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Abstract

Strong coupling of cavity electromagnetic modes and molecules has emerged as

an area of intense theoretical and experimental interest. Such systems are of

particular interest due to their ability to modify the physical and chemical prop-

erties of materials. In this work, I use a stochastic variational method (SVM)

to construct optimized light-matter coupled wave function. By using SVMs to

select the best basis states, we are able to achieve highly accurate energies and

wave functions. In this work, I will be solving for the Pauli-Fierz (PF) non-

relativistic QED Hamiltonian. In this work I will introduce a new basis type

Deformed Explicitly Correlated Gaussians (DECGs). DECGs are a modified

form of explicitly correlated Gaussians (ECGs) where the basis is chosen such

that the dipole self-interaction term can be eliminated. These calculations will

be compared to those performed with traditional ECGs, demonstrating their

superiority in cases where a non-spherical potential exists, such as the dipole

self-interaction term.
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1 Introduction

Few-body systems have reached high accuracy in atomic and molecular sys-

tems6–8;10;14;17;18;24;32–34;42;57;62–64;66;67;76. Such calculations have proved to be

key in explaining a number of properties, including electron correlations37, rel-

ativistic effects8;13, molecular bonds12;51;69, and quantum dynamics of the nu-

clei9;27;43;68. One such few-body system of interest is that of small atoms and

molecules confined in optical cavities. In recent years, cavity QED has emerged

as an area of significant interest for quantum computing. Recently, cavity QED

has been proposed as a possibility for realizing a practical quantum computer

that avoids the adiabatic condition, while still maintaining robustness38. In

addition, there has been significant interest in a number of methods of applying

cavity QED in the realm of quantum information processing74.

In addition to applications in quantum computing, cavity QED seems to be

particularly useful, and of interest for modifying chemical and physical proper-

ties of materials15;31;50;75. Applications of this include controlling vibrational

energy transfer (VET) in solute molecules75, excitation transport19;58, polari-

ton condensation2;44, transfer of excitation15, and chemical reactivity71. Addi-

tionally, theoretical works have explored the use of these systems in excitation

and charge transfer60, self-polarization26, potential energy surfaces35, electron

transfer39, and ionization potentials16.

In a vacuum, high-precision measurements and theoretical calculations have

been developed for atoms and molecules, with the accuracy of the theoretical

calculation reaching the level of 1 MHz for the dissociation energy of the H2

molecule28;49. However, the same accuracy of theoretical description does not

exist for light-matter states. The primary reason for this is that the wave

functions for are computationally expensive due to the additional degree of

freedom being added, and that methods such as density functional theory (DFT)
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lack suitable functionals for light-matter coupling. In this work, I use stochastic

variational calculation (SVM) to construct optimized wave functions for the

light-matter coupled system. By selecting the best states, it is possible to achieve

highly accurate energies and wave functions. By using stochastic selection, the

basis dimension and the computational costs are kept manageable by avoiding

high-dimensional tensor product spaces. In this work, I will demonstrate the use

of such methods to calculate the behavior of the H2 groundstate as a function

of bond length, and photon coupling strength, energy convergence comparisons

for ECG and DECG approaches, and the behavior of H− ions.

ECGs have been shown to be very useful in cases where the matrix elements

are spherically symmetric10;11;41. Such systems have been used in a variety

of applications, including Efimov physics5, hyper-fine splitting46;47, quantum

electrodynamic corrections48, Fermi gasses of cold atoms77,, and potential en-

ergy curves73. Despite this success, ECGs are limited in their ability to deal

with non-spherical potentials, which make the calculation difficult. Many prob-

lems have emerged where non-spherical ECGs are necessary, such as polyatomic

molecules or excited states of atoms. One such application where the need

for non-spherical ECGs has emerged is in light-matter coupled systems, partic-

ularly atoms and molecules in cavity QED1;20–23;25;26;30;36;52;54;56;59–61;65;70;72.

Such systems are typically described on the level of the Pauli-Fertz (PF) non-

relativistic QED Hamiltonian30;39;56. Included in this hamiltonian is the dipole

self-interaction term (λ⃗ · D⃗)2, where λ⃗ is the coupling vector of the photons

and D⃗ is the dipole moment of the system. This potential is non-spherically

symmetric, making the calculation difficult.

