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CHAPTER 1

Introduction

1.1 Overview

Medical imaging is an essential clinical tool in diagnostic investigation and provides efficient visualization

of internal organs, bones, soft tissue and blood (50). With different imaging protocols and vendors, we are

allowed to visualize different contextual information from organs with different appearance in tissues/organs,

thus becoming more easily to classify patients’ conditions (18; 213). However, only qualitative visualization

can be provided from the images and perform analysis with our vision. It is limited to investigate the fine-

grained details in each specific organ region and adapt quantitative measurements without addition guidance.

To extract meainingful information from the imaging, multiple ways have been proposed with respect to the

corresponding anatomical regions, such as bounding box to search for potential lesion (167), pixel/voxel-wise

localization of organ regions (200; 125) and streamline analysis for white matter flows in brain region (20).

To adapt the fine-grain measurement of different organs, image segmentation is an essential medical task to

localize and capture the volumetric context of each organ by classifying each pixel/voxel into a corresponding

semantic value (e.g., 1,2,3) (125; 200; 257; 182; 121). However, the most naive way to obtain such semantic

segmentation mask is to annotate manually with our bared hands. Although the manual annotations are re-

garded as golden standard, such process requires significant amounts of time efforts and efforts for clinicians.

To reduce the manual efforts, different automated segmentation approaches including atlas-based methods

(216; 19) and machine learning approaches (125; 222), have been proposed to demonstrate the opportunity

of automatic segmentation in imaging domain.

Deep learning models have been widely explored for both computer vision and medical image analysis

, especially for medical image segmentation. Medical image segmentation can be divided into two perspec-

tives: 1) binary organ segmentation and 2) multi-organ segmentation. Binary organ segmentation is to assign

one-hot semantic value meaning to the image pixels/voxels, while multiple values are assigned to different

organs in the image. Meanwhile, it is vitally important to localize multiple organ of interests in pixel/voxel-

wise setting and further investigate the qualitative/quantitative measures within the organ regions. In general,

2D segmentation approaches take separated slices for learning slice-wise representation (32; 31; 257; 29),

while 3D segmentation approaches have also taken places to extract representations from a complete vol-

umetric scan (125; 141). Approach in different dimensionality has its corresponding advantages, such as

faster and low-cost memory in training for 2D approaches, extract spatial information between slices for 3D

1



approaches. Furthermore, with the introduction of conceptual theory in vision transformers (ViTs) (52), mul-

tiple transformer networks achieve state-of-the-art performance on several 3D medical imaging benchmarks

for semantic segmentation (253; 74; 73). The key contribution of vision transformer is to extract features with

large receptive field with limited inductive bias, while the computation of attention mechanism is quadratic

complexity with respect to the input resolution, especially for volumetric medical images. Therefore, hierar-

chical transformers such as swin transformer, further address the limitation in vanilla transformer design and

extend the encoding design with the prior knowledge from convolution neural network (CNN) to tackle the

high-resolution prediction task. However, the sliding window strategies for extracting attentional features are

still highly dependent on the defined resolution of the input patches. Meanwhile, the conceptual and engi-

neering idea of sliding window behaves similarly with the kernels in convolution. Therefore, an alternative

of revisiting convolution modules can be explored to simulate the capability of hierarchical transformers and

enhances the segmentation performance with efficiency.

Apart from the generic design of the neural network backbone, another important aspect in deep learning

model is to interpret and evaluate the effectiveness of the meaning of the learned feature in a trained model.

Current deep learning models are often denoted as ”black boxes“, which demonstrates the insufficient context

bringing out from the learned model in terms of mathematical derivation and the learned features. Although

a lot of studies have been proposed to enhance the transparency of the model, it is still challenging to enhance

the interpretability of the learned features, especially for multi-object semantic segmentation. It is easy to

explain the features learned for single organ segmentation, while the single learned features cannot separably

explain each organ in multi-organ segmentation tasks. With the advance of contrastive learning (33), a variant

of self-supervised learning that learns the meaningful representations by pulling similar representations to-

gether and pushing dissimilar representations away, it demonstrates feasibility to define feature embeddings

with semantic meanings introduced by ourselves. Another explorative direction can be focused on defining

an explainable feature space that benefits the robustness of multi-organ segmentation task by introducing

different meaningful context to classify embeddings.

With the enhanced quality of segmentation predictions from deep learning models, we then generate

multi-organ segmentation for large population imaging samples from research cohort. We observe that sub-

stantial variation in morphology of different organs are demonstrated across populations due to the variable

demographics (e.g., ages, sex, blood type). Although we know that the patients’ condition is healthy from

demographics, there is no standardized biomarkers in imaging level to define the healthy condition in organs.

Therefore, a reference template is needed to generalize the anatomical information across population with

preserved contrast characteristics (due to the variability of imaging protocols).

In this thesis, We aim to innovate explainable learning strategies to optimize deep neural network for
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Figure 1.1: To visualize different anatomical regions with meaningful context, several imaging modalities
have been widely leverage in current clinical scenario: 1) X-ray, 2) computed tomography (CT), 3) magnetic
resonance imaging (MRI) and 4) positron emission tomography (PET).

medical image segmentation and generate organ-specific atlases to enhance the corresponding anatomical

understanding. Novel approaches are used to increase the explainability of representations extracted and the

computed gradient in deep learning models in theory. With the enhanced robustness of segmentation model

across multi-modality imaging, we further leverage the predicted segmentation labels to generate anatomical

reference template to provide a clearer organ-specific understanding across large-scale populations.

1.2 Medical Imaging

To visualize the interior of our human body, medical imaging is an essential platform that provides the fine-

grained details of each organ/tissue structure. Common imaging modalities in current clinical scenario can

be divided into multiple perspectives, such as 1) X-ray (207), 2) computed tomography (CT) (18), 3) mag-

netic resonance imaging (MRI) (213) and 4) positron emission tomography (159) (as shown in Figure 1.1).

Within the imaging modalities, substantial differences are also demonstrated across organs/tissues within the

perspectives of MRI by leveraging different protocols, as shown in Figure 1.2. Moreover, contrast enhance-

ment is performed in the imaging procedures by injecting contrast agent (e.g., barium sulfate, iodine) into

patient’s body before imaging. Its goal is to enhance the anatomical details between neighboring organs with

respect to the retaining time of contrast agent in blood flow (80). Such great variety of contextual informa-

tion further allow clinicians to enhance the confidence level of classifying patient’s conditions with imaging

biomarkers. Five different contrast phases are typically defined in the imaging cycle: 1) non-contrast phase,

2) early arterial phase, 3) late arterial phase, 4) portal venous phase and 5) delayed phase (as shown in Figure

1.3) (46). The variation of the contrast intensity benefits to capture and specify the fine-grained details in

each organ. For instance, both early and late arterial phases abdominal CT can demonstrate a higher intensity

contrast for aorta and the internal substructures of kidneys (201), while portal venous phase CT demonstrates

additional contrast respect to hepatic vein and liver (69). By contrast, non-contrast abdominal CT is also
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Figure 1.2: With different imaging protocols, substantial intensity differences are demonstrated across organ-
s/tissues, even within the perspective of MRI modality.

widely and conveniently available for broadly usage in clinical scenarios (162; 191). It is routinely acquired

as a diagnostic modality for detecting renal stone or intramural hematoma in aorta organ (59; 193).

1.3 Medical Image Segmentation

With the enhancement of contrast intensity towards different organs, we can localize each organ of interest

with the corresponding anatomical and structural details. However, it is challenging to automatically extract

the contextual information of organs such as volumetric and morphological measures, because there is no ad-

ditional pixel/voxel-wise guidance to extract the organ regions specifically. To generate accurate pixel/voxel-

wise localization for each organ, image segmentation is performed to generate a one-hot mapping that bound

the region of interest for localization (169), as shown in Figure 1.4. It is vitally important to have an accu-

rate organ segmentation mapping to extract meaningful context for further investigation, such as verifying

patients’ condition in liver after performing liver transplant. However, the most naive way to generate seg-

mentation is to manually annotate the region of interests, which consumes significant amount of time and

efforts for clinicians. To reduce time of efforts, mathematical algorithms and machine learning technique are

proposed to enhance the automatic segmentation with robustness (39; 182; 45; 150). Popular medical image

segmentation tasks have been performed across scale, such as multi-organ segmentation in abdominal region

(125; 198), liver and tumor segmentation (139; 15), brain and tumor segmentation (172; 75; 103; 230; 218; 73)
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Figure 1.3: By the time of injecting contrast agent for contrast enhancement, the contrast intensity of particu-
lar organs are enhanced, which provides feasibility to localize clear anatomical context between neighboring
organs.

and cell segmentation (149; 13). Early approaches in medical image segmentation depends on the edge de-

tection (239), template matching techniques (116), statistical shape model (166) and active contours (194).

To enhance the robustness and computation efficiency for segmentation, machine learning techniques are

following with the metric-based approaches and introduce to extract hierarchical feature representations of

images and improve the segmentation performance. With the introduction of machine learning concepts, the

perspectives of automatic segmentation are further divided into two categories: 1) semantic segmentation

(30; 31; 133), and instance segmentation (28; 231). Semantic segmentation is a pixel/voxel-level classifi-

cation that assigns a corresponding category to each pixel / voxel in an image, while instance segmentation

further distinguishes multiple instances on the basis of specific categories.

1.4 Organ Segmentation with Machine Learning

In each region of interest in the human body, complicated spatial relationship exists between neighboring

organs and tissue structures. It is challenging to explore the feasibility of organ localization without addition

guidance. Therefore, an accurate segmentation algorithm is demanded to extract contextual information

across scales and further perform population-wise clinical measurements with the segmentation guidance.

Deep learning, one of the evolutional machine learning techniques, have contributed significant efforts in

generating automatic segmentation throughout 2020s, especially for medical imaging (120). The simple

insights behind deep learning is to generate a network to model human neural system and the basic unit of

transferring the information throughout the network is a neuron. In biology, each neuron receives signals with
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Figure 1.4: Medical image segmentation consists of two main perspectives: 1) binary segmentation for single
organs and 2) multi-organ segmentation with multiple semantic values (e.g. 0, 1, 2, 3, 4).

multiple inputs from dendrites and computes an output signal through axon. The output signals are eventually

branched out and connects to the dendrites in other neurons through synapse. For computational model, we

model the input signal as x0, which interact multiplicatively with other dendrites throughout a synapse w0.

The synapse portion is assumed to be learnable and influence the learning process with iterative optimization.

In practical perspective, deep learning is to learn distinctive features from a population of samples (regard

as training data) and perform predictions to unseen samples (regard as testing data). In summary, we further

divide the directions of current deep learning approaches into four perspectives:

1. Supervised Learning: leverages imaging samples with good quality labels for training

2. Unsupervised Learning: leverages imaging samples only without using labels for training

3. Semi-Supervised Learning: leverages both labeled and unlabeled imaging samples for training

4. Self-Supervised Learning: learns meaningful features from unlabeled imaging samples and further

refine features for specific downstream task

Briefly, supervised learning is a direct learning strategy that depends on the nature of the label given. For

instance, one-hot labels (e.g. 0, 1, 2) are given to learn for classification task, while one-hot pixel/voxel

mappings are used to provide learning guidance for segmentation task. For unsupervised learning, it mainly

focused on feature clustering to perform classification and training generative model to synthesize images

in different domains. Both supervised and unsupervised strategies are demonstrated to be task-oriented,

while both semi-supervised and self-supervised learning are the ways that tend to enhance the robustness and
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generalizability of the model. Before we deep more further into the current state-of-the-art training strategies,

we first look into the backbone of deep learning and the way to adapt volumetric medical images for different

downstream tasks.

1.4.1 Convolutional Neural Network (CNN) Approaches

To train a task-specific model, we need to extract meaningful features from images. However, the most naive

approach is to transform the complete image into a 1-D feature vector (225), which contains a lot of contex-

tual information that may not relate to the task and needs high computational power for training. Therefore,

convolutional neural network is proposed to leverage convolution kernels that slide along the complete image

and extract a static value for each kernel-bounded region as summarized features with scalable efficiency

(120). A simple convolutional network consists of a sequence of layers such as convolutional layer, pool-

ing layer, normalization layer, activation layer and fully-connected layer. Different combinations of network

design have demonstrated to be beneficial to the downstream tasks. A lot of well-known network designs

have been proposed for specific tasks (e.g. ReseNet (79), DenseNet for classification (94), U-Net for seg-

mentation (177)). However, for medical imaging, it is reconstructed in a volumetric setting, which contains

rich spatial context between organs. An extension of 3D convolution is leveraged to perform in medical

task, especially for semantic segmentation (39). The volumetric images are downsampled to low resolution

and directly input into a 3D network for training. However, such downsampling approach may introduce

fuzzy interpolation operations, which contribute to the loss of anatomical details across organs. To preserve

the high-resolution context in images, patch-wise and coarse-to-fine approaches are followed to propose and

adapt features across scales (e.g., local to global) (182; 259; 200; 125). Throughout the advancement of

CNNs, we observe that small convolution kernel sizes have been continued to leverage throughout different

well-known block designs along 2020s. Such small kernel sizes only contribute the learning convergence

in locality and have limited Effective Receptive Field (ERF) to extract spatial features from volumes with

different Field Of Views (FOVs) (79; 112; 94). However, if we increase the kernel sizes in convolutional

layers, both the model parameters and computational efficiency significantly enhance, which is challenging

to be practical usage (196). In order to tackle this limitation alternatively, the concepts of transformer in

NLP domain are introduced into the visual cognitive task and leverage pure attention schemes to enhance the

spatial feature correspondence across imaging samples.

1.4.2 Vision Transformer Approaches

As transformer networks provide different computational advantages in NLP tasks, Dosovitskiy et al. pro-

posed vision transformer (ViT), an extenion of the NLP transformer, which transform sequences of image
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Figure 1.5: With the introduction of vision transformer, volumetric images are divided into volumetric patches
in specific dimensions (e.g., 16×16×16) and are projected as a one-dimensional feature vector with a linear
layer for input. The vision transformer modules are then leveraged to be the encoder backbone following
with a CNN decoder via skip connections for volumetric segmentation.

patches into sequences of linear embeddings and perform attentional mechanism to extract correspondence

between embeddings, instead of the convolutional operations from CNNs (52). More specifically, as shown in

Figure 1.5, an input images is split into a set of image patches with a dimension of 16×16, and also termed as

visual tokens. The visual tokens are then projected into a set of encoded vectors with fixed dimensions using a

Multi-Layer Perceptron (MLP). Meanwhile, a position encoding vector is concatenated with the encoded vec-

tors to preserve the positional context during the attention mechanism. The attention map are computed via

a multi-head attention network and further generate an output prediction with a MLP two-layer classification

network. The vision transformer claimed to effectively model the long-range relationships and dependencies

between visual elements with limited inductive biases in the visual domain. In medical domain, the growth

of interest in adapting transformer network is also demonstrated (188; 78; 138). The lack of image-specific

inductive biases and the scaling behaviour in ViTs claim to be enhanced by pre-training and bring signif-

icant improvement with downstream classification tasks. However, a vanilla ViT faces challenges when it

is applied to other visual cognitive tasks such as object detection and semantic segmentation. The biggest

challenge in ViT is the design of computing global attention, which has a quadratic complexity with respect

to the input image sizes, especially for high-resolution medical images with dense features across scales.

Therefore, hierarchical transformers are proposed to bridge these gaps by introducing the sliding window

strategy (e.g. attention within local windows) into ViTs termed Swin Transformer, allowing to behave simi-

larly with the convolution operation in CNNs (145; 21; 104; 73; 253), as shown in Figure 1.6. The integration

of Swin Transformer into medical domain with different designs (e.g., SwinUNETR, nnFormer) achieves the

state-of-the-art performances on multiple 3D volumetric datasets benchmark in semantic segmentation. The

key contribution of such significant performance enhancement is divided into two perspectives: 1) scaling

behavior with large model parameters and 2) global self-attention with large receptive fields.

8



Figure 1.6: To tackle the limitation of vanilla vision transformer block in high-resolution task, hierarchi-
cal transformer is proposed to adapt window-based Multi-head Self-Attention (MSA) and shifted-window
Multi-head Self-Attention to extract fine-grained representations, introducing the prior knowledge from the
convolution kernels into transformer backbone.

1.4.3 Challenges & Exploration

From the milestone from CNNs to ViTs, we observe that the intrinsic structure of transformer still needs

the integration of prior knowledge from CNNs to enhance both the robustness and generalizability in high-

resolution prediction. Also, the computation of attention with shifted window strategies are unscalable and

pretraining may need to perform for enhancing model stability due to limited inductive biases. With the

summarized key contribution in ViTs, the behavior of self-attention scheme with large receptive fields can be

demonstrated with convolution operation using large kernels, while multiple challenges existed to enhance

the feasibility of adapting large kernel convolution efficiently. An efficient way to perform large kernel

convolution is highly demanded to compute scalable operations with inductive biases. With the revisit of

depthwise convolution, it enables to reduce the model parameters significantly by computing convolution

along only each channels independently, instead of traditional convolution across all channels to mix features.

Meanwhile, it allows to extend current convolution block designs to adapt large kernel size (e.g., 31× 31

(48), 51×51 (143)) as a generic backbone in natural imaging domain. However, limited findings have been

proposed to explore the feasibility of leveraging large kernel convolution in volumetric downstream tasks in

medical domain.

Another perspective that has not been explored is the maximum kernel size for volumetric convolutions

without trading off computational efficiency. From previous works in natural imaging domain, the kernel

size of the convolution have been expanded to a size, which is approximately equal to an image patch.

Meanwhile, the model performance becomes saturated and even degraded until the kernel is scaling up to

a particular size. Such phenomenon is due to the limited learning convergence in locality and the concept

of structural re-parameterization is introduced into CNNs (91; 49). Combining the weights from different

branches with small kernels, can enhance the convergence of locality learning and improve the downstream
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task performance with a more widely distributed effective receptive field. However, the parallel branches

may hinder the training efficiency and it is challenging to optimize extreme large kernel convolution without

addition learning guidance.

1.5 Explainable Machine Learning in Medical Domain

Apart from looking into the generic design of the neural network backbone to adapt robust organ segmenta-

tion, another important aspect in the medical domain is to explain the ongoing process in the neural network

to the clinical teams. Modern machine learning models are considered as ”black boxes”, referring to the high

difficulty in understanding how they arrive at their predictions. The ”black box” characteristics may lead to a

problematic consequences of the significant errors or bias of the model. Instead of only improving the model

performance across different imaging cohorts, we need to additionally justify the question of ”Why the model

works”, especially in the medical domain. Explainable machine learning, also known as interpretable ma-

chine learning, is proposed to investigate the ability of the machine learning models to provide justifications

for its predictions. Significant efforts have been put to widely adopt and standardize approaches for model

interpretability. In summary, two major perspectives can be divided: 1) perceptive interpretability and 2) the-

oretical interpretability (204). The perceptive interpretability is to consider the generated predictions that can

be immediately interpretable (e.g., Class Activation Maps (CAM) (252), Local Interpretable Model-agnostic

Explanations (LIME) (173; 153) and Layer-wise Relevance Propagation (LRP) (118)), while the theoretical

interpretability is to consider the generated intermediates with more than one layer of cognitive processing

and provide the corresponding meanings with mathematical guidance.

In medical image segmentation perspectives, efforts have been shown to investigate the direction of adapt-

ing saliency or uncertainty mapping into the segmentation network and explain the uncertain boundary pre-

diction from the model. However, limited works have been proposed to enhance the interpretability of the

learned representations during the model training process, especially for multi-organ segmentation. When we

train a model for single organ segmentation, we can direct hypothesize that the learned feature is correspond-

ing to the segmented targets, as shown in Figure 1,7. However, to train a multi-organ segmentation model,

still only one feature mapping is generated for each input and concretely summarize the representations for

multiple organs. Such single high-level feature is challenging to directly correspond the learned feature to

each specific organ and limits to explain each targeted organ semantic meaning in the feature level.

1.5.1 Defining Latent Space with Contrastive Learning

In natural image domain, contrastive learning, a variant of self-supervised learning strategy, is proposed

to pre-identify the feature into different clusters by evaluating the similarities and difference between data
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Figure 1.7: For multi-organ segmentation task, we can easily evaluate the robustness of the model with
different evaluation metrics. However, it is challenging to interpret the fine-grain details of the semantic
meanings in feature level. As each input image are then encoded as a high dimensional feature map only, it is
difficult to explain the correspondence of the feature map and the organ semantics in high dimensional latent
space.

samples (33). The goal of contrastive learning is to learn the distinctive representations that capture the

underlying structure between samples and use the same set of samples for downstream tasks (e.g., image

classification, semantic segmentation) (237; 219). Meanwhile, we further observe that the semantic meanings

can be further introduced in the contrastive learning process and classify the cluster with different semantics,

thus to enhance the feasibility of tackling the limitation in feature interpretability of multi-organ segmentation

network (23). The key theoretical concepts consists of two aspects: 1) pulling a target image feature and

a similar sample feature together as a ”positive pair”, and 2) pushing the target image feature apart from

numerous dissimilar samples’ features as ”negative pairs”. Each feature output from the encoder network

are projected into L1-normalized space and evaluate pairwise cosine similarity within each minibatch. One

common approach to contrastive learning is to adapt Siamese network architecture, where two copies of the

same network are leveraged as the pairwise features of each sample. The pairwise features are then evaluated

with different combination of similarity metrics (e.g., cosine similarity, mutual information) to determine

whether the pair is positive or negative (70; 35). Another well-known genric backbone for contrastive learning

is to adapt data augmentation techniques to generate multiple views from the same sample. The trained model

aims to maximize the similarity between views of the same sample, while minimizing the similarity between

views of different samples (33; 108). In summary, with the key advantages of contrastive learning, it provides

feasibility to create a latent space with multiple semantic meanings to enhance the interpretability of the

learned feature without any label guidance.
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1.5.2 Contrastive Learning for Medical Image Segmentation

The initial work efforts have been put to leverage contrastive learning to enhance ”image-wise” downstream

task, such as image classification (33; 108; 206). Several works start to extend the ability of contrastive

learning into pixel-wise setting for enhancing high-resolution prediction task. After we generate the feature

representations from the encoder network, the concepts of ”image-wise” contrastive learning is to perform

average pooling and flatten the feature representation into 1-D vector, while the idea of ”pixel-wise” con-

trastive learning is to compare each feature pixel with dense projection across sample pairs. Furthermore,

to enhance the correspondence between features in each semantic class, ground-truth labels are leveraged to

sample the feature pixel in the latent space. The feature pixels in the same class are classified as ”positive

pairs”, while the feature pixels in different classes are defined as ”negative pairs” (219; 90; 248). However,

such feature sampling strategies need additional guidance from the ground-truth label. Also, each feature

pixel may consist of the semantic meanings with multiple organs, as the convolution summarize the region

context as a static value according to the convolutional kernel sizes. With the limited availability of ground-

truth pixel-wise labels, it is challenging to adapt accurate correspondence between pixel-wise features and

organ semantic meanings and enhance the feature interpretability for further clinical analysis.

1.5.3 Challenges

With the introduction of the contrastive learning concept, it brings out multiple advantages to enhance the sta-

bility and interpretability of deep learning models, such as stable performance with limited samples training,

classifying representations into semantic interpretable clusters. However, the proposed strategies are usually

focused on image-level representations and classify the image representations into initial semantic clusters.

Furthermore, the input image for contrastive learning is in object-centric setting, which demonstrates that

only one object exists within the image (e.g., airplane, car, dog, cat). Therefore, the models can easily extract

the object-semantic representation and classify into corresponding clusters. We hypothesize that the con-

ceptual idea of contrastive learning can further extend the capability of sub-image-level feature encoding, to

advance pixel-level segmentation tasks. However, some gaps need to be filled to achieve the latter goal, es-

pecially for multi-organ segmentation tasks in medical imaging. Volumetric imaging (e.g., CT, MRI) usually

exists multiple objects in different anatomical regions. For instance, spleen, liver, kidney and stomach may

exist in the same axial slice of an abdominal CT scan. Multiple semantic meanings (e.g., different organs)

are difficult to align with the single feature extracted from a complete image.

Apart from adapting multiple semantic meanings, when we further observe the fine-grained details across

different organs in medical imaging, we found that the contrast intensity are significantly varied in large

range of level due to the contrast enhancement procedures with different protocols. For instance, the contrast
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appearance of liver is significantly different between portal venous and non-contrast phases, while the contrast

appearance of gall bladder is similar even thought they are in different phases. With the inspiration of previous

work in contrastive learning, image-wise labels (e.g., 1: spleen, 2: right kidney) have been introduced to

assign the organ semantic meanings with the learned feature clusters. However, such fix labels are limited to

represent the dynamic changes of the contrast intensity within organ ROIs. It is challenging to extract such

dynamic knowledge to control the contrastive learning process without additional guidance.

1.6 Generalizing Organ Context across Population

After we robustly trained the segmentation model with interpretability, we can then perform inference to

the unseen domain samples and generate segmentation mapping to localize each organ ROIs. However, we

observe that the quantitative measures of each organ segmentation varies significantly across population.

With the substantial variation in demographics, such as ages, height, weight...etc, the volumetric morphology

of each organ significant differ across patients. Such large range of difference is limited to provide a clear

understanding of defining biomarkers in conditions. For instance, we may raise a question: What is the

biomarker of kidney organs in healthy condition? It is challenging to standardize the population context of

specific organs across multiple volumetric scans with different imaging protocols.

1.6.1 Anatomical Atlas Reference

To standardize the population context of organ ROIs, we usually define an anatomical atlas template to align

and generalize the anatomical details of each subject scans. An anatomical atlas is a standardize represen-

tation of specific anatomical structure and leveraged as a common spatial framework for comparing and

analyzing different imaging data, such as CT and MRI. Such standardized template is typically created by

combining the images to common coordinate system using mathematical transformations. After the forward

transformations of each subject scans to the atlas template, we compute an average representation of the

anatomy and demonstrate the distinctive contrast appearance across all scans. Meanwhile, the anatomical

atlas typically consists of the voxel-wise label of the corresponding anatomy, such as brain tissues (60; 189),

heart and major blood vessels (152). Using the atlas template can enable researchers and clinicians to ana-

lyze different imaging data in a standardized and consistent manner, without having fluctuated performance

to identify the specific organ ROIs like deep learning models.

1.7 Contributed Work

Significant efforts have been directed toward integrating machine learning into visual recognition tasks in

medical domain, especially for medical image segmentation. Image segmentation provides pixel/voxel-wise
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localization of each organ/tissue target and allows researchers and clinicians to perform quantitative measures

for investigating biomarkers. However, annotating volumetric labels is time-consuming. There is limited in-

terpretability of features across learned current models. Furthermore, the volumetric morphology of organ

of interests significantly varies with the substantial variability of demographics across population. Such vari-

ability limits the feasibility of generalizing population-wise features on specific organs to further investigate

the corresponding biomarkers in conditions. In this dissertation, we first investigate training strategies to

enhance the robustness in deep learning models across multi-modality imaging. We were inspired by the

current progress of vision transformers and revisited the capabilities of large kernel convolution. We model

the spatial frequency of the human visual behavior and derive a theoretical re-parameterization strategy to

enhance both the learning capability and explainability of large kernel convolution for volumetric segmen-

tation (Contribution 1). With the basis of current network designs, we investigate self-supervised learning

strategy to dynamically adapt multi-contrast imaging and integrate multiple semantic meanings to enhance

the feature explainabilty, thus enhancing model generalizability with interpretable features (Contribution 2).

With the generated segmentation across large population cohort, we create multiple atlas templates to gener-

alize the population characteristics across organs, and thus to facilitate the progress of revealing distinctive

organ-specific biomarkers and align multi-scale findings from cellular level to organ level (Contribution 3).

1.7.1 Contribution 1: Explore Deep Learning Optimization for Medical Image Segmentation

1. We proposed a coarse-to-fine hierarchical network to integrate the coarse segmentation output from

low-resolution model as prior knowledge and refine the segmentation prediction within the coarse

prior-bounded region.

2. We further extended the coarse-to-fine hierarchical network with vision transformer as the generic

backbone and employ teacher-student structure to adapt cross-domain samples with unsupervised train-

ing.

3. We proposed a semi-supervised learning strategy to adapt large population of unlabeled samples and

leverage a segmentation quality score prediction as an unsupervised loss function to backpropagate for

unlabeled samples.

4. We explore the key contribution from vision transformer and proposed a large kernel convolution neu-

ral network to modernize the capabilities of hierarchical transformer for volumetric segmentation effi-

ciently.

5. We further explore the feasibility of adapting convolution with large kernel sizes (e.g., 21× 21× 21)

for medical image segmentation. We simulate the spatial frequency in the human visual behavior as
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a Bayesian prior knowledge to enhance the learning convergence for large kernels, thus to efficiently

enhance the robustness with large receptive field for volumetric segmentation.

1.7.2 Contribution 2: Enhance Feature Interpretability for Medical Segmentation Network

1. We proposed a semantic-aware contrastive learning framework that integrates semantic meanings and

classifies the learned feature into clusters with multiple semantic meanings, thus to enhance the feature

interpretability in segmentation network.

2. Instead of using multiple fixed labels (e.g., 0,1,2) to assign the semantic meanings into the learned fea-

tures, we control the cosine distance separation between pairwise features with a correlation weighting

computed by the contrast level differences across organs. Such dynamic characteristic further leverages

as a prior weighting to enhance the model generalizability across multi-contrast CT.

1.7.3 Contribution 3: Generalize Population-wise Biomarkers with Organ-specific Atlas

1. We constructed multi-contrast atlas template to generalize both the contrast characteristic and the vari-

able volumetric morphology of kidney organs in healthy conditions across population.

2. We further extended to generate atlas template with arterial phase CT and generalized the fine-grained

details of the kidney substructure organs.

3. We constructed unbiased eye atlas template with both metric-based and deep-learning based hierarchi-

cal registration to adapt the variability of eye organs across population.
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CHAPTER 2

RAP-Net: Coarse-To-Fine Multi-Organ Segmentation With Single Random Anatomical Prior

2.1 Overview

1 Performing coarse-to-fine abdominal multi-organ segmentation facilitates extraction of high-resolution

segmentation minimizing the loss of spatial contextual information. However, current coarse-to-refine ap-

proaches require a significant number of models to perform single organ segmentation. We propose a coarse-

to-fine pipeline RAP-Net, which starts from the extraction of the global prior context of multiple organs from

3D volumes using a low-resolution coarse network, followed by a fine phase that uses a single refined model

to segment all abdominal organs instead of multiple organ corresponding models. We combine the anatomi-

cal prior with corresponding extracted patches to preserve the anatomical locations and boundary information

for performing high-resolution segmentation across all organs in a single model. To train and evaluate our

method, a clinical research cohort consisting of 100 patient volumes with 13 organs well-annotated is used.

We tested our algorithms with 4-fold cross-validation and computed the Dice score for evaluating the seg-

mentation performance of the 13 organs. Our proposed method using single auto-context outperforms the

state-of-the-art on 13 models with an average Dice score 84.58% versus 81.69% (p < 0.0001).

2.2 Introduction

Creating a robust and accurate pipeline for volumetric abdominal organ segmentation in computed tomogra-

phy (CT) domain is challenging. Deep neural networks have been used for performing sematic segmentation

in medical imaging perspective with 2D images or 3D patches, such as DeepLab (30), UNet (177) and

VoxResNet (27). Current major challenges of abdominal organ segmentation are: 1) weak intensity bound-

aries between abdominal organs, 2) large morphological variation of different organs, and 3) high resolution

of 3D volumes.

To overcome the limitation of using 2D CNNs, 3D volumes are sliced in axial, coronal and sagittal

directions and used for coarse organ detection and perform segmentation with the detection output (256).

Both 2D and 3D-patch based learning methods target the single organ approaches. Roth et al. proposed

coarse-to-fine pipeline with scaling input volumes at different levels using multi-scale pyramid networks and

computed refined prediction at the last selective level for abdominal multi-organ segmentation (182). Zhu

et. al. added expanded bounding box into a coarse-to-fine pipeline to abstract the ROI of small targets and

1Published at: Lee, Ho Hin, et al. “Rap-net: Coarse-to-fine multi-organ segmentation with single random anatomical prior.” 2021
IEEE 18th International Symposium on Biomedical Imaging (ISBI). IEEE, 2021. (125)
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Figure 2.1: Overview of the pipeline combining the global and local level representations. The proposed
hierarchical coarse-to-fine multi-organ segmentation framework consists of two main stages: 1) coarse global
anatomical multi-organ prior extraction and 2) a refined single classifier with local anatomical random prior.
The coarse- and refined-model are end-to-end optimized separately. The predicted segmentation patches of
each single organ are finally fused as multi-channel volume and converted to multi-organ segmentation mask
with majority voting.

improve robustness for refining single organ segmentation (259). However, numerous organ-corresponding

models are needed to be trained to obtain refine segmentation performance. Significant effort is allocated

for tuning hyperparameters, and there is a lack of flexibility to combine contextual information across scales

due to high complexity of training strategies. Backpropagating multiple loss functions for all organs to

obtain a single model is not possible due to the missing organ regions in the extracted patches. Therefore, a

single high-resolution refine model framework integrating global and local contextual information to refine

segmentation is needed.

To address the challenges, we introduce a 3D hierarchical coarse-to-fine framework RAP-Net, performing

multi-organ segmentation at refined level with single model. Briefly, we initially down-sampled the volumet-

ric images and used a traditional approach to generate a coarse segmentation for each organ. The coarse

segmentation then acts as an anatomical prior for each organ and extracted corresponding organ patches us-

ing the prior information. We transformed the corresponding organ coarse segmentation to binary anatomical

prior and integrated as the second channel input with the image patches. The refined model is then trained

with all binary labeled organ patches end-to-end. Such training strategies help the refined model encode the

variability of shape and local intensity across all organs and limit the segmentation region with the anatomical

prior, generating a robust and accurate performance for multi-organ segmentation.

2.3 Materials and Methods

Our work aims to create a single model adapting high-resolution multi-organ context across global and

local levels. As shown in Figure 2.1, the backbone of the hierarchical approach is based on the state-
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of-the-art (200), which consists of 13 refined organ models separately capturing the local representation

of each corresponding labeled organs. We propose a refined organ-voxel classifier that maintain the abil-

ity of classifying the morphological variations and abstracting the local contrast characteristics across all

organs. By utilizing the anatomical prior information extracted from all organs, the extracted local rep-

resentation from the single patch-wise multi-organ segmentation model integrates all organs’ local inten-

sity feature and the global morphological information, to generalize the structural variability and elimi-

nate the possibility of over-segmenting towards neighboring organs. The proposed code is available at

https://github.com/MASILab/coarse to fine prior seg.

2.3.1 Data

A clinical research cohort with 100 patient volumes in portal venous phase was retrieved in de-identified

form under the approval of the local IRB (institutional review board). The range of slice numbers across all

volumes in the cohort is between 42 and 149 with a dimension of 512× 512. The resolution for x, y and

z-axis are in the range of 0.5−0.9 mm, 0.5−0.9 mm and 2.5−7.0 mm, respectively. We first randomly split

the dataset into 80 volumes as the training and validation set, and the other 20 volumes as the testing dataset.

Each volumetric scan is manually annotated with 13 classes of multiple abdominal organs including spleen,

right and left kidneys, gall bladder, esophagus, liver, stomach, aorta, inferior vena cava (IVC), portal splenic

vein (PSV), pancreas, right and left adrenal glands.

We initially down-sampled each volume to a resolution of 2 × 2 × 6 mm and pad/crop to a constant

dimension of 168 × 168 × 64 as the input for the coarse stage segmentation model. The predicted multi-

organ segmentation mask of each volume is then converted back to its original corresponding resolution and

extracts volumetric patches with the coarse segmented mask in dimension of 128×128×48 as the input for

the refined stage segmentation model. The single refined model generates a 3D binary mask, corresponding

to the organs extracted from the anatomical prior.

2.3.2 Global Anatomical Multi-Organ Prior Extraction

We adapt a volume-based 3D UNet architecture as the initial stage of RAP-Net and provide supervisory end-

to-end optimization to achieve a coarse level multi-organ segmentation (39). The modified network consists

of 8 encoders with convolutional kernel size of 3× 3× 3, batch normalization layers, and 10 decoders with

deconvolutional kernel size of 2×2×2. Skip connections are used to integrate and capture the small variant

representations from encoder blocks. ReLU activation units are used in both encoder and decoder blocks.

The global representations can then be abstracted among all organs with the integration of high-level features

from encoder to decoder. For multiple classes of abdominal organs A, we define the output of the final layer
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from 3D UNet as d0 ∈ R((C−1)×S×H×W ) , where H, W, S and C are the number of height, width, slices and

the channel number of the predicted multi-organ segmentation. A softmax activation is used to compute

the probability map of the predicted segmentation p(A)= softmax(d0) for each voxel. Each value of p(A) is

extracted and compared with the similarity with the ground truth multi-organ label with multi-source Dice

loss (MSDL).

MSDL =− 2
A

∑
A
a=0 w∑

M
i=1∑

N
j=1Si jVi j +φ

∑
A
a=0 w∑

M
i=1∑
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a=0 w∑

M
i=1∑
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j=1Vi j +φ

, (2.1)

where A is the number of organ anatomies, w represents the variance between labels set properties. S and V

provides the segmentation probability and the intensity of voxel belongs to the classes of organs respectively.

A function φ is created to compute the correlation of the prediction and voxel value.

2.3.3 Single Classifier with Local Anatomical Random Priors

To capture the local variation in feature representation, 50 volumetric patches are extracted randomly accord-

ing to the corresponding anatomical prior extracted from the coarse model, to ensure the overlapping region

covering the complete volume of organ. The extracted patches include neighboring organ voxels apart from

the main organ and lead to the adverse effect of segmenting main organ in corresponding patches. Here, we

integrate the global anatomical prior with the volumetric patches as two channels input and input all prior-

integrated organ patches for end-to-end training. We adapt the 3D UNet model architecture with the same

network configuration of the coarse segmentation model. However, we modified the number of classes label

in patches. Only the corresponding organ patch label is extracted as binary mask using anatomical organ

priors as the label input to the refine model. We define the output of the final layer from 3D UNet model as

d1 ∈ R(2×S×H×W ) , where H, W, S and 2 are the number of height, width, slices and the number of channels.

Training as single model framework provides an opportunity to adapt significant variation of the mor-

phological and contrastive characteristics from large organs to small organs. Large numbers of organ-

corresponding patches for training increases the generalizability of the model to segment all organs with

prior information. As binary labels are used for all organs, the shape variation from small to large organs are

also adapted to the feature representation for model to encode. With the integration of morphological and in-

tensity variation characteristics across organs, the abstracted representations increase the localization ability

of model. The integration of anatomical prior preserves the global anatomical location and the boundaries of

specific organs in abdominal regions, while the random prior patches capture the large variability of shape

and voxel intensities in the local regions, generating connective linkage between the voxel intensity vari-

ability and the morphological characteristics to stabilize the segmentation performance with the integrated

representations from all organs.
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Table 2.1: Dice score comparison of the testing cohort between coarse model, Roth et. al. (182), coarse
+ 13 refine models (state-of-the-art), Zhu et. al. (259) and our proposed model. Our proposed pipeline
outperformed the other three coarse-to-fine methods with an average Dice of 84.58% (p¡0.0001, Wilcoxon
signed-rank test).

Methods Spleen R. Kid L. Kid Gall. Eso. Liver Stom. Aorta IVC PSV Panc. RAG LAG Avg

Coarse only 0.921 0.828 0.894 0.695 0.670 0.935 0.783 0.885 0.814 0.627 0.690 0.604 0.615 0.770
Roth et al. () 0.926 0.884 0.889 0.531 0.724 0.953 0.819 0.884 0.823 0.687 0.720 0.664 0.693 0.784
Tang et al. () 0.939 0.900 0.943 0.763 0.712 0.952 0.822 0.897 0.828 0.710 0.745 0.646 0.754 0.817
Zhu et al. () 0.961 0.928 0.932 0.693 0.772 0.964 0.849 0.913 0.837 0.698 0.762 0.684 0.721 0.824

RAP-Net (Ours) 0.965 0.920 0.945 0.793 0.783 0.960 0.833 0.916 0.856 0.762 0.766 0.741 0.746 0.846

Single channel Dice loss is used as the loss function for optimizing the binary segmentation for organ

patches. The predicted segmentation for each patch is a binary mask corresponding to the specific organ. All

binary masks from each organ patch are fused to generate a 13 channel multi-organ segmentation mask with

majority voting.

