 

Peripheral T-cells” contained all TRA clonal sequences and the abundance of each sequence in 

ΔΨm High peripheral T-cells from the stable responder). 

 Cells that shared both their TRA and TRB CDR3 nucleotide sequences with those found 

in tumor TRA and TRB CDR3 nucleotide sequences were considered shared peripheral-tumor T-

cell clones, labeled “TRUE” in Figure 3.6B. Expansion plots of shared peripheral-tumor T-cell 

clones were graphically presented using Ggplot2-based code developed in the Rathmell lab 

showing the stacked combined percent representation of each clone shared between the tumor 

and all peripheral fractions. Clones that were detected in the periphery of patients that were 

shared with the tumor of another patient were listed in Table 3.5. Expansion patterns were 

determined by dividing the representation in ΔΨm Low by tumor representation, in ΔΨm High 

by tumor representation, in pre-ICB, and in post-ICB by tumor representation.  

 

MEM and T-REX Analysis of CyTOF data 

 CyTOF data were normalized and scaled using arcsinh transformation. Arcsinh cofactor 

was chosen for each channel based on the standard operating procedure for fluorescence and 

https://github.com/immunomind/immunarch
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mass cytometry data (307, 308). Following QC, UMAP analyses were performed on the samples 

using surface markers associated with T-cells and surface markers associated with non-T-cells. 

Metabolic markers, Ki67, rhodium, and iridium were excluded from UMAP embedding. The 

resulting embeddings were used to visualize and select T-cells and non-T-cells for downstream 

analyses. T-cells and non-T-cells from these UMAPs were extracted and analyzed using t-SNE 

to create the all-patient T-cell and non-T-cell common t-SNE embeddings. Patients were equally 

sampled. All patient samples were then aggregated and assessed for T-cell and non-T-cell 

population changes using T-REX between partial vs. progressive response and before vs. after 

ICB (258). Enriched features in each T-REX region of significant change were quantified using 

MEM (257). CyTOF MEM and T-REX analyses were primarily performed by Sierra Barone, 

Caroline Roe, Jonathan Irish, and other members of the Jonathan Irish group.  

 The pheatmap package was used for heatmap plotting of asinh-normalized (A) and scaled 

(B) metabolic average cell surface protein expression in Figure 3.3. Scaling was performed 

using the R base package scale, which calculated the mean and standard deviation of the gene of 

interest across all samples. Then, the mean expression was subtracted from each sample asinh-

normalized mean. This value was then divided by the standard deviation of that gene across all 

samples (309).  

 

Table 5.1: Metal-conjugated CyTOF antibodies used for patient Live, CD45+ PBMCs. 

Channel Marker Clone Vendor Catalog 

No. 

[Optimal] 

(μg/ml) 

Species 

89Y CD45 HI30 Fluidigm 3089003B Ex, 1:200 Human 

106Pd CD66b 
80H3 Biolegend 305102 

Ex, 1:100, 

CC 

Human 

110Cd CD16 
3G8 Biolegend 302051 

Ex, 1:100, 

CC 

Human 
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111Cd CD8 
RPAT8 Biolegend 301053 

Ex, 1:100, 

CC 

Human 

112Cd CD14 
M5E2 Biolegend 301843 

Ex, 1:100, 

CC 

Human 

113Cd CD4 
RPA-T4 Biolegend 300541 

Ex, 1:100, 

CC 

Human 

114Cd CD3 
UCHT1 Biolegend 300443 

Ex, 1:100, 

CC 

Human 

116Cd CD19 
HIB19 Biolegend 302247 

Ex, 1:100, 

CC 

Human 

141Pr CCR6 G034E3 Fluidigm 3141003A Ex, 1:100 Human 

142Ce Cpt1a 
8F6AE9 Abcam ab128568 

Me, 1:100, 

CC 

Human 

143Nd CD117 104D2 Fluidigm 3143001B Ex, 1:100 Human 

144Nd CCR5 NP-6G4 Fluidigm 3144007A Ex, 1:100 Human 

145Nd Grim19 
6E1BH7 Abcam ab110240 

Me, 1:100, 

CC 

Human 

146Nd CD64 10.1 Fluidigm 3146006B Ex, 1:100 Human 

147Sm CD20 2H7 Fluidigm 3147001B Ex, 1:200 Human 

148Sm PDL1 29E.2A3 Fluidigm 3148017B Ex, 1:100 Human 

149Sm CCR4 205410 Fluidigm 3149029A Ex, 1:200 Human 

150Sm CD134 ACT35 Fluidigm 3150023C Ex, 1:100 Human 

151Eu ICOS C398.4A Fluidigm 3151020B Ex, 1:200 Human 

152Sm TCRgd 11F2 Fluidigm 3152008B Ex, 1:200 Human 

153Eu CD62L DREG-56 Fluidigm 3153004B Ex, 1:100 Human 

154Gd TIGIT MBSA43 Fluidigm 3154016B Ex, 1:100 Human 

155Gd CD27 L128 Fluidigm 3155001B Ex, 1:100 Human 

156Gd CXCR3 G025H7 Fluidigm 3156004B Ex, 1:200 Human 

158Gd CD137 4B4-1 Fluidigm 3158013B Ex, 1:200 Human 

159Tb CCR7 G043H7 Fluidigm 3159003A Ex, 1:100 Human 

160Dy CD28 CD28.2 Fluidigm 3160003B Ex, 1:100 Human 

161Dy CTLA4 14D3 Fluidigm 3161004B Me, 1:100 Human 

162Dy Ki67 B56 Fluidigm 3162012B Me, 1:200 Human 

163Dy Glut1 
polyclonal 

Novus 

Biologicals 

NB110-

39113 

Me, 1:100, 

CC 

Human 

164Dy CD95 DX2 Fluidigm 3164008B Ex, 1:200 Human 

165Ho CD45R0 UCHL1 Fluidigm 3165011B Ex, 1:100 Human 

166Er CD44 BJ18 Fluidigm 3166001C Ex, 1:100 Human 

167Er CD38 HIT2 Fluidigm 3167001B Ex, 1:100 Human 
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168Er CD127 A019D5 Fluidigm 3168017B Ex, 1:100 Human 

169Tm CD25 2A3 Fluidigm 3169003B Ex, 1:200 Human 

170Yb CD45RA HI100 Fluidigm 3170010B Ex, 1:200 Human 

171Yb CXCR5 RF8B2 Fluidigm 3171014B Ex, 1:200 Human 

172Yb CD57 HCD57 Fluidigm 3172009B Ex, 1:100 Human 

173Yb CXCR4 12G5 Fluidigm 3173001B Ex, 1:200 Human 

174Yb HLADR II L243 Fluidigm 3174001B Ex, 1:200 Human 

175Lu PD1 EH12.2H7 Fluidigm 3175008B Ex, 1:200 Human 

176Lu CD56 CMSSB Fluidigm 3176003B Ex, 1:200 Human 

209Bi CD11b ICRF44 Fluidigm 3209003B Ex, 1:200 Human 

 

Ex: Extracellular marker, live stain 

Me: stained post-methanol permeabilization 

CC: custom conjugated reagent 
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