In this work, I will introduce a modified gaussian basis such that the dipole

self-interaction term can be removed. The removal of this term makes the

remaining calculation much easier due to the restored spherical symmetry. By
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doing this, fewer basis are able to be used to reach converged calculations, while

maintaining similar levels of accuracy.
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2 Formalism

I consider a system of N particles with positions r⃗1, ...r⃗N , where r⃗i = (xi, yi, zi),

and charges q1, ..., qN . I define the position vector r⃗ as follows with x, y and z

as our spatial coordinates.

r⃗ =


x

y

z

 =



x1

x2

...

xN

y1
...

yN

z1
...

zN



=



r1

r2
...

rN

rN+1

...

r2N

r2N+1

...

r3N



. (1)

In the following work, a⃗ will be defined as the 3-dimensional vectors, and a is

the single directional vector for a set of particles of the form n⃗ = (n1, . . . , nN )

for some x, y, z = n, and r⃗ is a three dimensional vector formed by a set of

single-particle coordinates.

A simple form of DECG functions are defined as

exp

{
−1

2
x̃Ak

xxx− 1

2
ỹAk

yyy −
1

2
z̃Ak

zzz

}
× exp

{
−x̃Ak

xyy − x̃Ak
xzz − ỹAk

yzz
}
, (2)

where Aαβ are N ×N symmetric matrices. With the scalar product (ã · b̃) for

N -dimensional vectors ã = (a1, a2, ..., aN ) and b̃ = (b1, b2, ..., bN ) is given by

(ã · b̃) =
∑N

m=1 ambm. By taking Axx = Ayy = Azz = A and Axy = Axz =
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Ayz = 0, we get back the original definition of ECGs.

By setting the block matrix A to be defined as

A =


Axx Axy Axz

Axy Ayy Ayz

Axz Ayz Azz

 , (3)

The DECG function can be expressed as

exp

{
−1

2
r⃗Akr⃗

}
, (4)

dropping the tilde for simplicity. The superscript k represents the k-th basis

function and

r⃗Akr⃗ =

3N∑
i,j=1

riA
k
ijrj . (5)

by multiplying the simple DECG by

exp {r⃗s⃗} = exp

{
3N∑
i=1

siri

}
, (6)

it is possible to form a basis that can describe nonzero angular momentum states

and systems of multiple centers (molecules):

Ψk = exp

{
−1

2
r⃗Akr⃗ + r⃗s⃗k

}
. (7)

As an example, take the trial function in the following form

exp

−1

2

N∑
i<j

αxx
ij (xi − xj)

2 − 1

2

N∑
i<j

αyy
ij (yi − yj)

2 − 1

2

N∑
i<j

αzz
ij (zi − zj)

2

 (8)

×exp

−1

2

N∑
i,j=1

αxy
ij (xi − yj)

2 − 1

2

N∑
i,j=1

αxz
ij (xi − zj)

2 − 1

2

N∑
i,j=1

αyz
ij (yi − zj)

2 − 1

2

N∑
i=1

βi(r⃗i − c⃗i)
2

 .
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In this example, we have a correlation between the particle coordinates and a

single particle function centered at c⃗i. The relation between the coefficients in

Eq. (3) and Eq. (8) is shown in Appendix A of our paper3.

2.1 Hamiltonian

The description of the Hamiltonian of the system is based on our paper3 given

by

H = He + Hph = He + Hp + Hep + Hd. (9)

He is the electronic Hamiltonian, and Hp is the photon Hamiltonian. The

electron-photon coupling is denoted as Hep, and the dipole self-interaction is Hd.