2.3.4 Implementation Details

We performed 4-fold cross-validation with our labeled clinical cohorts to ensure both coarse and refine level

model can capture the anatomical information of each organs. In total, 80 volumes of the clinical research

cohorts are used for training and validation. 80 volumes are randomly shuffled and split to 4 groups of

combinations with 60 volumes for training and 20 volumes for validation. The optimized model is chosen

with the best validation performance for segmentation across all folds. The testing cohort is the BTCV

MICCAI 2015 Challenge testing dataset with 20 volumes. The batch size was set to 1 for coarse volume-

based model, while it was set to 2 for refine patch-based model. Adam was used as the optimizer for both

stages end-to-end training. We first trained the coarse segmentation model with 100 epochs with learning rate

of 0.0001 and choose the model with the lowest validation loss. For the single refine model, we directly input

39000 patches and trained the model for 5 epochs with learning rate of 0.0001. To evaluate the segmentation

performance of both models, Dice score is used as the evaluation metric and compute a quantitative measure

of the overlapping similarity between the prediction and the ground truth label. Subject volumes without gall

bladder are eliminated in calculating the quantitative measures of gall bladder organ only.

2.4 Results & Discussion

Table 2.1 shows the quantitative comparison of the segmentation performance with Roth et. al., the state-of-

the-art method, Zhu et. al. and our proposed model. The average Dice coefficient of all organ segmentation

is increased from 81.69% to 84.58% and the standard deviation of Dice decreased from an average of 13.0%

to 11.5% comparing to the state-of-the-art. RAP-Net demonstrated a better segmentation performance than
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Figure 2.2: The qualitative representation of the multi-organ segmentation result with coarse level model,
coarse (C) and 13 refine organ-specific (R) models, and coarse and 1 single refine model.

Zhu’s method in 9 of 13 organs. The anatomical prior information provided a localization impact for improv-

ing the segmentation result. The single model encodes the variation across all organs with all organ patches

directly training, while the 13 models only encode with the corresponding organ patches, the combination of

intensity and morphology feature boost up the performance in the single model.

Figure 2.2 further demonstrated the confidence level of the quantitative result with qualitative representa-

tions. The segmentation result computed from coarse model can provide approximate anatomy localization

information and the refine model can well adapt the organ regions for refining segmentation. The 13 organ

corresponding models is well adapted with the anatomical information of the corresponding organ from the

prior extracted in the coarse stage and abstracted the local intensity feature of each organ to refine the single

target organ segmentation with the corresponding organ binary label. However, they only capture the cor-

responding morphological variation of the single target organ and learn the specific contrast characteristics

within the prior preserved region, computing segmentations separately without anatomical linkage between
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organs. Over-segmenting the neighboring organs still existed due to the similarity of neighboring organ voxel

intensity. After we trained as a single model, the neighboring organ boundaries are substantially identified,

as it encoded all organs’ variation of the morphological changes in anatomical prior. The single refine frame-

work provides an opportunity to control the refine segmentation in specific organ locations integrating with

other organ localization information.

2.5 Conclusion

The proposed coarse-to-fine framework allows a single deep learning model to encode the integration of mor-

phological and contrastive characteristics with multiple abdominal organs. Further studies will be performed

by inputting multi-organ priors instead of one single corresponding organ prior, as other channels. The mor-

phological linkage between organs can be evaluated in the future and innovate stratifying approach according

to the anatomical characteristics between abdominal organs.
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CHAPTER 3

Pseudo-Label Guided Multi-Contrast Generalization for Non-Contrast Organ-Aware Segmentation

3.1 Overview

1Non-contrast computed tomography (NCCT) is commonly acquired for assessment of general abdominal

pain or suspected renal stones, trauma evaluation, and many other indications. However, the absence of

contrast limits the ability of current deep learning (DL) models to distinguish organ in-between boundaries.

Furthermore, current DL models are well pre-trained with public contrast-enhanced CT (CECT). Domain

shift is introduced with NCCT due to the significant variation of contrast, thus demonstrates a decremental

performance in organ segmentation. In this paper, we propose a novel unsupervised approach that leverages

pairwise contrast-enhanced CT (CECT) context to compute non-contrast segmentation without ground-truth

label. Unlike generative adversarial approaches, we compute a refine probabilistic mapping with the pairwise

CECT to provide accurate anatomical correspondence, instead of generating fake anatomical context. Addi-

tionally, we further augment the intensity correlations in “organ-specific” settings and enhance the sensitivity

in-between organ-aware boundaries. We validate our approach on multi-organ segmentation with paired non-

contrast & contrast-enhanced CT scans (n=56) using five- fold cross-validation. Full external validations are

performed on an independent non-contrast cohort (n=29) for aorta segmentation. Compared with current

abdominal organs segmentation state-of-the-art in fully supervised setting, our proposed pipeline achieves a

significantly higher Dice by 3.98% (internal multi-organ annotated, p < 0.01), and 8.00% (external aorta an-

notated, p< 0.01) for abdominal organs segmentation. The code and pretrained models are publicly available

at https://github.com/MASILab/ContrastMix.

3.2 Introduction

Contrast-enhanced computed tomography (CECT) is a routine imaging modality to enhance the conspicuity

of tissues of interest (80). Volumetric scans with variable contrast are reconstructed due to the injection of

contrast agents and the retaining time of contrast agents in the blood. Specifically, CECT demonstrates a

higher intensity contrast for several abdominal organs (e.g., aorta, liver, spleen, kidney) with better visibility.

It further allows to map tissue permeability across anatomies (e.g. blood vessels), which could not be typically

seen using regular non-contrast CT (NCCT) (in Figure 3.1) (223). Currently, significant efforts have been

demonstrated to leverage deep learning (DL) models for abdominal organ segmentation on CECT (130;

1In submission at: Lee, Ho Hin, et al. “Pseudo-Label Guided Multi-Contrast Generalization for Non-Contrast Organ-Aware Seg-
mentation.”, 2023 IEEE Tranaction of Biomedical Engineering, 2023. (128)
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Figure 3.1: In multi-contrast phase CT, the contrast intensity varies according to the time of contrast agent
retaining in the blood vessels. Different levels of contrast variation are demonstrated across organs. The
robustness of model pretrained with CECT is limited to adapt the anatomical details in non-contrast phases.

125; 200). By contrast, relatively few prior studies have been proposed for abdominal organ segmentation

on NCCT, especially those who boundaries are difficult to distinguish from the nearby tissues (e.g. aorta).

Furthermore, the abdominal NCCT is more widely and conveniently available compared with CECT. For

example, NCCT is broadly used and routinely acquired as a diagnostic modality for detecting renal stone or

intramural hematoma in aorta (162; 62). Therefore, it is appealing to develop robust DL-based approaches and

generate refine segmentation on NCCT in the absence of contrast between neighboring organs. However, a

decrement of performance in NCCT scans is demonstrated by leveraging DL models that trained with CECT.

This phenomenon is well-known as the limited generalizability of transferring DL models across different

domains (14; 68).

In the natural imaging domain, the domain shift may contribute to different factors such as illumination,

pose or image quality, which attribute to the degradation of model performance. However, such distribution

shift is comparatively different than the modalities shift in medical imaging. The domain shift in medical

imaging can be further classified into two main aspects: 1) contrast intensity and shape morphology (107;

56). By leveraging different protocols for image reconstruction, significant variations in intensity may exist

across multiple CT scans. Previous works have been proposed to tackle the intensity shift into two main

directions: 1) unsupervised domain adaptation (UDA) (63) and 2) multi-source domain generalization (MDG)

approaches (158). Adversarial generative models, one of variants in the UDA approaches, are proposed to
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Figure 3.2: Overview of the proposed framework: A. Minimize anatomical shift across domains: Intra-
subject registration is performed to minimize the anatomical variations between organs. We localize organ
information with transformer-based network to adapt global correspondence of contrast intensity in each
organ. B. Generalize contrast variation across domains: We leverage the contrast-enhanced prior context
as teacher guidance to mix with distilled non-contrast context, thus to enhance the local boundary information
in each organ.

perform image translation from the source domain to the target domain (97; 26). However, imbalanced

training data exists between domains, which may lead to a significant loss of anatomical details and lack of

stability in transferring fine-grained context in organ-level. It is also challenging to deploy the generative

model in clinical practice due to its instability in adapting unseen domain samples. For MDG approaches,

domain-invariant features such as shape topology are proposed to extract for better adaptation to unseen

domain datasets (142). However, the anatomical context is not originally aligned in a well-defined spatial

reference. It is challenging to provide dense correspondence of each independent organ across domains.

With the above limitations to the current state-of-the-art (SOTA) approaches, we aim to have a segmentation

framework, which can 1) minimize the loss of anatomical context, 2) generalize the contrast variation

across domains; and 3) learn the dense correspondence between organ anatomies across domains.

In this work, we present a novel 3D anatomical-aware learning framework ContrastMix, to perform

robust abdominal organ segmentation on NCCT scans (target domain) with CECT scans (source domain)

in unsupervised setting. The backbone of the segmentation method is inspired by RAP-Net (125), which

provides high flexibility to promote robust 3D abdominal multi-organ segmentation using single hierarchical

network architecture. We further leverage pairwise CECT-NCCT samples to adapt the significant shifts in

both contrast intensity and organ morphology. Specifically, intra-subject registration is applied to multi- min-

imize the morphological shift between multi-contrast scans. Meanwhile, organ-specific volumetric patches
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are extracted from coarse attention maps computed from CECT-trained models as a spatial prior. We addition-

ally leverage a source domain teacher network to generate refine probability mappings for soft supervision.

For target domain, we perform knowledge distillation to sharpen the self-predicted non-contrast context and

reduce the uncertainty in the boundary region during the training process. Furthermore, a beta-distributed

weighting parameter is sampled randomly to mix both the contrast (image) and morphological (probability

prior) variation from both domains to adapt the subtle boundary information with non-contrast characteristics.

The experimental results demonstrated that ContrastMix outperforms the state-of-the-art (SOTA) supervised

baselines with consistent improvements across internal and external testing cohorts. Our contributions are

summarized with four-folds:

• We propose an unsupervised learning approach that leverage the pairwise contrast-enhanced domain

context as pseudo supervision for refine non-contrast organ segmentation.

• We propose a knowledge distillation technique to sharpen the certainty of self-predicted non-contrast

boundary and integrate the refined domain-invariant mapping from teacher network to preserve organ

morphology.

• We propose a local mixing technique that efficiently adapts the diverse contrast appearance and enriches

the boundary information of each organ across domains.

• We evaluate ContrastMix with two separate non-contrast clinical cohorts from various imaging scan-

ners and protocols, and demonstrate consistent improvements comparing with current hierarchical and

transformer-based state-of-the-art approaches.

3.3 Related Works

Medical Image Segmentation: Previous efforts have tackled organ segmentation in contrast-enhanced CT

with significant usage of deep learning. A naive approach of aggregating target domain data is to directly

train a deep network model with ground-truth label and has been validated with various regions of CT in

the existing literature (40; 157). However, the supervised strategies require a large a number of high-quality

ground truth labels and the inaccuracy of the boundary information still exists between neighboring anatom-

ical structures. Meanwhile, volumetric images have to be downsampled to fit into deep neural networks for

training due to the limited GPU memory (39; 182). To minimize the loss of anatomical context, patch-based

approaches are proposed to adapt the high-resolution context for segmentation (99). Huo et al. proposed

patch-based methods for whole-brain segmentation (98). However, the patch-based approaches only adapt

the local representation and are limited in adapting the global spatial information in complete images. There-

fore, hierarchical systems are proposed to adapt feature representation across scales. Roth et al. proposed
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a coarse-to-fine method that roughly defines the local region to extract representation for refined segmen-

tation (179). Roth et al. further extended the coarse-to-fine process into a multi-scale pyramid network to

perform segmentation in high resolution (182). However, the performance is limited due to the inaccuracy

prediction on the bounding box with the low-level models. In addition, upsampling is needed to resample the

representation back to the original image resolution. Li et al. demonstrates a hybrid algorithm to integrate

the 2D slice representation from the first stage with the 3D volumetric context in the second stage (139).

Apart from adapting 2D information with 3D representation, Zhu et al. proposed an effective sliding window

approach to extract the region of interest for refining segmentation (259). Additionally, an expanding bound-

ing box is used to allocate the target regions accurately and minimize the outliers (out of target regions) for

training models. To further integrate the global context for refining local segmentation, Tang et al. proposed

a high-resolution approach to adapt the target-corresponding coarse segmentation as the additional channel

with volumetric image patches for model training (200). However, Tang et al. and Zhu et al. targeted on the

single organ segmentation in the refine stage and are limited to adapt the morphological variability across the

organs in image patches. Lee et al. proposed RAP-Net to use the pseudo-binary organ prior as additional

guidance and adapt all organ patches in a single network architecture (125).

Domain Adaptation for Segmentation: On top of deep supervised training, several studies performed

domain adaptation techniques to find additional context for supervision from cross-modality data and com-

pute segmentation on the target domain. With the investigation of generative adversarial approaches, several

works proposed an image translation network (GAN-based) to align the contrast appearance from source to

target domain and use the generated image for further processing. Huo et al. adapts the domain invariant

feature across MRI to CT by using adversarial neural networks and further adds a segmentation module to

increase the stability of the adaptation framework (97). Dou et al. investigates the extraction of domain-

invariant features in feature space (55). In contrast, Chen et al. demonstrates a synergistic method to adapt

domain-invariant features in both feature and image space (26). Chandrashekar et al. synthesizes images

with contrast from the non-contrast domain and adjusts the contrast-characteristics for segmentation (25).

However, the dataset from different domains may be unbalanced. It is challenging to translate the contrast

characteristic of each organ interest into the target domain with stability. Apart from the generative approach,

the multi-modal approach is used to leverage the modality-shared knowledge using feature fusion strategies.

Valindia et al. (210) and Tulder et al. (211) demonstrate different parameter sharing strategies for unpaired

multi-organ segmentation, while Dou et al. introduce the modality-specific normalization to adapt cross-

modality unpaired context using knowledge distillation (54). Although promising progress is demonstrated,

the adaptation framework is limited in 2D networks with a high demand for sufficient ground truth labels for

volumetric image segmentation.
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3.4 Method

A complete overview of ContrastMix is demonstrated in Figure 3.2. Our goal is to perform robust abdom-

inal organs segmentation for non-contrast CT in an unsupervised setting. Let S = {(xs,ys)}|S|s=1 be the set

of source domain contrast-enhanced cohorts and T = {(xt ,yt)}|T |t=1 be the set of target domain non-contrast

cohort, where each xs,xt ∈ R(|Φ|) is the corresponding domain paired image and ys,yt ∈ R(|Φ| × |C|) is

the corresponding one-hot paired ground truth segmentation mask. Here, we denote Φ ∈ R2 ×Z as the

dimension of images voxels and C ∈ R as the number channels for the segmentation classes. ContrastMix

consists of three main hierarchical components: (1) intra-modal registration for generating anatomical con-

text, (2) knowledge distillation of self-predicted non-contrast context and (3) cross-domain intensity-prior

mixing with random weighting.

3.4.1 Intra-Modal Registration for Anatomical Prior Generation

As the organ anatomies are not well aligned in the initial state of both target and source domains, intra-

modal registration is performed to minimize the anatomical shift between domains in an intra-subject setting.

Here, we apply DEEDS (DEnsE Displacement Sampling) to perform hierarchical two-stage registration (84),

which consists of 1) DEEDS affine registration and 2) DEEDS deformable registration (Fixed image: non-

contrast domain, moving image: contrast-enhanced domain). The contrast correspondence between organs

can be well demonstrated and extracted pairwise anatomical context as voxel-to-voxel. A transformer-based

approach generates coarse segmentation with complete volumetric inputs from source domains (74). The

volumetric images are downsampled to a specific resolution with tri-linear interpolation. Consider the coarse

segmentation network Fc is parameterized with θc, the segmentation model aims to minimize as following:

arg
θc

min
y

LV (θc) (3.1)

Here, we denote LV as a combination of soft Dice loss and cross-entropy loss to train the low-resolution

segmentation model with multiple semantic targets. The corresponding definition is as follows:

LV = 1− 2
A

A

∑
a=1

∑
I
i=i yi, jhi, j

∑
I
i=1 y2

i, j +∑
I
i=1 h2

i, j
− 1

I

I

∑
i=1

J

∑
j=1

yi, jlog(hi, j) (3.2)

where A denotes as the number of anatomical class; I is the number of voxels and hi, j is the probability

output with softmax activation for class A at voxel i. The one-hot localization as, at ∈ 0, 1|Φ|×|C| provides

spatial prior to extract organ-wise patches for refined segmentation. We then leverage the aligned spatial

prior to randomly select voxels within each organ’s one-hot bounded regions. Multiple bounding boxes are
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placed as local views to extract volumetric patches with the voxels chosen as a center point. The extracted

image patches are concatenated with the prior context as the additional channel guidance and perform organs

segmentation refinement end-to-end in a single network architecture (125).

3.4.2 Self-Predicted Knowledge Distillation

Due to the non-contrast characteristic, it is challenging to identify subtle boundaries and may lead to over-

segmentation across neighboring organs. To tackle such limitations, we propose a simple knowledge distil-

lation module to enhance the probabilistic certainty in-between organ boundaries. We initially performed K

augmentation for both images and coarse prior x̂t,k, x̂s,k, ât,k, âs,k = Augment (xt , xs,as,at) , k ∈ (1, . . . ,K).

Both augmented image and coarse prior are then concatenated as multi-channel input mt,k, ms,k to preserve

the representation learned within the localized regions. For contrast-enhanced patches, a teacher model qs is

used to compute the probability map and provide sufficient boundary context to refine target segmentation.

For non-contrast patches, the student segmentation network F is trained from scratch and generates self-

predicted probability maps qt as self-supervision. We denote N as the number of the data augmentations and

compute the average prediction q̃t across all self-predicted probability maps within a minibatch via softmax

activation if N > 1:

q̃t =
1
K

K

∑
k=1

F(mt,k;θ) (3.3)

As the average prediction may extract inaccurate boundary information from the self-predicted context, we

introduce a knowledge distillation module to increase the sensitivity towards the target organs’ boundary. The

knowledge distillation function is defined as follows:

S(q̃,T )i =
q̃

1
T
i

∑
C
j=1 q̃

1
T
j

(3.4)

where q̃t is the average source domain probability map with C classes prediction over K augmentations with

knowledge distillation, and T is a temperature scalar to sharpen the soft prediction labels and amplify the

inter-class relationships in the knowledge distillation module.

3.4.3 Cross-Domain Intensity-Prior Mixing

Apart from the limitation of subtle boundary, the contrast variation between organ interests poses a great

challenge to the segmentation generalizability across domains. Here, we propose an intensity-prior mixing

module to random weight the contrast intensity and domain-invariant context (anatomical prior) of each do-

main, and sum it to generate an augmented version as the generalized representation. Specifically, we first

concatenate both domains input and generate a shuffle version of the concatenated input (m̃1, m̃2). Both
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concatenated images and pseudo probability mapping are multiplied with a random weighting h, which is

sampled from a beta distribution h ∼ Beta(α,β ) with hyperparameters α and β . The mix-and-match strategy

provides another form of data augmentation for the segmentation model F to behave linearly in-between the

cross-domain samples. Let p = F (x;θ) ∈ 0, 1|Φ|×|C| be the class probability map prediction from the seg-

mentation network. Both the contextual features extracted from both source and target domains are integrated

as (x′, p′) by:

x′ = h · (ms,mt)+(1−h) · (m̃1, m̃2)

p′ = h · (ps, pt)+(1−h) · (p̃m1 , p̃m2)

(3.5)

The context shuffling strategies increase the confidence level of predicting uncertain regions between the

neighboring organs with the integration of source domain representation. Additionally, we use p′ as soft

guidance to preserve the organ anatomies and benefit to identify the subtle boundary with non-contrast char-

acteristics. The weighted samples are then input into the segmentation network and computed to refine binary

segmentation as the final output.

3.4.4 Loss Functions

Assume that the non-contrast segmentation network F is parameterized by the set of weights θ , both target

and source domain patches are exploited jointly in the training process by minimizing the following loss

function:

Ltotal = LTs (θ ;S)+LTt (θ ;T )+λL unsup (θ ;T ) (3.6)

To preserve the similarity of the organ anatomy between pairwise images, teacher knowledge supervision

loss LTs(·) and LTt (·) are computed to constrain the segmentation network and generate predictions with a

similar anatomical structure to the pseudo prior generated with random weighting p′. Besides optimizing the

non-contrast target outputs, constraining the contrast-enhanced prediction can help adapt the shape invariant

representation in the source domain imaging. The pseudo prior supervised loss is defined as follows:

LTs (θ ;S) = ∑
xs∈S

ℓTs(F (xs;θ) , p′)

LTt (θ ;T ) = ∑
xt∈T

ℓTt (F (xt ;θ) , p′)
(3.7)

Both xs and xt are registered aligned in the preprocessing step and well adapt to the topological correspon-

dence across organs in the abdominal region. Dice loss is used for the segmentation loss functions ℓTs(·) and
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ℓTt (·). The dice loss function is defined as follows:

ℓTt

(
pt , p′

)
= ∑

pt∈T

(
1−2 · pt · p′

pt + p′

)
ℓTs

(
ps, p′

)
= ∑

ps∈S

(
1−2 · ps · p′

ps + p′

) (3.8)

Apart from the pseudo prior supervised loss, a soft unsupervised loss function is employed to further leverage

the self-predicted context and minimize the probability of over-segmentation. We introduce Lunsup to com-

bine the cross-entropy loss between ps and the teacher prediction Ms, and the square L2 loss on the final target

domain prediction and the self-supervised intermediate prediction Mt . The integration with square L2 loss re-

duces the sensitivity of incorrect prediction within the anatomical context bounded region. The unsupervised

loss is defined as follows:

Lunsup =− ∑
i∈Φ

∑
j∈C

Msi j log
(

psi j
)
+λt ∑

pt∈T
| |pt −Mt | |22 (3.9)

where λt is the weighting hyperparameter of the unsupervised loss computed with the self-predicted outputs.

Overall, the training objectives including LTs , LTt and Lunsup are optimized end-to-end concerning weight-

ing parameters θ . In the testing phase, only non-contrast target domain scans are input for inference and

obtain refined segmentation with a majority vote for joint label fusion.

3.5 Experiments

To evaluate the performance of the proposed multi-contrast domain adaptation pipeline, we perform internal

and external validations on two organ segmentation tasks with non-contrast phase CT samples. In the follow-

ing subsection, we describe more details about the datasets that we implement and our experimental setup.

More details of preprocessing, training and evaluation metric are demonstrated in the supplementary material

(U54DK120058).

3.5.1 Datasets

Contrast-Enhanced & Non-Contrast Pairwise Clinical Research Cohort (CENC):: We retrieved 56 de-

identified splenomegaly subjects with pairwise portal venous phase CT and non-contrast phase CT for internal

training and validation. Each contrast-enhanced and non-contrast volume is annotated and refined manually

with 12 classes of multiple abdominal organs. The ground truth labels of 12 multiple organs are provided

including 1) spleen, 2) right kidney, 3) left kidney, 4) gall bladder, 5) esophagus, 6) liver, 7) stomach, 8) aorta,

9) inferior vena cava (IVC), 10) portal splenic vein (PSV), 11) pancreas, and 12) right adrenal gland. The
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Table 3.1: Comparison of the fully-supervised, unsupervised, semi-supervised and partially supervised state-
of-the-art methods on the 2015 MICCAI BTCV challenge leaderboard. (We show 8 main organs Dice scores
due to limited space, ∗: fully-supervised approach, ⋆: semi-supervised approach, △: partially supervised
approach.)

Method Spleen R.Kid L.Kid Gall. Eso. Liver Aorta IVC Average Dice

3D U-Net (2016) 0.937 0.856 0.912 0.690 0.631 0.920 0.880 0.769 0.762
Roth et al. (2017) 0.940 0.870 0.923 0.701 0.674 0.925 0.891 0.772 0.770
Syn-Seg Net (2018) 0.941 0.868 0.910 0.654 0.652 0.927 0.895 0.780 0.764
Zhu et al. (2019) 0.950 0.880 0.918 0.710 0.643 0.932 0.890 0.802 0.781
Dou et al. (2020) 0.957 0.878 0.938 0.708 0.649 0.930 0.900 0.784 0.788
RAP-Net (2021) 0.954 0.874 0.928 0.701 0.653 0.928 0.897 0.790 0.784
UNETR (2021) 0.960 0.896 0.936 0.800 0.736 0.949 0.888 0.789 0.798

ContrastMix (Ours) 0.971 0.926 0.950 0.820 0.736 0.960 0.915 0.821 0.820*

Figure 3.3: ContrastMix outperforms the current SOTA approaches on multi-organ segmentation with CENC
dataset. (*:p < 0.01, with Wilcoxon signed-rank test)

axial-plane pixel dimension of each scan varies from 0.64 to 0.98 mm and the corresponding slice thickness

(z-axis) is constantly 3mm. Each CT volume consist 75 -116 slices with 512×512pixels.

Non-Contrast Healthy Clinical Research Cohort (NCH): We retrieved 29 de-identified subjects free from

splenomegaly with non-contrast phase CT for external validation of non-contrast segmentation performance.

Manual annotation of aorta volumes (the ground truth) was performed by expert image analysts under the

supervision of a clinical radiologist (MD) from Vanderbilt University Medical Center. These scans have

a large variance of the morphology for the aorta, with volumes varying from 39.3 cubic centimeters (cc)

to 96.9 cc. Each CT volume consists of 70 slices of 512 × 512 pixels and has a constant resolution of

0.68mm×0.68mm×3.00mm for axial plane and slice thickness across all subjects.
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3.5.2 Experimental Setup

We conducted experiments on two perspectives of analysis to evaluate the effectiveness of the cross-domain

adaptation pipeline on non-contrast organs segmentation. We performed multi-organ segmentation on the

non-contrast samples in CENC dataset as internal training and validation. The network is trained from scratch

with five-fold cross-validations using CENC dataset: training subjects: n=44; validation subjects: n=6; testing

subjects: n=6 (10% ratio of the samples are used for testing).

Moreover, we further evaluate the impact of the distillation module and the cross-domain mixing mod-

ule on the segmentation performance. We performed ablation studies to analyze the correspondence of the

hyperparameters T and (α,β ) towards the robustness of the segmentation pipeline. Apart from the internal

validation, we performed external testing with single organ aorta segmentation within NCH samples using

the well-trained model to demonstrate the confidence level on the generalization ability to adapt non-contrast

segmentation in a semi-supervised setting.

We compared our method against several volumetric supervised state-of-the-arts (SOTA). The fully-

supervision SOTA considers all training samples with ground-truth labeled. Our pipeline consists of training

the coarse volumetric segmentation network with source domain ground-truth labels; we consider our pro-

posed method as semi-supervised setting without using non-contrast ground-truth label usage. Moreover, we

compare our pipeline with fully supervised and multi-modal state-of-the-arts methods: 3D U-Net segmenta-

tion approach (39), Syn-Seg Net (97), multi-scale segmentation (181), pyramid scaling segmentation (259),

RAP-Net (125), segmentation with knowledge distillation (54), and transformer network for segmentation

(74). We constrain all testing inference with the same underlying network architecture, optimization proce-

dure, and data augmentations for a fair comparison. We finally compared the average Dice score and average

mean surface distance across organs segmentation and computed the statistical significance with Wilcoxon

signed-rank test.

3.6 Results

3.6.1 Internal Testing Performance

As shown in Figure 3.3 and Table 3.1, the performance increases consistently from a single U-Net architec-

ture network to a coarse-to-fine approach adapting the non-contrast scans. With the knowledge distillation

guidance (54), performance in particular organs such as the spleen and left kidney, improves by reducing

the possibility of over-segmentation across organ boundaries. However, Figure 3.3 illustrates that Dou et al.

predicts the organ boundaries with less confidence and limits to preserve the core anatomical context of the

organs only. UNETR outperforms all the supervised state-of-the-arts with an average Dice score of 0.798

across 12 organs. It further increases the encoder’s power to abstract the non-contrast representation context
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Figure 3.4: Qualitative Representations with different state-of-the-art strategies yields incremental improve-
ment in segmentation performance. ContrastMix results in smooth boundaries and accurate morphological
information for each organ in both internal and external inferences.

across organs. With the use of ContrastMix, the performance of the non-contrast segmentation significantly

boosts from the average Dice score of 0.798 to 0.820 across all organs. The performance on all organs

segmentation outperforms significantly to all state-of-the-art methods with statistical significance. The qual-

itative representation in Figure 3.4 further shows that ContrastMix refines organ details and preserves the

boundary information between neighboring organs.

3.6.2 External Testing Performance

Figure 3.5(a) & 3.5(b) and Table 3.2 present the quantitative performance of single organ aorta segmentation

with NCH. The trending of the segmentation performance is similar to that of multi-organ segmentation with

CENC. Interestingly, the knowledge distillation pipeline significant improves the performance of the state-

of-the-art hierarchical RAP-Net and achieves the minimal MSD across all state-of-the-arts. In addition to the

transformer network, UNETR shows improvement to a small extent in Dice score and limits to establish an

additional advantage in MSD. By using ContrastMix, the segmentation performance outperforms all state-

of-the-art approaches with 8.00% leverage in Dice score and 33.6% decrease in MSD. In the qualitative

perspective in Figure 3.4, the segmentation mask of the aorta organ is incrementally refined and ContrastMix

best preserves the anatomical and boundary details across all the state-of-the-art approaches.

3.6.3 Ablation Studies

We further evaluate the contribution of each key module adapting non-contrast segmentation in our model ar-

chitecture with the internal testing cohort. We optimize each module’s performance by adapting the variation

of hyperparameters 1) temperature scaling T and 2) the random weighting distribution (α,β ).
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Table 3.2: SOTA approaches comparison for aorta segmentation on external testing dataset NCH (*:p < 0.01,
with Wilcoxon signed-rank test)

Methods Average Dice Average MSD

3D U-Net (2016) 0.712 ± 0.111 4.14 ± 3.94
Roth et al. (2017) 0.735 ± 0.100 3.43 ± 3.45

Syn-Seg Net (2018) 0.721 ± 0.124 3.89 ± 2.57
Zhu et al. (2017) 0.746 ± 0.0978 3.01 ± 2.21
Dou et al. (2017) 0.770 ± 0.114 2.34 ± 1.88
RAP-Net (2020) 0.755 ± 0.0944 2.67 ± 1.74
UNETR (2021) 0.775 ± 0.0820 2.41 ± 1.84

ContrastMix (Ours) 0.837 ± 0.0662 1.60 ± 1.08

(a) (b) (c) (d)

Figure 3.5: ContrastMix outperforms the current SOTA approaches and demonstrates significant improve-
ment in both a) Dice score and b) mean surface distance in external datatsets. We further perform ablations
studies on the contribution of adaptation mdoules with hyperparmeters c) α & β for beta-distribution and d)
temperature.

Variation of hyperparameters T : From Figure 3.5(c), interestingly, constant robustness in performance

is demonstrated across the variability of T and the median Dice with T = 0.1 is slightly higher than the

others. However, the segmentation performance did not substantially vary and may be due to the limited data

augmentation performed for non-contrast patches in each batch (A = 1) with limited GPU memory.

Variation of weighting distribution (α,β :: We further investigate the influence of the hyperparameter h′

and adapt random intensity augmentation with different weighting on the contrasting context in the training

process. Figure 3.5(d) illustrates the effect on the segmentation performance of extracting h′ with multiple

shape parameters combination of a beta distribution. The segmentation performance with beta-distribution of

shape parameters α = 0.5 and β = 0.5, demonstrates significantly better generalizability across the dataset

compared with the extracted h′ from other beta-distribution. The model with such beta distribution adopts

the contrasting domain knowledge by heavily randomizing the weighting to either one of the domains. The

increase of sensitivity is demonstrated by encoding the variability across the domain shift and is beneficial in
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Table 3.3: Quantitative measures on ablation studies of multi-organ segmentation performance.

ContrastMix Spleen R.Kid L.Kid Gall. Eso. Liver Aorta IVC Average Dice

T=0.1 0.971 0.926 0.950 0.820 0.736 0.960 0.915 0.821 0.820
T=0.5 0.968 0.925 0.944 0.805 0.713 0.958 0.907 0.797 0.814
T=2.0 0.969 0.921 0.945 0.790 0.716 0.957 0.909 0.795 0.812
T=3.0 0.968 0.924 0.944 0.797 0.741 0.957 0.903 0.794 0.810

α=0.5, β=0.5 0.971 0.926 0.950 0.820 0.736 0.960 0.915 0.821 0.820
α=1.0, β=3.0 0.970 0.926 0.943 0.790 0.684 0.957 0.905 0.799 0.803
α=1.0, β=5.0 0.970 0.928 0.946 0.776 0.710 0.959 0.907 0.800 0.810
α=2.0, β=2.0 0.970 0.926 0.947 0.784 0.704 0.959 0.907 0.800 0.805
α=5.0, β=1.0 0.969 0.926 0.944 0.693 0.695 0.958 0.907 0.792 0.803

adapting the structural information of the abdominal organs.

3.7 Disucssions

In this work, we present a novel 3D anatomical-aware semi-supervised learning scheme ContrastMix to

adapt non-contrast imaging for robust abdominal organs segmentation. One of the challenges in non-contrast

segmentation is distinguishing the subtle boundary between organ interests. Unlike traditional generative

adversarial approaches, we use pairwise-registered contrast-enhanced imaging to generate refined boundary

context and provide morphological constraints as additional supervision. First, we provide a 3D coarse-

to-fine pipeline, which refines the morphological context in organ-aware regions. Next, we sharpen the

probabilistic context of the non-contrast boundary through the self-predicted prior and additionally provide

teacher context from contrast-enhanced domain as supervision. Finally, we randomly weight the organ-wise

contrast correlation between domains and adapt the generalized contrast context for robust segmentation.

Moreover, a large scale of experiments is performed, including the comparison between current learning state-

of-the-arts and ablation studies on the proposed innovations. We demonstrate that ContrastMix outperforms

all fully supervised approaches for multi-organ segmentation. Additionally, we deploy our trained model on

another unseen dataset for single organ segmentation and demonstrate the generalizability across different

cohorts. The ablation studies provide a better understanding of the impact on distilling self-predicted context

and the random intensity mixing strategy for non-contrast segmentation.

Although ContrastMix tackles the current challenges of non-contrast segmentation, limitations still exist

in the process of ContrastMix. One limitation is the dependency of the teacher prediction quality in the

source domain. As we leverage the morphological context in contrast-enhanced domain as supervision, low-

quality predictions of organ-aware regions may also be possible to compute and use as guidance. Inaccurate

prior information may thus be introduced into the training process. Another limitation is performance in an
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organ-centric setting with well aligned anatomical references. We aim to innovate a single stage pipeline with

end-to-end optimization as our future work.

3.8 Conclusion

In summary, the proposed ContrastMix network achieved consistent performance on organ segmentation

with non-contrast scans, compared with the current state-of-the-art approaches. The core innovations of

ContrastMix are to 1) sharpen the certainty of the non-contrast boundary context with knowledge distillation

and 2) adapt the contrast and morphology variations by generating samples with randomly weighted contrast

and prior knowledge across domains. As our proposed pipeline focuses on adapting the contrast variation

across domains, a potential extension can be focused on adapting significant domain shift of other imaging

modalities for organ segmentation in unsupervised setting.
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CHAPTER 4

Semi-Supervised Multi-Organ Segmentation through Quality Assurance Supervision

4.1 Overview

1Human in-the-loop quality assurance (QA) is typically performed after medical image segmentation to en-

sure that the systems are performing as intended, as well as identifying and excluding outliers. By performing

QA on large-scale, previously unlabeled testing data, categorical QA scores (e.g. “successful” versus “un-

successful”) can be generated. Unfortunately, the precious use of resources for human in-the-loop QA scores

are not typically reused in medical image machine learning, especially to train a deep neural network for

image segmentation. Herein, we perform a pilot study to investigate if the QA labels can be used as supple-

mentary supervision to augment the training process in a semi-supervised fashion. In this paper, we propose

a semi-supervised multi-organ segmentation deep neural network consisting of a traditional segmentation

model generator and a QA involved discriminator. An existing 3-D abdominal segmentation network is em-

ployed, while the pre-trained ResNet-18 network is used as discriminator. A large-scale dataset of 2027

volumes are used to train the generator, whose 2-D montage images and segmentation mask with QA scores

are used to train the discriminator. To generate the QA scores, the 2-D montage images were reviewed man-

ually and coded 0 (success), 1 (errors consistent with published performance), and 2 (gross failure). Then,

the ResNet-18 network was trained with 1623 montage images in equal distribution of all three code labels

and achieved an accuracy 94% for classification predictions with 404 montage images withheld for the test

cohort. To assess the performance of using the QA supervision, the discriminator was used as a loss function

in a multi-organ segmentation pipeline. The inclusion of QA-loss function boosted performance on the un-

labeled test dataset from 714 patients to 951 patients over the baseline model. Additionally, the number of

failures decreased from 606 (29.90%) to 402 (19.83%). The contributions of the proposed method are three-

fold: We show that (1) the QA scores can be used as a loss function to perform semi-supervised learning for

unlabeled data, (2) the well trained discriminator is learnt by QA score rather than traditional “true/false”,

and (3) the performance of multi-organ segmentation on unlabeled datasets can be fine-tuned with more ro-

bust and higher accuracy than the original baseline method. The use of QA-inspired loss functions represents

a promising area of future research and may permit tighter integration of supervised and semi-supervised

learning.

1Published at: Lee, Ho Hin, et al. “Semi-Supervised Multi-Organ Segmentation through Quality Assurance Supervision.”, Medical
Imaging 2020: Image Processing. Vol. 11313. SPIE, 2020. (130)
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Figure 4.1: The full pipeline of semi-supervised learning-based segmentation is divided into two main pro-
cesses: multi-organ segmentation and a quality discriminator module. All labeled and unlabeled data entered
a 3D U-Net to predict organ segmentation masks. Since Dice loss cannot be calculated from the unlabeled
datasets due to the lac of ground truth, 2D slice alignment montage images are formed instead and predict
segmentation quality score as the loss function. The quality scores backpropagated to the 3D U-Net model to
fine-tune the performance of segmentation on unlabeled datasets.

4.1.1 Introduction

The quality of medical image processing (e.g., segmentation) is affected by imaging quality, which can be

influenced by both hardware-related and human-related artifacts (16). The effectiveness and accuracy of

image processing algorithms play an essential role in the usefulness and quality of medical image processing

outcomes. To assess the image processing performance on a previously unseen dataset, quality assurance

(QA) is typically performed to ensure the accuracy of the results. QA is a rich area of study and broadly

consists of two main directions: subjective assessment, which is judged by human interaction, and objective

assessment, which is decided by mathematical algorithms (115). In medical image segmentation, human

involved QA is still the de facto standard process to decide if the segmentation results are acceptable for

the intended purposes. For instance, CT images with segmentation masks can be labeled with scores 0, 1

and 2 in a subjective manner and provide general information about the overlay image’s quality. This quality

score can be used to provide supplementary information in diagnosing abdominal organ disease via automatic

algorithms such as deep learning.

With the onset of deep learning, large datasets are needed for training deep learning models; extensive

engineering efforts are put into labelling and excluded outliers from large populations of medical images
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manually, especially CT images with low contrast (222). Manually annotating organs with human expertise is

preferred to ensure that the organs are labeled in the correct locations before used for training with supervised

and semi-supervised learning methods (222). However, manually performing annotations on medical images

is time-consuming. Also, predictive models are dependent on the quality of the labels, and therefore suffer

from outliers with low image quality. Image quality has become an important aspect to focus on and is shown

to have a great impact on deep learning model prediction. In order to enhance the accuracy and efficiency

of medical images analysis, previous research has been done for determining the image quality necessary to

extract valuable information in medical perspectives.

Previously, assessing image quality of cardiac magnetic resonance (MR) images was proposed to de-

tect the missing slice of the 3D MR images in cardiac scans and extract meaningful biomarkers from the

missing slice with the use of convolutional neural networks (242). The training dataset was extended with

mis-triggering artifacts, using different levels of corruption in image quality to enhance the effect of image

artifacts in training for data augmentation. On the other hand, an automated deep learning system has been

created which uses retinal image quality as a feature to provide accurate diagnosis of diabetic retinography

(240). Also, uncertain chest x-ray image quality was leveraged to perform disease classification and lesion

detection with deep Bayesian neural networks (236). Producing uncertain predictions on medical cases leads

to significant clinical value, while some of the cases need to be evaluated with physical exam or surgery to

confirm (240; 236). For medical image segmentation, an image-specific fine-tuning algorithm was proposed

to make the convolutional neural network model adaptive to specific testing images and increase the gener-

alizability of previously unseen data with the use of image quality (215). New directions offer the potential

to assess image quality to enhance the efficiency and accuracy of evaluating medical images. In recent years,

with the use of deep learning, networks have been proposed to extract deep features and perform diagnosis in

a robust manner, such as 3D U-net (39) and ResNet (79). These networks have shown consistent interest and

a great variety of usage in medical image segmentation (66; 57).

In this paper, we propose a semi-supervised learning method with a human-guided discriminator to de-

termine the generalized quality of CT image segmentation and fine-tune the segmentation accuracy with the

score prediction from the discriminator. The original 80 labeled 3D abdominal CT images along with the

2027 QA-only datasets were used for training the multi-organ segmentation model, along with the prediction

of segmentation labels in each training epoch overlaid with the corresponding input image. Each overlaid 3D

volume in the training phase was converted into a montage image and used as input into the discriminator

to predict the segmentation quality at each training epoch. The prediction score from the discriminator was

included in the loss and backpropagated to increase the model performance from QA- only data. 80 labeled

datasets and 2027 unlabeled datasets are used in training the multi-organ segmentation model. The 3D Dice
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Figure 4.2: Respective images show the segmentation quality coded with 0 (success), 1 (errors consistent
with published performance), and 2 (gross failure).

loss function is used for determining the difference between the predicted segmentation and the labels.

4.2 Methods

In this paper, we propose a semi-supervised learning method for multi-organ segmentation with a 3D U-net

and create a segmentation quality discriminator with ResNet-18 (79), which is presented in Figure 4.1.

4.2.1 Preprocessing

3D CT abdomen volumes are used as the raw datasets, and the volume part near the middle kidney was

chosen via body part regression algorithms. Each value from the body part regression results represented the

approximate location of the slice in the whole volume of 3D images. Slices with value near +12 are located

around the duodenum, while slices with value -12 are near the heart. The slices with value -6 to +6 are

extracted as a 3D volume and normalized to a resolution of 2×2×6 mm with dimensions of 168x168x64.

4.2.2 Network

Two independent networks are presented in Figure 4.1 that form the combined solution. For the multi-organ

segmentation, a 3D U-net is used to extract deep 3D features with the encoder in U-net. Another network,

ResNet18, is used as the discriminator to predict the segmentation quality score from score-labeled montage

images.

4.2.3 Segmentation Quality Discriminator

For unlabeled datasets, no ground truth masks were given for multi-channels to calculate the Dice similarity

coefficients. After the segmentation mask prediction from 3D U-net, the segmentation mask was overlaid
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Figure 4.3: Validation loss as a function of traiing epoch and epochs 198 model is chosen with the least MSE
error on the validation cohort.

with its original input image and decomposed into 2D slices; these slices were aligned into a single montage

image with the dimension 1344× 1344. The discriminator was trained to determine the general quality of

the segmentation predictions with the input of montage images. The input montages were downsampled

to 256× 256 for training to reduce the memory used. The discriminator obtained a high accuracy of 94%

on 407 labeled test images with a ResNet18 trained with 1620 score-labeled montage images. A quality

score was predicted and coded with 0 (success), 1 (errors consistent with published performance), and 2

(gross failure). After the model was trained, the discriminator model was frozen and put into the multi-organ

segmentation pipeline to predict quality scores for unlabeled datasets. The score acted as the loss function

for the multi-organ segmentation and was backpropagated from the frozen pre-trained network to fine-tune

the performance on the datasets without labels.

4.2.4 Loss Functions for Semi-Supervised Multi-Organ Segmentation

In the multi-organ segmentation pipeline, all labeled images and unlabeled images are input into the 3D U-

Net to generate color segmentation prediction masks for different organs. For labeled images, 3D Dice loss

was calculated for 12 organ channels, and all 12 anatomies were pushed through average Dice loss in the

backpropagation and optimization process. We calculated the Dice loss with batch size 1 and all inliers and

outliers were included to perform segmentation. The loss functions were:
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Figure 4.4: Significant increase in segmentation quality for unlabeled datasets is shown and reduce failure
rate. (*significant at p<0.0001)

Multi-Sourced Dice Loss (MSDL):
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where A is the number of anatomies, w represents the variance between labels set properties and P is the

segmentation mapping for various organs. ∈ ensures the stability of the loss function. Hence, ∈ was used in

computing the prediction and voxel value correlation. In the segmentation, 12 anatomies are adopted and the

Dice loss function was iteratively optimized using Adam optimization.

Mean Square Error Loss (MSEL):

MSEL =
∑

N
i=1(yi − yP

i )
2

n
(4.2)

For unlabeled data, the Dice loss function cannot be used due to the lack of ground truth segmentation

masks. Therefore, the human-guided discriminator is used as a loss function and predicts a score for image

segmentation quality. Montage images are created by slicing the 3D volume and aligning all 2D slices into

one single color image with the segmentation overlaid. MSE loss is used to calculate the difference between

the human-labeled score and the predicted score.
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4.3 Data and Experiments

4.3.1 Data and Platform

2107 total (both labeled and unlabeled) 3D abdomen CT images were used in the multi-organ segmentation

pipeline. The data was retrieved in de-identified form from ImageVU under IRB approval. The volume of

all datasets has dimensions of 168x168x64. 80 images from the datasets were manually labeled with all

12 anatomies. The remaining 2027 3D images were sliced and each of them was aligned as one single 2D

montage image, which was used for training and validation in the discriminator module. Before inputting

into the discriminator module, the montages are downsampled to 256 × 256 and overlaid with the mask

prediction at each epoch. All 2027 montages were shuffled, and 80% of the datasets were used for training

the discriminator, while another 20% of the montages were used for validation to assure the accuracy of the

ResNet18 in comparing with score labels manually reviewed. For multi-organ segmentation, 80% of the

original 3D volumes were randomly picked for training, and the remaining 20% were used for testing the

performance of the segmentation model on labeled and unlabeled datasets.

4.3.2 Experiment Design

4.3.2.1 Multi-Organ Segmentation

The multi-organ segmentation is performed as a baseline by changing the resolution from 1x1x3 mm to

2x2x6 mm and show the original state of art result for the 80 labeled and the 2027 unlabeled 3D datasets. 12

anatomies are segmented including spleen, kidney, gallbladder, esophagus, liver, stomach and pancreas (96).

After performing the segmentations, their montages are manually reviewed by experts, who determine the

segmentation quality score (0,1,2) for unlabeled datasets. For the labeled datasets, Dice similarity coefficient

were calculated to assess the performance of the segmentation.

4.3.2.2 3D U-Net

For the multi-organ segmentation, a 3D U-net is used for extracting the deep features and increase the model

capacity to reconstruct the image for mask prediction (39). The learning rate was set at 0.0001 and the

network parameters are presented with the original paper published (39). Multi or sourced Dice loss (MSDL)

are used because of the multiple anatomies and segmentation mapping are the final output prediction from

the network (202).

4.3.2.3 Discriminator Module

After performing prediction of the segmentation mask, organ segmentation masks were overlaid with the

original 3D volume and sliced into 2D. Each slice was aligned in a single montage image and down-sampled
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Figure 4.5: The segmentation mask overlay improved over the baseline method with our proposed method.

to 256x256, in order to input into the discriminator for determining the segmentation quality. The quality

score was backpropagated through the ResNet, and montage processing back to 3D U-net model to fine-

tune the model performance. The discriminator module was separately trained with 80% of the 2027 score

labeled montage images. The remaining 20% of 2027 volumes were randomly separated into equal portions

for testing and validation. A ResNet with 18 layers is used and performed regression to output a score for

the segmentation quality. The learning rate was 0.0001 and the network parameters are presented with the

original paper published. MSE Loss was used to see the difference between the score label and the prediction

score. For the model, validation was performed and epoch 198 model had the least root mean square error

value.

4.3.2.4 Visual Quality Assessment

The quality score for each montage image was determined for labeling under several conditions: (1) The

accuracy of the segmentation of liver, (2) kidney and (3) spleen. If the segmentation of liver, kidney and

spleen were well located, the montage image were coded with score 0. Score 1 was coded for inaccurate

segmentation of liver, spleen and kidney, as long as the segmentation mask could roughly define the location

of each organ. For score 2, bad segmentation were allocated for each organ as presented in Figure 4.2.
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4.3.3 Results

Testing loss was evaluated with the discriminator module as a function of epoch and was presented in Figure

4.3. The testing loss is essentially constant after 175 epochs, which is consistent with the validation perfor-

mance. Based on the lowest validation loss value from validation curve, epoch 198 model was chosen with

the red arrow shown in Figure 4.3. For the performance of multi-organ segmentation, a significant increase

in segmentation quality for the unlabeled datasets is shown in Figure 4.4 and 951 patients compared to the

baseline of 714 patients (p<0.0001). Additionally, the number of outliers has been reduced from 29.90%

to 19.83% of all testing datasets. Quality of segmentation with each code are shown in Figure 4.5 and the

accuracy for code 0 segmentation are increased comparing with the baseline. For the previously failed scans,

the segmentation becomes more detailed, and the incorrect locations for the liver and spleen are corrected as

shown in Figure 4.5.

4.4 Conclusion

The proposed semi-supervised learning method with the integration of using QA scores to train the discrimi-

nator leads to more robust and effective segmentation performance. With the quality score predicted in each

epoch for unlabeled data, the quality score acts as a loss function to provide feedback information for the

original segmentation pipeline, improving the performance in outliers for segmentation. Hence, the use of

QA-inspired loss functions represents an important perspective in supervised and semi-supervised learning,

particularly for datasets with limited labels in medical image analysis.
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CHAPTER 5

3D UX-Net: A Large Kernel Volumetric ConvNet Modernizing Hierarchical Transformer for Medical

Image Segmentation

5.1 Overview

1The recent 3D medical ViTs (e.g., SwinUNETR) achieve the state-of-the-art performances on several 3D

volumetric data benchmarks, including 3D medical image segmentation. Hierarchical transformers (e.g.,

Swin Transformers) reintroduced several ConvNet priors and further enhanced the practical viability of adapt-

ing volumetric segmentation in 3D medical datasets. The effectiveness of hybrid approaches is largely cred-

ited to the large receptive field for non-local self-attention and the large number of model parameters. We

hypothesize that volumetric ConvNets can simulate the large receptive field behavior of these learning ap-

proaches with fewer model parameters using depth-wise convolution. In this work, we propose a lightweight

volumetric ConvNet, termed 3D UX-Net, which adapts the hierarchical transformer using ConvNet mod-

ules for robust volumetric segmentation. Specifically, we revisit volumetric depth-wise convolutions with

large kernel (LK) size (e.g. starting from 7× 7× 7) to enable the larger global receptive fields, inspired

by Swin Transformer. We further substitute the multi-layer perceptron (MLP) in Swin Transformer blocks

with pointwise depth convolutions and enhance model performances with fewer normalization and activation

layers, thus reducing the number of model parameters. 3D UX-Net competes favorably with current SOTA

transformers (e.g. SwinUNETR) using three challenging public datasets on volumetric brain and abdominal

imaging: 1) MICCAI Challenge 2021 FLARE, 2) MICCAI Challenge 2021 FeTA, and 3) MICCAI Challenge

2022 AMOS. 3D UX-Net consistently outperforms SwinUNETR with improvement from 0.929 to 0.938 Dice

(FLARE2021) and 0.867 to 0.874 Dice (Feta2021). We further evaluate the transfer learning capability of 3D

UX-Net with AMOS2022 and demonstrates another improvement of 2.27% Dice (from 0.880 to 0.900). The

source code with our proposed model are available at https://github.com/MASILab/3DUX-Net.

5.2 Introduction

Significant progress has been made recently with the introduction of vision transformers (ViTs) (52) into

3D medical downstream tasks, especially for volumetric segmentation benchmarks (218; 74; 253; 229; 29).

The characteristics of ViTs are the lack of image-specific inductive bias and the scaling behaviour, which

are enhanced by large model capacities and dataset sizes. Both characteristics contribute to the significant

1Published at: Lee, Ho Hin, et al. “3D UX-Net: A Large Kernel Volumetric ConvNet Modernizing Hierarchical Transformer for
Medical Image Segmentation.”, The Eleventh International Conference on Learning Representations (ICLR), 2023. (122)
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improvement compared to ConvNets on medical image segmentation (203; 12; 76; 4). However, it is chal-

lenging to adapt 3D ViT models as generic network backbones due to the high complexity of computing

global self-attention with respect to the input size, especially in high resolution images with dense features

across scales. Therefore, hierarchical transformers are proposed to bridge these gaps with their intrinsic hy-

brid structure (245; 145). Introducing the “sliding window” strategy into ViTs termed Swin Transformer

behave similarly with ConvNets (145). SwinUNETR adapts Swin transformer blocks as the generic vision

encoder backbone and achieves current state-of-the-art performance on several 3D segmentation benchmarks

(73; 203). Such performance gain is largely owing to the large receptive field from 3D shift window multi-

head self-attention (MSA). However, the computation of shift window MSA is computational unscalable to

achieve via traditional 3D volumetric ConvNet architectures. As the advancement of ViTs starts to bring back

the concepts of convolution, the key components for such large performance differences are attributed to the

scaling behavior and global self-attention with large receptive fields. As such, we further ask: Can we

leverage convolution modules to enable the capabilities of hierarchical transformers?

The recent advance in LK-based depthwise convolution design (e.g., Liu et al. (146)) provides a compu-

tationally scalable mechanism for large receptive field in 2D ConvNet. Inspired by such design, this study

revisits the 3D volumetric ConvNet design to investigate the feasibility of (1) achieving the SOTA perfor-

mance via a pure ConvNet architecture, (2) yielding much less network complexity compared with 3D

ViTs, and (3) providing a new direction of designing 3D ConvNet on volumetric high resolution tasks.

Unlike SwinUNETR, we propose a lightweight volumetric ConvNet 3D UX-Net to adapt the intrinsic proper-

ties of Swin Transformer with ConvNet modules and enhance the volumetric segmentation performance with

smaller model capacities. Specifically, we introduce volumetric depth-wise convolutions with LK sizes to

simulate the operation of large receptive fields for generating self-attention in Swin transformer. Furthermore,

instead of linear scaling the self-attention feature across channels, we further introduce the pointwise depth

convolution scaling to distribute each channel-wise feature independently into a wider hidden dimension (e.g.,

4×input channel), thus minimizing the redundancy of learned context across channels and preserving model

performances without increasing model capacity. We evaluate 3D UX-Net on supervised volumetric segmen-

tation tasks with three public volumetric datasets: 1) MICCAI Challenge 2021 FeTA (infant brain imaging),

2) MICCAI Challenge 2021 FLARE (abdominal imaging), and 3) MICCAI Challenge 2022 AMOS (abdom-

inal imaging). Surprisingly, 3D UX-Net, a network constructed purely from ConvNet modules, demonstrates

a consistent improvement across all datasets comparing with current transformer SOTA. We summarize our

contributions as below:

• We propose the 3D UX-Net to adapt transformer behavior purely with ConvNet modules in a volumet-
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ric setting. To our best knowledge, this is the first large kernel block design of leveraging 3D depthwise

convolutions to compete favorably with transformer SOTAs in volumetric segmentation tasks.

• We leverage depth-wise convolution with LK size as the generic feature extraction backbone, and

introduce pointwise depth convolution to scale the extracted representations effectively with less pa-

rameters.

• We use three challenging public datasets to evaluate 3D UX-Net in 1) direct training and 2) fine-

tuning scenarios with volumetric multi-organ/tissues segmentation. 3D UX-Net achieves consistently

improvement in both scenarios across all ConvNets and transformers SOTA with fewer model param-

eters.

5.3 Related Work

5.3.1 Transformer-based Segmentation

Significant efforts have been put into integrating ViTs for dense predictions in medical imaging domain

(74; 29; 253; 218). With the advancement of Swin Transformer, SwinUNETR equips the encoder with the

Swin Transformer blocks to compute self-attention for enhancing brain tumor segmentation accuracy in 3D

MRI Images (73). Tang et al. extends the SwinUNETR by adding a self-supervised learning pre-training

strategy for fine-tuning segmentation tasks. Another Unet-like architecture Swin-Unet further adapts Swin

Transformer on both the encoder and decoder network via skip-connections to learn local and global semantic

features for multi-abdominal CT segmentation (21). Similarly, SwinBTS has the similar intrinsic structure

with Swin-Unet with an enhanced transformer module for detailed feature extraction (104). However, the

transformer-based volumetric segmentation frameworks still require lengthy training time and are accompa-

nied by high computational complexity associated with extracting features at multi-scale levels (229; 187).

Therefore, such limitations motivate us to rethink if ConvNets can emulate transformer behavior to demon-

strate efficient feature extraction.

5.3.2 Depthwise convolution based Segmentation

Apart from transformer-based framework, previous works began to revisit the concept of depthwise convo-

lution and adapt its characteristics for robust segmentation. It has been proved to be a powerful variation

of standard convolution that helps reduce the number of parameters and transfer learning (71). Zunair et

al. introduced depthwise convolution to sharpen the features prior to fuse the decode features in a UNet-like

architecture (261). 3D U2-Net leveraged depthwise convolutions as domain adaptors to extract domain-

specific features in each channel (93). Both studies demonstrate the feasibility of using depthwise con-
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Figure 5.1: Overview of our proposed designed convolution blocks to simulate the behaviour of swin trans-
formers. We leverage depthwise convolution and pointwise scaling to adapt large receptive field and enrich
the features through widening independent channels. We further compare different backbones of volumetric
ConvNets and Swin Transformer block architecture. The yellow dotted line demonstrates the differences in
spatial position of widening feature channels in the network bottleneck.

volution in enhancing volumetric tasks. However, only a small kernel size is used to perform depthwise

convolution. Several prior works have investigated the effectiveness of LK convolution in medical image

segmentation. For instance, Huo et al. leveraged LK (7x7) convolutional layers as the skip connections to

address the anatomical variations for splenomegaly spleen segmentation (96); Li et al. proposed to adapt

LK and dilated depthwise convolutions in decoder for volumetric segmentation (137). However, significant

increase of FLOPs is demonstrated with LKs and dramatically reduces both training and inference efficiency.

To enhance the model efficiency with LKs, Liu et al. proposed ConvNeXt as a 2D generic backbone that

simulate ViTs advantages with LK depthwise convolution for downstream tasks with natural image (146),

while ConvUNeXt is proposed to extend for 2D medical image segmentation and compared only with 2D

CNN-based networks (e.g., ResUNet (192), UNet++ (257)) (72). However, limited studies have been pro-

posed to efficiently leverage depthwise convolution with LKs in a volumetric setting and compete favorably

with volumetric transformer approaches. With the large receptive field brought by LK depthwise convolution,

we hypothesize that LK depthwise convolution can potentially emulate transformers’ behavior and efficiently

benefits for volumetric segmentation.

5.4 3D UX-Net: Intuition

Inspired by (146), we introduce 3D UX-Net, a simple volumetric ConvNet that adapts the capability of

hierarchical transformers and preserves the advantages of using ConvNet modules such as inductive biases.

The basic idea of designing the encoder block in 3D UX-Net can be divided into 1) block-wise and 2) layer-

wise perspectives. First, we discuss the block-wise perspective in three views:
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• Patch-wise Features Projection: Comparing the similarities between ConvNets and ViTs, there is a

common block that both networks use to aggressively downscale feature representations into particular

patch sizes. Here, instead of flattening image patches as a sequential input with linear layer (52), we

adopt a LK projection layer to extract patch-wise features as the encoder’s inputs.

• Volumetric Depth-wise Convolution with LKs: One of the intrinsic specialties of the swin trans-

former is the sliding window strategy for computing non-local MSA. Overall, there are two hierarchical

ways to compute MSA: 1) window-based MSA (W-MSA) and 2) shifted window MSA (SW-MSA).

Both ways generate global receptive field across layers and further refine the feature correspondence

between non-overlapping windows. Inspired by the idea of depth-wise convolution, we have found

similarities between the weighted sum approach in self-attention and the convolution per-channel ba-

sis. We argue that using depth-wise convolution with a LK size can provide a large receptive field in

extracting features similar to the MSA blocks. Therefore, we propose compressing the window shift-

ing characteristics of the Swin Transformer with a volumetric depth-wise convolution using a LK size

(e.g., starting from 7×7×7). Each kernel channel is convolved with the corresponding input channel,

so that the output feature has the same channel dimension as the input.

• Inverted Bottleneck with Depthwise Convolutional Scaling: Another intrinsic structure in Swin

Transformer is that they are designed with the hidden dimension of the MLP block to be four times

wider than the input dimension, as shown in Figure 5.1. Such a design is interestingly correlated to the

expansion ratio in the ResNet block (79). Therefore, we leverage the similar design in ResNet block

and move up the depth-wise convolution to compute features. Furthermore, we introduce depthwise

convolutional scaling (DCS) with 1×1×1 kernel to linearly scale each channel feature independently.

We enrich the feature representations by expanding and compressing each channel independently, thus

minimizing the redundancy of cross-channel context. We enhance the cross-channel feature corre-

spondences with the downsampling block in each stage. By using DCS, we further reduce the model

complexity by 5% and demonstrates a comparable results with the block architecture using MLP.

The macro-design in convolution blocks demonstrates the possibility of adapting the large receptive field

and leveraging similar operation of extracting features compared with the Swin Transformer. We want to

further investigate the variation between ConvNets and the Swin Transformer in layer-wise settings and refine

the model architecture to better simulate ViTs in macro-level. Here, we further define and adapt layer-wise

differences into another three perspectives:

• Applying Residual Connections: From Figure 5.1, the golden standard 3D U-Net block demonstrates
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Figure 5.2: Overview of the proposed 3D UX-Net with our designed convolutional block as the encoder
backbone. LK convolution is used to project features into patch-wise embeddings. A downsampling block is
used in each stage to mix and enrich context across all channels, while our designed blocks extract meaningful
features in depth-wise setting.

the naive approach of using small kernels to extract local representations with increased channels (39),

while the SegResNet block applies the residual similar to the transformer block (160). Here, we also

apply residual connections between the input and the extracted features after the last scaling layer.

However, we do not apply any normalization and activation layers before and after the summation of

residual to be equivalent with the swin transformer structure.

• Adapting Layer Normalization (LN): In ConvNets, batch normalization (BN) is a common strategy

that normalizes convolved representations to enhance convergence and reduce overfitting. However,

previous works have demonstrated that BN can lead to a detrimental effect in model generalizability

(228). Although several approaches have been proposed to have an alternative normalization techniques

(186; 208; 227), BN still remains as the optimal choice in volumetric vision tasks. Motivated by vision

transformers and (146), we directly substitute BN with LN in the encoder block and demonstrate similar

operations in ViTs (6).

• Using GELU as the Activation Layer: Many previous works have used the rectified linear unit

(ReLU) activation layers (161), providing non-linearity in both ConvNets and ViTs. However, previ-

ously proposed transformer models demonstrate the Gaussian error linear unit (GELU) to be a smoother

variant, which tackle the limitation of sudden zero in the negative input range in ReLU (87). Therefore,

we further substitute the ReLU with the GELU activation function.

52



5.5 3D UX-Net: Complete Network Description

3D UX-Net comprises multiple re-designed volumetric convolution blocks that directly utilize 3D patches.

Skip connections are further leveraged to connect the multi-resolution features to a convolution-based decoder

network. Figure 5.2 illustrates the complete architecture of 3D UX-Net. We further describe the details of

the encoder and decoder in this section.

5.5.1 Depth-wise Convolution Encoder

Given a set of 3D image volumes Vi = Xi,Yii=1,...,L, random sub-volumes Pi ∈ RH×W×D×C are extracted to

be the inputs for the encoder network. Instead of flattening the patches and projecting it with linear layer

(74), we leverage a LK convolutional layer to compute partitioned feature map with size H
2 × W

2 × D
2 that are

projected into a C = 48-dimensional space. To adapt the characteristics of computing local self-attention, we

use the depthwise convolution with kernel size starting from 7×7×7 (DWC) with padding of 3, to act as a

”shifted window” and evenly divide the feature map. As global self-attention is generally not computationally

affordable with a large number of patches extracted in the Swin Transformer (145), we hypothesize that

performing depthwise convolution with a LK size can effectively extract features with a global receptive

field. Therefore, we define the output of encoder blocks in layers l and l +1 as follows:

ẑl = DWC(LN(zl−1))+ zl−1

zl = DCS(LN(ẑl))+ ẑl

ẑl+1 = DWC(LN(zl))+ zl

zl+1 = DCS(LN(ẑl+1))+ ẑl+1

(5.1)

where ẑl and ẑl+1 are the outputs from the DWC layer in different depth levels; LN and DCS denote as

the layer normalization and the depthwise convolution scaling, respectively (see. Figure 5.1). Compared to

the Swin Transformer, we substitute the regular and window partitioning multi-head self-attention modules,

W-MSA and SW-MSA respectively, with two DWC layers.

Motivated by SwinUNETR (203; 73), the complete architecture of the encoder consists of 4 stages com-

prising of 2 LK convolution blocks at each stage (i.e. L=8 total layers). Inside the block, the DCS layer

is followed by the DWC layer in each block. The DCS layer helps scale the dimension of the feature map

(4 times of the input channel size) without increasing model parameters and minimizes the redundancy of

the learned volumetric context across channels. To exchange the information across channels, instead of

using MLP, we leverage a standard convolution block with kernel size 2× 2× 2 with stride 2 to downscale

the feature resolution by a factor of 2. The same procedure continues in stage 2, stage 3 and stage 4 with
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Table 5.1: Comparison of transformer and ConvNet SOTA approaches on the Feta 2021 and FLARE 2021
testing dataset. (*: p < 0.01, with Wilcoxon signed-rank test to all SOTA approaches)

FeTA 2021 FLARE 2021

Methods #Params FLOPs ECF GM WM Vent. Cereb. DGM BS Mean Spleen Kidney Liver Pancreas Mean

3D U-Net (39) 4.81M 135.9G 0.867 0.762 0.925 0.861 0.910 0.845 0.827 0.857 0.911 0.962 0.905 0.789 0.892
SegResNet (160) 1.18M 15.6G 0.868 0.770 0.927 0.865 0.911 0.867 0.825 0.862 0.963 0.934 0.965 0.745 0.902
RAP-Net (125) 38.2M 101.2G 0.880 0.771 0.927 0.862 0.907 0.879 0.832 0.865 0.946 0.967 0.940 0.799 0.913
nn-UNet (99) 31.2M 743.3G 0.883 0.775 0.930 0.868 0.920 0.880 0.840 0.870 0.971 0.966 0.976 0.792 0.926

TransBTS (218) 31.6M 110.4G 0.885 0.778 0.932 0.861 0.913 0.876 0.837 0.868 0.964 0.959 0.974 0.711 0.902
UNETR (74) 92.8M 82.6G 0.861 0.762 0.927 0.862 0.908 0.868 0.834 0.860 0.927 0.947 0.960 0.710 0.886
nnFormer (253) 149.3M 240.2G 0.880 0.770 0.930 0.857 0.903 0.876 0.828 0.863 0.973 0.960 0.975 0.717 0.906
SwinUNETR (73) 62.2M 328.4G 0.873 0.772 0.929 0.869 0.914 0.875 0.842 0.867 0.979 0.965 0.980 0.788 0.929

3D UX-Net (Ours) 53.0M 639.4G 0.882 0.780 0.934 0.872 0.917 0.886 0.845 0.874* 0.981 0.969 0.982 0.801 0.934*

Table 5.2: Comparison of Finetuning performance with transformer SOTA approaches on the AMOS 2021
testing dataset.(*: p < 0.01, with Wilcoxon signed-rank test to all SOTA approaches)

Methods Spleen R. Kid L. Kid Gall. Eso. Liver Stom. Aorta IVC Panc. RAG LAG Duo. Blad. Pros. Avg

nn-UNet 0.965 0.959 0.951 0.889 0.820 0.980 0.890 0.948 0.901 0.821 0.785 0.739 0.806 0.869 0.839 0.878

TransBTS 0.885 0.931 0.916 0.817 0.744 0.969 0.837 0.914 0.855 0.724 0.630 0.566 0.704 0.741 0.650 0.792
UNETR 0.926 0.936 0.918 0.785 0.702 0.969 0.788 0.893 0.828 0.732 0.717 0.554 0.658 0.683 0.722 0.762
nnFormer 0.935 0.904 0.887 0.836 0.712 0.964 0.798 0.901 0.821 0.734 0.665 0.587 0.641 0.744 0.714 0.790
SwinUNETR 0.959 0.960 0.949 0.894 0.827 0.979 0.899 0.944 0.899 0.828 0.791 0.745 0.817 0.875 0.841 0.880

3D UX-Net 0.970 0.967 0.961 0.923 0.832 0.984 0.920 0.951 0.914 0.856 0.825 0.739 0.853 0.906 0.876 0.900*
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Figure 5.3: Validation Curve with Dice Score for FeTA2021 (a), FLARE2021 (b) and AMOS2022 (c). 3D
UX-Net demonstrates the fastest convergence rate with limited samples training (FeTA2021) and transfer
learning (AMOS2022) scenario respectively, while the convergence rate is comparable to SwinUNETR with
the increase of sample size training (FLARE2021).

the resolutions of H
4 × W

4 × D
4 , H

8 × W
8 × D

8 and H
16 ×

W
16 ×

D
16 respectively. Such hierarchical representations

in multi-scale setting are extracted in each stage and are further leveraged for learning dense volumetric

segmentation.

5.5.2 Decoder

The multi-scale output from each stage in the encoder is connected to a ConvNet-based decoder via skip

connections and form a ”U-shaped” like network for downstream segmentation task. Specifically, we extract

the output feature mapping of each stage i(i ∈ 0,1,2,3,4) in the encoder and further leverage a residual block

comprising two post-normalized 3× 3× 3 convolutional layers with instance normalization to stabilize the
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Figure 5.4: Qualitative representations of tissues and multi-organ segmentation across three public datasets.
Boxed are further zoomed in and visualize the significant differences in segmentation quality. 3D UX-Net
shows the best segmentation quality compared to the ground-truth.

extracted features. The processed features from each stage are then upsampled with a transpose convolutional

layer and concatentated with the features from the preceding stage. For downstream volumetric segmentation,

we also concatenate the residual features from the input patches with the upsampled features and input the

features into a residual block with 1× 1× 1 convolutional layer with a softmax activation to predict the

segmentation probabilities.

5.6 Experimental Setup

Datasets We conduct experiments on three public multi-modality datasets for volumetric segmentation,

which comprising with 1) MICCAI 2021 FeTA Challenge dataset (FeTA2021) (171), 2) MICCAI 2021

FLARE Challenge dataset (FLARE2021) (151), and 3) MICCAI 2022 AMOS Challenge dataset (AMOS2022)

(102). For the FETA2021 dataset, we employ 80 T2-weighted infant brain MRIs from the University Chil-

dren’s Hospital with 1.5 T and 3T clinical whole-body scanners for brain tissue segmentation, with seven

specific tissues well-annotated. For FLARE2021 and AMOS2022, we employ 511 multi-contrast abdominal

CT from FLARE2021 with four anatomies manually annotated and 200 multi-contrast abdominal CT from

AMOS 2022 with sixteen anatomies manually annotated for abdominal multi-organ segmentation. More

details of the three public datasets can be found in appendix A.2.
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Table 5.3: Ablation studies of different architecture on FeTA2021 and FLARE2021

Methods #Params (M) FeTA2021 FLARE2021
Mean Dice

SwinUNETR 62.2 0.867 0.929

Use Standard Conv. 186.9 0.875 0.937
Use Depth Conv. 53.0 0.874 0.934

Kernel=3×3×3 52.5 0.867 0.928
Kernel=5×5×5 52.7 0.869 0.931
Kernel=7×7×7 53.0 0.874 0.934
Kernel=9×9×9 53.6 0.870 0.934
Kernel=11×11×11 54.4 0.871 0.936
Kernel=13×13×13 55.7 0.871 0.938

No MLP 51.1 0.869 0.915
Use MLP 56.3 0.872 0.933
Use DCS 1×1×1 53.0 0.874 0.934

Implementation Details We perform evaluations on two scenarios: 1) direct supervised training and 2)

transfer learning with pretrained weights. FeTA2021 and FLARE2021 datasets are leverage to evaluate in

direct training scenario, while AMOS dataset is used in transfer learning scenario. We perform five-fold

cross-validations to both FeTA2021 and FLARE2021 datasets. More detailed information of data splits

are provided in Appendix A.2. For the transfer learning scenario, we leverage the pretrained weights from

the best fold model trained with FLARE2021, and finetune the model weights on AMOS2022 to evaluate

the fine-tuning capability of 3D UX-Net. The complete preprocessing and training details are available at

the appendix A.1. Overall, we evaluate 3D UX-Net performance by comparing with current volumetric

transformer and ConvNet SOTA approaches for volumetric segmentation in fully-supervised setting. We use

the Dice similarity coefficient as an evaluation metric to compare the overlapping regions between predictions

and ground-truth labels. Furthermore, we performed ablation studies to investigate the effect on different

kernel size and the variability of substituting linear layers with depthwise convolution for feature extraction.

5.7 Results

5.7.1 Evaluation on FeTA & FLARE

Table 5.1 shows the result comparison of current transformers and ConvNets SOTA on medical image seg-

mentation in volumetric setting. With our designed convolutional blocks as the encoder backbone, 3D UX-

Net demonstrates the best performance across all segmentation task with significant improvement in Dice

score (FeTA2021: 0.870 to 0.874, FLARE2021: 0.929 to 0.934). From Figure 5.2, we observe that 3D

UX-Net demonstrates the quickest convergence rate in training with FeTA2021 datasets. Interestingly, when
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the training sample size increases, the efficiency of training convergence starts to become compatible be-

tween SwinUNETR and 3D UX-Net. Apart from the quantitative representations, Figure 5.3 further provides

additional confidence of demonstrating the quality improvement in segmentation with 3D UX-Net. The mor-

phology of organs and tissues are well preserved compared to the ground-truth label.

5.7.2 Transfer Learning with AMOS

Apart from training from scratch scenario, we further investigate the transfer learning capability of 3D UX-

Net comparing to the transformers SOTA with AMOS 2022 dataset. We observe that the finetuning perfor-

mance of 3D UX-Net significantly outperforms other transformer network with mean Dice of 0.900 (2.27%

enhancement) and most of the organs segmentation demonstrate a consistent improvement in quality. Also,

from Figure 5.2, although the convergence curve of each transformer network shows the comparability to

that of the FLARE2021-trained model, 3D UX-Net further shows its capability in adapting fast convergence

and enhancing the robustness of the model with finetuning. Furthermore, the qualitative representations in

Figure 5.2 demonstrates a significant improvement in preserving boundaries between neighboring organs and

minimize the possibility of over-segmentation towards other organ regions.

5.7.3 Ablation Analysis

After evaluating the core performance of 3D UX-Net, we study how the different components in our designed

architecture contribute to such a significant improvement in performance, as well as how they interact with

other components. Here, both FeTA2021 and FLARE2021 are leveraged to perform ablation studies towards

different modules. All ablation studies are performed with kernel size 7×7×7 scenario except the study of

evaluating the variability of kernel size.

Comparing with Standard Convolution: We investigate the effectiveness of both standard convolution and

depthwise convolution for initial feature extraction. With the use of standard convolution, it demonstrates

a slight improvement with standard convolution. However, the model parameters are about 3.5 times than

that of using depthwise convolution, while the segmentation performance with depthwise convolution still

demonstrates a comparable performance in both datasets.

Variation of Kernel Size: From Table 5.3, we observe that the convolution with kernel size 7× 7× 7 op-

timally works for FeTA2021 dataset, while the segmentation performance of FLARE2021 demonstrates

the best with kernel size of 13× 13× 13. The significant improvement of using 13× 13× 13 kernel for

FLARE2021 may be due to the larger receptive field provided to enhance the feature correspondence be-

tween multiple neighboring organs within the abdominal region. For FeTA2021 dataset, only the small infant

brains are well localized as foreground and 7× 7× 7 kernel demonstrates to be optimal receptive field to
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extract the tissues correspondence.

Adapting DCS: We found that a significant decrement is performed without using MLP for feature scaling.

With the linear scaling, the performance enhanced significantly in FLARE2021, while a slight improvement

is demonstrated in FeTA2021. Interestingly, leveraging depthwise convolution with 1×1×1 kernel size for

scaling, demonstrates a slightly enhancement in performance for both FeTA2021 and FLARE2021 datasets.

Also, the model parameters further drops from 56.3M to 53.0M without trading off the model performance.

5.8 Discussion

In this work, we present a block-wise design to simulate the behavior of Swin Transformer using pure Con-

vNet modules. We further adapt our design as a generic encoder backbone into ”U-Net” like architecture

via skip connections for volumetric segmentation. We found that the key components for improved perfor-

mance can be divided into two main perspectives: 1) the sliding window strategy of computing MSA and

2) the inverted bottleneck architecture of widening the computed feature channels. The W-MSA enhances

learning the feature correspondence within each window, while the SW-MSA strengthens the cross-window

connections at the feature level between different non-overlapping windows. Such strategy integrates Con-

vNet priors into transformer networks and enlarge receptive fields for feature extraction. However, we found

that the depth convolutions can demonstrate similar operations of computing MSA in Swin Transformer

blocks. In depth-wise convolutions, we convolve each input channel with a single convolutional filter and

stack the convolved outputs together, which is comparable to the patch merging layer for feature outputs in

Swin Transformers. Furthermore, adapting the depth convolutions with LK filters demonstrates similarities

with both W-MSA and SW-MSA, which learns the feature connections within a large receptive field. Our

design provides similar capabilities to Swin Transformer and additionally has the advantage of reducing the

number of model parameters using ConvNet modules.

Another interesting difference is the inverted bottleneck architecture. Figure 5.1 shows that both Swin

Transformer and some standard ConvNets have their specific bottleneck architectures (yellow dotted line).

The distinctive component in Swin Transformer’s bottleneck is to maintain the channels size as four times

wider than the input dimension and the spatial position of the MSA layer. We follow the inverted bottleneck

architecture in Swin Transformer block and move the depthwise convolution to the top similar to the MSA

layer. Instead of using linear scaling, we introduce the idea of depthwise convolution in pointwise setting to

scale the dense feature with wider channels. Interestingly, we found a slight improvement in performance

is shown across datasets (FeTA2021: 0.872 to 0.874, FLARE2021: 0.933 to 0.934), but with less model

parameters. As each encoder block only consists of two scaling layers, the limited number of scaling blocks

may affect the performance to a small extent. We will further investigate the scalability of linear scaling layer
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in 3D as the future work.

5.9 Conclusion

We introduce 3D UX-Net, the first volumetric network adapting the capabilities of hierarchical transformer

with pure ConvNet modules for medical image segmentation. We re-design the encoder blocks with depth-

wise convolution and projections to simulate the behavior of hierarchical transformer. Furthermore, we adjust

layer-wise design in the encoder block and enhance the segmentation performance across different training

settings. 3D UX-Net outperforms current transformer SOTAs with fewer model parameters using three chal-

lenging public datasets in both supervised training and transfer learning scenarios.

5.10 Supplementary

5.10.1 Data Preprocessing & Model Training

We apply hierarchical steps for data preprocessing: 1) intensity clipping is applied to further enhance the

contrast of soft tissue (FLARE2021 & AMOS2022:{min:-175, max:250}). 2) Intensity normalization is per-

formed after clipping for each volume and use min-max normalization: (X −X1)/(X99 −X1) to normalize

the intensity value between 0 and 1, where Xp denote as the pth percentile of intensity in X . We then ran-

domly crop sub-volumes with size 96×96×96 at the foreground and perform data augmentations, including

rotations, intensity shifting, and scaling (scaling factor: 0.1). All training processes with 3D UX-Net are opti-

mized with an AdamW optimizer. We trained all models for 40000 steps using a learning rate of 0.0001 on an

NVIDIA-Quadro RTX 5000 for both FeTA2021 and FLARE2021, while we perform training for AMOS2022

using NVIDIA-Quadro RTX A6000. One epoch takes approximately about 1 minute for FeTA2021, 10 min-

utes for FLARE2021, and 7 minutes for AMOS2022, respectively. We further summarize all the training

parameters with Table 5.4.