Where the electron-photon interaction is described by using the PF nonrelativis-

tic QED Hamiltonian. The PF Hamiltonian can be derived39;40;53;56;72 by ap-

plying the Power-Zienau-Woolley gauge transformation45, with a unitary phase

transformation on the minimal coupling (p · A) Hamiltonian in the Coulomb

gauge

Hph =
1

2

Np∑
α=1

p2α + ω2
α

(
qα − λ⃗α

ωα
· D⃗

)2
 , (10)

where D⃗ is the dipole operator. The photon fields are described by quantized

oscillators. qα = 1√
2ωα

(â+α +âα) is the displacement field and pα is the conjugate

momentum. This Hamiltonian describes Np photon modes with frequency ωα

and coupling λ⃗α. The coupling term is usually written as55

λ⃗α =
√

4π Sα(r⃗)e⃗α, (11)

where Sα(r⃗) is the mode function at position r⃗ and e⃗α is the transversal polar-

ization vector of the photon modes.

The electronic Hamiltonian is the usual Coulomb Hamiltonian and the three
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components of the electron-photon interaction are as follows: The photonic part

is

Hp =

Np∑
α=1

(
1

2
p2α +

ω2
α

2
q2α

)
=

Np∑
α=1

ωα

(
â+α âα +

1

2

)
, (12)

and the interaction term is

Hep = −
Np∑
α=1

ωαqαλ⃗α · D⃗ = −
Np∑
α=1

√
ωα

2
(âα + â+α )λ⃗α · D⃗. (13)

Only photon states |nα⟩, |nα ± 1⟩ are connected by âα and â+α . The matrix ele-

ments of the dipole operator D⃗ are only nonzero between spatial basis functions

with angular momentum l and l ± 1 in 3D or m and m± 1 in 2D.

The dipole self-interaction is defined as

Hd =
1

2

Np∑
α=1

(
λ⃗α · D⃗

)2
. (14)

This term is important for the existence of a ground state as discussed in Ref.53.

In the following work, it is assumed that there is only one important photon

mode with frequency ω and coupling λ⃗. As such, the suffix α has been omitted

in what follows. The formalism can be easily extended for many photon modes

but this work concentrates on calculating the matrix elements and it is sufficient

to use a single-mode.

For one photon mode Eqs. (12) (13) and (14) can be simplified and the

Hamiltonian becomes

H = T + V + U + ω

(
â+â +

1

2

)
+ ωλ⃗ · D⃗q +

1

2
(λ⃗ · D⃗)2, (15)
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where T is the kinetic operator

T = −1

2

N∑
i=1

(
∂2

∂x2
i

+
∂2

∂y2i
+

∂2

∂z2i

)
. (16)

V is the Coulomb interaction

V =
∑
i<j

Vc(r⃗i − r⃗j), Vc(r⃗i − r⃗j) =
qiqj

|r⃗i − r⃗j |
. (17)

U is an external potential

U =

N∑
i=1

U(r⃗i), (18)

and the dipole moment D⃗ of the system is defined as

D⃗ =

N∑
i=1

qir⃗i. (19)

The operators act in real space, except q which acts on the photon space

q|n⟩ =
1√
2ω

(
a + a+

)
|n⟩ (20)

=
1√
2ω

(√
n|n− 1⟩ +

√
n + 1|n + 1⟩

)
.

2.2 Dipole self-interaction

The dipole self-interaction can also be readily available using Eq. (58):

⟨Ψi|
1

2
(λ⃗ · D⃗)2|Ψj⟩ =

∫
1

2
(λ⃗ · D⃗)2 exp

{
−1

2
r⃗Ar⃗ + r⃗s⃗

}
dr⃗

=
1

2

(
q⃗A−1q⃗ +

(
q⃗A−1s⃗

)2) ⟨Ψi|Ψj⟩.
(21)
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2.3 Eliminating the dipole self-interaction

One motivation of DECG is that it is possible to eliminate the dipole self-

interaction term of the Hamiltonian. This can be done by selecting a special

choice of DECG exponentials. The elimination of this term produces a much

simpler Hamiltonian giving a much simpler numerical solution.