5.10.2 Public Datasets Details

5.10.3 Further Discussions Comparing to nn-UNet

In Table 5.1 & 5.2, we compare our proposed network with multiple CNN-based SOTA networks and the

golden standard approach nn-UNet. We observe that the performance of nn-UNet nearly outperform most

of the transformer state-of-the-arts in both FeTA 2021 and FLARE 2021 datasets. Such improvement may

mainly contribute to its innovation of self-configuration training strategies and ensembling outputs as post-

processing technique, while the network used in nn-UNet is only the plain 3D U-Net architecture. To further

characterize the ability of our proposed network, we further substitute the plain 3D U-Net architecture with

our proposed 3D UX-Net and adapt the self-configuring hyperparameters for training. We demonstrate a
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Table 5.4: Hyperparameters of both directly training and finetuning scenarios on three public datasets

Hyperparameters Direct Training Finetuning

Encoder Stage 4
Layer-wise Channel 48,96,192,384
Hidden Dimensions 768
Patch Size 96×96×96
No. of Sub-volumes Cropped 2 1

Training Steps 40000
Batch Size 2 1
AdamW ε 1e−8
AdamW β (0.9,0.999)
Peak Learning Rate 1e−4
Learning Rate Scheduler ReduceLROnPlateau N/A
Factor & Patience 0.9, 10 N/A

Dropout X
Weight Decay 0.08

Data Augmentation Intensity Shift, Rotation, Scaling
Cropped Foreground ✓
Intensity Offset 0.1
Rotation Degree −30◦ to +30◦

Scaling Factor x: 0.1, y: 0.1, z: 0.1

Table 5.5: Complete Overview of three public MICCAI Chanllenge Datasets

MICCAI Challenge FeTA 2021 FLARE 2021 AMOS 2022

Imaging Modality 1.5T & 3T MRI Multi-Contrast CT Multi-Contrast CT
Anatomical Region Infant Brain Abdomen Abdomen
Dimensions 256×256×256 512×512×{37−751} 512−768×512−768×{68−353}
Resolution {0.43−0.70}×{0.43−0.70}×{0.43−0.70} {0.61−0.98}×{0.61−0.98}×{0.50−7.50} {0.45−1.07}×{0.45−1.07}×{1.25−5.00}
Sample Size 80 361 200

Anatomical Label

External Cerebrospinal Fluid (ESF), Spleen, Left & Right Kidney, Gall Bladder,
Grey Matter (GM), White Matter (WM), Ventricles, Spleen, Kidney, Esophagus, Liver, Stomach, Aorta, Inferior Vena Cava (IVC)

Cerebellum, Deep Grey Matter (DGM) Liver, Pancreas Pancreas, Left & Right Adrenal Gland (AG), Duodenum,
Brainstem Bladder, Prostates/uterus

Data Splits 5-Fold Cross-Validation 5-Fold Cross-Validation 1-Fold
Train: 50 / Validation: 12 / Test: 18 Train: 272 / Validation: 69 / Test: 20 Train: 160 / Validation: 20 / Test: 20
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Table 5.6: Albation Studies of Adapting nn-UNet architecture on the Feta 2021 and FLARE 2021 testing
dataset. (*: p < 0.01, with Wilcoxon signed-rank test to all SOTA approaches, D.S: Deep Supervision)

FeTA 2021 FLARE 2021

Methods ECF GM WM Vent. Cereb. DGM BS Mean Spleen Kidney Liver Pancreas Mean

nn-UNet (99) 0.883 0.775 0.930 0.868 0.920 0.880 0.840 0.870 0.971 0.966 0.976 0.792 0.926
3D UX-Net (Plain) 0.882 0.780 0.934 0.872 0.917 0.886 0.845 0.874 0.981 0.969 0.982 0.801 0.934
3D UX-Net (nn-UNet struct., w/o D.S.) 0.885 0.784 0.937 0.872 0.921 0.887 0.849 0.876 0.983 0.972 0.983 0.821 0.940*
3D UX-Net (nn-UNet struct., D.S.) 0.890 0.791 0.939 0.877 0.922 0.891 0.854 0.881* 0.986 0.974 0.983 0.833 0.944*

significant improvement of performance in FeTA 2021 and FLARE 2021 datasets with mean organ Dice

from 0.874 to 0.881 and from 0.934 to 0.944 respectively, as shown in Table 5.6. To further investigate the

difference in the network architecture, we observed that the convolution blocks in nn-UNet leverage the com-

bination of instance normalization and leakyReLU. Such design allows to normalize channel-wise feature

independently and mix the channel context with small kernel convolutional layers. In our design, we provide

an alternative thought of extracting channel-wise features independently with depthwise convolution and mix

the channel information during the downsampling layer only. Therefore, layer normalization is leveraged

in our scenario and we want to further enhance the feature correspondence with large receptive field across

channels efficiently. Furthermore, we found that the deep supervision strategy in nn-UNet, which compute

an auxiliary loss with each stages’ intermediate output, also demonstrates its effectiveness to further improve

the performance (FeTA 2021: from 0.876 to 0.881; FLARE 2021: from 0.940 to 0.944).

For the training scenarios, instead of using the proposed initial learning rate 0.01, we reduce the initial

learning rate to 0.002 to train with 150 epochs (40000 steps ≈ 150 epochs) for FLARE 2021 and 850 epochs

(40000 steps ≈ 850 epochs) for FeTA 2021 respectively, with the batch size of 2. For the finetuning scenario

with AMOS 2022, we only train the nn-UNet model with 250 epochs (40000 steps ≈ 250 epochs), instead of

the default settings (1000 epochs) to ensure the fair network comparison with similar steps.

5.10.4 Further Discussions on Training and Inference Efficiency

Table 5.7: Albation Studies of Optimizing 3D U-XNet architecture on the Feta 2021 and FLARE 2021 testing
dataset. (SD: Stage Depth, HDim: Hidden Dimension in the Bottleneck Layer.)

Methods #Params (M) FLOPs (G) FeTA2021 FLARE2021
Mean Dice

nn-UNet 31.2M 743.3G 0.870 0.926
SwinUNETR 62.2M 328.4G 0.867 0.929

SD: 2,2,2,2, HDim: 768 53.0M 639.4G 0.874 0.934
SD: 2,2,8,2, HDim: 384 32.1M 536.8G 0.873 0.932
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Apart from the advantage of quantitative performance, we further leverage the LK depthwise convolutions

to reduce the model parameters from 62.2M to 53.0M, compared to SwinUNETR in Table 5.3. However,

although the training efficiency of 3D UX-Net is already better than nn-UNet (FLOPs: 743.3G to 639.4G),

we observed that the FLOPs of 3D UX-Net still remains at a high value. Inspired by the architectures of

both Swin Transformer (145) and ConvNeXt (146) used in the natural image domain, we further remove the

bottleneck layer (ResNet block with 768 channels) and increase the block depth of stage 3 (e.g., 8 blocks).

Such optimized design further significantly reduces both the model parameters (from 53.0M to 32.1M, nn-

UNet: 31.2M) and FLOPs (from 639.4G to 536.1G, nn-UNet: 743.3M), while preserving the performance

(shown in Table 5.7). Additional validation studies is needed to investigate the effectiveness of both MLP

and pointwise DCS, and optimizing 3D UX-Net architecture, which will be the next steps of our future work.

Another observation in Table 5.3 is the subtle differences in model parameters between kernel size of 3×3×3

and 7×7×7. We found that the increase of both model parameters and FLOPs is also attributed to the design

of decoder network. Our decoder block design further add a 3D ResNet block after the transpose convolution

to further resample and mix the channel context, instead of directly perform transpose convolution in nn-

UNet. A efficient block design in decoder network is demanded to be further investigated and using depthwise

convolution may be another potential solution to reduce the low efficiency burden.

To further reduce the burden of low training and inference efficiency, re-parameterization of LK convo-

lutional blocks may be another promising direction to focus. Prior works have demonstrated to scale up few

convolutional blocks with LK size (31×31) and propose the idea of parallel branches with small kernels for

residual shortcuts (48; 49; 47). The parallel branch can then be mutually converted through equivalent trans-

formation of parameters. For example. a branch of 1×1 convolution and a branch of 7×7 convolution, can

be transferred into a single branck of 7×7 convolution (49). Furthermore, Hu et al. proposed online convo-

lutional re-parameterization (OREPA) to leverage a linear scaling at each branch to diversify the optimization

directions, instead of applying non-linear normalization after convolution layer (91). Also, stack of small

kernels are leveraged to generate similar receptive field of view as LKs with better training and inference

efficiency. The effectiveness of leveraging small kernels stack and multiple parallel branches design will be

further investigated as another directions of our future work.
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CHAPTER 6

Scaling Up 3D Kernels with Bayesian Frequency Re-parameterization for Medical Image

Segmentation

6.1 Overview

1With the inspiration of vision transformers, the concept of depth-wise convolution revisits to provide a large

Effective Receptive Field (ERF) using Large Kernel (LK) sizes for medical image segmentation. However,

the segmentation performance might be saturated and even degraded as the kernel sizes scaled up (e.g.,

21×21×21) in a Convolutional Neural Network (CNN). We hypothesize that convolution with LK sizes is

limited to maintain an optimal convergence for locality learning. While Structural Re-parameterization (SR)

enhances the local convergence with small kernels in parallel, optimal small kernel branches may hinder the

computational efficiency for training. In this work, we propose RepUX-Net, a pure CNN architecture with

a simple large kernel block design, which competes favorably with current network state-of-the-art (SOTA)

(e.g., 3D UX-Net, SwinUNETR) using 6 challenging public datasets. We derive an equivalency between

kernel re-parameterization and the branch-wise variation in kernel convergence. Inspired by the spatial fre-

quency in the human visual system, we extend to vary the kernel convergence into element-wise setting and

model the spatial frequency as a Bayesian prior to re-parameterize convolutional weights during training.

Specifically, a reciprocal function is leveraged to estimate a frequency-weighted value, which rescales the

corresponding kernel element for stochastic gradient descent. From the experimental results, RepUX-Net

consistently outperforms 3D SOTA benchmarks with internal validation (FLARE: 0.929 to 0.944), external

validation (MSD: 0.901 to 0.932, KiTS: 0.815 to 0.847, LiTS: 0.933 to 0.949, TCIA: 0.736 to 0.779) and

transfer learning (AMOS: 0.880 to 0.911) scenarios in Dice Score. Both codes and pretrained models are

available at: https://github.com/MASILab/RepUX-Net

6.2 Introduction

With the introduction of Vision Transformers (ViTs), CNNs have been greatly challenged as seen with the

leading performance in multiple volumetric data benchmarks, especially for medical image segmentation

(74; 73; 203; 253). The key contribution of ViTs is largely credited to the large Effective Receptive Field

(ERF) with a multi-head self-attention mechanism (52). Note the attention mechanism is computationally

unscalable with respect to the input resolutions (145; 146). Therefore, the concept of depth-wise convolution

1Accepted at: Lee, Ho Hin, et al. “Scaling Up 3D Kernels with Bayesian Frequency Re-parameterization for Medical Image Seg-
mentation.”, International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 2023. (123)
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Figure 6.1: With the fast convergence in small kernels, SR merges the branches weights and enhances the
locality convergence with respect to the kernel size (deep blue region), while the global convergence is yet
to be optimal (light blue region). By adapting BFR, the learning convergence can rescale in an element-wise
setting and distribute the learning importance from local to global.

is revisited to provide a scalable and efficient feature computation with large ERF using large kernel sizes

(e.g., 7× 7× 7) (146; 121). However, either from prior works or our experiments, the model performance

becomes saturated or even degraded when the kernel size is scaled up in encoder blocks (48; 143). We

hypothesize that scaling up the kernel size in convolution may limit the optimal learning convergences across

local to global scales. Recently, the feasibility of leveraging large kernel convolutions (e.g., 31× 31 (48),

51× 51(143)) has been shown with natural image domain with Structural Re-parameterization (SR), which

adapts Constant-Scale Linear Addition (CSLA) block (Figure 6.2(b)) and re-parameterizes the large kernel

weights during inference (48). As convolutions with small kernel sizes converge more easily, the convergence

of small kernel regions enhances in the re-parameterized weight, as shown in Figure 6.1(a). With such

observation, we further ask: Can we adapt variable convergence across elements of the convolution

kernel during training, instead of regional locality only?

In this work, we first derive and extend the theoretical equivalency of the weight optimization in the CSLA

block. We observe that the kernel weight of each branch can be optimized with variable convergence using

branch-specific learning rates. Furthermore, the ERF with SR is visualized to be more widely distributed

from the center element to the global surroundings (48), demonstrating a similar behavior to the spatial

frequency in the human visual system (114). Inspired by the reciprocal characteristics of spatial frequency,

we model the spatial frequency as a Bayesian prior to adapt variable convergence of each kernel element

with stochastic gradient descent (Figure 6.1(b)). Specifically, we compute a scaling factor with respect to

the distance from the kernel center and multiply the corresponding element for re-parameterization during

training. Furthermore, we simplify the encoder block design into a plain convolution block only to minimize

the computation burden in training and achieve State-Of-The-Art (SOTA) performance. We propose RepUX-

Net, a pure 3D CNN with the large kernel size (e.g., 21×21×21) in encoder blocks, to compete favorably

with current SOTA segmentation networks. We evaluate RepUX-Net on supervised multi-organ segmentation
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Figure 6.2: Overview of RepUX-Net. Unlike performing SR to merge branches weight or performing GR
within optimizers, we propose to multiply a Bayesian function δ and scale the element-wise learning impor-
tance in each large kernel. We then put the scaled weights back into the convolution layer for training.

with 6 different public volumetric datasets. RepUX-Net demonstrates significant improvement consistently

across all datasets compared to all SOTA networks. We summarize our contributions as below:

• We propose RepUX-Net with better adaptation in large kernel convolution than 3D UX-Net, achieving

SOTA performance in 3D segmentation. To our best knowledge, this is the first network that effectively

leverages large kernel convolution with plain design in the encoder for 3D segmentation.

• We propose a novel theory-inspired re-parameterization strategy to scale the element-wise learning

convergence in large kernels with Bayesian prior knowledge. To our best knowledge, this is the first

re-parameterization strategy to adapt 3D large kernels in the medical domain.

• We leverage six challenging public datasets to evaluate RepUX-Net in 1) direct training and 2) transfer

learning scenarios with 3D multi-organ segmentation. RepUX-Net achieves significant improvement

consistently in both scenarios across all SOTA networks.

6.3 Related Works

Weights Re-parameterization: SR is a methodology of equivalently converting model structures via trans-

forming the parameters in kernel weights. For example, RepVGG demonstrates to construct one extra

ResNet-style shortcut as a 1× 1 convolution, parallel to 3× 3 convolution during training (49). Such par-
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allel branch design is claimed to enhance the learning efficiency during training, in which the 1x1 branch is

then merged into the parallel 3×3 kernel via a series of linear transformation in the inference stage. OREPA

further adds more parallel branches with linear scaling modules to enhance training efficiency (91). Inspired

by the parallel branches design, RepLKNet is proposed to scale up the 2D kernel size (e.g., 31x31) with a

3x3 convolution as the parallel branch (48). SLaK further extends the kernel size to 51x51 by decomposing

the large kernel into two rectangular parallel kernels with sparse groups and training the model with dynamic

sparsity (143). However, the proposed models’ FLOPs remain at a high-level with the parallel branch de-

sign and demonstrates to have a trade-off between model performance and training efficiency. To tackle the

trade-off, RepOptimizer provides an alternative to re-parameterize the back-propagate gradient, instead of

the structural parameters of kernel weights, to enhance the training efficiency with plain convolution block

design (47). Significant efforts have been demonstrated to enlarge the 2D kernel size in the natural image

domain, while limited studies have been proposed for 3D kernels in medical domain. As 3D kernels have

a larger number of parameters than 2D, it is challenging to directly leverage the parallel branch design and

maintain an optimal convergence of learning large kernel convolution without trading off the computation

efficiency significantly.

6.4 Methods

Instead of changing the gradient dynamics during training (47), we introduce RepUX-Net, a pure 3D CNN

architecture that performs element-wise scaling in large kernel weights to enhance the learning convergence

and effectively adapts large receptive field for volumetric segmentation. To design such behavior, we adapt

a two-step pipeline: 1) we define the theoretical equivalency of variable learning convergence in convolution

branches; 2) we simulate the behavior of spatial frequency to re-weight the learning importance of each

element in kernels for stochastic gradient descent. Note the theoretical derivation depends on the optimization

with first-order gradient-driven optimizer (e.g., SGD, AdamW) (47).

6.4.1 Variable Learning Convergence in Multi-Branch Design

From Figure 6.2, the learning convergence of the large kernel convolution can be improved by either adding

up the encoded outputs of parallel branches weighted by diverse scales with SR (RepLKNet (48)) or perform-

ing Gradient Re-parameterization (GR) by multiplying with constant values (RepOptimizer (47)) in a Single

Operator (SO). Inspired by the concepts of SR and GR, we extend the equivalency proof in RepOptimizer

to adapt variable learning convergence in branches. Here, we only showcase the conclusion with two convo-

lutions and two constant scalars as the scaling factors for simplicity. The complete proof of equivalency is

demonstrated in Supplementary 1.1. Let {αL,αS} and {WL,WS} be the two constant scalars and two convo-
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lution kernels (Large & Small) respectively. Let X and Y be the input and output features, the CSLA block is

formulated as YCSLA = αL(X ⋆WL)+αS(X ⋆WS), where ⋆ denotes as convolution. For SO blocks, we train the

plain structure parameterized by W ′ and YSO = X ⋆W ′. Let i be the number of training iterations, we ensure

that Y (i)
CSLA = Y (i)

SO,∀i ≥ 0 and derive the stochastic gradient descent of parallel branches as follows:

αLWL(i+1)+αSWS(i+1) = αLWL(i)−λLαL
∂L

∂WLi

+αSWS(i)−λSαS
∂L

∂WSi

, (6.1)

where L is the objective function; λL and λS are the Learning Rate (LR) of each branch respectively. We

observe that the optimization of each branch can be different by adjusting the branch-specific LR. The locality

convergence in large kernels enhance with the quick convergence in small kernels. Additionally from our

experiments, a significant improvement is demonstrated with different branch-wise LR using SGD (Table

6.2). With such observation, we further hypothesize that the convergence of each large kernel element can

be optimized differently by linear scaling with prior knowledge.

6.4.2 Bayesian Frequency Re-parameterization (BFR)

With the visualization of ERF in RepLKNet (48), the diffused distribution (from local to global) in ERF

demonstrates similar behavior with the spatial frequency in the human visual system (114). High spatial

frequency (small ERF) allows to refine and sharpen details with high acuity, while global details are demon-

strated with low spatial frequency. Inspired by the reciprocal characteristics in spatial frequency, we first

generate a Bayesian prior distribution to model the spatial frequency by computing a reciprocal distance

function between each element and the central point of the kernel weight as follows:

d(x,y,z,c) =
√

(x− c)2 +(y− c)2 +(z− c)2

δ (xk,yk,zk,c,α) =
α

d(xk,yk,zk,c)+α

(6.2)

where k and c are the element and central index of the kernel weight, α is the hyperparameter to control the

shape of the generated frequency distribution. Instead of adjusting the LR in parallel branches, we propose to

re-parameterize the convolution weights by multiplying the scaling factor δ to each kernel element and apply

a static LR λ for stochastic gradient descent in single operator setting as follows:

W
′
i+1 = δW

′
i −λ

∂L
∂δW ′

i
(6.3)

With the multiplication with δ , each element in the kernel weight is rescaled with respect to the frequency

level and allow to converge differently with a static LR in stochastic gradient descent. Such design demon-
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strates to influence the weighted convergence diffused from local to global in theory, thus tackling the limita-

tion of enhancing the local convergence only in branch-wise setting.

6.4.3 Model Architecture

The backbone of RepUX-Net is based on 3D UX-Net (121), which comprises multiple volumetric convo-

lution blocks that directly utilize 3D patches and leverage skip connections to transfer hierarchical multi-

resolution features for end-to-end optimization. Inspired by (136), we choose a kernel size of 21× 21× 21

for DepthWise Convolution (DWC-21) as the optimal choice without significant trade-off between model

performance and computational efficiency in 3D. We further simplify the block design as a plain convolution

block design to minimize the computational burden from additional modules. The encoder blocks in layers l

and l +1 are defined as follows:

ẑl = GeLU(DWC-21(BN(zl−1))), ẑl+1 = GeLU(DWC-21(BN(zl))) (6.4)

where ẑl and ẑl+1 are the outputs from the DWC layer in each depth level; BN denotes as the batch normal-

ization layer.

6.5 Experimental Setup

Datasets We perform experiments on six public datasets for volumetric segmentation, which comprise with 1)

Medical Segmentation Decathlon (MSD) spleen dataset (2), 2) MICCAI 2017 LiTS Challenge dataset (LiTS)

(15), 3) MICCAI 2019 KiTS Challenge dataset (KiTS) (86), 4) NIH TCIA Pancreas-CT dataset (TCIA) (180),

5) MICCAI 2021 FLARE Challenge dataset (FLARE) (151), and 6) MICCAI 2022 AMOS challenge dataset

(AMOS) (102). More details of each dataset (including data split for training and inference) are described in

Supplementary Material (SM) Table 6.4.

Implementation We evaluate RepUX-Net with three different scenarios: 1) internal validation with direct

supervised learning, 2) external validation with the unseen datasets, and 3) transfer learning with pretrained

weights. All preprocessing and training details including baselines, are followed with (121) for benchmark-

ing. For external validations, we leverage the AMOS-pretrained weights to evaluate 4 unseen datasets. In

summary, we evaluate the segmentation performance of RepUX-Net by comparing current SOTA networks

in a fully-supervised setting. Furthermore, we perform ablation studies to investigate the effect on Bayesian

frequency distribution with different scales generated by α and the variability of branch-wise learning rates

with first-order gradient optimizers (e.g., SGD, AdamW) for volumetric segmentation. Dice similarity coef-

ficient is leveraged as an evaluation metric to measure the overlapping regions between the model predictions
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Table 6.1: Comparison of SOTA approaches on the five different testing datasets. (*: p < 0.01, with Paired
Wilcoxon signed-rank test to all baseline networks)

Internal Testing External Testing
FLARE MSD KiTS LiTS TCIA

Methods #Params FLOPs Spleen Kidney Liver Pancreas Mean Spleen Kidney Liver Pancreas

nn-UNet (99) 31.2M 743.3G 0.971 0.966 0.976 0.792 0.926 0.917 0.829 0.935 0.739

TransBTS (218) 31.6M 110.4G 0.964 0.959 0.974 0.711 0.902 0.881 0.797 0.926 0.699
UNETR (74) 92.8M 82.6G 0.927 0.947 0.960 0.710 0.886 0.857 0.801 0.920 0.679
nnFormer (253) 149.3M 240.2G 0.973 0.960 0.975 0.717 0.906 0.880 0.774 0.927 0.690
SwinUNETR (73) 62.2M 328.4G 0.979 0.965 0.980 0.788 0.929 0.901 0.815 0.933 0.736
3D UX-Net (k=7) (121) 53.0M 639.4G 0.981 0.969 0.982 0.801 0.934 0.926 0.836 0.939 0.750
3D UX-Net (k=21) (121) 65.9M 757.6G 0.980 0.968 0.979 0.795 0.930 0.908 0.808 0.929 0.720

RepOptimizer (47) 65.8M 757.4G 0.981 0.969 0.981 0.822 0.937 0.913 0.833 0.934 0.746
3D RepUX-Net (Ours) 65.8M 757.4G 0.984 0.970 0.983 0.837 0.944* 0.932* 0.847* 0.949* 0.779*

Table 6.2: Ablation studies with quantitative Comparison on Block Designs with/out frequency modeling
using different optimizer

Optimizer Main Branch Para. Branch BFR Train Steps Main LR Para. LR Mean Dice

SGD 21×21×21 × × 40000 0.0003 × 0.898
AdamW 21×21×21 × × 40000 0.0001 × 0.906

SGD 21×21×21 3×3×3 × 40000 0.0003 0.0006 0.917
AdamW 21×21×21 3×3×3 × 40000 0.0001 0.0001 0.929
AdamW 21×21×21 × ✓ 40000 0.0001 × 0.938

SGD 21×21×21 3×3×3 × 60000 0.0003 0.0006 0.930
AdamW 21×21×21 3×3×3 × 60000 0.0001 0.0001 0.938
AdamW 21×21×21 × ✓ 60000 0.0001 × 0.944

and the manual ground-truth labels.

6.6 Results

Different Scenarios Evaluations. Table 6.1 shows the result comparison of current SOTA networks on

medical image segmentation in a volumetric setting. With our designed convolutional blocks as the en-

coder backbone, RepUX-Net demonstrates the best performance across all segmentation task with significant

improvement in Dice score (FLARE: 0.934 to 0.944, AMOS: 0.891 to 0.902). Furthermore, RepUX-Net

demonstrates the best generalizability consistently with a significant boost in performance across 4 different

external datasets (MSD: 0.926 to 0.932, KiTS: 0.836 to 0.847, LiTS: 0.939 to 0.949, TCIA: 0.750 to 0.779).

For transfer learning scenario, the performance of RepUX-Net significantly outperforms the current SOTA

networks with mean Dice of 0.911 (1.22% enhancement), as shown in Table 6.2. RepUX-Net demonstrates

its capabilities across the generalizability of unseen datasets and transfer learning ability. The qualitative

representations (in Figure 6.3) further provides additional confidence of the quality improvement in segmen-

tation predictions with RepUX-Net.

Ablation studies with block designs & optimizers. With the plain convolution design, a mean dice score of

0.906 is demonstrated with AdamW optimizer and perform slightly better than that with SGD. With the addi-
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Table 6.3: Evaluations on the AMOS testing split in different scenarios.(*: p < 0.01, with Paired Wilcoxon
signed-rank test to all baseline networks)

Train From Scratch Scenario

Methods Spleen R. Kid L. Kid Gall. Eso. Liver Stom. Aorta IVC Panc. RAG LAG Duo. Blad. Pros. Avg

nn-UNet 0.951 0.919 0.930 0.845 0.797 0.975 0.863 0.941 0.898 0.813 0.730 0.677 0.772 0.797 0.815 0.850

TransBTS 0.930 0.921 0.909 0.798 0.722 0.966 0.801 0.900 0.820 0.702 0.641 0.550 0.684 0.730 0.679 0.783
UNETR 0.925 0.923 0.903 0.777 0.701 0.964 0.759 0.887 0.821 0.687 0.688 0.543 0.629 0.710 0.707 0.740
nnFormer 0.932 0.928 0.914 0.831 0.743 0.968 0.820 0.905 0.838 0.725 0.678 0.578 0.677 0.737 0.596 0.785
SwinUNETR 0.956 0.957 0.949 0.891 0.820 0.978 0.880 0.939 0.894 0.818 0.800 0.730 0.803 0.849 0.819 0.871
3D UX-Net (k=7) 0.966 0.959 0.951 0.903 0.833 0.980 0.910 0.950 0.913 0.830 0.805 0.756 0.846 0.897 0.863 0.890
3D UX-Net (k=21) 0.963 0.959 0.953 0.921 0.848 0.981 0.903 0.953 0.910 0.828 0.815 0.754 0.824 0.900 0.878 0.891
RepOptimizer 0.968 0.964 0.953 0.903 0.857 0.981 0.915 0.950 0.915 0.826 0.802 0.756 0.813 0.906 0.867 0.892

RepUX-Net (Ours) 0.972 0.963 0.964 0.911 0.861 0.982 0.921 0.956 0.924 0.837 0.818 0.777 0.831 0.916 0.879 0.902*

Transfer Learning Scenario

Methods Spleen R. Kid L. Kid Gall. Eso. Liver Stom. Aorta IVC Panc. RAG LAG Duo. Blad. Pros. Avg

nn-UNet 0.965 0.959 0.951 0.889 0.820 0.980 0.890 0.948 0.901 0.821 0.785 0.739 0.806 0.869 0.839 0.878

TransBTS 0.885 0.931 0.916 0.817 0.744 0.969 0.837 0.914 0.855 0.724 0.630 0.566 0.704 0.741 0.650 0.792
UNETR 0.926 0.936 0.918 0.785 0.702 0.969 0.788 0.893 0.828 0.732 0.717 0.554 0.658 0.683 0.722 0.762
nnFormer 0.935 0.904 0.887 0.836 0.712 0.964 0.798 0.901 0.821 0.734 0.665 0.587 0.641 0.744 0.714 0.790
SwinUNETR 0.959 0.960 0.949 0.894 0.827 0.979 0.899 0.944 0.899 0.828 0.791 0.745 0.817 0.875 0.841 0.880
3D UX-Net (k=7) 0.970 0.967 0.961 0.923 0.832 0.984 0.920 0.951 0.914 0.856 0.825 0.739 0.853 0.906 0.876 0.900
3D UX-Net (k=21) 0.969 0.965 0.962 0.910 0.824 0.982 0.918 0.949 0.915 0.850 0.823 0.740 0.843 0.905 0.877 0.898
RepOptimizer 0.967 0.967 0.957 0.908 0.847 0.983 0.913 0.945 0.914 0.838 0.825 0.780 0.836 0.915 0.864 0.897

RepUX-Net 0.973 0.968 0.965 0.933 0.865 0.985 0.930 0.960 0.923 0.859 0.829 0.793 0.869 0.918 0.891 0.911*

tional design of a parallel small kernel branch, the segmentation performance significantly improved (SGD:

0.898 to 0.917, AdamW: 0.906 to 0.929) with the optimized parallel branch LR using SR. The performance

is further enhanced (SGD: 0.917 to 0.930, AdamW: 0.929 to 0.937) without being saturated with the increase

of the training steps. By adapting BFR, the segmentation performance outperforms the parallel branch design

significantly with a Dice score of 0.944.

Effectiveness on Different Frequency Distribution. From Figure 6.4 in SM, RepUX-Net demonstrates the

best performance when α = 1, while comparable performance is demonstrated in both α = 0.5 and α = 8.

A possible family of Bayesian distributions (different shapes) may need to further optimize the learning con-

vergence of kernels across each channel.

Limitations. The shape of the generated Bayesian distribution is fixed across all kernel weights with an

unlearnable distance function. Each channel in kernels is expected to extract variable features with different

distributions. Exploring different families of distributions to rescale the element-wise convergence in kernels

will be our potential future direction.

6.7 Conclusion

We introduce RepUX-Net, the first 3D CNN adapting extreme large kernel convolution in encoder network

for medical image segmentation. We propose to model the spatial frequency in the human visual system as a

reciprocal function, which generates a Bayesian prior to rescale the learning convergence of each element in

kernel weights. By introducing the frequency-guided importance during training, RepUX-Net outperforms
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Table 6.4: Complete overview of six public MICCAI challenge datasets

Challenge FLARE AMOS MSD KiTS LiTS TCIA

Imaging Modality Multi-Contrast CT Multi-Contrast CT Venous CT Arterial CT Venous CT Venous CT
Anatomical Region Abdomen Abdomen Spleen Kidney Liver Pancreas
Sample Size 361 200 41 300 131 89

Anatomical Label Spleen, Kidney, Liver, Pancreas
Spleen, Left & Right Kidney, Gall Bladder,

Spleen Kidney, Tumor Liver, Tumor PancreasEsophagus, Liver, Stomach, Aorta, Inferior Vena Cava (IVC)
Pancreas, Left & Right Adrenal Gland (AG), Duodenum

Data Splits 5-Fold Cross-Validation (Internal) 1-Fold (Internal) All (External)
Train: 272 / Validation: 69 / Test: 20 Train: 160 / Validation: 20 / Test: 20 Test: 41 Test: 300 Test: 131 Test: 89
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Figure 6.3: Qualitative Representations of organ segmentation in LiTS and TCIA datasets

current SOTA networks on six challenging public datasets via both direct training and transfer learning sce-

narios.

6.8 Supplementary Material

6.8.1 Derivation of Variable Convergence in Multi-Branch Design

The parallel structural design is referred to the CSLA block. Each branch only comprises on differentiable

linear operator with trainable parameters (e.g., Convolution (Conv), Fully-Connected (FC) layer, scaling

layer) and no training-time non-linearity. We begin with a simple case where the CSLA block has two

parallel Conv kernels with same dimensions in kernel weights by padding and scaled by constant values. Let

αL,αS and WL, WS be the constant scalars and the weights of two Conv kernels (Large & Small), and X and

Y be the input and the output features. The computation flow of the CSLA block is formulated as following:

YCSLA = αL(X ∗WL)+αS(X ∗WS), (6.5)
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Figure 6.4: Quantitative evaluation of the ablation study with different frequency distribution.

where ∗ denotes convolution. To optimize the gradient in parallel structure as a Single Operator (SO), we

first derive the gradient flow scenario in a single operator structure, which is parameterized by W
′

as follows:

YSO = X ∗W
′

(6.6)

Our goal is to ensure generating same outputs in both multi-branch and single operator setting YCSLA = YSO

during training. Since only linear operations are performed within branches, we derive the kernel weights

relationship as follows:

W
′
= αLWL(i)+αSWS(i). (6.7)

With the above theoretical relationship in kernel weights, we apply the stochastic gradient descent rule and

update the parallel branches gradient as follows:

W
′
i+1 =W

′
i −λ

∂L

∂W ′
i

(6.8)

αLWL(i+1)+αSWS(i+1) = αLWL(i)+αSWS(i)−λ (αL
∂L

∂WLi

+αS
∂L

∂WSi

) (6.9)

where L is the differentiable loss function, i is the index number of training iterations and λ is the Learning

Rate (LR). We further expand equation 5 and observe that each conv branch can be optimized with different

convergence rate by adjusting the corresponding LR as follows:

αLWL(i+1)+αSWS(i+1) = αLWL(i)−λLαL
∂L

∂WLi

+αSWS(i)−λSαS
∂L

∂WSi

, (6.10)
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where λL and λS are the LR for the large kernel branch and small kernel branch respectively. After training,

the small kernel parameters are merged onto the central point of the large kernels, which is equivalent to

enhance the learning convergence in locality with single operator setting.
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CHAPTER 7

Semantic-Aware Contrastive Learning for Multi-object Medical Image Segmentation

7.1 Overview

1Medical image segmentation, or computing voxel-wise semantic masks, is a fundamental yet challenging

task in medical imaging domain. To increase the ability of encoder-decoder neural networks to perform

this task across large clinical cohorts, contrastive learning provides an opportunity to stabilize model ini-

tialization and enhance downstream tasks performance without labels. However, multiple target objects

(with different semantic meanings) with different contrast level may exist in a single image, which poses

a problem for adapting traditional contrastive learning methods from prevalent “image-level classification”

to “pixel-level segmentation”. In this paper, we propose a simple semantic-aware contrastive learning ap-

proach leveraging attention masks and image-wise labels to advance multi-object semantic segmentation.

Briefly, we embed different semantic objects to different clusters rather than the traditional image-level em-

beddings. We evaluate our proposed method on a multi-organ medical image segmentation task with both

in-house data and MICCAI Challenge 2015 BTCV datasets. Compared with current state-of-the-art training

strategies, our proposed pipeline yields a substantial improvement of 5.53% and 6.09% on Dice score for

both medical image segmentation cohorts respectively (p-value<0.01). The performance of the proposed

method is further assessed on external medical image cohort via MICCAI Challenge FLARE 2021 dataset,

and achieves a substantial improvement from Dice 0.922 to 0.933 (p-value<0.01). The code is available at:

https://github.com/MASILab/DCC CL

7.2 Introduction

Contrastive learning is a variant of self-supervised learning (SSL) that has advanced to learn useful represen-

tation for an image classification task (33). Traditional contrastive learning approach consists of two primary

concepts: 1) the learning process pulls the target image (anchor) and a matching sample close to each other as

a “positive pair” in the embedding space, and 2) the learning process pushes the anchor from non-matching

samples away from each other as “negative pairs” in the embedding space. Data augmentation is used to

generate the positive samples from a training sample, while the negative pairs are formed from the remain-

ing samples of non-matching objects. Previous studies demonstrate the advantages of contrastive learning

in image-level classification tasks (38; 238; 36). We posit that contrastive learning can also leverage the

1In submission at: Lee, Ho Hin, et al., “Semantic-Aware Contrastive Learning for Multi-object Medical Image Segmentation.”, IEEE
Journal of Biomedical and Health Informatics, 2023 (133)
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capability of sub-image-level feature encoding, to advance pixel-level segmentation tasks. However, some

gaps need to be filled to achieve the latter goal, especially for multi-organ segmentation tasks in medical

imaging (24; 144; 248). For example, multiple semantic objects may exist in medical images (e.g., abdomen,

organs, brain tissues), while each element in the convoluted/downsampled feature may correlate to multiple

objects. Thus, it is difficult to align the object-wise semantics with the learned representation in the latent

space for multi-organ segmentation as the downstream task. moreover, it is challenging to provide the seman-

tic explainability, which classifies the quality of the learned feature for multi-object segmentation in medical

images.

In this work, we propose a semantic-aware attention-guided contrastive learning (AGCL) framework to

advance multi-object medical image segmentation with contrastive learning. We integrate object-corresponding

attention maps as additional input channels to adapt representations into corresponding semantic embeddings

(as shown in Figure 7.1). To further stabilize the latent space, we propose a multi-class conditional con-

trastive loss that increase the arbitrary number of positive pairs within the same sub-classes for contrastive

learning. Instead of leveraging pixel-wise label, radiological conditions such as modality and organ infor-

mation, are provided as image-wise multi-class label to constrain the normalized embedding. Figure 7.2

provides a visual explanation of our proposed framework. Our proposed contrastive learning strategy AGCL

is evaluated with three medical imaging datasets (two public contrast-enhanced CT dataset (117), in-house

non-contrast dataset). The results demonstrate that consistent improvements are achieved on both ResNet-50

and ResNet-101 architectures (79). Our main contributions are summarized as below: 1. We propose a

semantic-aware contrastive learning framework to advance multi-object pixel-level semantic segmentation.

2. We propose a multi-conditional contrastive loss to integrate meta information as an additional con-

straint for classifying representations into sub-class embeddings.

3. We demonstrate that the proposed AGCL generalizes the CT contrast phase variation in each organ

and significantly boosts the segmentation performance.

7.3 Related Works

Contrastive Learning: Self-supervised representation learning approaches have recently been proposed to

learn useful representation from unlabeled data. Some approaches propose learning embeddings directly

in lower-dimensional representation spaces instead of computing a pixel-wise predictive loss (243). Self-

distillation with a teacher-student network is further proposed to enrich the semantic correspondence using

pseudo-label predictions (22), while the masked autoencoder provides an alternative to learn the spatial fea-

ture correspondence with the image reconstruction task (76). Contrastive learning is one such state-of-the-art
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Figure 7.1: With multiple organs located in a single image, organ attention maps guide their representations
into corresponding embeddings and adapt contrastive learning for multi-object segmentation. Categorical
information can be used for supervisory context to constrain the separation of clusters (grey arrow: pull the
matching representations together, red arrow: push the non-matching representations apart).

methods for self-supervised learning to model the semantic-wise relationships in the latent space (247; 33).

It employs a loss function to pull latent representations closer together for positive pairs, while pushing them

apart for negative pairs. Maximizing mutual information between embeddings has also been proposed as an

alternative to extract the similar information between targets (7). Adapting with memory bank and momen-

tum contrastive approaches have been proposed to increase the batch sizes and generate more dissimilar pairs

in a minibatch for contrastive learning (154). Additionally, to constrain and stabilize the embedding spaces,

class label information has been added to provide additional supervision to stabilize contrastive learning

process (108).

However, most of the prior works in contrastive learning focused on improving the “image-wise classi-

fication”, while relatively fewer methods have been proposed for the “pixel-wise segmentation”. Pixel-wise

contrastive loss was proposed to adapt the representation from the ground-truth label information (248), while

dense contrastive loss was also proposed to minimize the discrepancy of image-level prediction and pixel-

level prediction (220). Furthermore, one-stage contrastive learning framework was proposed to enforce the

pixel embeddings belonging to a same semantic class to be more similar than embeddings from different

classes (219; 90; 1). In the medical domain, the contrastive learning framework was extended to leverage the

structural similarity and learn the distinctive representations of local regions without using pixel-wise ground

truth labels (24) and image-wise labels (241). Similarly, limited ground-truth labels were adapted into the

pretraining step for contrastive learning and enhanced the segmentation performance (92; 147). However,
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such method typically needs pixel-wise segmentation labels. Therefore, our proposed method identifies the

semantic-aware regions with one-hot attentional guidance and leverages multi-class image-level labels to de-

fine region-bounded representations as an arbitrary number of positive pairs for contrastive learning, without

using pixel-wise labels.

Medical Image Segmentation & Multi-Organ Segmentation: Fully-supervised deep learning methods

have been developed to enhance both the segmentation performance and the generalizability across differ-

ent datasets (39; 65; 257; 95). However, the supervised learning strategies are limited to the quality of

pixel/voxel-wise labels and the resolution of volumes (62). Thus, hierarchical approaches and patch-wise ap-

proaches have been proposed to perform segmentation across scales and resolutions (182; 259; 200). Another

study further enhanced the segmentation accuracy with the statistical fusion (222). Apart from multi-view

attention, shape-aware network was proposed to consistently smoothen the label prediction by learning the

signed distance function as additional constraints (233). Furthermore, RAP-Net was proposed to leverage

one-hot shape-aware mappings to provide additional localization context as additional input channel and

refine the segmentation mapping hierarchically (125). nn-UNet further enhanced the generalizability with

self-configuring structure to diversely predict segmentation for multi-modality imaging (99). Meanwhile, vi-

sion transformer was introduced as the encoder network to extract attention features with large receptive field

for robust segmentation (74). On the other hand, partially-supervised, semi-supervised and self-supervised

learning have also been explored to adapt unlabeled data in the medical imaging domain. Multiple single

organ-labeled datasets are used to provide structural prior knowledge during the training with multiple organ-

labeled dataset to enhance multi-organ segmentation performance (255). A quality assurance module have

been proposed to adapt the segmentation quality as the supervision from unlabeled data (130). Pretext tasks

such as colorization, deformation and image rotation, have been used as pre-training features to initialize

the segmentation networks (258). Self-supervised context has been explored by predicting the relative patch

location and the degree of rotation (8; 260). Contrastive learning has been used to extract global and local

representations for domain-specific MRI images (24). A contrastive predictive network has been used to

summarize the latent vectors in a minibatch and predict the latent representation of adjacent patches (195).

7.4 Method

We present our co-training approach AGCL that integrates one-hot organ attention into contrastive learn-

ing by adapting radiological context labels (modality and organ) to classify representations into sub-classes

embeddings, as presented in Figure 7.3.
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Figure 7.2: A 2D/3D segmentation pipeline (2D for natural image, 3D for medical image) is used to generate
attention map for organ localization. 2D organ-corresponding query patches are randomly extracted and con-
catenated with the regional attention maps as an additional channel to guide embeddings of the organ targets.
Data augmented pairs of the attention queries are constrained into corresponding radiological embeddings
(such as organs and modalities) with additional label supervision in the proposed contrastive loss. The en-
coder is co-trained with decoder to generate refined segmentation with label fusion.

7.4.1 Hierarchical Coarse Segmentation

The input data of the entire pipeline is a multi-contrast 3D image volume Vi = {Xi,Yi}i=1,...,L, where L is

the number of all imaging samples, X is the volumetric image and Y is the corresponding multi-organ la-

bel. The corresponding outcomes of the preprocessing stage are coarse segmentation masks (attention maps)

Ai = RAP(Xi) from a hierarchical segmentation network RAP(·) (125). We define A ∈ RH×W×C, where H

and W denote as the axial dimension of the image, and C denotes as the number of label classes. The coarse

segmentation network RAP-Net consists of two hierarchical stages: 1) low-resolution whole volume seg-

mentation and 2) organ-specific patch segmentation refinement. The low-resolution model generates a rough

segmentation map and provide anatomical context as additional channel input to refine the segmentation

in patch-wise setting as the second step. Both low-resolution model and patch-wise model are trained in

supervised setting with 5-fold cross-validations.

7.4.2 Data Preprocessing

The goal of the data preprocessing step is to randomly sample 3D training patches for downstream contrastive

learning. In our design, we utilize the attention maps (1) as spatial restrictions of the organ-specific sampling

process, and (2) highlight the current organ of interest to define semantic-wise embeddings for segmentation
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refinement. Briefly, organ-specific patches pi = {xC,i,yC,i,sC,i}i=1,...,N are randomly sampled within each

organ class C in attention maps. The center point is randomly sampled from attention maps to crop the region

of interest (ROI), N denotes as the total number of query patches, xC,i is the organ-corresponding image

patch, yC,i is the binary ground-truth label patch, and sC,i is the coarse organ-specific attention map from Ai in

binary setting. As the significant difference between yC,i and sC,i is the variation of segmentation quality, the

model trained aims to refine the segmentation with the prior knowledge of sC,i as additional input channel.

asaAs a standard process in data augmentation, random cropping, rotation (-30 to 30 degrees), scaling has

been applied to augment the size of training samples.

7.4.3 Contrastive learning with Organ-Specific Attention

After generating augmented image pairs, pairwise images are then used as the inputs for contrastive learn-

ing. Specifically, a convolutional encoder network E(·) is used to extract high dimensional features. We

further project each high-level feature map into 1D vector z̃i using a multi-layer perceptron network P(·),

z̃i = P(E(ãi)), z̃i ∈ ROE (pink box in Figure 7.2), where OE is the size of the output vector. Then, the standard

self-supervised contrastive loss (SSCL) (33) can be defined as the following:

Lsel f =−
2N

∑
k=1

log
exp(z̃k · z̃p(k)/T )

∑ j∈J(k) exp(z̃k · z̃ j/T )
(7.1)

where T is a hyperparameter indicating temperature scaling to control the radius weighting on the posi-

tive/negative pairs. Both k and p(k) represent the index of the anchor sample and the corresponding positive

sample, respectively. J(k) represents the number of remaining negative samples. To incorporate the attention

with modality and organ semantic meanings, we extend SSCL to adapt an arbitrary number of positive pairs

by introducing multi-class image-level labels into contrastive loss. Here, modalities indicate the different

contrast types in CT (we have utilized both contrast-enhanced and non-contrast CT scans in the training set).

As the organ-specific attention only provides one-hot voxel-wise context to preserve organ regions, the multi-

class labels represent different modalities/organs for the learned representations under the attention regions. It

provides flexibility to further constrain the representations into semantic-aware clusters, which is conditional

to the image-level label. In each batch, pairwise patches with the same organ and modality label are defined

as a positive pair, while the remaining pairs are specified as negative pairs. With such positive-negative pairs

definition, we further extend the contrastive loss with conditional constraints as follows:

LMT =
2N

∑
k=1

−1
|L(k)| ∑

l∈L(k)
log

exp(z̃k · z̃l/T )

∑ j∈J(k) exp(z̃k · z̃ j/T )
(7.2)
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Figure 7.3: The latent distributions of four randomly selected organs using principal component analysis
(PCA) are plotted with their corresponding modality (Blue: contrast-enhanced phase CT, red: non-contrast
phase CT). The first two components are plotted as a visualization. With AGCL, the organ representation can
be well separated into specific modal clusters.

where L(k)≡ {l ∈ J(k) : mk = ml , op = ol}, m and o denote as the corresponding modality and organ label,

respectively. l and ẑl are the index number and the projected feature representation of the corresponding

positive sample with same organ and modality label. The feature vector output with 256 channels is directly

used to compute the contrastive loss of modality and organ class respectively. By classifying learned repre-

sentations into multi-classes embeddings, the model is initially learned the attention-bounded representations

with semantic meanings, which hypothesize to be beneficial for downstream segmentation refinement task.

7.4.4 Co-training with Multi-Organ Segmentation

The ultimate goal of our framework is to achieve a robust patch-wise contrastive learning without using pixel-

wise labels, which benefits for downstream segmentation task. The native two-stage strategy is to train both

contrastive loss and downstream segmentation loss independently. Here, we attempt to have a co-training

strategy, by training the contrastive loss and segmentation tasks simultaneously. The encoder network is

followed with an atrous spatial pyramid pooling (ASPP) module as the decoder network to resample the

bottleneck feature with multiple effect Field Of Views (FOV) (31). The DeepLabV3+ is employed as the

segmentation part with the shared encoder structure for contrastive learning (31). The distinctiveness of

adapting ASPP is to obtain multi-scale features during upsampling. One 1× 1 convolution and three 3× 3

convolution layers with different dilation rate (e.g., 6, 12, 18) are leveraged. With the increased number of
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Figure 7.4: Comparison of different supervised / self-supervised pre-training strategies using multi-class
labels for multi-organ segmentation. AGCL outperforms the current state-of-the-art pre-training methods
with SSCL and classification pre-training with CE across all organs. (*: p < 0.05, **: p < 0.01, with
Wilcoxon signed-rank test)

dilation rate, kernel stride is constrained while a larger FOV is accomplished without increasing the number

of model parameters. Furthermore, image pooling is also performed in parallel to extract the global features.

Features from different FOV are finally concatenated. The channel-wise features are mixed using a 1× 1

convolution layer before passing through the final layer for high-resolution prediction. The rationale of such

design is to adapt the multi-view behavior and search the optimal tradeoff between the localized features

(small FOV) and the global-assimilated features (large FOV). Dice loss is used to compute the predicted

output with the ground truth label in binary setting for the co-training segmentation task. After computing all

organ-specific patches predictions, we fuse the organ-wise patches according to the center point recorded in

the data preprocessing stage. We employ majority voting (254) as the label fusion module to fuse predictions

into multi-organ labels.

7.5 Experiments

Datasets: To evaluate our proposed learning approach, one in-house research cohorts and two publicly avail-

able datasets in medical imaging are used with multi-organ segmentation as the downstream task.

MICCAI 2015 Challenge Beyond The Cranial Vault (BTCV) dataset is comprised of 100 de-identified

unpaired 3D contrast-enhanced CT scans with 7,968 axial slices in total. 20 scans are publicly available for
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Table 7.1: Comparison of the fully-supervised, unsupervised, semi-supervised and partially supervised state-
of-the-art methods on the 2015 MICCAI BTCV challenge leaderboard. (We show 8 main organs Dice scores
due to limited space, ∗: fully-supervised approach, ◦: unsupervised approach, △: partially supervised ap-
proach, ⋄: contrastive learning approach.)

Method Spleen R.Kid L.Kid Gall. Eso. Liver Aorta IVC
Average

Dice
Mean Surface

Distance
Hausdorff
Distance

Heinrich et al.◦(84) 0.920 0.894 0.915 0.604 0.692 0.948 0.857 0.828 0.790 2.262 25.504

Cicek et al.∗(39) 0.906 0.857 0.899 0.644 0.684 0.937 0.886 0.808 0.784 2.339 15.928
Roth et al.∗(182) 0.935 0.887 0.944 0.780 0.712 0.953 0.880 0.804 0.816 2.018 17.982
Pawlowski et al.∗(170) 0.939 0.895 0.915 0.711 0.743 0.962 0.891 0.826 0.815 1.861 62.872
Zhu et al.∗(259) 0.935 0.886 0.944 0.764 0.714 0.942 0.879 0.803 0.814 1.692 18.201
Lee et al.∗(125) 0.959 0.920 0.945 0.768 0.783 0.962 0.910 0.847 0.842 1.501 16.433
Isensee et al.∗(99) 0.956 0.923 0.940 0.760 0.764 0.965 0.905 0.850 0.839 1.523 16.201
Hat. et al.∗(74) 0.959 0.912 0.940 0.724 0.746 0.968 0.905 0.840 0.836 1.602 16.355

Zhou et al.△(255) 0.968 0.920 0.953 0.729 0.790 0.974 0.925 0.847 0.850 1.450 18.468

Chaitanya et al.⋄(24) 0.956 0.935 0.946 0.920 0.854 0.970 0.915 0.893 0.874 1.236 15.281
Alonso et al.⋄(1) 0.954 0.933 0.932 0.903 0.858 0.973 0.918 0.904 0.890 1.291 15.032
Wang et al.⋄(220) 0.963 0.939 0.900 0.815 0.838 0.976 0.922 0.907 0.882 1.303 14.759
Khosla et al.⋄(108) 0.959 0.939 0.947 0.932 0.867 0.978 0.922 0.911 0.907 0.978 14.136
Wang et al.⋄(219) 0.966 0.942 0.955 0.886 0.860 0.975 0.930 0.908 0.913 0.991 13.785

Ours (SSCL w/o Attention) 0.940 0.909 0.918 0.740 0.790 0.962 0.890 0.854 0.838 1.967 17.773
Ours (SSCL w/ GT Attention) 0.947 0.910 0.928 0.805 0.815 0.967 0.890 0.861 0.858 2.013 18.101
Ours (SSCL Pretraining) 0.953 0.922 0.930 0.830 0.822 0.972 0.899 0.874 0.863 1.899 17.073
Ours (SSCL Co-training) 0.957 0.930 0.935 0.843 0.827 0.974 0.895 0.869 0.869 1.803 16.714
Ours (AGCL w/o Attention) 0.950 0.933 0.935 0.803 0.805 0.967 0.903 0.862 0.852 1.923 17.215
Ours (AGCL w/ GT Attention) 0.962 0.937 0.940 0.857 0.846 0.973 0.915 0.890 0.891 1.312 14.852
Ours (AGCL Pretraining) 0.971 0.955 0.963 0.910 0.886 0.984 0.941 0.932 0.923 0.932 13.024
Ours (AGCL Co-training) 0.975 0.958 0.960 0.914 0.890 0.985 0.937 0.920 0.926 0.927 13.102

the testing phase in the MICCAI 2015 BTCV challenge. All CT scans are in portal venous phase. Peak

enhancement of contrast is observed in several organs, such as liver, kidney, spleen, and portal splenic vein.

For each scan, 12 organ anatomical structures are well-annotated, including spleen, right kidney, left kidney,

gallbladder, esophagus, liver, stomach, aorta, inferior vena cava (IVC), portal splenic vein (PSV), pancreas

and right adrenal gland. Each volume consists of 47 ∼ 133 slices of 512× 512 pixels, with resolution of

([0.54 ∼ 0.98]× [0.54 ∼ 0.98]× [2.5 ∼ 7.0])mm3.

Non-contrast clinical cohort is retrieved in de-identified form from ImageVU database of Vanderbilt

University Medical Center. It consists of 56 unpaired 3D CT scans with 3,687 axial slices and expert-refined

annotations for the same 12 organs as the MICCAI 2015 BTCV challenge dataset. All volumetric scans are

generated without contrast enhancement procedures. Each volume consists of 49 ∼ 174 slices of 512×512

pixels, with resolution of ([0.64 ∼ 0.98]× [0.64 ∼ 0.98]× [1.5 ∼ 5.0])mm3.

MICCAI 2021 Challenge Fast and Low GPU memory Abdominal Organ Segmentation (FLARE)

dataset leverage large scales of abdominal contrast-enhanced CT with 511 unpaired cases from 11 medical

centers in multi-contrast phases (including both portal venous phase and non-contrast phase CTs). It consists
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Figure 7.5: Qualitative representations of different pretraining strategies are demonstrated with ResNet-50
encoder backbone. Incremental improvement on segmentation quality is shown and AGCL demonstrates
smooth boundaries and accurate morphological information between neighboring organs.

of 361 3D CT scans with four organ-specific labels including spleen, kidney, liver and pancreas. Each volume

consists of 43 ∼ 384 slices of 512× 512 pixels, with resolution of ([0.64 ∼ 0.98]× [0.64 ∼ 0.98]× [1.0 ∼

5.0])mm3.

Preprocessing: We apply the preprocessing steps as follows: (i) applying soft tissue windowing within

the range of −175 to 250 Hu and perform intensity normalization of each 3D volume, v with min-max normal-

ization: (v− v1)/(v99 − v1), where vp denote as the pth intensity percentile in v, and (ii) apply volume-wise

cropping in z-axis with body part regression algorithm to extract the abdominal region only for segmentation

and ensure the similar field of view between scans (198).

Network Training: Our proposed framework AGCL is trained with unpaired samples in our scenario,

while it also allowed to train with paired samples. 5-fold cross-validation is performed for both contrast-

enhanced phase and non-contrast phase CT (Training: 60 volumes (contrast-enhanced) and 44 volumes (non-

contrast), validation: 20 volumes (contrast-enhanced) and 6 volumes (non-contrast), and testing: 20 volumes

(contrast-enhanced) and 6 volumes (non-contrast)). For training the coarse segmentation network RAP-Net,

we downsample all training volumes to a resolution of 2×2×6 with the dimension of 168×168×64. The

low-resolution volumes are leveraged to train a low-resolution segmentation model with Adam optimizer us-

ing a batch size of 1 and learning rate of 1e− 4. We then use the coarse segmentation output to guide and

extract organ-specific patches with dimension of 128× 128× 48. The patch-wise segmentation refinement
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model is trained with Adam optimizer using a batch size of 2 and learning rate of 1e− 4. For contrastive

learning, we perform patients-level sampling and extract 30 2D query patches of each anatomical target in

each axial slices of a subject scan. Such sampling strategy ensures that all patches are fully covered the organ-

specific ROIs with significant variation of anatomical morphology. More than 400k patches with dimensions

128×128 are used and shuffled to train with stochastic gradient descent (SGD) optimizer for 5 epochs with a

batch size of 4 and learning rate of 5×10−4. We have evaluated the variation of the temperature parameter

towards the segmentation performance and T = 0.1 achieved the best performances across all other tempera-

ture values. For segmentation task, the encoder’s weight is frozen and only the decoder with ASPP module

is trained for 10 epochs with Adam optimizer using a batch size of 4 and a learning rate of 10−4. We used

the validation set to choose the model with the highest mean Dice score for all semantic targets segmentation

and perform inference as the quantitative representation on the testing set.

Experimental Setup: We evaluate the segmentation performance with Dice similarity coefficient on

current state-of-the-art approach in contrastive learning and segmentation task for medical imaging domain,

including the testing phase of the BTCV dataset, testing cohort of the non-contrast clinical cohort and the

random sampled cohort from FLARE dataset. We further perform different pre-training strategies with the

multi-class image-level label using different scenarios. Apart from learning image-wise embeddings with

self-supervised setting, inspired by Khosla et al. (108), we introduce patch-wise multi-label (modality &

organ) classification as the pretext task via the canonical cross-entropy (CE) loss in a fully-supervised setting.

The learned representations are classified into label-corresponding clusters in AGCL. The CE loss is defined

as following:

Lce =
C

∑
i=1

yi log(pi) (7.3)

where yi is the ground-truth multi-class label and pi is the Softmax probability for the ith, i ∈ 1, . . . ,C classes.

Apart from different pretext task strategies, we also perform ablation studies with the variation of hyperpa-

rameters such as temperature and the number of label used for pretraining, to investigate the optimal effect on

fine-tuning segmentation task. For the encoder network, we evaluated with two common backbone architec-

tures for segmentation in medical imaging domain: DeeplabV3+ with ResNet-50 and ResNet-101 encoder.

The normalized activation of the final pooling layer with DE = 2048 are used as the distinctive feature rep-

resentation vector. More details of both network training and data preprocessing are demonstrated in the

supplementary material.
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Figure 7.6: a) The segmentation performance gradually improved with the additional quantities of image-
level labels for AGCL. b) Ablation studies of temperature scaling the distance between positive/negative
pairs demonstrates that the segmentation performance is best optimized when T = 0.1. c) Performance
trade-off is demonstrated between non-contrast and contrast-enhanced CT with multi-modal training and the
segmentation performance significantly improves in contrast-enhanced CT samples.

Table 7.2: Ablation studies of segmentation performance in various network backbones of the BTCV testing
cohort.

Encoder Pretrain Spleen R.Kid L.Kid Gall. Eso. Liver Stomach Aorta IVC PSV Pancreas R.A Mean

ResNet50 × 0.932 0.877 0.887 0.860 0.761 0.962 0.941 0.832 0.815 0.735 0.833 0.587 0.840
ResNet50 SSCL 0.953 0.922 0.930 0.842 0.822 0.972 0.907 0.899 0.874 0.800 0.854 0.625 0.868
ResNet50 CE 0.959 0.948 0.957 0.890 0.868 0.978 0.956 0.935 0.919 0.884 0.903 0.725 0.905
ResNet50 AGCL 0.971 0.955 0.963 0.910 0.886 0.984 0.965 0.941 0.932 0.893 0.917 0.769 0.923

ResNet101 × 0.939 0.870 0.880 0.859 0.745 0.960 0.915 0.840 0.800 0.736 0.825 0.567 0.834
ResNet101 SSCL 0.950 0.928 0.935 0.805 0.792 0.969 0.900 0.905 0.877 0.800 0.846 0.602 0.868
ResNet101 CE 0.960 0.933 0.945 0.887 0.822 0.975 0.952 0.920 0.901 0.834 0.877 0.670 0.891
ResNet101 AGCL 0.965 0.948 0.954 0.901 0.875 0.981 0.962 0.930 0.917 0.876 0.902 0.748 0.917

7.5.1 Segmentation Performance

We first compare the proposed AGCL with a series of state-of-the-art approaches including 1) fully super-

vised approaches (training on ground-truth labeled data only), 2) a partially-supervised approach (training on

one contrast phase dataset, and another with partial labels), and 3) contrastive learning approach for segmen-

tation tasks. As shown in Table 7.1, the contrastive learning approach demonstrates significant improvement

followed by the partial-supervision and full-supervision approaches. Chaitanya et al. integrates the SSCL

across global to local scale and demonstrates significant improvement across organs. Khosla et al. provides

an additional single class label to address the correspondence on embeddings, which outperforms all current

approaches in supervised and self-supervised contrastive learning settings. By further adding multi-class la-

bels as conditional constraints, AGCL achieves the best performance among all state-of-the-arts with a mean

Dice score of 0.926. The additional gains demonstrate that our use of supplemental imaging information

allows for recognition of more positive pairs with additional label constraints. To further evaluate the gener-

alizability of our approach, we performed external evaluations on another public multi-organ labeled datasets
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Table 7.3: Ablation studies of segmentation performance with adapting different constraints in contrastive
loss.

Label Constraints Spleen R.Kid L.Kid Gall. Eso. Liver Stomach Aorta IVC PSV Pancreas R.A Mean

Modality 0.965 0.948 0.958 0.890 0.865 0.975 0.950 0.930 0.920 0.879 0.895 0.732 0.910
Organ 0.968 0.947 0.959 0.893 0.872 0.979 0.957 0.935 0.925 0.886 0.903 0.744 0.914

Modality + Organ 0.975 0.958 0.960 0.914 0.890 0.985 0.970 0.937 0.920 0.901 0.925 0.772 0.926

FLARE for multi-organ segmentation. In Table 7.4, AGCL demonstrates substantial improvement on all

organs segmentation when compared against the current all contrastive state-of-the-arts.

7.5.2 Ablation Study for AGCL

Comparing with first stage training approaches: To investigate the effect of using multi-class label for

contrastive learning, we perform evaluation of different pretraining approaches with/out multi-class label: 1)

training with self-supervised contrastive loss (SSCL), 2) training with cross-entropy (CE) loss as classification

tasks, and 3) random initialization (RI) without any contrastive learning on both ResNet-50 and ResNet-101

encoder backbone. As shown in Table 7.2 and Figure 7.4, SSCL improves the segmentation performance over

RI by 3.12%, which is expected because RI considers no constraint in the lower-dimensional space and relies

on the decoder ability for downstream tasks. With the supervision of modality and anatomical information,

the supervised image classification strategies significantly boost the segmentation performance by 5.93%.

Pretraining with CE is to classify representations into corresponding embeddings related to the label given

and representations in the same class is moved towards each other. Therefore, such improvement demon-

strates that a good definition of the latent space in encoder can help address the corresponding representation

for each semantic target and starts to achieve more favorable with the segmentation task. Eventually, AGCL

surpasses CE by 1.32% in mean Dice and demonstrates the best performance across all pretraining strategies.

Instead of constraining same class representations to move near only, our contrastive loss allows to push the

representations out if they are not in the same class and provide a better definition on separating embeddings

than pretraining with CE.

To further evaluate the segmentation using different contrastive learning approaches, the qualitative repre-

sentation of the segmentation prediction with each training method is demonstrated on Figure 7.5 comparing

with the ground truth label. With SSCL, the boundary of the segmentation is significantly smoother than

that of with RI. However, we found that additional segmentation is performed near the neighboring struc-

tures. The similar intensity range and morphological appearance may lead to the instability of representation

extraction from SSCL. Pretext task with CE demonstrates a significant improvement in label quality, while
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Table 7.4: Comparison of the current contrastive state-of-the-art methods on FLARE dataset.

Method Spleen Kidney Liver Pancreas
Average

Dice

Lee et al.(125) 0.956 0.903 0.954 0.730 0.885
Chai. et al.(23) 0.961 0.923 0.956 0.787 0.908
Wang et al.(220) 0.966 0.918 0.964 0.800 0.912
Khosla et al.(108) 0.963 0.918 0.966 0.830 0.919
Wang et al.(219) 0.968 0.940 0.964 0.811 0.922

Ours (SSCL) 0.960 0.910 0.960 0.756 0.896
Ours (AGCL) 0.975 0.952 0.971 0.835 0.933

the boundaries on particular organs (e.g. gall bladder) is not well preserved. With the additional constraints

by AGCL, the boundary information between neighboring organs are clearly defined and the segmentation

quality is comparable to the ground truth label.

Comparing with different constraints scenario in contrastive loss: We further perform evaluation in

our proposed contrastive loss with class-wise label constraint: 1) modality-only label constraint, 2) organ-

only label constraint, and 3) modality plus organ constraints with ResNet-50 encoder as the network back-

bone. As shown in Table 7.3, the overall superior performance is achieved when applying both modality and

organ constraints.

Comparing with reduced label for AGCL: In Figure 7.6(a), we performed AGCL with the variation of

label quantity and compare the segmentation performance by leveraging the amount of label information. We

observed that model has the best performance with fully labeled input. A significant improvement is shown

with 20% labels for AGCL comparing to that with 10% labels, while an improvement to a small extent is

demonstrated by using 50% label for AGCL.

Comparing with temperature variability: We experimented with the variation of temperature to in-

vestigate the optimal effect towards the segmentation performance. Figure 7.6(b) demonstrates the effect

of temperature on the multi-organ segmentation across all subjects in the BTCV testing dataset. We found

that low temperature achieves better performance than high temperature, as the radius of the hypersphere

defined in the latent space is inversely proportional to the temperature scaling, which increases the difficulty

of finding positive samples with the decrease of radius.

Comparing with single/multiple modal contrastive learning The segmentation performance is eval-

uated with single modality and with multi-modality contrastive learning respectively. From Figure 7.6(c),

a better segmentation performance for contrast-enhanced dataset is achieved by contrastive learning with

multi-modality images. Interestingly, we observe that the segmentation performance of non-contrast imaging

is improved to a small extent with non-contrast modal pre-training only.
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7.5.3 Discussion & Limitations

In this work, we present a co-training framework that leverages organ attention into contrastive learning

and defines representations into conditional embeddings with image-level labels only. We hypothesize that

the conditional embeddings defined are beneficial to the segmentation task. By using organ attention as

additional input channel, we can extract meaningful representation within the organ-specific regions, instead

of randomly extracting representations that may affect by the neighboring organs.

It also allows to learn and define the organ-specific context into corresponding semantic categories. Apart

from using organ attention, we further leverage the multi-class labels to constrain pairwise representations

into sub-class embeddings. Instead of constraining contrastive loss in pixel-wise setting, we demonstrate

that constraining the latent space with multiple image-level labels is also beneficial to enhance the segmen-

tation performance for each organ of interest. From Table 7.1, we have shown that our proposed learning

scheme outperforms the current contrastive learning state-of-the-art for multi-organ segmentation. Further-

more, Table 7.2 has shown the comparison of different pre-training strategies with/out multi-class image-level

labels. It provides a better understanding about the contribution of our proposed contrastive loss in defining

semantic-aware latent space for segmentation task.

Although AGCL tackles current challenges of integrating contrastive learning into multi-object segmen-

tation, limitations still exist in the process of AGCL. One limitation is the dependency of the coarse seg-

mentation quality. As 2D patches are extracted with the attention information in each slice, patches without

corresponding organ regions may also be possible to extract due to inaccurate coarse segmentation. Incorrect

label definition inputs may bring into contrastive learning process. Another limitation is performing con-

trastive learning in object-centric setting. We aim to innovate contrastive learning strategy with complete

volume inputs for multi-object segmentation in our future work.

7.6 Conclusion

Performing robust multi-object semantic segmentation using deep learning remains a persistent challenge.

In this work, we propose a novel semantic-aware contrastive framework that extends self-supervised con-

trastive loss and integrates attention guidance from coarse segmentation. Our proposed method leads to a

significant gain in segmentation performance on two public contrast-enhanced CT datasets and one in-house

non-contrast CT dataset.
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CHAPTER 8

Adaptive Contrastive Learning with Dynamic Correlation for Multi-Phase Organ Segmentation

8.1 Overview

1Recent studies have demonstrated the superior performance of introducing “scan-wise” contrast labels into

contrastive learning for multi-organ segmentation on multi-phase computed tomography (CT). However, such

scan-wise labels are limited: (1) a coarse classification, which could not capture the fine-grained “organ-wise”

contrast variations across all organs; (2) the label (i.e., contrast phase) is typically manually provided, which

is error-prone and may introduce manual biases of defining phases. In this paper, we propose a novel data-

driven contrastive loss function that adapts the similar/dissimilar contrast relationship between samples in

each minibatch at organ-level. Specifically, as variable levels of contrast exist between organs, we hypothesize

that the contrast differences in the organ-level can bring additional context for defining representations in the

latent space. An organ-wise contrast correlation matrix is computed with mean intensity differences under

one-hot attention maps. We further multiply the correlation matrix to scale the cosine distance between

feature pairs, which adapt the contrast shift as variable levels of feature separability in the latent space. We

evaluate our proposed approach on multi-organ segmentation with both non-contrast CT (NCCT) datasets and

the MICCAI 2015 BTCV Challenge contrast-enhance CT (CECT) datasets. Compared to the state-of-the-art

approaches, our proposed contrastive loss yields a substantial and significant improvement of 1.41% (from

0.923 to 0.936, p-value<0.01) and 2.02% (from 0.891 to 0.910, p-value<0.01) on mean Dice scores across

all organs with respect to NCCT and CECT cohorts. We further assess the trained model performance with

the MICCAI 2021 FLARE Challenge CECT datasets and achieve a substantial improvement of mean Dice

score from 0.927 to 0.934 (p-value<0.01). The code is available at: https://github.com/MASILab/DCC CL

8.2 Introduction

Multi-phase contrast CT delineates different anatomical structures with significant variation in contrast in-

tensity (199; 80). As contrast agents progress through blood vessels, each organ of interest has its distinctive

contrast uptake patterns, which lead to a wide range of intensity distribution across organs. It is challenging to

generalize deep learning models and achieves consistent segmentation performance with significant contrast

variations. The most naive way to adapt multi-phase representations is to train phase-specific networks and

fuse the output features for organs segmentation (176). Phase/Modality-dependent normalization is further

1In submission at: Lee, Ho Hin, et al., “Adaptive Contrastive Learning with Dynamic Correlation for Multi-Phase Organ Segmenta-
tion.”, Medical Image Analysis, 2023 (129)
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Figure 8.1: Between NCCT and CECT, some organs have significant contrast variation (such as the kidneys,
liver, and spleen). We expect the corresponding embedding to be separable by contrast phases. However,
some organs of interest such as the gall bladder, pancreas, and adrenal glands have similar contrast appearance
across both modalities. As such, we expect the embedding of these organs to be aligned across phases,
instead of separating into independent clusters using contrast label supervision. Such variation exposes a key
limitation of current contrastive learning state-of-the-art approaches.

proposed to adapt independent normalization layers for each phase and mitigates the discrepancy between

phases (54). However, limited studies have been proposed to study the multi-phase correspondence of abdom-

inal organs in the feature level. Contrastive learning, a variant of self-supervised learning, has been shown

to learn class-aware representations in a “scan-wise” setting and achieves significant improvements in the

downstream tasks (33; 205; 23; 220). The theory of contrastive learning consists of two main operations: 1)

pulling the representation of target image (anchor) and the matching sample together as a “positive pair”, and

2) pushing the anchor representation from the remaining non-matching samples apart as “negative pairs”. The

goal of contrastive learning is to define class-aware embeddings without additional guidance. Furthermore,

supervised contrastive learning is introduced to further enhance the ability of defining class-wise embeddings

with the scan-wise label given (108; 88). However, scan-wise contrast information (e.g., phases) is limited to

represent different scales of contrast variation across organs of interest. For example, we observed that kidney

organ demonstrates a distinctive comparison between the appearance in contrast-enhanced and non-contrast

phase, while only subtle variance is demonstrated for the gall bladder organ (in Figure 8.1). Therefore, it

is challenging to leverage single hard label to represent such dynamic changes across organ intensities. As

such, we can further ask: Can we leverage the appearance difference to control and define organ-wise

representations with contrastive learning?

In this work, we propose a data-driven contrastive loss that leverages contrast correspondences between

organs to adaptively model the representations into organ-specific embeddings. Specifically, we extract mean

intensity difference under the organ-specific regions and scale the pairwise feature similarity/dissimilarity
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with the contrast prior knowledge across all samples in each minibatch. The goal of using contrast corre-

lation is to dynamically regularize the contrastive loss based on the wide range of contrast enhancement.

Our proposed contrastive loss is evaluated with two public contrast-enhanced CT (CECT) cohorts and one

research non-contrast CT (NCCT) cohort. The experimental results demonstrate consistent improvement in

multi-organ segmentation using deeplabv3+ architectures with a ResNet-50 encoder backbone (79; 32). Our

main contributions are summarized as follows:

• We propose an adaptive contrastive learning framework to improve and generalize multi-organ seg-

mentation performance in multi-phase contrast CT.

• We propose a data-driven contrastive loss function that adapts the organ-specific contrast correlation

as an adaptive weighting constraint to control the distance between multi-phase representations on the

organ-level.

• We demonstrate that the proposed contrastive loss captures the wide range of multi-phase contrast dif-

ferences without trading off performance from one of the phases and achieves significant improvement

for downstream segmentation tasks.

8.3 Related Works

Medical Image Segmentation: Most modern approaches to perform medical image segmentation typically

train a deep neural network directly in supervised setting with post-processing techniques (221). However,

the model performance is greatly dependent on both the quality of ground-truth labels and the resolution

of volumes (62). Patch-wise approaches and hierarchical approaches are proposed to adapt coarse-to-fine

features and leverage the mutli-scale capabilities to generate refine segmentation (182; 259; 200). However,

multiple models are typically needed to train for multiple semantic targets segmentation. Single coarse-

to-refine network is proposed to adapt multi-organ segmentation by integrating binary organ-corresponding

attentions as additional input channel (125). To further enhance the segmentation performance with stability,

significant efforts are put into exploring the possibility of adapting unlabeled data in both semi-supervised or

self-supervised setting. Generating quality assurance score for the intermediate predicted mask are proposed

as an alternative supervision using unlabeled data (130). Different pretext tasks including colorization, defor-

mation and image rotation, have been leveraged as pretraining strategies to provide a better initialization for

segmentation networks (258). Furthermore, learning spatial context by predicting the degree of rotation and

relative patch position are proposed to be beneficial for finetuning segmentation network (8; 260).

Image-Level Contrastive Learning: Significant efforts have been put into self-supervised learning to

extract meaningful representations from unlabeled data. Previous works have demonstrated to learn represen-
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Figure 8.2: The complete contrastive framework can be divided into three hierarchical steps: 1) We first
compute coarse segmentation and extract organ-corresponding patches for contrastive learning. The organ-
specific attention masks are leveraged as additional channels to guide the representations extracted within
specific regions. 2) For contrastive learning, we compute a contrast correlation matrix between samples in
each minibatch to control the weighting of the contrastive loss dynamically across all pairs. We first compute
the mean intensity of each organ of interest under each one-hot attention bounded region. v is the mean
intensity difference between the augmented samples in each minibatch. n is the batch size of each minibatch.
If the value of v is low, it corresponds to a high contrast correlation to scale the cosine distance between
representations c (approaching to 1). 3) We finally finetune the well-pretrained encoder followed with a
decoder network to generate refine multi-organ segmentation.

tations in the latent space using image reconstruction (243). The idea of contrastive learning further extends

to learn and classify representations into embeddings by evaluating the pairwise similarity in the latent space.

By leveraging data augmentations, the augmented pairs from the same image are defined as the positive pair

and pull their representations closer together, while pushing the remaining representations apart as negative

pairs (33). Instead of evaluating the feature similarity, maximizing the mutual information between represen-

tations have also been proposed to correlate the similar representations in the latent space (7). As the feature

similarity is evaluated within a batch, increasing the batch size is another alternative to enhance the efficiency

of contrastive learning. Using the memory bank and the momentum encoder for contrastive learning have

been proposed to compare the query representations with more dissimilar representations within a minibatch

(154; 77). Another perspective of contrastive learning is the definition of positive pair. Representations from

the same class may also sample in the minibatch, while the contrastive loss can only select a specific positive

pair. Supervised contrastive learning is introduced and leverages the image-level label to define arbitrary

number of positive pairs, providing a better definition of the latent space for fintuning classification tasks

(108). In the medical domain, continuous proxy meta-data is leveraged as the image-level additional guid-

ance for contrastive learning with brain MRI (58). Furthermore, leveraging relative position of the extracted
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patch for contrastive learning is demonstrated to be beneficial for fintuning detection task (134). For medical

image segmentation, image-wise labels such as positional information, are additionally used to constrain rep-

resentations in the latent space (241). To tackle the multi-contrast phase organ segmentation, the contrastive

loss has extended to adapt multi-class ”scan-wise” labels (e.g. contrast phases and organs) and defines repre-

sentations into sub-classes embeddings to benefit segmentation performance. However, such hard labels are

difficult to represent the dynamic contrast level across organ of interests. Current contrastive approaches are

limited to provide flexibility of controlling the feature separability between representations adaptively.

Pixel-Level Contrastive Learning: While prior works have demonstrated leveraging contrastive learn-

ing to enhance ”image-wise” downstream task performance, several approaches have been extended the the-

ory basis of contrastive learning to pixel-wise setting. Instead of using linear projection, dense projection

is used to compute dense mapping and evaluates the pixel-level similarity in self-supervised setting (220).

After that, pixel-wise contrastive loss is proposed to evaluate the feature similarity with ground-truth label

guidance (248). Apart from leveraging contrastive learning as pretraining strategies, single-stage framework

is proposed to cotrain segmentation task with contrastive loss and enforces the representations in the same

semantic class to be more similar as independent pixel-wise embeddings (219; 90; 1). In the medical per-

spective, feature representations in both the local and global views are computed, and evaluate the structural

similarity across views with limited samples (23). Furthermore, limited number of ground truth-labels or

pseudo predicted labels are further adapted with the pixel-wise contrastive loss and enhance the downstream

segmentation performances (92; 147). However, such pretraining/co-training strategies still require pixel-

wise label guidance.

8.4 Methods

Inspired by the visualization of variable organ contrast with different imaging protocols from Figure 8.1,

our proposed method tackles the limitation of adapting fix contrast labels in AGCL (88), which computes a

contrast-correlated prior to control the pairwise feature separation and generates a contrast-guided latent space

for multi-phase organ segmentation. The complete hierarchical pipeline is presented in Figure 8.2. We can

divide our hierarchical pipeline into three specific stages: 1) extracting organ-specific attention from coarse

segmentation, 2) contrastive learning with contrast correlation, and 3) fine-tuning for organ segmentation

refinement.