The dipole self-interaction term is a special quadratic form and this quadratic

form can be represented with a DECG exponent. Using the kinetic energy

operator it is possible to find a suitable α to eliminate the dipole self-interaction

term:

−1

2

3N∑
i=1

(
∂2

∂r2i

)
exp

(
α(λ⃗ · D⃗)2

)
. (22)

To solve this we need to evaluate the second derivative of the exponential with

respect to r⃗i. The first derivative with respect to xi is given by

∂

∂xi
exp

(
α(λ⃗ · D⃗)2

)
= 2αλ1qi(λ⃗ · D⃗) exp

(
α(λ⃗ · D⃗)2

)
, (23)

and the second derivative

∂2

∂x2
i

exp
(
α(λ⃗ · D⃗)2

)
= 2αλ2

1q
2
i exp

(
α(λ⃗ · D⃗)2

)
(24)

+ 4α2λ2
1q

2
i (λ⃗ · D⃗)2 exp

(
α(λ⃗ · D⃗)2

)
,

with similar expressions for yi and zi. By choosing α as

α =
1

2
√∑N

i=1 q
2
i λ

, (25)

where λ is the magnitude of λ⃗, we can express the kinetic energy operator acting
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on the exponential as

−1

2

3N∑
i=1

(
∂2

∂r2i

)
exp

(
α(λ⃗ · D⃗)2

)
= −

(
1

4α
+

1

2
(λ⃗ · D⃗)2

)
exp

(
α(λ⃗ · D⃗)2

)
. (26)

This means that by multiplying the basis with the factor

exp
(
α(λ⃗ · D⃗)2

)
, (27)

the dipole self-interaction can be removed and the numerical solution is much

simpler. In this way, the nonspherical dipole self-interaction is eliminated, build-

ing it into in the basis functions. The generalization of Eq. 26 to multiphoton

mode can be found in Appendix E in our paper3.

3 Results

In this section, I will present the results of a few numerical calculations per-

formed using DECGs as a basis. In this work, the full efficiency of the DECG

basis is not explored as the calculations preformed were restricted in the ap-

proach to an A matrix of the form

A =


Axx 0 0

0 Axx 0

0 0 Axx

 , (28)

and the trial function is

Ψk = exp

{
−1

2
r⃗(Ak + 2α(λ⃗ · D⃗))r⃗ + r⃗s⃗k

}
, (29)

where α is defined in Eq. (25). Note that if α = 0 then this function is the

conventional ECG basis function. Nonzero α leads to nonzero off diagonal block
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matrices and the basis becomes DECG.

For these calculations, the separable approximation of 1/r in terms of Gaus-

sians found here4 is used

1

r
=
∑
k

wke−pkr
2

. (30)

This approximation allows for the integral in Eqn. (52) to be analytically solved.

89 Gaussian functions with the coefficients wk and pk (taken from Ref.4) can

approximate 1/r with an error less than 10−8 in the interval [10−9, 1]a.u. while

using significantly fewer terms than a Gaussian quadrature for comparable ac-

curacy4.

3.1 2D 2-Electron Harmonic Oscillator

For the first example, I will consider a 2D system of 2 electrons confined to a

harmonic oscillator potential, with the potential term given by

1

2
ω2
0

2∑
i=1

r⃗ 2
i , (31)

interacting via a Coulomb potential. This problem is analytically solvable29 and

will be used to compare the ECG (α = 0) and DECG solution. By taking ω = 0

in Eq. (15), we ensure that there is no coupling to the photons as the potential

is nonspherical because λ ̸= 0. For the test cases, I will use two λ values: λ = 1

a.u. (the energy is E = 2.7807764 a.u.) and λ = 2.5 (E = 4.2624689). Fig. 1

shows the convergence of energy as a function of the number of basis states.

Each basis state is selected by comparing 250 random parameter sets and

choosing the one that minimizes the energy. The DECG converges up to 3-4

digits on a basis of 100 states. The ECG converges much slower, and for the

stronger coupling (λ = 2.5) the energy is 0.9 a.u. above the exact value. A

larger basis dimension and more parameter optimizations would improve the

14
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E

Figure 1: Energy convergence as a function of basis dimension. ∆E is the
difference of the calculated energy and the exact energy. The lower two curves
are DECG calculations for λ = 1 a.u. (solid line), λ = 2.5 a.u. (dashed line);
the upper two curves are ECG calculations for λ = 1 a.u. (solid line), λ = 2.5
a.u. (dashed line).

results, but this already shows the general tendency and the superiority of the

DECG basis. Note, that the ECG would also converge to the exact result after

more optimization and much larger basis size.