8.4.1 Organ-Specific Attention from Coarse Segmentation

Given a set of multi-contrast 3D image volumes Vi = {Xi,Yi}i=1,...,L, where L is the number of all imaging

samples, X is the volumetric image and Y is the corresponding multi-organ label. Inspired by (88), we first
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Figure 8.3: Dimensionality reduction with PCA is performed to visualize the distribution of learned represen-
tations. Both left and right plots are corresponding to the gall bladder feature and IVC feature respectively.
By leveraging the contrast correlation as dynamic weighting, we found that the representations is well defined
according to the contrast level, although they are in different ”scan-wise” defined contrast phases.

generate coarse segmentation masks Ai = Coarse(Xi) using RAP-Net, a two-stage network Coarse(·) that

adapts organ-specific prior with image patches to perform segmentation refinement within the prior-bounded

region. We define A ∈ RH×W×C, where H and W denote as the axial dimension of the image, and C denotes as

the total number of organ label classes. Coarse(·) is implemented with a hierarchical 3D U-Net architecture

and is trained by the complete multi-contrast volumes with 5-fold cross-validationd (125). We then randomly

sample organ-specific patches with the predicted masks’ guidance for both the contrastive pretraining and the

downstream fine-tuning. Briefly, we first convert all 3D volumes into 2D slices and extract 2-dimensional

organ-specific patches pi = {xC,i,yC,i,sC,i}i=1,...,N by randomly sampling pixel index of each organ class C as

the center point to crop the regions of interest (ROIs), N denotes as the total number of query patches, xC,i is

the image patch. Furthermore, we extract yC,i and sC,i by converting the organ ROIs in both ground-truth label

patch and the coarse segmentation patch in binary setting, where sC,i ∈ Ai. The coarse mapping is utilized as

the organ attention prior for spatial restrictions of learning pixel-wise semantic representations. Specifically,

inspired by (33), a data augmentation module Aug(·) is used to further extract correlated representations

within the organ ROIs, including random cropping, rotation (-30 to 30 degrees), scaling (width: 0.3, height:

0.7) and generate 2n pairwise copies x̃C,i, s̃C,i = Aug(xC,i,sC,i). Each s̃C,i is concatenated with x̃C,i as a multi-

channel input mi for training encoder network E(·).
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8.4.2 Contrastive Learning with Contrast Correlation

8.4.2.1 Phase-Driven Contrast Correlation

From Figure 8.1, we observe that the contrast uptake patterns between organs of interest are varied signifi-

cantly, while subtle variations may also exist in some of the organs, even when they are in different modalities.

However, a fix contrast label is limited to provide an adaptive contrast meaning that guides the separation be-

tween organ-specific features, especially with subtle contrast variation in different modalities scenario (88).

Therefore, we hypothesize that the dynamic intensity difference in organ level is beneficial to adaptively de-

fine representations in the latent space. Here, we extract the mean intensity value di within the corresponding

s̃C,i and dynamically compute the contrast difference pairwisely across all image patches of each minibatch.

The absolute difference of mean intensity across pairwise samples vi, j is computed as the contrast correlation

context. We hypothesize that vi, j tends to 0 if the “organ-driven” mean intensity is similar. The correlation

matrix is defined as following:

di =
1
|φ | ∑

(x,y,c)∈φ

{x̃C,i · s̃C,i}(x,y,c) (8.1)

vi, j = |di −d j| , (8.2)

where x, y and c are corresponding to the x-y coordinates and number of channels within the attention bounded

region. φ ∈ R is the number of nonzero pixels in the bounded region. i and j are the respective batch indices

across all augmented samples.

8.4.2.2 Dynamic Contrast Correlation Contrastive Loss

As the current contrastive loss functions lack of flexibility in adjusting the level of separation dynamically

between the multi-phase/modal representations with a fix label, we propose the dynamic contrast correlation

(DCC) matrix as an adaptive weighting to multiply the cosine similarity computed in the feature-level. Instead

of only computing feature-level contrastive loss in self-supervised setting, the dynamic constraints account

the image-level variability as soft supervision to enhance the flexibility of standard contrastive loss, which

help to control the cosine distance between the pairwise representations in each minibatch. The DCC matrix

dynamically varies according to the shuffled samples in each minibatch.Our proposed contrastive loss as Ldcc

is defined as follows:

z̃k, z̃p(k) = P(E(mk,mp(k)) (8.3)

Ldcc =−
2n

∑
k=1

log
exp(z̃k · z̃p(k) · (1− vk,p(k))/T )

∑ j∈J(k) exp(z̃k · z̃ j · (1− vk, j)/T )
, (8.4)
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where z̃k and z̃p(k) are the pairwise feature representation vectors. The index k represents the sample of anchor

and index p(k) represents the corresponding positive. The hyperparameter T is the radius of the hypersphere

that maps the representation inside as a point. P(·) is a linear projection network using multi-layer perceptron

(MLP). Instead of constraining into label-class representation, the DCC-weighted contrastive loss preserves

the data-driven knowledge for each organ and allows for similar organ-wise representations even if they

are from different phases. The distance between the pairwise representations is controlled with the contrast

correlation (1− vk, j), thus to enhance the flexibility of defining latent space.

Table 8.1: Comparison of current state-of-the-art methods on the BTCV challenge leaderboard. (⋆: fully-
supervised approach, △: partially supervised approach, DACA: Data Augmentation with Contrast Adjust-
ment, *: p < 0.01, with Wilcoxon signed-rank test.)

Method Spleen R. Kid L. Kid Gall. Eso. Liver Stom. Aorta IVC PSV Panc. RAG
Average

Dice

(39)⋆ 0.906 0.857 0.899 0.644 0.684 0.937 0.790 0.886 0.808 0.643 0.724 0.632 0.784
(182)⋆ 0.935 0.887 0.944 0.780 0.712 0.953 0.823 0.880 0.804 0.680 0.741 0.653 0.816
(84) 0.920 0.894 0.915 0.604 0.692 0.948 0.810 0.857 0.828 0.640 0.735 0.619 0.790
(170)⋆ 0.939 0.895 0.915 0.711 0.743 0.962 0.827 0.891 0.826 0.700 0.739 0.639 0.815
(259)⋆ 0.935 0.886 0.944 0.764 0.714 0.942 0.835 0.879 0.803 0.651 0.752 0.669 0.814
(125)⋆ 0.959 0.920 0.945 0.768 0.783 0.962 0.867 0.910 0.847 0.712 0.767 0.680 0.842
(99)⋆ 0.956 0.923 0.940 0.760 0.764 0.965 0.870 0.905 0.850 0.703 0.771 0.670 0.839
(74)⋆ 0.959 0.912 0.940 0.724 0.746 0.968 0.873 0.905 0.840 0.767 0.786 0.701 0.836
(255)△ 0.968 0.920 0.953 0.729 0.790 0.974 0.891 0.925 0.847 0.780 0.801 0.734 0.850

(33) 0.953 0.922 0.930 0.842 0.822 0.972 0.907 0.899 0.874 0.800 0.854 0.625 0.868
(33) + DACA 0.957 0.935 0.941 0.867 0.840 0.977 0.914 0.909 0.891 0.812 0.873 0.655 0.881
(23) 0.956 0.935 0.946 0.920 0.854 0.970 0.880 0.915 0.893 0.786 0.843 0.631 0.874
(220) 0.963 0.939 0.900 0.815 0.838 0.976 0.924 0.922 0.907 0.840 0.867 0.675 0.882
(108) 0.965 0.948 0.958 0.890 0.865 0.975 0.950 0.930 0.920 0.879 0.895 0.732 0.910
(108) + DACA 0.967 0.951 0.963 0.901 0.878 0.980 0.955 0.934 0.923 0.885 0.902 0.747 0.915
(1) 0.954 0.933 0.932 0.903 0.858 0.973 0.921 0.918 0.904 0.853 0.871 0.723 0.890
(219) 0.966 0.942 0.955 0.886 0.860 0.975 0.943 0.930 0.908 0.881 0.892 0.745 0.913
(88) 0.971 0.955 0.963 0.910 0.886 0.984 0.965 0.941 0.932 0.893 0.917 0.769 0.923

Ours (DCC-CL) 0.974 0.956 0.960 0.928 0.905 0.986 0.972 0.953 0.942 0.905 0.926 0.790 0.936

8.4.3 Fine-tuning for Organ Segmentation Refinement

The final goal of our proposed approach is to learn the contrast-correlated semantic representations for seg-

mentation refinement. After the encoder network is pretrained with a projection network, we withdraw the

projection network and employ DeepLabV3+ network as the model backbone for segmentation refinement

in a fully-supervised setting (30). Such backbone can share the same encoder structure with the contrastive

pretrained encoder and adapts atrous spatial pyramid pooling (ASPP) as the decoder for multi-scale refine-

ment. Here, we use the Dice loss to evaluate the regional similarity between the predicted segmentation and

the ground-truth in binary setting for end-to-end optimization. Finally, we employ majority voting to fuse all

the binary outputs from the same slice and concatenate all fused slices to generate the volumetric multi-organ

mask as our refined output.
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Table 8.2: Comparison of the current state-of-the-art methods on the non-contrast testing dataset. (⋆: fully-
supervised approach, △: partially supervised approach, *: p < 0.01, with Wilcoxon signed-rank test.)

Method Spleen R. Kid L. Kid Gall. Eso. Liver Stom. Aorta IVC PSV Panc. RAG
Average

Dice

(39)⋆ 0.937 0.856 0.912 0.690 0.631 0.920 0.768 0.880 0.769 0.596 0.723 0.465 0.762
(182)⋆ 0.940 0.890 0.923 0.701 0.724 0.948 0.747 0.878 0.770 0.574 0.724 0.470 0.771
(84) 0.910 0.865 0.889 0.624 0.656 0.930 0.743 0.860 0.759 0.556 0.720 0.458 0.748
(259)⋆ 0.948 0.880 0.920 0.710 0.734 0.950 0.791 0.879 0.803 0.603 0.745 0.510 0.790
(125)⋆ 0.954 0.874 0.928 0.701 0.753 0.958 0.814 0.897 0.794 0.611 0.764 0.525 0.798
(99)⋆ 0.963 0.930 0.946 0.876 0.792 0.970 0.836 0.919 0.843 0.637 0.786 0.544 0.836
(74)⋆ 0.971 0.923 0.947 0.857 0.789 0.965 0.805 0.908 0.821 0.597 0.757 0.509 0.820
(255)△ 0.960 0.900 0.943 0.739 0.810 0.965 0.878 0.920 0.856 0.651 0.798 0.563 0.833

(33) 0.964 0.938 0.946 0.800 0.801 0.969 0.946 0.901 0.869 0.739 0.804 0.386 0.848
(33) + DACA 0.973 0.953 0.950 0.843 0.825 0.974 0.953 0.913 0.881 0.754 0.822 0.439 0.857
(23) 0.969 0.940 0.955 0.910 0.834 0.970 0.943 0.911 0.867 0.748 0.812 0.420 0.854
(1) 0.965 0.945 0.957 0.914 0.837 0.974 0.954 0.918 0.910 0.770 0.845 0.473 0.873
(220) 0.979 0.961 0.964 0.941 0.865 0.979 0.960 0.937 0.923 0.775 0.837 0.534 0.887
(108) 0.975 0.952 0.962 0.943 0.857 0.976 0.958 0.925 0.915 0.769 0.831 0.484 0.879
(108) + DACA 0.980 0.959 0.967 0.948 0.869 0.980 0.962 0.933 0.921 0.779 0.849 0.523 0.889
(219) 0.970 0.960 0.949 0.940 0.832 0.974 0.948 0.922 0.920 0.762 0.836 0.461 0.872
(88) 0.982 0.962 0.965 0.834 0.879 0.982 0.967 0.945 0.929 0.790 0.850 0.560 0.892

Ours (DCC-CL) 0.984 0.966 0.970 0.957 0.890 0.982 0.971 0.951 0.939 0.803 0.893 0.584 0.910

8.5 Experimental Setup

8.5.1 Datasets

[I] MICCAI 2015 BTCV Challenge is comprised of 100 de-identified 3D contrast-enhanced CT scans with

7968 axial slices. 20 available scans are publicly available for testing phase. This dataset includes 12 well-

annotated organs, including the spleen, right kidney, left kidney, gall bladder, esophagus, liver, stomach,

aorta, inferior vena cava (IVC), portal splenic vein (PSV), pancreas and right adrenal gland. Each volume

consists of 47 ∼ 133 slices of 512×512 pixels at a resolution of with resolution of ([0.54 ∼ 0.98]× [0.54 ∼

0.98]× [2.5 ∼ 7.0])mm3.

[II] Research Non-Contrast CT cohort is retrieved and consists of 56 volumetric CT scans with 3687

axial slices and expert refined annotations for the same 12 organs in BTCV dataset. Each volume consists of

49 ∼ 174 slices of 512×512 pixels, with resolution of ([0.64 ∼ 0.98]× [0.64 ∼ 0.98]× [1.5 ∼ 5.0])mm3.

[III] MICCAI 2021 FLARE Challenge (151) adapts large scale of abdominal contrast-enhanced CT

with 511 cases from 11 medical centers. In total, 361 CT consists of well-annotated labels for spleen, kidney,

liver and pancreas organs. Each volume consists of 43 ∼ 384 slices of 512× 512 pixels, with resolution of

([0.64 ∼ 0.98]× [0.64 ∼ 0.98]× [1.0 ∼ 5.0])mm3.

8.5.2 Data Preprocessing

Before we input the complete volume into the network for coarse multi-organ segmentation, we apply hier-

archical steps for data preprocessing. The first step is to perform soft tissue windowing between the range
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Table 8.3: Ablation studies of segmentation performance with different pretraining scenarios of the BTCV
testing cohort.

Encoder Pretrain Spleen R.Kid L.Kid Gall. Eso. Liver Stomach Aorta IVC PSV Pancreas R.A Mean

ResNet50 × 0.932 0.877 0.887 0.860 0.761 0.962 0.941 0.832 0.815 0.735 0.833 0.587 0.840
ResNet50 SSCL 0.953 0.922 0.930 0.842 0.822 0.972 0.907 0.899 0.874 0.800 0.854 0.625 0.868
ResNet50 CE 0.959 0.948 0.957 0.890 0.868 0.978 0.956 0.935 0.919 0.884 0.903 0.725 0.905
ResNet50 AGCL 0.971 0.955 0.963 0.910 0.886 0.984 0.965 0.941 0.932 0.893 0.917 0.769 0.923
ResNet50 DCC-CL 0.974 0.956 0.960 0.928 0.905 0.986 0.968 0.950 0.939 0.901 0.923 0.776 0.936

Table 8.4: Ablation studies of segmentation performance in various network backbones of the in-house non-
contrast testing cohort.

Encoder Pretrain Spleen R.Kid L.Kid Gall. Eso. Liver Stomach Aorta IVC PSV Pancreas R.A Mean

ResNet50 × 0.960 0.918 0.921 0.754 0.783 0.964 0.950 0.840 0.839 0.691 0.796 0.372 0.816
ResNet50 SimCLR 0.964 0.938 0.946 0.800 0.801 0.969 0.946 0.901 0.869 0.739 0.804 0.386 0.848
ResNet50 CE 0.972 0.952 0.961 0.812 0.859 0.974 0.959 0.934 0.914 0.768 0.838 0.551 0.875
ResNet50 AGCL 0.982 0.962 0.965 0.834 0.879 0.982 0.967 0.945 0.929 0.790 0.850 0.560 0.892
ResNet50 DCC-CL 0.984 0.966 0.970 0.957 0.890 0.982 0.971 0.951 0.939 0.803 0.893 0.584 0.910

of -175 and 250 Hu. Intensity normalization is then performed for each volume and uses min-max normal-

ization: (X −X1)/(X99 −X1) to normalize the intensity value between 0 and 1, where Xp denotes as the pth

intensity percentile in X . Furthermore, due to various domain shifts and the variation of imaging protocols,

the images collected usually present with different contrast and Fields Of Views (FOVs). Here, we leverage

Body Part Regression (BPR) network to minimize the difference of FOVs and only extract the abdominal

region of interest from each image (198). BPR is a self-supervised method to predict a continuous score

for each axial slice of CT volumes as the normalized body standardize value without any labels. The BPR

network predicts score in the range of -12 to +12 for each slice, which correspond well to the approximate

anatomical location of each body part region (e.g., -12: upper chest, -5: diaphragm/upper liver, 4: lower

retroperitoneum, 6: pelvis). To extract the abdominal-to-retroperitoneal regions of interest, we limit the

predicted scores within -4 to 5 and crop the volumes that are out of ranges.

8.5.3 Model & Training Details

For contrastive pretraining step, the complete backbone of the network consists of a ResNet-50 image en-

coder and a projection network with two linear layers. For organ segmentation finetuning step, DeepLabV3+

network is employed by withdrawing the projection network and follows with a decoder using ASPP mod-

ules. Both the pretraining and finetuning steps are optimized with an Adam optimizer independently (weight

decay: 1× 10−4; momentum: 0.9; batch size: 4). We pretrain the model with our contrastive approach for

10 epochs using a learning rate of 0.0003, while we finetune the model with 5 epochs with learning 0.0001.

On a NVIDIA-Quadro RTX 5000, 1 epoch of pretraining takes about 12 hours to finish with batch size of 4.
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Table 8.5: Ablation Studies on the effectiveness of Data Augmentation with Contrast Adjustment (DACA) in
Finetuning

Portal Venous CT (BTCV)

Pretraining
Finetuning w.

DACA Spleen R. Kid L. Kid Gall. Eso. Liver Stom. Aorta IVC PSV Panc. RAG
Average

Dice

× × 0.932 0.877 0.887 0.860 0.761 0.962 0.941 0.832 0.815 0.735 0.833 0.587 0.840
× ✓ 0.942 0.896 901 0.877 0.789 0.967 0.952 0.851 0.834 0.761 0.840 0.634 0.853

SimCLR × 0.953 0.922 0.930 0.842 0.822 0.972 0.907 0.899 0.874 0.800 0.854 0.625 0.868
SimCLR ✓ 0.968 0.943 0.959 0.877 0.861 0.978 0.932 0.910 0.889 0.854 0.878 0.683 0.894
AGCL × 0.971 0.955 0.963 0.910 0.886 0.984 0.965 0.941 0.932 0.893 0.917 0.769 0.923
AGCL ✓ 0.973 0.960 0.965 0.921 0.901 0.986 0.972 0.950 0.940 0.900 0.927 0.785 0.930

DCC-CL × 0.974 0.956 0.960 0.928 0.905 0.986 0.972 0.953 0.942 0.905 0.926 0.790 0.936
DCC-CL ✓ 0.977 0.965 0.968 0.934 0.911 0.988 0.975 0.958 0.949 0.910 0.934 0.798 0.940

Non-Contrast CT (Research Non-Contrast In-house)

Pretraining
Finetuning w.

DACA Spleen R. Kid L. Kid Gall. Eso. Liver Stom. Aorta IVC PSV Panc. RAG
Average

Dice

× × 0.960 0.918 0.921 0.754 0.783 0.964 0.950 0.840 0.839 0.691 0.796 0.372 0.816
× ✓ 0.963 0.925 0.924 0.778 0.791 0.968 0.957 0.843 0.844 0.711 0.797 0.423 0.828

SimCLR × 0.964 0.938 0.946 0.800 0.801 0.969 0.946 0.901 0.869 0.739 0.804 0.386 0.848
SimCLR ✓ 0.972 0.949 0.953 0.821 0.865 0.974 0.951 0.919 0.891 0.764 0.823 0.489 0.864
AGCL × 0.982 0.962 0.965 0.834 0.879 0.982 0.967 0.945 0.929 0.790 0.850 0.560 0.892
AGCL ✓ 0.984 0.964 0.969 0.875 0.893 0.983 0.971 0.952 0.938 0.819 0.863 0.623 0.902

DCC-CL × 0.984 0.966 0.970 0.957 0.890 0.982 0.974 0.951 0.939 0.828 0.862 0.611 0.910
DCC-CL ✓ 0.987 0.970 0.973 0.958 0.901 0.984 0.975 0.956 0.940 0.835 0.870 0.623 0.914

8.5.4 Implementation Details

For internal evaluation, we evaluate the model performance with a downstream multi-organ segmentation

task and compare with current state-of-the-art of fully-supervised and contrastive learning approaches for

both BTCV and the in-house non-contrast CT datasets. For external validation, we randomly select 100

samples from FLARE dataset and perform inference with the model trained with internal cohorts. We use

Dice similarity coefficient as an evaluation metric to compare the overlapping regions between the predictions

and the ground-truth label. Furthermore, we performed ablation studies with hyperparameter variations and

different strategies to pretrain the encoder network.

8.6 Experimental Results

8.6.1 Comparison with Fully/Partially Supervised Approaches

As the preliminary basis of our approach is to extract organ-specific patches with a coarse segmentation

network, we evaluate and validate current supervised state-of-the-arts as our coarse segmentation backbone.

All supervised approaches are presented in Table 8.1 and 8.2 for both internal cohorts, including 3D CNN-

based network (39), hierarchical networks (182; 259; 125) and transformer-based network (74). Significant

levels of improvement (from mean Dice 0.784 to 0.836, p > 0.01) are demonstrated starting from (39) to (74)

for both contrast-enhanced BTCV and in-house non-contrast cohorts. (125) achieves the best segmentation

performance in BTCV, while (74) demonstrates the best segmentation performance in non-contrast dataset.

As the model is trained coherently in multi-contrast setting, the trained model may bias to one of the contrast
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Figure 8.4: By adapting the contrast prior information into different pretraining strategies, such ablation
studies demonstrate that DCC-CL outperforms the current state-of-the-art contrastive learning methods with
Chen et al. and Lee et al.. The yellow box demonstrates the significant improvement in organs with subtle
contrast variation between modalities. (*: p<0.05; **: p<0.01)

modality and thus leads to a level of degradation on certain organ segmentation performance with specific

contrast. Furthermore, (255) demonstrates to leverage partial labeled samples to enhance the performance for

multi-organ segmentation. We convert the partial supervised training scenarios of (255) as using one contrast

samples for downstream multi-organ segmentation, while the another contrast samples are used in partially

labeled setting. Interestingly, (255) demonstrates a stable improvement on both BTCV (mean Dice score from

0.842 to 0.850) and in-house non-contrast (mean Dice score from 0.815 to 0.833) cohorts. Such improvement

in performance may due to the organ-specific prior distribution generated from (255) is beneficial to adapt the

contrast variation in multi-organ segmentation. By leveraging the psuedo output from the supervised-trained

model as organ attentional guidance for contrastive learning, the downstream segmentation performance is

significantly enhanced across the contrastive learning state-of-the-arts.

8.6.2 Comparison with Contrastive Learning Approaches

After looking into the supervised approaches, we compare our proposed DCC-CL with a series of contrastive

learning approaches for both internal and external testing cohorts, including SimCLR ((33)), local and global

contrastive learning ((23)), DenseCon ((220)), SupCon ((108)), PixelCon (219) and multi-label contrastive

learning ((88)), in Table 8.1 & 8.2. By adapting self-supervised approaches with the organ-attention guidance,
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Table 8.6: Ablation studies of segmentation performance with Single/Multiple Phase Contrastive Pretraining
(PV: Portal Venous CT; NC: Non-Contrast CT)

Portal Venous CT (BTCV)

Contrast Phases Spleen R.Kid L.Kid Gall. Eso. Liver Stomach Aorta IVC PSV Pancreas R.A Mean

PV Only 0.975 0.962 0.966 0.933 0.914 0.985 0.970 0.955 0.943 0.908 0.929 0.792 0.938
PV + NC 0.974 0.956 0.960 0.928 0.905 0.986 0.968 0.950 0.939 0.901 0.923 0.776 0.936

Non-Contrast CT (Research Non-Contrast In-house)

Contrast Phases Spleen R.Kid L.Kid Gall. Eso. Liver Stomach Aorta IVC PSV Pancreas R.A Mean

NC Only 0.979 0.962 0.966 0.949 0.881 0.980 0.969 0.940 0.928 0.812 0.857 0.597 0.902
PV + NC 0.984 0.966 0.970 0.957 0.890 0.982 0.974 0.951 0.939 0.828 0.862 0.611 0.910

Table 8.7: Ablation Studies on the effectiveness of correlation matrix in different scenarios

Portal Venous CT (BTCV)

Correlation Matrix Spleen R. Kid L. Kid Gall. Eso. Liver Stom. Aorta IVC PSV Panc. RAG
Average

Dice

× 0.932 0.877 0.887 0.860 0.761 0.962 0.941 0.832 0.815 0.735 0.833 0.587 0.840
Random Guassian 0.954 0.923 0.934 0.878 0.810 0.971 0.956 0.901 0.899 0.810 0.877 0.659 0.881
Dynamic Contrast 0.974 0.956 0.960 0.928 0.905 0.986 0.972 0.953 0.942 0.905 0.926 0.790 0.936

Non-Contrast CT (Research Non-Contrast In-house)

Correlation Matrix Spleen R. Kid L. Kid Gall. Eso. Liver Stom. Aorta IVC PSV Panc. RAG
Average

Dice

× 0.960 0.918 0.921 0.754 0.783 0.964 0.950 0.840 0.839 0.691 0.796 0.372 0.816
Random Guassian 0.969 0.934 0.945 0.847 0.973 0.971 0.962 0.901 0.878 0.754 0.810 0.483 0.869
Dynamic Contrast 0.984 0.966 0.970 0.957 0.890 0.982 0.974 0.951 0.939 0.828 0.862 0.611 0.910

we adapt the intrinsic structure of SimCLR to define the organ-attentional representation in the latent space

and demonstrate significant improvements of 2.49% and 6.27% in Dice score for BTCV and non-contrast

cohorts respectively. By further extracting representations in both local and global field of view, a slight

increase is demonstrated from Dice score 0.863 to 0.874 for BTCV and 0.848 to 0.854 for non-contrast

cohort. Apart from using linear projection to extract global-wise features, DenseCon proposes to adapt dense

projection and evaluates the similarity between each feature vector in the dense mappings. Interestingly, a

significant enhancement with 3.86% Dice score (p > 0.01) is demonstrated for non-contrast cohort, while

only a slight increase with 0.915% Dice score is shown for BTCV.

(108) and (88) further extend the self-supervised contrastive loss and leverage single/multi-class labels to

define conditional positive pairs for learning independent embedding of each semantic class. The integration

of image-level labels demonstrates significant improvement on finetuning downstream segmentation task.

(219) extract the semantic context from the segmentation and define the class-wise positive pairs from the

psuedo predictions. Interestingly, both (108) and (219) demonstrate significant improvement of Dice score

0.907 and 0.913 for BTCV respectively, while slightly decreases of performance are shown in the non-

contrast cohort. The reason for such degradation may correspond to the contrast variation and the learned

representations only defined as class-wise embeddings without contrast information. (88) target the limitation
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Figure 8.5: a) Variability of temperature scaling demonstrates that the segmentation performance is best
optimized when T = 0.07. The color bands represents the standard deviation of the computed mean Dices
score from all testing samples. b) Segmentation performance of NCCT is significantly improved without
trading off CECT performance.

of using contrast information and adapt both contrast and organ label to define representations in the latent

space. (88) outperforms the previous contrastive learning state-of-the-arts for both internal cohorts with Dice

score of 0.923 and 0.892 respectively. By further adapting the contrast correlation as dynamic weighting

constraints, DCC-CL achieves the best performance among all state-of-the-arts with a mean Dice score of

0.936 and 0.910 for both BTCV and non-contrast cohorts respectively. The additional gains demonstrate that

the use of data-driven information provides flexibility to control and define multi-phase latent spaces.

Furthermore, we perform external evaluations on FLARE dataset with all contrastive state-of-the-art ap-

proaches, as shown in Table 8.8. As we leverage RAP-Net ((125)) as the coarse segmentation backbone, it

demonstrates a stable performance on external dataset with a mean dice of 0.885. A stable enhancement of

performance is demonstrated across all state-of-the-arts from Dice score of 0.885 to 0.927. Leveraging the

dynamic weighting with contrast correlations further benefit the generalizability of the model and shows that

DCC-CL outperforms all contrastive learning state-of-the-arts with the mean Dice of 0.927 to 0.934 .

8.6.3 Ablation Studies

Comparing with Contrastive Pretraining Strategies. To investigate the effect of using image-level contrast

correlation as dynamic weight for contrastive learning, we perform multiple pretraining scenarios to compare

the downstream tasks performance: 1) training from scratch, 2) pretraining with self-supervised contrastive

loss (SSCL, (33)), 3) pretraining with cross-entorpy (CE) loss as classification tasks, 4) pretraining with multi-

label contrastive loss (AGCL, (88)) in ResNet-50 encoder backbone. We start with the scenario of ”training

from scratch” and leverage the self-supervised contrastive loss for pretraining as the basis of comparison.

After that, instead of using contrastive loss to constrain the representations, we further implemented the
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Table 8.8: Comparison of the current state-of-the-art methods on FLARE dataset.

Method Spleen Kidney Liver Pancreas Average Dice

(125) 0.956 0.903 0.954 0.730 0.885
(33) 0.960 0.910 0.960 0.756 0.896
(23) 0.961 0.923 0.956 0.787 0.908
(220) 0.966 0.918 0.964 0.800 0.912
(108) 0.963 0.918 0.966 0.830 0.919
(219) 0.968 0.940 0.964 0.811 0.922
(88) 0.971 0.948 0.968 0.823 0.927

Ours (DCC-CL) 0.975 0.944 0.971 0.847 0.934

classification scenario by classifying the representations into organ and contrast via the canonical CE loss. We

finally compare the scenario of leveraging hard multi-class label with our proposed scenario. All pretraining

scenarios are to define representations into corresponding contrast and organ defined embeddings.

As shown in Figure 8.4 and Table 8.3 & 8.4, pretraining with SSCL demonstrates a significant improve-

ment of 3.12% Dice than the scenario of without pretraining. Such improvement is expected that pretraining

with SSCL provides an initial definition of the learned representations in the latent space and hypothesizes

that such learned embeddings are beneficial to the downstream tasks. The scenario of without pretraining is

only relied on the ability of the decoder and defines representations with the downstream tasks guidance. By

adapting the hard image-level label for pretraining, the segmentation performance significantly boosts from

Dice score 0.868 to 0.905 and further enhances to 0.923 by leveraging the multi-label into the contrastive loss.

Using CE loss as pretraining is to classify representations into class-wise embeddings with the labels given

and the learned representations in the same class are moved towards each other. By adapting the multi-label

context into contrastive loss, AGCL demonstrates the flexibility of moving the same class representation near

and pushing the unrelated classes representations away in the latent space, improving the segmentation per-

formance with a better definition of latent space. Eventually, DCC-CL surpasses AGCL by 1.41% in mean

Dice. Instead of providing hard labels for searching similar representations, the computed contrast correlation

matrix can leverage as a soft weighting to control the cosine similarity between pairwise representations and

adapts the contrast variation more effectively across organ of interests.

Finetuning with Contrast Adjustment. One of the naive solutions to tackle the contrast variation chal-

lenges is to adjust the contrast level as one kind of data augmentations during training. Here, we investigate

the effectiveness of the contrast adjustment in finetuning step. Table 8.5 demonstrates the quantitative per-

formance of each pretraining scenario with/out contrast adjustment in finetuning. We observe that significant
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improvements in performance are demonstrated in both the “train from scratch” and SimCLR scenarios, while

subtle enhancement are demonstrated in both AGCL and DCC-CL scenario. With the additional constrains

in pretraining step (AGCL: contrast label; DCC-CL: contrast correlation matrix), the benefits of contrast

adjustment may become saturated if the latent space is already defined with contrast prior guidance.

Temperature Variability. We further vary temperature to investigate the effect of temperature on fine-

tuning the segmentation task across scales. Figure 8.5(a) demonstrates the effect of temperature across all

subjects in BTCV testing dataset. We find that the optimal temperature is roughly around 0.07 and the seg-

mentation performance starts to degrade with the increasing temperature. Low temperature tends to penalize

more to the highly similar representations and enhances the difficulties of searching positive pairs. Therefore,

computing the contrastive loss with low temperature may achieve better segmentation performance than that

using high temperature in our scenario.

Single/Multiple Phase Contrastive Learning. In the training scenario, we also want to investigate the

effectiveness of applying DCC-CL with single phase CT only and with multi-phases CT for downstream

segmentation. In Figure 8.4(b) & Table 8.6, we observe that the segmentation performance with non-contrast

cohort is significantly improved by training in multi-contrast scenario, while the segmentation performance

with BTCV is comparatively similar to each other. The contrast correlation matrix aims to generalize different

level of contrast variation. The segmentation performance with both modalities samples are well preserved

without trading off one of the modalities performances.

Correlation Matrix Variability As the contrast correlation matrix is leveraged to scale the cosine dis-

tance between the learned features, we further verify the effectiveness of the correlation matrix in Table 8.7 by

replacing it with a matrix of random Gaussian-distributed variables. Interestingly, we found that significant

improvements of segmentation performance are demonstrated in both portal venous CT and non-contrast CT

by adapting a random Gaussian matrix to control the feature separation in the latent space. Although it pro-

vides a random constrain to control the feature separation, such constrain is limited to introduce the contrast

correlation prior to adapt the multi-contrast characteristics across organs. By using our proposed matrix, it

demonstrates its effectiveness in both multi-contrast CTs with the best performance.

8.6.4 Discussion & Limitations

In this study, we present an adaptive contrastive pre-training framework that leverages the variable level

of contrast characteristics in each organ of interests to guide the separability of semantic embeddings. We

hypothesize that such dynamically defined latent space is more beneficial to the downstream segmentation

task, compared to the hard label defined latent space. With the organ attention guidance, the model allows to

extract meaningful representations within the organ attention region. Also, we can further extract additional
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context with significant variability from the image itself (e.g. contrast). Instead of using one-hot hard labels to

define the ”scan-wise” contrast level, the similarity between the mean intensity demonstrates to be a dynamic

soft constrain and define the representations adaptively. From Figure 8.3, the PCA plot demonstrates the

separability of the corresponding organ-wise representations. The orange bounding box localizes the organ

representations with similar contrast, while the images are sampled from different contrast phases. The

corresponding image visualization further demonstrates the contrast correspondence in the organ and the

effectiveness of leveraging the contrast information for pretraining. In both Table 8.1 and 8.2, we have

shown that our proposed pretraining strategy outperforms the current contrastive state-of-the-art approaches

for multi-contrast organ segmentation. Meanwhile, we preserve the organ segmentation performance by

training in the multi-contrast setting, instead of trading off the performance from one of the modalities. Such

dynamic weighting further provides a better understanding on leveraging soft labels to define latent space for

downstream segmentation task.

Our proposed pretraining strategy DCC-CL leverages a data-driven dynamic constrain with contrast in-

tensity correlation to control the cosine distance separation between the learned features, while the previous

approach AGCL only adapts fix image-level labels to constrain feature into semantic clusters. From Figure

8.3, we observe that the learned features for organs with similar contrast is pulled near, while organs with.

The features from organs with different contrast are pushed away. However, for AGCL, the learned features of

organs with similar contrast are still pushed away when they are in different modalities. With the domain shift

of contrast appearance in multi-contrast CT, such intensity correlation constrains define the feature separation

for adapting the domain shift in latent space and provides the most benefit to enhance the generalizability for

downstream segmentation. While the correlation matrix is data-driven, the mean intensity difference may not

be the optimal criteria to represent the domain shift of variable contrast. Generating a learnable matrix to

control the cosine distance between the learned features may be a potential direction as future work.

One limitation of DCC-CL is its dependence on coarse pseudo labels. As the 2D patches are extracted

with the pseudo label guidance, inaccurate organ patches may also be extracted and be unable to provide

accurate organ-wise intensity information. Another limitation is that the representations are learned in an

organ-centric setting. We aim to adapt the contrast correlation between the neighboring organs to an end-to-

end framework in our future work.

8.7 Conclusion

Adapting the multi-phase contrast imaging with deep learning models remains a persistent challenge for per-

forming robust semantic segmentation with wide range of contrast variation. In this work, we propose a novel

contrastive loss function that control the distance between representations with dynamic contrast correlation
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guidance. Our proposed contrastive loss contributes a significant gain of the segmentation performance across

multi-phase contrast CT.
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CHAPTER 9

Region-based Contrastive Pretraining for Medical Image Retrieval with Anatomic Query

9.1 Overview

1 We introduce a novel Region-based contrastive pretraining for Medical Image Retrieval (RegionMIR) that

demonstrates the feasibility of medical image retrieval with similar anatomical regions. RegionMIR addresses

two major challenges for medical image retrieval i) standardization of clinically relevant searching criteria

(e.g., anatomical, pathology-based), and ii) localization of anatomical area of interests that are semantically

meaningful. Our approach utilizes a Region-Of-Interest (ROI) based image search that works at scale, en-

abling clinicians to search and retrieve selected ROIs that correspond to the same anatomy and/or similar

pathological conditions. Previous approaches match similar images as a whole, without capturing the fine-

grained details of specific anatomical regions. In this work, we propose an ROI image retrieval image network

that retrieves images with similar anatomy by extracting anatomical features (via bounding boxes) and eval-

uate similarity between pairwise anatomy-categorized features between the query and the database of images

using contrastive learning. ROI queries are encoded using a contrastive-pretrained encoder that was fine-

tuned for anatomy classification, which generates an anatomical-specific latent space for region-correlated

image retrieval. During retrieval, we compare the anatomically encoded query to find similar features within

a feature database generated from training samples, and retrieve images with similar regions from training

samples. We evaluate our approach on, both: anatomy classification and image retrieval tasks using the Chest

ImaGenome Dataset. Our proposed strategy yields an improvement over state-of-the-art pretraining and co-

training strategies, from 92.24 to 94.12 (2.03%) classification accuracy in anatomies. We qualitatively eval-

uate the image retrieval performance demonstrating generalizability across multiple anatomies with different

morphology.

9.2 Introduction

Using recent advances in imaging and AI technology from clinics, hospitals and other medical sites have

generated large digital stores of medical data (109), leading to a number of challenges for robust clinical

workflows that provide data security, accessibility, interoperability and retention. However, this trend has

also brought with it unprecedented opportunities for exploration of new technical capabilities, such as Content

Based Image Retrieval (CBIR) (140; 34). Despite the advances in CIBR for natural images, and increased

1Published at: Lee, Ho Hin, et al., “Region-based Contrastive Pretraining for Medical Image Retrieval with Anatomic Query.”, ArXiv,
2023 (124)
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Figure 9.1: Overview of RegionMIR. RegionMIR consists of three main steps: 1) regional pooling and
constrain the projected vectors into anatomical-specific clusters, 2) fine-tuning both the encoder and the
projection network with anatomy classification task to stabilize the anatomical-specific latent space, and 3)
training anatomical-specific K-means models to search the most similar centroid for image recommendations.

accessibility of large scale storage of medical images, only limited development for medical image retrieval

algorithms has occurred(174; 250; 168; 37).

A number of challenges obstruct widespread progress in CBIR for medical imaging including: i) stan-

dardization of a clinical-relevant retrieval criteria (e.g., anatomy, pathology) and ii) localization of anatom-

ical area of interests that are semantically meaningful. Though recent works have demonstrated feasibility

of medical CBIR through regional context with multiple pathologies (250; 168; 37; 235; 106), these works

have been limited to 2D and complete image content. The benefits of robust medical CBIR algorithms to

diagnosis and treatment of patients are far reaching. For example, faster diagnosis and improved treatment

plans can be developed through identification of pathologies by searching for similar characteristics in other

patients. In addition, discovery and recognition of rare diseases through image retrieval are based on specific

ROIs within large clinical databases. To enhance the efficiency of image retrieval, deep learning frameworks

are employed to extract meaningful features and evaluate similarity (197; 89; 37). We observed that the

image retrieval performance depends on both the quality and our defined semantic meanings of the repre-

sentations learned. Contrastive learning offers semantically rich representations by grouping samples into

self-supervised semantic-specific clusters, which leads to a significant improvement in downstream tasks

(33; 88; 129; 214). We hypothesize that defining clusters with semantic meanings can enhance the robustness
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of image retrieval. Currently, most of the contrastive learning strategies involve the use of ‘whole’ images,

while limited works are proposed to incorporate both the local and contextual information within region of

interests (ROIs). Furthermore, multiple semantic meanings may exist within a subject image or a ROI. It

is challenging to define clusters with multiple meanings using current contrastive learning scenarios. As

such, we ask: can we adapt a contrastive learning framework to define regional representations with single

semantic meaning and perform robust image retrieval with region queries?

In this work, we propose a complete hierarchical framework for enhancing medical image retrieval by

adapting to anatomy-specific representations in a regional setting. Our framework, named RegionMIR, ex-

tends the CBIR task by incorporating regional contrastive learning to generate an anatomy-defined latent

space and evaluate the query feature similarity for image retrieval. We employ a methodolgy built upon

BioViL(17) and RegionCLIP (251), and further develop a hierarchical search strategy based on the similar-

ity from unsupervised clustering centroids, which differentiates the learned representations into fine-grained

conditions (e.g. patholgies) and improves computational efficiency for image retrieval. Our proposed frame-

work is evaluated with one public chest x-ray dataset using 5-fold cross-validation. The experimental results

demonstrate a consistent improvement in anatomy classification with a ResNet-50 encoder backbone. Our

main contributions are summarized as follows: 1) We propose a hierarchical framework RegionMIR to adapt

anatomy-specific representations for image retrieval with regional query; 2) We propose to leverage an un-

supervised centroid-based hierarchical search to retrieve top-5 images with reduced time complexity; 3) We

demonstrate that RegionMIR learns the region-wise representation with their corresponding semantic mean-

ings, achieving consistent improvements for downstream anatomy classification task and accurate retrieval in

different anatomical regions.