3.2 2D H2 Molecule

The next example is a 2D H2 molecule with nuclei fixed at distance r. In this

case, it is assumed that there is only one relevant photon mode with frequency

ω = 1.5 a.u. There are infinitely many photons with energy nℏω (n = 0, 1, 2, ...),

but only the lowest photon states are coupled to the electronic part. Eq. (15)

is solved using the lowest n = 0, .., 5 photon spaces. The energy of a 2D H atom

without coupling to the photons is E = −2 a.u. When the photons are coupled

with λ =1.5 a.u. the energy increases to E = −1.71 a.u. The increase is largely

due to the dipole self-energy part in Eq. (15). The probability amplitudes of
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Figure 2: Energy of the 2D H2 molecule as a function of the proton-proton
distance.

the spatial wave function in photon spaces are 0.988 (n = 0), 0.01 (n = 1)

and 0.001 n = 2. These are small probabilities however there is a relatively

strong coupling between the electrons and light. This is evident by the change

in energy between the coupled and uncoupled systems. The fact that the energy

without coupling (solely due to the dipole self-interaction and the Coulomb) is

-1.67 a.u. By increasing the coupling further the energy of the H2 increases (e.g.

for λ = 3, E=-1.15 a.u.) suggests a strong coupling strength.

Fig. 2 shows the energy of the H2 molecule with and without coupling to

light.

Without coupling to light, the 2D H2 molecule has a lowest energy at around

r=0.35 a.u. When the H2 molecule is coupled to light the energy minimum

slightly shifts toward shorter distances. Overall the shape of the three curves is

very similar. There is an evident shift upwards as λ increases, which is due to

the dipole self-interaction term pushing them higher. The binding energies at
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the minimum energy point increase with λ: Eb=1.34 a.u. (λ = 0), Eb = 1.47

(λ = 1.5 a.u.), and Eb = 1.68 a.u. (λ = 3 a.u.), where Eb is the difference of

the energy of the molecule and two times the energy of the H atom.

3.3 H− ion

The final example is the H− ion with finite (mH = 1836.1515 a.u.) and infinite

nuclear mass in 3D. Fig. 3 shows the energy of the H atom and H− ion as a

function of λ.

In the figure, we see H− dissociating for strong λ in the finite mass case

but remaining stable in the infinite mass case. In the finite mass case, the

dissociation happens around λ = 0.08 a.u., at that point, the energy of the

H plus an electron system becomes lower than that on H− (the energy of the

electron coupled to light is calculated by solving Eq. (15) for the electron).

This example shows the importance of explicit treatment of the system as a

three-body system because the light strongly couples to the proton as well.

0 0.2 0.4 0.6 0.8 1

λ

-0.4

-0.2

0

0.2

0.4

E

H
-

H
∞

H
-

∞

H

Figure 3: Energy of the 3D H− ion as a function of λ (ω = 0.8 a.u.
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4 Summary

In this work, I have introduced a new variant of ECG basis functions that is

suitable for problems involving non-spherical potentials. All necessary matrix

elements have been calculated and numerically tested. One issue that arises

is that the Coulomb interaction is more complicated than in the conventional

ECG case due to the nonspherical integrals that appear in the interaction part

Possible solutions to this is are to expand the Coulomb potential in Gaussians

allowing for the integration to become analytical, or to use numerical integra-

tion.

In this work, it has been shown that using the DECG basis the coupled light-

matter equations can be efficiently solved even in cases where the coupling and

by extension the dipole self-interaction term is large. This development opens

up the possibility to calculate light-matter coupled few-body systems with high

accuracy in cavity QED systems.

This approach may be applicable in other cases where there exists a non-

spherical potential e.g. calculation of atoms and molecules in magnetic fields.

5 Appendix

5.1 Overlap matrix

The following sections are based on our paper3. Additional appendices and

more detailed information can be found there. The overlap matrix is given by

⟨Ψi|Ψj⟩ =

∫
exp

{
−1

2
r⃗Ar⃗ + r⃗s⃗

}
dr⃗, (32)

18



where A and s⃗ are defined as

A = Ai + Aj s⃗ = s⃗ i + s⃗ j , (33)

and can be calculated using Eq. (56) in Appendix 5.5:

⟨Ψi|Ψj⟩ =
(2π)3N/2

(detA)1/2
exp

{
1

2
s⃗A−1s⃗

}
. (34)

5.2 Kinetic energy

I will express the kinetic energy operator as

T = p⃗Λp⃗, (35)

where the momentum operator is given by

pi = −iℏ
∂

∂ri
(i = 1, ..., 3N). (36)

For a system of particles with masses m1, ...,mN , Λ is a block diagonal matrix

Λ =


Λx 0 0

0 Λy 0

0 0 Λz

 , (37)

where the matrix elements of the block diagonal matrix are given by

Λα
ij =

1

2mi
δij , (38)

for systems where the external potential fixes the center of the system (e.g.

electrons in a harmonic oscillator potential, or electrons in an atom where the
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mass of the nucleus is taken to be infinity). Otherwise. the center of mass

motion of the system needs to be removed using

Λα
ij =

1

2mi
δij −

1

2M
, (39)

where M = m1 +m2 + ...mN . In principle Λx, Λy and Λz can be different if the

masses of particles depend on the directions.

Taking the derivative on the right-hand side

∂

∂ri
exp

{
−1

2
r⃗Aj r⃗ + r⃗s⃗

}
=
(
−(Aj r⃗)i + si

)
exp

{
−1

2
r⃗Aj r⃗ + r⃗s⃗

}
. (40)

Using analogous results on the left side, the overlap with the kinetic energy

operator can be given by

⟨Ψi|T |Ψj⟩ =

∫ (
r⃗(AiΛAj)r⃗ + s⃗ iΛs⃗ j − s⃗ iΛAj r⃗ −Air⃗Λs⃗ j

)
exp

{
−1

2
r⃗Ar⃗ + r⃗s⃗

}
dr⃗

=
(
Tr(AiΛAkA−1) − y⃗Λy⃗

)
⟨Ψi|Ψj⟩, (41)

where we used Eqs. (57) and (58) and define y⃗ as

y⃗ = AjA−1s⃗ i −AiA−1s⃗ j . (42)

5.3 Potential energy

Both Vc and U can be rewritten using a δ function,

Vc(r⃗i − r⃗j) =

∫
δ(w̃ij r⃗ − r⃗)Vc(r⃗)dr⃗, (43)
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where w̃ij r⃗ is a short-hand notation for
∑N

k=1 w
ij
k r⃗k and in this case we have

wij
k = δik − δjk. The corresponding formula for U is

U(r⃗i) =

∫
δ(w̃ir⃗ − r⃗)U(r⃗)dr⃗, (44)

with wi
k = δik. This form allows us to calculate the matrix elements for δ(w̃r⃗−r⃗)

for a general case without using the particular form of the potential, and to

calculate the matrix element of the potential by integration over r⃗. The δ

function can be represented by (dropping the superscript ij and i of w for

simplicity)

δ(w̃r⃗ − r⃗) =
1

(2π)3

∫
eik⃗(w̃r⃗−r⃗)dk⃗. (45)

We want to calculate the matrix elements

⟨Ψi|δ(w̃r⃗ − r⃗)|Ψj⟩ =
1

(2π)3

∫ ∫
eik⃗(w̃r⃗−r⃗) exp

{
−1

2
r⃗Ar⃗ + r⃗s⃗

}
dr⃗dk⃗. (46)

I do this by defining t⃗ as

t⃗ =


ik1w̃

ik2w̃

ik3w̃

+ s⃗. (47)