9.3 Methods

We introduce the overview of our complete framework RegionMIR in Figure 9.1. Our primary goal is to

learn region-guided representations that are able to differentiate different anatomies within medical images.

RegionMIR consists of three hierarchical stages: i) semantic region-guided contrastive pretraining, ii) fine-

tuning with anatomy classification, and iii) image retrieval with region query.

9.3.1 Semantic Region-Guided Contrastive Pretraining

Given a set X = {xi,Ai}i=1,...,n, where n is the total number of images, A = {bi,yi}i=1,...,c is the corresponding

bounding box and image-wise labels for all anatomies. The index c represents the total number of semantic

regional classes. As a single slice image usually contains rich semantics of multiple anatomies, RegionMIR

leverages anatomy-specific bounding boxes to generate large pool of semantic embeddings and learns the
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regional concepts, regardless of individual full images. First, we randomly sample images from X as query

Q = {xq,Aq}q=i,. . . ,i+m−1 and anchor H = {xh,Ah}h= j,. . . , j+m−1, where i, j are the randomly sampled index

and m is the batch size for training. High-dimensional feature mappings of both query and anchor samples

are extracted by the image encoder E(·). Next, we pool features with bounding box label b then linearly

project the result into an 1-D embedding space using a multi-layer perceptron (MLP) P(·) as follows:

{rq,i, rh,i}i=1,...,c = ROIPool({E(xq),bq},{E(xh),bh})

{zq,i, zh,i}i=1,...,c = P({rq,i, rh,i}i=1,...,c)

(9.1)

where rq,i and rh,i are the region-pooled anatomy-specific representations, while zq,i and zh,i are the cor-

responding projected vectors. Instead of evaluating the image-wise feature similarity between augmented

pairs (33; 108), we compute feature similarity region-to-region and define the anatomical-specific features

from pairwise samples (query and anchor) as the positive pair. We extend the image-wise contrastive loss to

region-wise setting as follows:

Lregion =−1
c

c

∑
i=1

n

∑
q=1

n

∑
h=1

log
exp(z̃q,i · z̃h,i/τ)

∑
2n−1
j=0 ∑

c
k=1 exp(z̃q,i · z̃ j,k/τ)

, (9.2)

where z j,k are the remaining features within the minibatch. Our proposed regional contrastive loss Lregion

constrains the same features (possibly with different morphologies) into anatomy-specific embeddings, forc-

ing the model to have a coarse anatomy-to-region correspondence with semantic meanings.

9.3.2 Finetuning with Anatomy Classification

Our ultimate goal is to generate an anatomy-defined latent space and leverages regional features to perform

image retrieval of images that contain similar regions. After the encoder network is contrastive-pretrained

with a MLP, instead of only fine-tuning the encoder itself due to the image retrieval strategy (discussed in

greater details in section 2.3), we fine-tune both the encoder and the MLP followed by a linear layer L(·)

for anatomy classification. Finally, we use the multi-class cross-entropy loss to classify each region-pooled

feature into specific anatomical embeddings as follows:

{ỹi}i=1,...,c = L({zq,i}i=1,...,c) (9.3)

L f inetune =− 1
|n|

n

∑
k=0

c

∑
i=0

yk,i log(ỹk,i), (9.4)

by classifying each region-pooled feature with the anatomy label given, the regional representations are fur-

ther refined and constrained into the anatomical-specific clusters, as shown in Figure 9.1. With the enriched
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Region Query Top-5 Images Retrieval with Region-wise Feature Correspondence

Figure 9.2: Top-5 image retrieval examples of different anatomical regions. We observe that images with
same regions can be retrieved with the region query, while the organ morphology across all recommendation
subjects significantly vary.

anatomical meanings in regional representations, such network enhance the feasibility of extending image

retrieval with regional similarity and search images with corresponding regional semantics.

9.3.3 Image Retrieval with Anatomic Query

After fine-tuning the learned representations into anatomy-corresponding embeddings, we leverage P(·)

project all features from the encoder network into an L2-normalized space and evaluate the feature-wise

similarity for image retrieval. Here, we use the cosine similarity to evaluate the representations and retrieve

images with the similar region-pooled representations. In our searching scenario, we pre-compute represen-
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tations from training samples as the retrieval database and use the testing samples as input queries to retrieve

images from the database. The most naive approach is to compute similarity between the query represen-

tations and all representations in the database for ranking. However, with a time complexity of O(n), this

brute force ranking strategy is not computational efficient. Instead, we leverage the anatomy classification

predictions and reduce the searching space for each query. Specifically, we train anatomy-specific K-means

models to classify the pre-computed representations into different clusters’ centroids. We further leverage

these anatomy pseudo labels to choose the corresponding K-means model and evaluate the similarity across

the centroids. It further enhance the computation efficiency and reduce the time complexity of image re-

trieval significantly from O(n) to O(4(centroids)∗26(anatomies)). We finally retrieve the top-k images that

are within the highest similarity cluster, where k is the number of searched images.

9.4 Implementation Setups

Dataset Details. In this study, we focus on the Chest ImaGenome dataset (226), which was constructed from

the MIMIC-CXR dataset with 2-dimensional chest x-rays (106). This dataset consists of two standards: 1)

gold standard and 2) silver standard for dataset curation. Here, we use the gold standard dataset with ground-

truth quality label from four independent clinicians to perform training and evaluation. In total, 500 random

patients’ scans were sampled and annotated with bonding boxes consisting of 26 classes of anatomies (pro-

vided in appendix A1) as well as pathology label and clinical attributes.

Model Details. The image encoder is with a ResNet-50 backbone and follows with a projection network,

consisting of two consecutive linear layers with ReLU activation in-between. The implementation of training

anatomy-specific K-means models is based on scikit-learn and we set the number for unsupervised clusters in

each model as 4. Note that the batch size of the anchor input has to be larger than the number of unsupervised

clusters, as insufficient samples are limited to demonstrate the distribution of clusters through K-means.

Training Details. Both contrastive pre-training and anatomy classification fine-tuning are trained with an

Adam optimizer (weight decay: 10−4; momentum: 0.9; batch size: 8). For contrastive pre-training, we pre-

train the model for 50 epochs with a learning rate of 3× 10−4 and resize all input samples into 512× 512

without cropping background. For anatomy classification finetuning, we finetune both the encoder and the

projection network following with an additional linear layer for an additional 50 epochs a a lower learning

rate of 10−4. During this phase we use the same set of resizing parameters as the pre-training. We perform

both training and inference on one Tesla-V100-32GB GPU. Fifty training epochs take about 10 hours with

the batch size of 8.

Performance Comparisons. We evaluate the quantitative performance in anatomy classification task and

the quantitative performance in image retrieval tasks. RegionMIR is compared with different pretraining
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Table 9.1: Quantitative Performance on Anatomy Classification

Pretraining Finetuning Classification Accuracy (%)

× × 92.24
BioVIL ✓ 93.01

RegionMIR (Co-train) × 87.94
RegionMIR ✓ 94.12

framework, including BioVIL, and different training scenarios such as co-training downstream task. For fair

comparison, we report the performance of these methods under 50 epochs finetuning on anatomy classifica-

tion.

9.5 Results

Anatomy Classification: From Table 9.1, we demonstrate the performance quantitatively across different

scenarios. By training from scratch, the classification accuracy reaches 92.21 without contrastive learning

strategies. By using transfer learning from BioViL pretrained weights, the classification accuracy significantly

improves from 92.21 to 93.13. Furthermore, we perform the semantic region-guided contrastive learning in

both pretraining and co-training scenarios. Interestingly, the performance further improved from 94.14 using

pretraining scenario, while the performance significantly degraded from 87.94 using co-training strategies.

Image Retrieval: Figure 9.2, we demonstrate the qualitative representation of image retrieval with multiple

anatomic queries. We observe that RegionMIR can successfully retrieve the images with similar anatomical

regions. Interestingly, significant morphological differences are demonstrated across the images retrieved.

Furthermore, we compute two plots to demonstrates the semantic meanings of the learned representations

with our framework (right) and evaluate the similarity between the query representations and the anchor

database (left). We found that the learned representations are well separable into clusters with anatomical

meanings. For instance, the representations for both left (pink) and right lungs (blue) demonstrate separable

clusters with the similarity measures above 0.9, while the clusters with small overlapping regions demonstrate

a degradation in similarity measures.

9.6 Discussions

In figure 1, we have compared the finetuning classification performance by adapting different contrastive

pretraining strategies, such as BioVIL. BioVIL adapts multimodal context (e.g. image & text) for contrastive

learning and aligns representations with different semantics, including anatomy and pathologies. We leverage

BioVIL as one of our baseline scenario and demonstrate a consistent improvement in classification accuracy
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Figure 9.3: Left: similarity matrix for anatomical regions of interest, right: TSNE plot with RegionMIR-
defined latent space. The order of labels for both the similarity matrix and TSNE plot are aligned. Separable
clusters (e.g. left & right lung) demonstrate high cosine similarity (above 0.9), while clusters with small
overlapping region demonstrate a lower cosine similarity value.

(92.24 to 93.01). However, the feature generated from BioVIL is from complete image and the limitation

of adapting regional representation still exists in BioVIL. With RegionMIR, the classification performance

further improve to 94.12. RegionMIR leverage the bounding box label to specifically pool the local rep-

resentations and learned the representations with anatomical-meanings alignment. As we define pairwise

representations in same anatomy as positive pair, we hypothesize that the latent space is initially defined with

anatomy-specific clusters. We further classify representations into clusters with anatomy classification task

as model finetuning. Each cluster is well separable with its corresponding anatomical meanings, as shown

in Figure 9.3. For image retrieval scenario, we generate large scale features from training samples as our

anchor database, while testing samples are used as the anatomic query. We propose to train K-mean models

with anatomy-specific features and search the nearest unsupervised centroid for image recommendations (in

Figure 9.2), which reduce the image retrieval time complexity significantly. The main goal of performing hi-

erarchical search with K-means is to further differentiate the pathology characteristics in the chosen ROI and

retrieve images with similar conditions within the ROI. Hierarchical adapting multiple semantic conditions

into the contrastive learning framework for region-based image retrieval will be one of our future direction.

Although RegionMIR have demonstrated the feasibility of adapting regional information for image re-

trieval, several limitations still exist for the image retrieval task. The first limitation is the dependency on

the pseudo prediction of anatomy classification. During the image retrieval, a mismatch K-means model

may be chosen due to the inaccurate anatomy prediction, leading to the inaccurate searching criteria and

retrieve images with different anatomical focus. Another limitations is the conditional constrains in both

contrastive pretraining and the anatomy classification tasks. From Figure 9.2, we observe that the retrieved
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image has the corresponding ROI with different morphologies. Such observation may correspond to the def-

inition of positive pair in the contrastive pretraining step. As we randomly sample two images and define

their corresponding anatomical feature as the only positive pair, the random sampled image may have signif-

icant morphological difference in certain anatomies. Additional constrains for contrastive pretraining will be

another potential direction to include multiple constrains for region-based image retrieval.

9.7 Conclusion

We presented RegionMIR, to the best of our knowledge this is the first region-based contrastive learning

framework for image retrieval with region query. We extend the image-wise contrastive loss into semantic

region-based setting and generate an latent space with anatomy-semantic meanings. Furthermore, we lever-

age such latent space to retrieve images with similar region query and demonstrate the feasibility of perform-

ing region-based image retrieval with significantly reduced time complexity in medical domain. RegionMIR

demonstrates a significant improvement on anatomy classification comparing to different pretraining and con-

trastive learning framework. The latent space of RegionMIR is demonstrated to successfully retrieve images

with similar anatomical regions with different morphologies.
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CHAPTER 10

Multi-contrast computed tomography healthy kidney atlas

10.1 Overview

1The construction of three-dimensional multi-modal tissue maps provides an opportunity to spur interdisci-

plinary innovations across temporal and spatial scales through information integration. While the prepon-

derance of effort is allocated to the cellular level and explore the changes in cell interactions and organiza-

tions, contextualizing findings within organs and systems is essential to visualize and interpret higher reso-

lution linkage across scales. There is a substantial normal variation of kidney morphometry and appearance

across body size, sex, and imaging protocols in abdominal computed tomography (CT). A volumetric atlas

framework is needed to integrate and visualize the variability across scales. However, there is no abdominal

and retroperitoneal organs atlas framework for multi-contrast CT. Hence, we proposed a high-resolution CT

retroperitoneal atlas specifically optimized for the kidney organ across non-contrast CT and early arterial,

late arterial, venous and delayed contrast-enhanced CT. We introduce a deep learning-based volume interest

extraction method by localizing the 2D slices with a representative score and crop within the range of the

abdominal interest. An automated two-stage hierarchical registration pipeline is then performed to register

abdominal volumes to a high-resolution CT atlas template with DEEDS affine and non-rigid registration. To

generate and evaluate the atlas framework, multi-contrast modality CT scans of 500 subjects (without re-

ported history of renal disease, age: 15-50 years, 250 males & 250 females) were processed. PDD-Net with

affine registration achieved the best overall mean DICE for portal venous phase multi-organs label transfer

with the registration pipeline (0.540± 0.275, p¡0.0001 Wilcoxon signed-rank test) comparing to the other

registration tools. It also demonstrated the best performance with the median DICE over 0.8 in transferring

the kidney information to the atlas space. DEEDS perform constantly with stable transferring performance

in all phases average mapping including significant clear boundary of kidneys with contrastive characteris-

tics, while PDD-Net only demonstrates a stable kidney registration in the average mapping of early and late

arterial, and portal venous phase. The variance mappings demonstrate the low intensity variance in the kid-

ney regions with DEEDS across all contrast phases and with PDD-Net across late arterial and portal venous

phase. We demonstrate a stable generalizability of the atlas template for integrating the normal kidney vari-

ation from small to large, across contrast modalities and populations with great variability of demographics.

The linkage of atlas and demographics provided a better understanding of the variation of kidney anatomy

1Published at: Lee, Ho Hin, et al., “Multi-contrast computed tomography healthy kidney atlas.”, Computers in Biology and Medicine
146 (2022): 105555. (132)
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Figure 10.1: Illustration of multi-contrast phase CT atlas. The color grid in the three-dimensional atlas space
represents the defined spatial reference for the abdominal-to- retroperitoneal volume of interest and localizes
abdominal and retroperitoneal organs with each contrast phase characteristics. Blue arrows represent the
bi-directional transformation across the atlas target defined spatial reference and the original source image
space.

across populations.

10.2 Introduction

Physiological and metabolic processes are performed in parallel in the human body. Complicated relation-

ships between cells are required for proper organ function but are challenging to analyze. Extensive studies

mapping the organization and molecular profiles of cells within tissues or organs are needed across the human

body. While the majority of efforts are distributed to the cellular and molecular perspectives (183), general-

izing information from cell to organ level is essential to provide a better understanding of the functionality

and linkage across scales (119). The use of computed tomography provides an opportunity to contextualize

the anatomical characteristics of organs and systems in the human body. In addition, by creating a generaliz-

able framework with integration of micro-scale information and system-scale information, this will provide

clinicians and researchers the ability to visualize the complex organization of tissues from a cellular to tissue

level. Abdominal CT provides information about abdominal organs at a system scale. Contrast enhancement

demonstrates additional anatomical and structural details of organs and neighboring vessels by injecting a

contrast agent before imaging procedures. Five different contrast phases are typically generated correspond-

ing to the timing of the contrast agent in the imaging cycle: 1) non-contrast, 2) early arterial, 3) late arterial, 4)
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portal venous and 5) delayed. The intensity range of organs fluctuates across the contrast enhanced imaging

cycle and the variation of intensity helps to capture and specify contextual features of each specific organ.

The kidneys, which are located retroperitoneally, also have challenges in imaging. From the anatomical in-

formation provided from the contrast enhanced CT of large clinical cohorts, healthy kidney morphometry and

appearance may vary. An atlas reference framework is needed to generalize the anatomical and contextual

features across the variations in sex, body size, and imaging protocols. However, due to the large variability

in anatomy and morphology of various abdominal and retroperitoneal organs, generating a standard reference

template for each of these organs is still challenging and no atlas framework for abdominal or retroperitoneal

organs is currently publicly available. Creating an atlas for particular anatomical regions has widely been

used with magnetic resonance imaging (MRI). Extensive efforts are allocated in multiple perspectives of

brain atlas with brain MRI. Kuklisova-Murgasova et al. generated multiple atlases for early developing ba-

bies with age ranging from 29 to 44 weeks using affine registration (113), while Shi et al. proposed an infant

brain atlas using unbiased group-wise registration with three varying scanning time points of brain MRI from

56 males and 39 females normal infants (190). Unbiased spatiotemporal 4-dimensional MRI atlas and time-

variable longitudinal MRI atlas for infant brain were also proposed by Ali et al (64). with diffeomorphic

deformable registration with kernel regression in age, and by Yuyao et al. using patch-based registration

in spatial-temporal wavelet domain respectively (244). Apart from generating atlas framework for normal

brain, Rajashekar et al. generated two high-resolution normative disease-related brain atlases in FLAIR MRI

and non-contrast CT modalities, to investigate lesion-related diseases such as stroke and multiple sclerosis

in elderly population (175). Meanwhile, limited studies have proposed creating a standard reference frame-

work for abdominal and retroperitoneal organs. Development of abdominal and retroperitoneal organ atlases

is challenging across multi-modality images (CT and MRI) due to the limited robustness of the registration

methods and significant morphology variations in multiple organs associated with patients’ demographics

(232). To generate an atlas framework with stable context transfer, previous works have sought to improve

the registration performance and the conventional frameworks perform spatial alignments between one image

to another following with a global affine transformation and deformable transformation (3; 5; 10). Significant

effort has been invested in brain imaging by optimizing a regularized deformation field to match the moving

image to a single fixed target with classical approach such as b-spline based deformation (184), discrete op-

timization (43; 67), Demons (212), and Symmetric normalization (5). Apart from the traditional approaches,

learning-based methods provide an opportunity to reduce the time of inference and extract meaningful feature

representation for deformation prediction. Voxelmorph provides an opportunity to learn a generalizable func-

tion to compute deformation field with unsupervised setting and localize the deformation with few millimeters

(11; 42). For abdominal imaging, significant variation in body size and shape of organs are demonstrated with
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the several centimeters and large deformation for organs interest is needed to transfer the anatomical context

to match the morphology of the fixed image. Zhao et al. proposed a recursive cascaded network to extract the

region of interest (ROI) of particular organs and progressively refine the intermediate registered image to the

fixed image space with multiple cascaded models (246). To further extend the abdominal registration with

complete abdominal volumetric scans, Heinrich et al. proposed a probabilistic dense displacement network

to adapt the large anatomical difference with organ label supervision (249). This network aims to improve the

robustness of the registration performance in the abdominal regions with limited label guidance and capture

the deformation with lightweight feature representation.

In this work, we present a contrast-preserving CT retroperitoneal atlas framework, optimized for healthy

kidney organs with contrast-characterized variability and the generalizable features across a large popula-

tion of clinical cohorts as shown in Figure 10.1. Specifically, as to reduce the failure rate of transferring

the morphological and contrastive characteristics of kidney organs, we initially extracted the abdominal-to-

retroperitoneal volume of interest with a similar field of view to the atlas target image, using a deep neural

network called body part regression (BPR) (198). 2D slices of the CT volume assessed with BPR model

and generate a value ranging from -12 to +12, corresponding to the upper lung region and the pelvis region

respectively in the body. By limiting the range of values for both abdominal and retroperitoneal regions, each

CT volume is cropped and excludes other regions apart from the abdomen and retroperitoneum, such as the

lung and pelvis. A two-stage hierarchical registration pipeline is then performed, registering the extracted vol-

ume interest to the high-resolution atlas target with traditional metric-based (83; 84) and deep learning based

(11; 85) method respectively across all contrast phases. To ensure the stability and the variation localized in

the atlas template, average and variance mappings across the multi-contrast registered output is computed to

demonstrate a better understanding of anatomical details of kidney organs across different contrasts. Overall,

our main contributions are summarized as:

• We constructed the first multi-contrast CT healthy kidney atlas framework for the public usage domain.

• We proposed metric-based and deep learning-based framework optimizing for kidney organs with cor-

responding contrast phase, and generalized the anatomical context of kidneys with significant variation

of morphological and contrastive characteristics across demographics and imaging protocols.

• We evaluate the generalizability of the atlas template by transferring the atlas target label to the 13

organs well-annotated CT space with inverse transformation. An unlabeled multi-contrast phase CT

cohort is used to compute average and variance mapping to demonstrate the effectiveness and stability

of the proposed atlas framework. Our proposed atlas framework demonstrates a stable transfer ability

in both left and right kidneys with median Dice above 0.8.

119



Figure 10.2: The overview of the complete pipeline to create kidney atlas template is illustrated. The input
volume is initially cropped to a similar field of view with the atlas target. The extracted volumes of interest
are resampled to the same resolution and dimension of the atlas template and performed 2-stages hierarchical
registration. The successfully registered scans are finally used to compute the average template and the
variance maps.

• • The average template generated, and the associated 13 organs labels will be public for usage through

HuBMAP.

10.3 Materials and Methods

Figure 10.2 presents an overview of the complete pipeline for generating the kidney atlas framework. The

volume of interest is first extracted with a deep learning-based BPR algorithm to obtain a similar field of view

with the atlas target image, increasing the stability of registration in the abdominal body and kidneys. Here,

we define the stability as the atlas not changing with randomized subjects and measure the stability with the

mean or variance mapping of the atlas template. The integration of deep learning-based volume of interest

extraction and classical registration provided an opportunity to reduce the subjectivity of choosing the field

of view between source and target image, and increase the robustness of the image registration across the

clinical cohorts.

10.3.1 Datasets of Studies

We evaluated the stability of our kidney atlas with a large cohort of multi-contrast unlabeled CT and a public

portal venous contrast phase multi-organ labeled dataset. All CT data are unpaired and collected from dif-
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ferent cohorts. With the use of both labeled and unlabeled datasets, we conducted comprehensive qualitative

and quantitative evaluations for generalizing cross-modality information of kidney organs in CT. Clinical

Multi-Contrast Abdominal CT Cohort: A large clinical cohort of multi-contrast CT was employed for

abdominal and retroperitoneal organs registration. In total, 2000 patients’ de-identified CT data were ini-

tially retrieved in de-identified form from ImageVU with the approval of Institutional Review Board (IRB).

In these 2000 patients, since some had renal disease, criteria in ICD-9 codes and age range from 18-50 years

old were set and applied to extract scans with healthy kidneys from all subjects. 720 subjects out of 2000

were identified after quality assessment and extract the corresponding contrast phase abdominal CT scans,

which included 290 unlabeled CT volumes in total with: 1) non-contrast: 50 volumes, 2) early arterial:

30, 3) late arterial: 80 volumes, 4) portal venous: 100 volumes, 5) delayed: 30 volumes. All CT volumes

are initially reoriented to standard orientation before further processing (101). BPR was performed to each

modality volumes and obtain the similar field of view with the atlas target. They were then resampled to the

same resolution and dimensions with the atlas target for performing registration pipeline. We aim to adapt

a generalized atlas framework for localizing the anatomical and contextual characteristics of kidney organs

across multi-contrast. Multi-Organ Labeled Portal Venous Abdomional CT Cohort: We used a separate

healthy clinical cohort with 100 portal venous contrast phase abdominal CT volumes and 20 of the volumetric

scans are the testing scans in the 2015 MICCAI Multi-Atlas Abdomen Labeling challenge. The ground truth

labels of 13 multiple organs are provided including: 1) spleen, 2) right kidney, 3) left kidney, 4) gall bladder,

5) esophagus, 6) liver, 7) stomach, 8) aorta, 9) inferior vena cava (IVC), 10) portal splenic vein (PSV), 11)

pancreas, 12) right adrenal gland (RAD), 13) left adrenal gland (LAD), with which we conduct label trans-

fer on this dataset to evaluate the generalizability and stability of the atlas template. In order to reduce the

number of failed registrations to the atlas target, BPR is performed on abdominal and retroperitoneal regions

only with soft-tissue window. To evaluate the atlas framework, the inverse transformation was applied to

the multi-organ atlas label, and labels were transferred back to the spatial space of each portal venous phase

CT. High Resolution Single Subject Atlas Template: We choose the single subject atlas template with

several conditions: 1) high-resolution characteristics, 2) significant appearance in kidney morphology and 3)

clear kidney boundary with contrast. The atlas template is provided by Human Biomolecular Atlas Program

(HuBMAP) with high resolution setting of 0.8×0.8×0.8 and healthy condition. The dimension of the atlas

subject is 512×512×434 with 13 Organs annotated by joint label fusion from the registered subjects. The

volumetric measure of both left and right kidneys are 256 cc.
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10.3.2 Deep Body Part Regression Network

The use of deep learning in the medical imaging domain contributed to a great increase in automatic models

for classification and segmentation. Due to the shift of various domains and the variation of imaging proto-

cols, medical images usually present with different visual appearances and fields of view. The goal of the

body part regression network (BPR) is to narrow the difference of field of view between the source images

and the atlas target image for reducing the failure rate of registration. Formally, given an unlabeled dataset

{xm
i }N

i=1 from the moving image domain, and a labeled dataset {xa
i ,y

a
i }1

i=1 from the atlas target domain, we

aim to crop the original volume of interest xm to an approximate field of view with the atlas target xa. The

obtained volume of interest only consists of abdomen regions and is resampled to the same voxel resolution

as the atlas target. Tang et al. proposed a self-supervised method to predict a continuous score for each

axial slice of CT volumes as the normalized body coordinate value without any labels (234; 198). The self-

supervised model predicts scores in the range of -12 to +12 and each body part region corresponds well to an

approximate score (e.g., -12: upper chest, -5: diaphragm / upper liver, 4: lower retroperitoneum, 6: pelvis).

Linear regression is performed to correct the discontinuity of the predicted score, and we use the regressed

output as the self-supervised label to train a new refined model. Both the atlas target image and the unlabeled

dataset are input into the well-trained model and compute scores for each slice of the volume. To extract the

abdominal-to-retroperitoneal regions only for each dataset, we limit the slices with a range of scores from -5

to 5 and crop the slices that are out of this range. All unlabeled datasets xm are then enforced to have a closer

field of view to the atlas target image xa.

10.3.3 Two-Stage Hierarchical Metric-Based Registration Pipeline

The metric-based registration pipeline is composed of 2 hierarchal stages: 1) affine registration and 2) non-

rigid registration. Dense displacement sampling (DEEDS) is a 3D medical registration tool with a discretized

sampling space that has been shown to yield a great performance in abdominal and retroperitoneal organs

registration, is used for both affine non-rigid registration in this pipeline (232; 83; 84). The DEEDS affine

registration is first performed to initially align both moving images and the atlas target to preserve 12 degrees

of freedom of transformation and provide a prior definition of the spatial context and each affine component.

An affine transformation matrix is generated as the output and become the second stage non-rigid registra-

tions’ input. The DEEDS non-rigid registration is refined with the spatial context as the local voxel-wise

correspondence with its specific similarity metric, which will be illustrated below. Five different scale levels

are used with grid spacing ranging from 8 to 4 voxels to extract patches and displacement search radii from

six to two steps between 5 and 1 voxels (232; 83; 84; 82). Deformed scans with the displacement data from

selecting control points is generated and transfer the source image space voxel information to the atlas target
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space after deformation. To ensure the stability of the atlas generated, all successfully deformed scans are av-

eraged and variance mapping is used to visualize the intensity fluctuation and variation around the abdominal

body and kidney organs. The similarity metric defined in DEEDS registration tool is self-similarity context

with the patches extracted from moving images. Such a similarity metric aims to find a similar context around

neighboring voxels in patches (83). The self-similarity metric S is optimizing a distance function D between

the image patches extracted from the moving image M. A function q2 is computed to estimate both the noise

in local and global perspectives. Meanwhile, a certain number of neighborhood relations N is also defined as

to determine the kinds of self-similarities in the neighborhood. As extracting an image patch with a center at

x, the measurement calculation of the self-similarity can be demonstrated as follows:

D(M,x,y) = exp(
S(x,y)

q2 ), x,y ∈ N (10.1)

where y is defined as the center of another patch from one of the neighborhood N. This similarity metric helps

to avoid the negative influence of image artifacts or random noise from the central patch extracted and prevent

a direct adverse effect in calculation. Twelve distances between pairwise patches are calculated within six

neighborhoods and concentrate in extracting the contextual neighboring information, instead of the direct

shape representation.

10.3.4 Experimental Settings

In the preprocessing stage, the BPR model with U-Net like architecture is pretrained with a total of 230,625

2D slices from a large-scale cohorts of 1030 whole body CT scans from the public domain (198). The portal

venous multi-organ labeled cohorts are used only for external validation. The pretrained model is trained

from scratch and optimized with Adam using learning rate of 0.0001. The batch size is 4 for end-to-end

training.

For the atlas generation process, we investigate multiple registration methods including traditional regis-

tration tools and deep learning registration methods to compare the robustness of registration across all con-

trast phases scans in qualitative and quantitative perspective. We performed comprehensive analysis which

included ANTS (232; 5), NIFTYREG (NIFTYR) (232; 155) and DEEDS (232; 83; 84; 82) as the traditional

medical image registration tools, while VoxelMorph (11) and PDD-Net (81) are used as deep learning-based

registration framework on our portal venous dataset. For metric-based registration, the preprocessed mov-

ing scans are upsampled to the same resolution with the preprocessed atlas target and directly performed

hierarchical affine and deformable registration in high resolution setting. For deep learning-based method,

we downsampled the moving scans and the atlas target to a resolution of 1.5× 1.5× 1.5 with dimension
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Figure 10.3: The quantitative representaiton of label transfer with multi-organ portal venous dataset are
demonstrated that PDD-Net with affine registration outperforms the other four traditional methods in an
organ-wise manner. Significant increase of Dice is also demonstrated with medical Dice over 0.8 in the
transferring result of both left and right kidneys using PDD-Net with improving outliers.

192× 160× 256. Affine registration is performed with NiftyReg to coarse align the moving scans and the

atlas fixed target before non-linear mapping prediction with deep network pipelines. VoxelMorph is trained

with the multi-organ labeled portal venous scans as the moving scans and the atlas target as the fixed scans in

unsupervised setting with 100 epochs and learning rate of 0.0001. We use the pretrained model of PDD-Net

from (81) and directly predict a 4D displacement field for non-linear transformation. The pretrained model

of PDD-Net is trained with 3-fold cross validations on 10 contrast-enhanced CT scans of the VISCERAL3

training data with learning rate of 0.01 for 1500 iterations (105). The training process of both VoxelMorph

and PDD-Net are optimized end-to-end with Adam and batch size of 1. The predicted deformation fields

from deep learning based framework are finally upsampled to the atlas template resolution and compute

deformation warp with non-linear transformation in high resolution setting.

For ablation studies, we further investigate the effectiveness on the BPR preprocessing and located the

affect of the significant difference of field of view for registration with variance mapping. As there is signif-

icant intensity variation across each organ interests in each phase, we investigate the effect of domain shift

for the robustness of the registration pipeline and the label transfer of non-contrast phase dataset is further

evaluated to demonstrate the registration stability with significant domain shift across metric-based to deep

learning-based framework.
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Table 10.1: Evaluation metric on 100 portal venous registration on 13 Organs (Mean±STD), note that
p<0.0001 with Wilcoxon signed-rank test ⋆, A: affine registration only.

Methods Dice Score MSD (mm) HD (mm)

ANTS (A) 0.246±0.224 12.8±10.2 60.2±47.5
NIFTYR (A) 0.270±0.222 13.1±11.1 62.1±50.1
DEEDS (A) 0.200±0.199 19.6±18.2 80.9±59.3

ANTS 0.319±0.252 10.1±9.00 51.6±45.3
NIFTYR 0.406±0.279 10.9±13.8 55.0±51.8
DEEDS 0.496±0.284 8.52±17.1 41.6±51.2

VoxelMorph without A 0.335±0.275 12.5±10.9 34.9±21.7
VoxelMorph with A 0.435±0.283 9.27±9.47 30.8±23.5
PDD-Net without A 0.486±0.286 8.47±9.87 31.0±25.0
PDD-Net with A ⋆ 0.540±0.275 6.92±8.73 28.5±25.4

10.3.5 Evaluation Metric

We employed three commonly used metrics to evaluate the similarity between the prediction label from

automatic models and the original ground truth label: 1) Dice score, 2) mean surface distance (MSD), and

3) Hausdorff distance (HD). The definition of Dice is to measure the overlapping of volume between the

segmentation label prediction and the ground truth segmentation label:

DICE(P,G) =
2|P∩G|
|P|+ |G|

(10.2)

where P is the predicted label from models and G is the original ground truth segmentation label, while ∥ is

the L1 norm operation.

The rendered surface is another perspective which used to evaluate result. The 3-dimensional coordinates

of vertices were initially extracted from both the prediction label and the ground truth label. The average

distance and the Hausdorff distance between the sets of vertices coordinate were calculated as follows:

MSD(Vp,Vg) = avg in f Dist(Vp,Vg)

HD(Vp,Vg) = sup in f Dist(Vp,Vg)

where Vp and Vg represents the vertices coordinates of prediction label and ground truth label respectively,

while avg refers to average, and sup and in f refers to the greatest lower bound and least upper bound of the

distance function measure Dist.
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Figure 10.4: We investigate the registration stability across all contrast phase with average mapping. The
metric-based registration representative DEEDS demonstrates a stable transfer of the kidney contextual find-
ings across all phases, while the deep learning representative PDD-Net illustrates sharp appearance in the
kidney sub-structural context in contrast-enhanced phase such as late arterial and portal venous, but with
unstable registration appearances in non-contrast and delayed phase. We additionally compare the average
mapping from the VoxelMorph. It is limited to transfer the sub-structural contrast characterisitics and pre-
serve the boundary of kidney organs well compared with DEEDs and PDD-Net. (See arrows).

10.4 Results

Registrations were performed to the atlas target image with the pre-processed cropped volume of interest.

We performed five registration methods with portal venous cohorts to ensure the highest accuracy for the

localization of both left and right kidneys. The quantitative representation of each organ in the registered

output was then demonstrated in terms of Dice score, MSD and HD, and illustrated the distribution of the

performance across the multi-organ labeled portal venous cohort with Figure 10.3 and Table 10.1. As shown

in Table 10.1, the deep registration pipeline PDD-Net with affine registration from NiftyReg achieved the best

overall mean Dice across all 13 organs. From the demonstration of Figure 10.3, NiftyReg demonstrated a

better performance in registering liver organ comparing to DEEDS, while ANTs performed registration with
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inferiority across all organs comparing to the other two methods. Apart from comparing with metric-based

methods, we also performed deep learning registration baseline with VoxelMorph and characterize the effi-

ciency of the registration with deep networks. The performance of PDD-Net outperforms VoxelMorph with

24.2% Dice across 13 organs by training from scratch with both with or without initial affine registration sce-

nario. In terms of optimizing for kidney organs with the atlas template, the Dice score of both left and right

kidneys are separately computed to obtain the ability of kidneys localization with the atlas template. Both

PDD-Net and DEEDS have a comparable performance in the kidney regions and outperforms the registration

performance of kidney with NiftyReg and ANTs. PDD-Net demonstrate significant improvement in right

kidneys registrations, while DEEDS perform better with a small extent in transferring the left kidney regions.

NiftyReg and ANTs illustrated the lack of generalizability of transferring kidney organs and computed sig-

nificant variance of Dice across all registrations. The reduction of variance and population of outliers are

shown from boxplots with PDD-Net, leading to a significant improvement of Dice score, MSD, and HD for

both left and right kidneys comparing to the other two methods. The Wilcoxon signed-rank test showed that

PDD-Net was significantly better (p ¡ 0.0001) than all other methods in Dice (178). The median Dice of both

transferred left and right kidney using DEEDS and PDD-Net are above 0.8, while it is a significant boost

comparing with the other registration pipelines.

Apart from the quantitative result, we compare the qualitative representations of DEEDS and PDD-Net

registrations across multiple contrast phases and shown in terms of average template and variance mapping

in Figure 10.4 and Figure 10.5. The average mapping of each contrast phase was then computed with all

registered contrast-corresponding volumes. With DEEDS, the contrast and anatomical context of kidney

regions in each phase are stably transferred to the atlas space, while other organs’ regions such as liver

and spleen, are demonstrated with blurry appearance. With PDD-Net, the contextual representations of the

kidney regions are demonstrated with sharper appearance comparing with the DEEDS average template in

early arterial, late arterial and portal venous phase. The anatomy of kidney sub-structure and renal-related

vessels can appear with sharpness in the average template of early arterial and late arterial phase. However,

the non-contrast and delayed phase template demonstrate an unclear structure of the kidney anatomy with

PDD-Net. To further ensure the stability of transferring the kidneys’ anatomical information, variance maps

of each contrast phase template with corresponding registration methods are also computed to demonstrate

the voxel variability of each organ across the clinical cohort. With DEEDS registration, the small variation

in the kidney is illustrated with a color range from yellow to green, while significant variation in voxels

is shown near the diaphragm region and the color range from orange to red indicated the highly deformed

variability across the registered outputs. For PDD-Net, the boundary around the kidney regions demonstrated

significant variation across each contrast phase, while the intensity variance is small in the renal cortex regions
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Figure 10.5: We further evaluate the intensity variance across the registration outputs with the average tem-
plate in each contrast phase. The variance mapping of DEEDS demonstrates the kidney context transferal
with stability and the variance value near the kidney region is 0–0.15, while significant variance are localized
in the boundary of the kidney region with the variance mapping of PDD-Net and VoxelMorph. For late arte-
rial and portal venous phase, PDD-Net well preserved the core context of the renal cortex region. However,
unstable registrations are demonstrated with the high variance value in kidney with non-contrast and delayed
phase mapping (see arrows), which match the blurry appearance of kidney regions in the average mapping.

in late arterial and portal venous phase. The variance map of non-contrast and delayed phase demonstrate the

significant variability across the contrast intensity and the kidney anatomy, which correlated the instability

of the registration of both phase subject scans. Overall, contrast phase context can be stability preserved

with DEEDS in the kidney regions and PDD-Net demonstrated a higher robustness of transferring the kidney

findings with sharp appearance in late arterial and portal venous phase.
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Figure 10.6: We evaluate the failure rate of the registration with/out using BPR. The use of BPR reduce the
number of outliers in some of organs, especially for right and left kidneys.

10.5 Discussion

In this study, we constructed a healthy kidney atlas for five different contrast phases CT and generalized the

kidney anatomical context across population demographics and the variation of contrast characteristics. High

variance score is located near the diaphragm regions and the boundary of the abdominal body (see Fig. 5).