Using Eq. (56), the matrix element can be expressed as

⟨Ψi|δ(w̃r⃗ − r⃗)|Ψj⟩ =
1

(2π)3

(
(2π)3N

detA

) 1
2
∫

e−ik⃗r⃗exp
(1

2
t⃗A−1t⃗

)
dk⃗

=
1

(2π)3

(
(2π)3N

detA

) 1
2
∫

e−ik⃗r⃗exp
(
− 1

2
k⃗Bk⃗ +

1

2
s⃗A−1s⃗ + ik⃗⃗b

)
dk⃗,(48)
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where B is a 3 × 3 matrix given by

B =


B11 B12 B13

B12 B22 B23

B13 B23 B33

 , (49)

with the matrix elements of B defined as

Bij =

i·N∑
k=(i−1)·N+1

j·N∑
l=(j−1)·N+1

wk′A−1
kl wl′ , (50)

where k′ = k − (i − 1) · N and l′ = l − (j − 1) · N .And the three dimensional

vector b⃗ is defined as:

bi =

i·N∑
k=(i−1)·N+1

wk′
(
A−1s⃗

)
k
. (51)

The last integral can again be calculated using Eq. (56) and we have

⟨Ψi|δ(w̃r⃗ − r⃗)|Ψj⟩ =
1

(2π)3/2(detB)1/2
exp
(
− 1

2
(r⃗ − b⃗)B−1(r⃗ − b⃗)

)
⟨Ψi|Ψj⟩.

(52)

Integrating over r⃗ should give back the overlap, and using Eq. (56) one imme-

diately gets these results.
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5.4 Electron-photon coupling

By introducing q⃗ as

q⃗ =



λ1q1

λ1q2
...

λ1qN

λ2q1
...

λ2qN

λ3q1
...

λ3qN



, (53)

the relevant part of the coupling term can be written as

λ⃗ · D⃗ = q⃗r⃗, (54)

and the matrix elements of this term can be easily calculated using Eq. (57)

⟨Ψi|λ⃗ · D⃗|Ψj⟩ =

∫
λ⃗ · D⃗ exp

{
−1

2
r⃗Ar⃗ + r⃗s⃗

}
dr⃗

= q⃗A−1s⃗ ⟨Ψi|Ψj⟩. (55)

5.5 Generalized Gaussian Integrals∫
exp
(
− 1

2
r⃗Ar⃗ + s⃗r⃗

)
dr⃗ =

(
(2π)n

detA

) 1
2

exp
(1

2
s⃗A−1s⃗

)
, (56)

By differentiating both sides of the above equation with respect to the ith
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component of the vector s⃗, si, we obtain

∫
ri exp

(
− 1

2
r⃗Ar⃗ + s⃗r⃗

)
dr⃗ (57)

= (A−1s⃗)i

(
(2π)n

detA

) 1
2

exp
(1

2
s⃗A−1s⃗

)
.

Further differentiation with respect to s⃗j leads us to

∫
rirjexp

(
− 1

2
r⃗Ar⃗ + s⃗r⃗

)
dr⃗ =

(
(2π)n

detA

) 1
2

(58)

× exp
(1

2
s⃗A−1s⃗

){
(A−1)ij + (A−1s⃗)i(A

−1s⃗)j

}
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[28] Nicolas Hölsch, Maximilian Beyer, Edcel J. Salumbides, Kjeld S. E.

Eikema, Wim Ubachs, Christian Jungen, and Frédéric Merkt. Bench-

marking theory with an improved measurement of the ionization and dis-

sociation energies of h2. Phys. Rev. Lett., 122:103002, Mar 2019. doi:

10.1103/PhysRevLett.122.103002. URL https://link.aps.org/doi/10.

1103/PhysRevLett.122.103002.

[29] Chenhang Huang, Alexander Ahrens, Matthew Beutel, and Kalman Varga.

Two electrons in harmonic confinement coupled to light in a cavity, 2021.

28

http://scitation.aip.org/content/aip/journal/jcp/141/15/10.1063/1.4897634
http://scitation.aip.org/content/aip/journal/jcp/141/15/10.1063/1.4897634
https://doi.org/10.1038/s42254-018-0006-2
https://doi.org/10.1038/s42254-018-0006-2
https://link.aps.org/doi/10.1103/PhysRevLett.122.103002
https://link.aps.org/doi/10.1103/PhysRevLett.122.103002


[30] René Jestädt, Michael Ruggenthaler, Micael J. T. Oliveira, Angel Ru-

bio, and Heiko Appel. Light-matter interactions within the ehren-

fest–maxwell–pauli–kohn–sham framework: fundamentals, implementa-

tion, and nano-optical applications. Advances in Physics, 68(4):225–333,

2019. doi: 10.1080/00018732.2019.1695875.

[31] Jacek Kasprzak, Murielle Richard, S Kundermann, A Baas, P Jeambrun,

Jonathan Mark James Keeling, FM Marchetti, MH Szymańska, R André,
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PAD Gonçalves, N Asger Mortensen, Marco Polini, Justin CW Song,

Nuno MR Peres, and Frank HL Koppens. Quantum nanophotonics in

two-dimensional materials. Acs Photonics, 8(1):85–101, 2021.

[51] J M Richard. Stability of the hydrogen and hydrogenlike molecules.

Phys. Rev. A, 49:3573, 1994.

[52] Nicholas Rivera, Johannes Flick, and Prineha Narang. Variational theory

of nonrelativistic quantum electrodynamics. Phys. Rev. Lett., 122:193603,

May 2019. doi: 10.1103/PhysRevLett.122.193603. URL https://link.

aps.org/doi/10.1103/PhysRevLett.122.193603.

[53] Vasil Rokaj, Davis M Welakuh, Michael Ruggenthaler, and Angel Rubio.

Light–matter interaction in the long-wavelength limit: no ground-state

without dipole self-energy. Journal of Physics B: Atomic, Molecular and

Optical Physics, 51(3):034005, jan 2018. doi: 10.1088/1361-6455/aa9c99.

URL https://doi.org/10.1088/1361-6455/aa9c99.

[54] Vasil Rokaj, Michael Ruggenthaler, Florian G. Eich, and Angel Rubio. The

free electron gas in cavity quantum electrodynamics, 2021.

[55] Michael Ruggenthaler, Johannes Flick, Camilla Pellegrini, Heiko Appel,

Ilya V. Tokatly, and Angel Rubio. Quantum-electrodynamical density-

functional theory: Bridging quantum optics and electronic-structure the-

32

https://link.aps.org/doi/10.1103/PhysRevLett.122.103003
https://link.aps.org/doi/10.1103/PhysRevLett.122.103003
https://link.aps.org/doi/10.1103/PhysRevLett.122.193603
https://link.aps.org/doi/10.1103/PhysRevLett.122.193603
https://doi.org/10.1088/1361-6455/aa9c99


ory. Phys. Rev. A, 90:012508, Jul 2014. doi: 10.1103/PhysRevA.90.012508.

URL https://link.aps.org/doi/10.1103/PhysRevA.90.012508.

[56] Michael Ruggenthaler, Nicolas Tancogne-Dejean, Johannes Flick, Heiko

Appel, and Angel Rubio. From a quantum-electrodynamical light–matter

description to novel spectroscopies. Nature Reviews Chemistry, 2(3):0118,

Mar 2018. ISSN 2397-3358. doi: 10.1038/s41570-018-0118. URL https:

//doi.org/10.1038/s41570-018-0118.

[57] G G Ryzhikh and J Mitroy. Positronic lithium, an electronically stable

Li-e+ ground state. Phys. Rev. Lett., 79:4124, 1997.

[58] Johannes Schachenmayer, Claudiu Genes, Edoardo Tignone, and Guido

Pupillo. Cavity-enhanced transport of excitons. Phys. Rev. Lett., 114:

196403, May 2015. doi: 10.1103/PhysRevLett.114.196403. URL https:

//link.aps.org/doi/10.1103/PhysRevLett.114.196403.

[59] Christian Schafer, Michael Ruggenthaler, and Angel Rubio. Ab initio non-

relativistic quantum electrodynamics: Bridging quantum chemistry and

quantum optics from weak to strong coupling. Phys. Rev. A, 98:043801,

Oct 2018. doi: 10.1103/PhysRevA.98.043801. URL https://link.aps.

org/doi/10.1103/PhysRevA.98.043801.
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