Such variability is contributed to the large deformation of the lower and upper boundary of the volume interest

and transfer specific organs’ contextual information to other organs’ anatomical locations. The low variance

score in both the left and right kidney region indicated the stable registration of structural information, as the

kidney organs are localized in the middle region of the volume interest with contrast. The surface rendering

of the kidney across the morphological sizes visualizes the generalizability of the atlas template across shape

variability (see Figure 10.5). We adapt a 2D color-space checkerboard to visualize the deformation on the

surface. The color of each box in the checkerboard pattern changes both horizontally and vertically. The

color-boxes in atlas space are equivalent to that in the inverse original space. The smoothnesss of the regis-

tration is qualitatively defined by the movement of the checkerboard pattern. If there is significant movement

of the colored pattern, there is significant deformation on that particular regions and the smoothness of defor-

mation field is low. From Figure 10.7, stable deformation is demonstrated across small to large kidneys. The

high-resolution characteristics of the atlas template preserve highly detailed voxel-wise information across

all organs. DEEDS provided an overall performance with mean Dice of 0.50 (232). However, the DEEDS
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Table 10.2: Time consumption of preprocessing and sampling data samples

Methods Extraction Time per Scan (Sec)

Apply BPR 30.237
Downsampling for Deep Learning Registration 13.111

Upsampling to Atlas Resolution 124.071

performance cannot provide accurate measures towards the organ of interests due to high sensitivity of field

of view, leading to significant deformation. With the use of PDD-Net (81), it yields the best performance with

mean Dice of 0.54 across all organs. The sharpness of the organ interests’ structure such as liver and spleen

become more appealing and the substructure context of kidneys are also demonstrated with stability across

the contrast-enhanced phase such as late arterial and portal venous. In addition to the ablation study, we

evaluate the effectiveness of the BPR preprocessing for abdominal registration with DEEDS. As abdominal

registration is sensitive to the similarity of the field of view between the fixed scans and the moving scans,

the BPR algorithm provides an opportunity to extract approximate ranges within the abdominal region and

allows a certain extent of deformation, while limited field of view is generated by cropping the ROI of the

organs with the segmentation masks and may lead to over-deformation. We aim to increase the successful rate

of registration with the BPR algorithm with a proportional increase of label transfer performance. Significant

improvement is demonstrated with the use of BPR in Table 10.2 & 10.3 for both volumetric segmentation

using 3D U-Net as network architecture (39) and image registration respectively. The cropped abdominal in-

terest reduces the over-deformation of organs towards the lung or pelvis region. The variance in registration

performance is also reduced with the decrease of outliers in Figure 10.6 and demonstrate the effect reduction

by the significant field of view variability. Among the average template of each contrast phase in Figure 10.4,

the portal venous phase average template provides a sharper and smoother abdominal body comparing to that

of the other four phases. However, the portal venous phase average template is not suitable to be an unbiased

template for registration. The small tissue voxels are difficult to represent and cannot provide sufficient accu-

rate information for registration. Large population of clinical cohorts may need to be used to obtain a higher

confidence level of voxel representation that is as sharp as the atlas target image.

Initially, one of the bottlenecks of providing a stable anatomical information transfer for organs is the

registration method. The registration performance of kidneys may be affected by the secondary targets such

as liver and spleen. Further optimization of the registration pipeline is needed for reducing the possibility

of significant deformation. Instead of relying on similarity metric (mutual information, cross correlation,

Hamming distances of the self-similarity context) as the loss function (212; 209), a learning-based method

may be another promising direction to learn a registration function and predict the registration field for the
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Figure 10.7: The surface rendering of the registered kidney with significant morphological variation are also
illustrated. The 2D checkerboard pattern with arrows demonstrates the correspondence of the deformation
from atlas space to the moving image space. A stable deformation across the change in volumetric morphol-
ogy of kidney (100 cc∼308 cc) are demonstrated ewith the deformed checkerboard.

moving images (81; 156). However, most of the proposed learning-based pipeline is focused on the brain (11;

44). PDD-Net provide an opportunity to reduce the gap for robust abdominal region registration with deep

neural networks to adapt large deformation field. However, the significant improvement of the registration is

limited with contrast-enhanced dataset such as late arterial phase and portal venous phase scans as shown in

Figure 10.4. We further perform the evaluation in registration performance with non-contrast dataset as Table

10.4 and a significant decrease of robustness in registration is illustrated with PDD-Net. As the pretrained

model of PDD-Net is trained with limited portal venous dataset, the significant of domain shift contribute to

the adverse performance of the registration. Multi-Modality registration with deep learning approaches can

be the next step to contribute a robust generation of atlas with abdominal organs.

The kidney atlas template also provides contributions in the segmentation of other abdominal and retroperi-

toneal organs. The high-quality atlas multi-organ label can be transferred with the inverse transformation and

use to provide accurate measures for abdominal and retroperitoneal organs. Also, high quality labels can help

perform training strategies to innovate automatic learning-based model. Huo et al. proposed a whole brain

segmentation using spatially localized network tiles with the atlas-transferred label (98). Dong et al. pro-

posed left ventricle segmentation network, which integrate the ventricle atlas at echocardiogram into learning

framework and provides consistency constraints with atlas label to perform accurate segmentations (51). Bai
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Table 10.3: Time consumption of metric-based & deep learning-based registration methods

Methods Extraction Time per Scan (Sec)

DEEDS (A) 170.105
DEEDS (D) 591.349

PDD-Net 7.43

Table 10.4: Evaluation metric on 50 Non-Contrast registration on 13 organs (Mean±STD), note that
p<0.0001 with Wilcoxon signed-ranked test ⋆, A: affine registration.

Methods Dice Score MSD (mm) HD (mm)

DEEDS ⋆ 0.485±0.275 9.45±18.2 43.4±48.5
PDD-Net with A 0.278±0.223 12.4±15.6 59.4±45.1

et al. presented a population study of relating the phenome-wide association to the function of cardiac and

aortic structures using machine-learning-based segmentation pipeline (9). Clinical validation and pheno-

typic analysis can be performed and reveal biomarkers of specific organs in certain conditions such as disease

pathogenesis, with high-quality segmentation labels. Further exploration can be investigated in the abdominal

and retroperitoneal domain with the use of the high-quality atlas label.

10.6 Conclusion

This manuscript presents a healthy kidney atlas to generalize the contrastive and morphological characteristics

across patients with significant variability in demographics and imaging protocols. Specifically, the healthy

kidney atlas provides a stable reference standard for both left and right kidney organs in 3-dimensional space

to transfer kidney information using an adapted registration pipeline. Significant variance on the field of

view and the organ shape can be focused as the optimization parameters to reduce the possibility of failure

registration. Potential future exploration with the use of the atlas template can be further investigated in both

engineering and clinical perspectives, to provide better understandings and measures towards the kidneys.
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CHAPTER 11

Supervised Deep Generation of High-Resolution Arterial Phase Computed Tomography Kidney

Substructure Atlas

11.1 Overview

1The Human BioMolecular Atlas Program (HuBMAP) provides an opportunity to contextualize findings

across cellular to organ systems levels. Constructing an atlas target is the primary endpoint for generalizing

anatomical information across scales and populations. An initial target of HuBMAP is the kidney organ and

arterial phase contrast-enhanced computed tomography (CT) provides distinctive appearance and anatomical

context on the internal substructure of kidney organs such as renal context, medulla, and pelvicalyceal sys-

tem. With the confounding effects of demographics and morphological characteristics of the kidney across

large-scale imaging surveys, substantial variation is demonstrated with the internal substructure morphome-

try and the intensity contrast due to the variance of imaging protocols. Such variability increases the level of

difficulty to localize the anatomical features of the kidney substructure in a well-defined spatial reference for

clinical analysis. In order to stabilize the localization of kidney substructures in the context of this variability,

we propose a high-resolution CT kidney substructure atlas template. Briefly, we introduce a deep learning

preprocessing technique to extract the volumetric interest of the abdominal regions and further perform a deep

supervised registration pipeline to stably adapt the anatomical context of the kidney internal substructure. To

generate and evaluate the atlas template, arterial phase CT scans of 500 control subjects are de-identified and

registered to the atlas template with a complete end-to-end pipeline. With stable registration to the abdominal

wall and kidney organs, the internal substructure of both left and right kidneys are substantially localized in

the high-resolution atlas space. The atlas average template successfully demonstrated the contextual details

of the internal structure and was applicable to generalize the morphological variation of internal substructure

across patients.

11.2 Introduction

Considerable effort has been made by the Human BioMolecular Atlas Program (HuBMAP) to relate molec-

ular findings in organ anatomy across cellular to organ systems levels (183). With the previous efforts of

mapping the organization and molecular to profile cells across different tissues and organs (119), it is vitally

important to contextualize the anatomical characteristics of organs in well-defined reference templates to act

1Published at: Lee, Ho Hin, et al., “Supervised Deep Generation of High-Resolution Arterial Phase Computed Tomography Kidney
Substructure Atlas.”, Medical Imaging 2022: Image Processing. Vol. 12032. SPIE, 2022. (126)
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Figure 11.1: Significant variations in contrast intensity and mophology are demonstrated in both the external
and internal structure of the kidney (1) yellow: reanl cortex, 2) red: medulla and 3) pelvicalyceal system).
The asymmetric property in the kidney appearance and the anatomical (such as size and position) variation is
shown and it is challenging to adapt a well-defined anatomical reference for kidney organs.

as a common framework for contextualizing multi-modal molecular information across scales. Computed to-

mography (CT) provides an imaging platform to visualize anatomical context at organ system level. Contrast

enhancement, is used to emphasize the structural and anatomical context between neighboring organs with

the injection of contrast agent and guide to extract information from regions of interest (ROI) (199). The

kidney is the initial target of HuBMAP to analyze the structural anatomy across scales. Arterial phase CT

provides distinctive representation for further analysis of the kidney substructure perspective (201). Figure

11.1 illustrates how the kidneys are localized with significant variability of size and anatomical regions. Ad-

ditionally, the surface rendering of each internal structure demonstrates the large volumetric difference across

patients from different demographics. It is challenging to adapt such variable morphological characteristics

in a single well-defined reference for population analysis.

Here, we aim to adapt the conventional information of each kidney substructure on a single anatomical

atlas template. Previous works have been demonstrated in building an atlas platform with neuroimaging

(64; 165). Multiple brain atlases are built to reveal the population characteristics of brains in both adults and

infants (100; 175; 113). Apart from looking into the anatomical characteristics, atlas reference is used as a

platform to perform segmentation with unsupervised settings (216). Multiple atlas references are randomly

picked and perform registration between the subject moving scans to the multiple atlases’ platform (184).
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Segmentation predictions are computed with joint label fusion using the guidance of multiple registered out-

puts. However, there has been more limited work in generating atlas frameworks for the specific organs in

abdominal regions (43; 67). With the variability of demographics, several challenges are raised with 1) the

difference of abdominal body shape and 2) the performance of registrations for adapting large deformation.

Currently, registration pipelines are specifically designed for the abdominal regions to increase the robust-

ness of adapting the abdominal organ-corresponding information such as DEEDS (135). With the DEEDS

registration pipeline, over-deformation is demonstrated and leads to great variance in registering the liver

and spleen regions due to the field of view varies across patients with different imaging protocols (131; 132).

Therefore, a stable atlas construction pipeline is needed to generalize the organ context in the abdomen across

demographics and construct a well-defined atlas target with a high successful rate of transferring ROI context

needed for anatomical evaluation.

In this study, we construct a contrast-preserving kidney substructure atlas with a deep unsupervised pre-

processing and registration pipeline to increase the robustness of adapting organ context across patients in

high resolution. With a total of 500 arterial subject scans with healthy kidneys, we generated the average

mapping of healthy kidney substructures across this population. Atlas target and moving subject scans are

initially downsampled to input for the deep registration pipeline. The predicted displacement field is upsam-

pled back to the atlas resolution and warped with the upsampled subject images. Registration performances

are evaluated in both quantitative and qualitative perspectives and the kidney substructure context is stably

transferred with contrastive and morphological characteristics to the atlas space.

11.3 Methods

11.3.1 Preprocessing

With demographic variability across patients, the field of view varies significantly in 3D abdominal CT scans

across populations and may contribute to the possibility of registration failure. Here, we introduce a deep

learning preprocessing pipeline body part regression to generate anatomical information for cropping the

kidney-corresponding area of interest to perform stable registration (198; 130). Specifically, 2D axial slices

are initially extracted from each scan and a prediction score is generated to identify the approximate anatom-

ical location in the human body for each slice. The output value for each slice is in the range of -12 to + 12

(arbitrary units), which specify regions from the heart to the pelvis. We defined the value between -4 to 3 as

the kidney regions of interest and crop the volumetric scans to ensure a similar field of view between atlas

target and subject scans.
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Figure 11.2: We aim to transfer the significant variability of contrast and morphology to a healthy-defined
anatomical atlas target with linear and non-linear transformations for generalizing anatomical context across
scales (top panel). The complete pipeline (lower panel) can be divided into two steps: 1) body part regression
preprocessing and 2) deep supervised registration. We initially crop the abdominal are of interest for both atlas
target and subject scans with the guidance of body part regression network. We downsample both volumes
and input into a deep registration network to predict the voxel displacement across tri-planar perspective. We
finally warp the predicted transformations to each subject scan and compute average map for analysis.

11.3.2 Registration Pipeline

To adapt to the significant variation of the abdominal regions across patients, a deep network registration

pipeline is introduced with probability dense displacement networks (PDD-Net), which aims to align a 3D

moving image Im to the fixed image I f space with an optimal spatial transformation learned on the extracted

deep feature context (81; 85). The complete overview of the registration pipeline is illustrated in Figure 11.2.

Both preprocessed subject scans and atlas target are input into a small network to learn a meaningful non-

linear mapping to align from input intensity to a dense feature context. The Obelisk approach is employed

for the small network f to effectively capture the spatial context with significant deformation and a normal

5× 5× 5 convolution kernel is added to learn the edge feature for body-aligned registration (85). After the

extraction of the spatial feature context, our goal is to predict an optimized displacement field δ (k)→ v that

apply a vector v to every set of control points k ∈ R3 on a grid for non-linear transformation and additionally

achieve the best similarity between the organ labels. With the use of conventional discrete registration (83)

and the correlation layer in (53), we sample the context from discrete grids and compute a 6D tensor D

representing the dissimilarities with the feature dimension z. Here, we use the negated mean square error
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across the feature dimension to generate the 6D tensor:

D(k,v) =− 1
|z| ∑z

( fz(I f )k − fz(Ic)k+v)
2 (11.1)

As abdominal structures vary significantly across demographics, it causes over-deformation and the regis-

tered images to become ill-posed with non-linear registration. PDD-Net provides an opportunity to model the

regularization constraints with diffusion regularization and use fast mean-field inference with two iterations

only for discrete optimization (111). It consists of two steps: 1) transformation with label compatible that

assigns on spatial control points and 2) the additional average pooling layers with stride 1 for filtering mes-

sage. Previous work demonstrated that the diffusion regularization can be generated using min-convolutions

with a lower envelope of parabolas rooted at the offset of 3D displacement with heights equivalent to the

sum of dissimilarity terms and the previous iteration of mean-field inference (61). We approximately com-

pute the diffusion regularization for dense displacement with a min-pooling layer to extract the local minima

in the cost tensor. Two average pooling layers are additionally used for smoothing the context extracted.

The integration of min-pooling and average pooling aims to perform the regularization approach in multi-

ple dimensions: 1) 3 displacement dimensions (min-convolution) and 2) 3 spatial dimensions (mean-field

inference) for end-to-end optimization.

11.3.3 Deep Label Supervision for Registration

Apart from adapting the dissimilarities in intensity level, we aim to adapt the anatomical context of a spe-

cific region of interest (ROI) with high stability. Here, we use a supervised label loss term to preserve the

morphological information of ROI instead of over-deformation. We use a SoftMax activation to compute a

probability mapping with the regularized output over the displacement context. One-hot representations from

the moving subject segmentations are wrapped in the corresponding spatial location with predicted displace-

ments and compute the dissimilarity between wrapped subject labels and fixed target labels with mean square

error (MSE). The predicted displacement is a 4D multi-channel output and the number of channels repre-

sented the displacement field on each direction (∆x,∆y,∆z). The final prediction is resampled to the original

input resolution with tri-linear interpolation.

11.4 Data and Experiments

11.4.1 Data and Platform

To evaluate the atlas template, abdomen CT volumetric scans from 1971 patients were retrieved in de-

identified form from ImageVU with the approval of the Institutional Review Board (IRB) (IRB number:
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Figure 11.3: This quantitative representation demonstrates the reigstration performance from subject space to
the atlas target with subject label transfer. Supervised registration performs with a substantial improvement
in the renal cortex and pelvicalyceal system segmentation, while the performance of the medulla is limited
with the decrease of variance.

160764). Exclusion criteria are set based on ICD-9 codes to include subjects with healthy kidney organs

only. Out of 1971, 500 subjects are retrieved with the assurance of ICD-9 codes and within the age range of

18 to 50 years old. We limited our studies to the subjects with arterial phase CT only, as only the arterial phase

CT provides adequate data on the distinctive anatomy of kidney substructures. Therefore, in a total of 500

subjects 3D volumetric CT are used to generate and evaluate the atlas template. For the atlas target image,

a single subject volume with high resolution (0.8×0.8×0.8) is used with a dimension of 512×512×434.

The criteria to choose data as the atlas template are based on the contrastive and morphological characteristics

of the kidneys . With the use of body part regression preprocessing, both subject scans and atlas target are

cropped to the abdominal interest only. We downsampled the subject scans and atlas target to an isotropic

voxel resolution of 1.5mm×1.5mm×1.5mm and a dimension of 192×160×256. The downsampled scans

are then input into the deep registration pipeline to predict the displacement field for transferring the kidney

substructure context to the atlas space.

138



11.4.2 Experiments

11.4.2.1 Registration Comparison

We performed a conventional registration algorithm DEnsE Displacement Sampling (DEEDS) as our base-

line method and previous works have demonstrated that DEEDS outperformed other traditional registration

tools (ANTS, NiftyReg) in the inter-patient 3D abdominal CT registration study. DEEDS calculate the image

similarity between a number of random sampling voxels of each control point and model the diffusion regu-

larization through a pair-wise term of the displacement field. Hierarchical steps are performed following with

1) DEEDS affine registration and 2) DEEDS deformable registration. A displacement matrix is an output

to provide the transformation information corresponding to each control point. We apply the displacement

matrix to the subject ground truth labels and compare the transformed label with the atlas target label for

evaluating the registration performance. The ground truth label of kidney substructure corresponds to the

renal cortex (label: 1), medulla (label: 2), and pelvicalyceal system (label: 3) (201). Dice Coefficient is used

to measure the overlapping regions between the prediction label and ground truth labels.

Dice(P,G) =
2|P∩G|
|P|+ |G|

(11.2)

11.4.2.2 Atlas Construction

Both subject scans and atlas target are input corresponding to the moving image and fixed image respectively.

As the image inputs have to be downsampled to fit into the deep registration pipeline without memory outage,

we aim to minimize the loss of the high-resolution context from the atlas target. After we output the predicted

displacement field, we further resample the displacement field to the original resolution of the atlas target with

tri-linear interpolation and warp the displacement field on upsampled subject scans. All warped upsampled

scans are summed and generate the average map to evaluate the transition of the anatomical context across

kidney substructures qualitatively.

11.4.2.3 Deep Registration Model

We initially use the pre-trained model from (81), which trained on 10 contrast-enhanced 3D CT scans of the

VISERAL3 training dataset. Each scan in VISERAL3 training dataset consists of nine anatomical structures

well-annotated including 1) liver, 2) spleen, 3) pancreas, 4) gallbladder, 5) urinary bladder, 6) right kidney, 7)

left kidney, 8) right psoas major muscle and 9) left psoas major muscle (105). All images are downsampled

to an isotropic voxel of 2.0mm×2.0mm×2.0mm with dimensions of 192×160×256 for training input and

no initial affine alignment is performed between the subject scans and fixed target scan.
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Figure 11.4: This qualitative representation demonstrates the comparison of transferring kidney substructure
information with DEEDS and PDD-Net. The single subject is arbitrary picked and shows that the renal struc-
ture is comparatively over-deformed with DEEDS. From the average template, the contrastive and morpho-
logical context of the substructure is illustrated more appealing both in the boundary and the cortex anatomy
with PDD-Net.

Figure 11.5: We illustrate the correspondence of the anatomical information in between the subjects’ space
and atlas space after performing deep registration. Yellow arrows show the corresponding information of
both organs before and after registration, while the black arrows correspond to the location of the registered
context in both transformed images and the atlas target. The atlas template demonstrates stable adaptation of
renal cortex context and significant deformation of pelvicalyceal system morphology across subject space.
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11.5 Results

To evaluate the generalizability of the atlas template on the localizing contextual information of kidney sub-

structures, we first compare the single subject registration qualitatively, and manually visualize the qual-

ity of the registered kidney substructures. As shown in Figure 11.4, the registered output from DEEDS

demonstrates a fair registration quality of transferring both left and right kidney information. However, over-

deformation is demonstrated with a small extent to the left kidney structure and the boundary information

between the right kidney and liver cannot be clearly separated. With the PDD-Net registration, the context

of the left and right kidney is comparable to the anatomical information of the kidneys in the atlas target.

The substructure context is stably transferred to the atlas-defined space with limited over-deformation. We

further evaluate the atlas target across all populations and generate the average mapping to visualize the local-

izing context of the kidney substructure in the atlas template. The average mapping generates with PDD-Net

demonstrates a more distinctive appearance in the kidney substructures, while a certain extent of blurriness in

the kidney substructure context is shown with DEEDS registration. The contrastive and morphological char-

acteristics of the kidney substructures are transferred with stability in the atlas target across all populations.

In terms of label-wise measure, we apply the predicted displacement field to the moving subject labels and

compare the similarity between the warped labels and the atlas labels in Figure 11.3. Significant improve-

ment (p<0.001) on the renal cortex and pelvicalyceal system segmentation is demonstrated with PDD-Net,

while DEEDS demonstrates a better performance on the medulla segmentation. The medulla segmentation

with PDD-Net demonstrates a significant decrease of variance in performance and shows the generalizability

across the hard registration case for kidneys.

Apart from looking into the image registration performance, we evaluate the ability to adapt the significant

morphology of kidney substructures by generating 2D color correspondence mapping with surface rendering.

Here we compute 2D cie-lab checkerboard for each of the kidney substructure labels in the corresponding

space and warp the checkerboard to the kidney substructure rendering, as shown in Figure 11.5. Each color

represents the corresponding anatomical information located in the subject/atlas space. After warping with the

displacement field, the checkerboard pattern follows the guidance of the displacement field and is deformed

to demonstrate the adaptation of the subject information to the atlas space. The checkerboard pattern stably

deformed from subject space to atlas space and well adapted the structural characteristics of the subject-wise

kidney substructure. Grids in the pattern have not been overly deformed in the renal cortex labels, while a

significant deformation is demonstrated to transfer the pelvicalyceal system information due to the significant

variation of morphology.
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11.6 Discussion and Conclusion

With the qualitative and quantitative representation above, the contrastive and morphological context of the

kidney substructures is demonstrated with stability using the deep representation pipeline. The label transfer

performance in the medullary regions of the kidney does not demonstrate significant improvement, although

variance between registered labels is decreased in trend. As the deep registration model is trained with multi-

organ labels, the registration aims to optimize the transformation of contextual information in the organ-

corresponding regions, which is the complete kidney morphology, instead of the kidney substructures. With

the opportunity of using label context in deep registration pipeline, we will adapt the current pre-train model

to reduce the adverse effect from the morphological variability of other organs (such as the liver, spleen), and

further fine-tune the model with the kidney substructure labels to optimize the kidney substructure registra-

tion. In this paper, we constructed a stable standard anatomical reference to localize the context of kidney

substructure with deep network registration. The average mapping demonstrated the contrastive characteris-

tics of each substructure across patients and the atlas target stably adapted the substructure information with

the illustration of correspondence figure. We aim to create a minimal bias average template for healthy kidney

substructures as our future long-term goal and analyze variability across populations.
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CHAPTER 12

Multi-Contrast Computed Tomography Atlas of Healthy Pancreas

12.1 Overview

1 With the substantial diversity in population demographics, such as differences in age and body composition,

the volumetric morphology of pancreas varies greatly, resulting in distinctive variations in shape and appear-

ance. Such variations increase the difficulty at generalizing population-wide pancreas features. A volumetric

spatial reference is needed to adapt the morphological variability for organ-specific analysis. Here, we pro-

posed a high-resolution computed tomography (CT) atlas framework specifically optimized for the pancreas

organ across multi-contrast CT. We introduce a deep learning-based pre-processing technique to extract the

abdominal region of interests (ROIs) and leverage a hierarchical registration pipeline to align the pancreas

anatomy across populations. Briefly, DEEDs affine and non-rigid registration are performed to transfer pa-

tient abdominal volumes to a fixed high-resolution atlas template. To generate and evaluate the pancreas atlas

template, multi-contrast modality CT scans of 443 subjects (without reported history of pancreatic disease,

age: 15-50 years old) are processed. Comparing with different registration state-of-the-art tools, the combina-

tion of DEEDs affine and non-rigid registration achieves the best performance for the pancreas label transfer

across all contrast phases (non-contrast: 0.497, arterial: 0.505, portal venous: 0.494, delayed: 0.497). We fur-

ther perform external evaluation with another research cohort of 100 de-identified portal venous scans with

13 organs labeled, having the best label transfer performance of 0.504 Dice score in unsupervised setting.

The qualitative representation (e.g., average mapping) of each phase creates a clear boundary of pancreas

and its distinctive contrast appearance. The deformation surface renderings across scales (e.g., small to large

volume) further illustrate the generalizability of the proposed atlas template.

12.2 Introduction

With the complicated relationship between physiological and metabolic process in the human body, substan-

tial efforts are underway to map the organization and molecular profiles of cells within specific tissues (183).

Adapting multi-scale context from cell to organ level is also essential to provide a better definition to corre-

late the biomarkers across different imaging domains (119). Computed tomography (CT) is widely used to

visualize the patients’ anatomy at a system scale (18). While CT provides the anatomical correspondence in a

system-scale only, a standardized framework is needed to generalize information across scales and enhances

1Published at: Lee, Ho Hin, et al., “Supervised Deep Generation of High-Resolution Arterial Phase Computed Tomography Kidney
Substructure Atlas.”, Medical Imaging 2022: Image Processing. Vol. 12032. SPIE, 2022. (126)
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Noncontrast Arterial

Portal Venous Delayed

variation across multi-contrast phases

variation in population

Figure 12.1: The anatomical characteristics of pancreas organs vary widely in population. Visual difference
between each contrast phase is also shown a) noncontrast b) arterial c) portal venous d) delayed. A general-
izable reference is needed to adapt individual morphological variability within contrast phases.

the ability of visualizing the complex organizations of tissues across populations.

During the imaging procedures, contrast enhancement is performed by injecting a contrast agent before

imaging. Multi-phase contrast enhanced CT are generated with the sharpened anatomical and structural de-

tails between neighboring organs for diagnosis (185; 163; 199). Four different phases are typically generated

according the retaining time of contrast agent in the imaging cycle: 1) non-contrast, 2) arterial, 3) portal

venous, and 4) delayed. With the variation in contrast level between organs, the large range of intensity levels

are beneficial to capture the fine-grained contextual features of each specific organ, especially for the pancreas

organ. By visualizing the anatomical context of pancreas across large population cohorts, we observe that the

volumetric morphology of healthy pancreas organ varies with respect to demographics (e.g., sex, body size),

as shown in Fig. 1. To investigate the population-wise healthy biomarkers of pancreas organ in the systemic

level, a standardized imaging atlas framework is needed to adapt the population-wise anatomical character-

istic onto one single template with image registration technique. However, with the large variation in organ

anatomies and body sizes across population, generating such standard reference template for pancreas organ

is still challenging and no atlas framework for pancreas organ is currently available in public.

Creating an organ/tissue-specific atlas framework has been widely leveraged with magnetic resonance

imaging (MRI) and extensive efforts have been applied to leverage brain MRI to investigate biomarkers for

multiple perspectives (217; 148). Due to the similarity between human brain and mouse brain, Kovačević

et. al proposed a 3D variational atlas with mouse brain to represent the average anatomy and the variation
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among the population (110). Wang et.al created a population average reference framework leveraging 1675

specimens of mouse brain MRI (217). On the other hand, Shi et al. created an unbiased infant brain atlas with

group-wise registration from three different scanning time points using MRI from 56 males and 39 females

(190). Kuklisova-Murgasova et al. proposed multiple atlas to generalize the aging characteristics from 29

to 44 weeks infants (113). Ali et al. generates an unbiased spatial-temporal 4-D atlas and time-variable

longitudinal atlas for infant brain (64). To further investigate into the aging characteristics in brain tissue,

Yuyao et al. leveraged patch-based registration in spatial-temporal wavelet domain to generate longitudinal

atlas (244). While previous efforts was concentrated on generating healthy brain atlas template, Rajashekar

et al. proposed high-resolution normative atlases to visualize the population-wise representation of brain

disease (e.g., brain lesion, stroke) in both FLAIR MRI and non-contrast CT modalities. For abdominal

regions, pioneer studies have been demonstrated to develop a multi-contrast kidney atlas that generalize both

contrast and morphological characteristic within kidney organs (131; 132). Furthermore, such kidney atlas

template is further extended to generalize the substructure organ (e.g., medulla, renal context, pelvicalyceal

systems) in kidney regions with arterial phase CT (126). However, limited studies have proposed to create

a standard reference atlas for pancreas organs with its challenging morphology associated with patients’

demographics.

In addition to putting efforts into generating tissue/organ atlases, robust image registration algorithms

to transfer the anatomical context onto one single template are also vitally important. Previous works have

sought to enhance the registration performance by innovating conventional frameworks with affine and de-

formable transformation (3; 5; 10). The spatial transformation is optimized by regularizing the deformation

field to align the anatomical context from moving image to a single fixed template with traditional approach

such as discrete optimization (43), b-spline deformation (184), Demons (212), and symmetric normalization

(5). To further enhance the efficiency and robustness of registration algorithm, deep learning was introduced

to generate large deformation field by extracting meaningful representations for deformation field predictions.

VoxelMorph is a pioneering network that optimizes with a generalized function to compute deformation field

in unsupervised setting (11; 42). While VoxelMorph was initially optimized with brain imaging, a large

deformation field is needed for abdominal imaging due to the significant variation in body size and organ

morphology across demographics. Zhao et al. adopt Voxelmorph framework and extended as a recursive

cascaded network that leverage organ labels to crop the organ-specific region of interests (ROIs) and progres-

sively registered the anatomical context to the fixed template (246). Zhao et al. introduced a deep learning

framework that generates bounding boxes to initially localize multiple organ ROIs and leverage the organ-

specific patches for registration (249). However, previous approaches only demonstrate the feasibility of

registering organ-specific ROIs. Heinrich et al. adopt substantial deformation in compute volumetric scans
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Figure 12.2: Complete overview of our propose atlas generation framework. We extract the abdominal
regions from CT scans using the body part regression network. We register the cropped ROI to the reference
image with a hierarchical two-stage registration and compute both average and variance mappings to evaluate
the effectiveness of the atlas framework. Furthermore, we statistically fuse the pseudo predictions from the
transformer-based segmentation network UNesT and perform inverse transformation back to the subject space
for evaluation.

by innovating a probabilistic dense displacement network with organ label supervision (81). Yet, voxel-wise

labels are needed to supervise the training process and instability in performance may exist due to the domain

shift with unseen data (132).

In this work, we propose a high-resolution CT pancreas atlas framework that optimized for the healthy

pancreas. Briefly, we initially crop the abdominal ROI from each each subject scan with a deep neural

network called body part regression (BPR), which aims to minimize the field of view (FOV) differences

between scans and reduces the failure rate of registration. Specifically, we slice the volumetric scans and

input each slice into BPR network to compute a regressed score ranging from -12 to +12, referring as the

upper lung region to the pelvis region in the body. We then limit the predicted score range and extract the

ROI within abdominal region only. After data preprocessing, a two-stage hierarchical registration pipeline is

performed to register each subject scan to the high-resolution atlas target with metric-based registration across

all contrast phases (83; 84). To evaluate the quality of anatomical transfer across scans, we compute average

and variance mappings to demonstrate the organ appearance across all registered outputs in each phase and

further quantify the registration performance with inverse label transfer from atlas framework. Overall, our

main contributions are summarized as four folds:
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• We established a standardized framework to obtain a population-based pancreas atlas.

• We propose a hierarchical metric-based framework optimizing for healthy pancreas to generalize the

anatomical and contrast characteristics of pancreas organ across demographics and domain shift of

contrast phases.

• We evaluate the effectiveness of our proposed atlas template by inversely transforming the atlas target

labels to a de-identified research cohort of 100 abdominal scans with 13 organs ground-truth labeled.

A large population of unlabeled multi-contrast phase CT cohort is leveraged to compute average and

variance mappings to demonstrate the generalizability of the atlas framework. Our proposed atlas

framework achieves a stable transfer ability in pancreas organ with an average Dice of 0.504 in unsu-

pervised setting.

• The average template generated, and the associated pancreas organ labels is available public for usage

through HuBMAP.

12.3 Methods

12.3.1 Self-Supervised Body Part Regression Network for Preprocessing

With the substantial variation in imaging protocols, the imaging samples from a large cohort usually present

with different range of field of views (FOVs). Such variability of FOV may increase the failure rate of

registration when the FOV difference between the subject scan and the atlas template is large. Here, we

adapt body part regression (BPR) network to extract similar FOV within the abdominal regions only, thus to

enhance the registration performance. Specifically, given an unlabeled dataset {xui}N
i=1 as the moving image

domain, and the atlas image {xa}, our goal is to crop the volumetric xu to have an approxiamte FOV of

abdominal interest only with the atlas template xa. Tang et al. proposed a self-supervised BPR network to

generate a continuous score for each axial slice in the volumetric scans as the normalized body localization

values (234; 198). Each score is within the range of -12 to + 12, which refers to different anatomical location

(e.g., -12: upper chest, -5: diaphragm/upper liver, 4: lower retroperitoneum, 6: pelvis). For abdominal region,

we limit the score ranges across all axial slices within -5 to 5 and crop the slices.

12.3.2 Transformer-Based Segmentation Network

Apart from data preprocessing, pancreas organ labels are needed to further quantify the healthy biomarkers

across populations and perform statistically label fusion to generate the atlas label. With the recent advance

of deep neural networks in medical image segmentation (200; 125; 121), transformer-based networks have

been further proposed to leverage with respect to their proficiency in capturing long-range dependency and
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Figure 12.3: To evaluate the effectiveness of our atlas framework, inverse transformation is performed to
backpropagate the anatomical label from the atlas template to the moving subject domain and quantify the
similarity with the corresponding ground truth label.

the large receptive filed behavior (74; 73). Here, we adapt a transformer-based model that incorporates a hier-

archical design alongside a block aggregation method, attaining state-of-the-art performance across multiple

modalities and public datasets (). This model initially projects 3D volumes into a sequence of patches, and

then employs a 3D block aggregation algorithm to augment communication between these patches. Within

each hierarchical level, patches are transformed into blocks and introduced to the transformer layer. The out-

put then undergoes the block aggregation algorithm and is subsequently downsampled for the next hierarchy.

The model consists of three hierarchies with a configuration of 64, 32, and 1 block(s) respectively. The block

aggregation algorithm leverages local attention, therefore enhancing data efficiency. In our study, the needs

for segmentation labels on abdominal scans is twofold: for inverse transform evaluation and joint label fusion

to visualize the pancreas region on atlases.

12.3.3 2-Stage Hierarchical Registration

Our registration framework consists of two main steps: 1) affine registration and 2) deformable registra-

tion. Inspired by Lee et al. (132; 126), we adapt dense displacement sampling (DEEDS) as our registration

backbone for abdominal imaging. The concepts of DEEDS is to compute a large deformation filed with a
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discretized sampling space to align the anatomical context across andominal organs with variable morphol-

ogy (83; 84; 82). We first perform DEEDS affine registration to align the abdominal organs with 12◦ degrees

of freedom from moving images to the atlas template, coarsely providing prior spatial information and each

affine component with the generated affine transformation matrix as our first stage output. The affine-aligned

intermediates are leveraged for the DEEDS deformable registration as our second stage registration process.

The DEEDS deformable registration refines the spatial relationship between randomly selected patches and

compute the local voxel-wise correspondence with its specific similarity metric as follows:

D(xm, px, py) = exp(
S(px, py)

q2 , px, py ∈ N (12.1)

where px and py are denoted as the center coordinate of another patch from one of the neighbourhood N, S

is the self-similarity metric, which is optimized by a distance function D between the image patches from

the moving samples. q2 denotes as a function to evaluate the noise in the local and global perspectives. The

similarity metric enhance the avoidance of the adverse effect from image artifacts or random noise from the

central extracted patch. During the deformable registration, five different levels are leveraged in grid spaceing

ranging from eight to four voxels to randomly select patches. The displacement search radii are defined from

six to two steps between five and one voxels. Six neighborhoods are chosen to compute 12 distances between

pairwise patches for optimization (83; 84; 82). Both deformed scans with the corresponding displacement

matrix are generated as the final output and align the fine-grain anatomical details of each organ.

12.4 Experimental Setup

12.4.1 Datasets

Clinical Research Multi-Phase CT Cohort: A total of 443 multi-contrast phase CT volumes are selected

for the formation of multi-phase atlases from a large cohort of abdominal CT scans of 2000 patients under

the approval of Institutional Review Board (IRB #131461). The scans include retro-peritoneal and abdominal

organs. Since our goal is to construct a healthy CT atlas optimized for pancreas region, we exclude patients

who exhibit pancreatic lesions. 898 subjects whose age ranging from 18 to 50 years old. After quality

assessment of registered subjects, 443 unlabeled CT volumes were used to create the atlas for four phases: 59

volumes for non-contrast phase, 40 volumes for arterial phase, 330 for portal venous phase, 14 for delayed

phase. All volumetric scans are initially reoriented to a standard orientation (RAS) before data preprocessing

(101). BPR is then performed to each scan and obtain the FOV in abdominal region only. Each scan is then

resampled to the same resolution and dimension of the atlas template for registration.

Multi-Organ Labeled Portal Venous Abdominal CT Cohort: To evaluate the generalizability of our pro-
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Figure 12.4: The quantitative representation of inverse label transfer with multi-organ portal venous CT
dataset are demonstrated that DEEDS with affine registration outperforms the other two traditional methods.

posed atlas framework, we further leverage a separate healthy clinical cohort with 100 de-identified portal

venous phase abdominal CT scans and 20 of the volumetric scans are the testing scans in the MICCAI 2015

Multi-Atlas Abdomen Labeling (BTCV) challenge. All volumetric scans are labeled with 13 multiple or-

gans including: 1) spleen, 2) right kidney, 3) left kidney, 4) gall bladder, 5) esophagus, 6) liver, 7) stomach,

8) aorta, 9) inferior vena cava (IVC), 10) portal splenic vein (PSV), 11) pancreas, 12) right adrenal gland

(RAD), 13) left adrenal gland (LAD).

High-Resolution Single Subject Atlas Template: Inspired by (132), we choose the atlas template under

several conditions: 1) high-resolution in both in-plane and through-plane, 2) distinctive contrast appearance

in pancreas organ morphology with clear boundary, and 3) in healthy condition. The atlas template is pro-

vided by Human Biomolecular Atlas Program (HuBMAP) with a high resolution of 0.8× 0.8× 0.8 and the

corresponding dimension of 512×512×434. The atlas template is annotated with 13 organs by performing

statistical label fusion with the pseudo segmentation from all registered subjects.

12.4.2 Implementation Details

For the BPR model, we pretrain a U-Net like architecture network with a total of 230,625 2D slices from

a large population samples of 1030 whole body CT scans (collected from public domain) (198), while the

multi-organ labeled portal venous phase CT are leveraged as external validation only. The pretrained U-Net
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model is end-to-end optimized with Adam optimizer with a learning rate of 0.0001 and batch size of 4.

After we preprocess all imaging samples with BPR model, we further evaluate our proposed atlas template

in multiple perspectives. We first investigate the effectiveness of current state-of-the-art registration tools for

abdominal imaging across all contrast phases in both qualitative and quantitative perspective. We performed

extensive analysis with tools such as ANTS (232; 5), NIFTYREG (232; 155), and DEEDS (82; 83; 84)

as metric-based registration with multi-organ labeled portal venous CT cohort. Before the registration, all

preprocessed scans are upsampled to the same resolution with the atlas target and perform the 2-stage hierar-

chical registration in high-resolution setting. We further perform multiple ablation studies to investigate the

effectiveness of the BPR preprocessing to enhnace the successful rate of abdominal organ registration. More-

over, we perform ablation study to search the optimal range of BPR score to define the best FOV correlation

between all moving images and the atlas target.

12.4.3 Evaluation Metrics

We adapt two commonly used metrics to evaluate the similarity between the inverse transferred labels from

atlas space to moving subject space and the corresponding moving ground truth label: 1) Dice similarity

score, and 2) Hausdorff distance (HD). The definition of Dice score is to compute the overlapping ratio

between the predicted pixel/voxel-wise label and the ground truth label. The Dice score is defined as follows:

Dice(P,G) =
2|P∩G
|P|+ |G|

(12.2)

where P denotes as the label prediction and G is the corresponding ground truth label, while ∥ denotes as

L1 normalization. For computing the Hausdorff distance, we extract the 3-dimensional coordinates of each

vertice from the surface rendering of both the predicted label and the ground truth. We compute the Hausdorff

distance with the vertices as follows:

HD(vp,vg) = sup in f Dist(vp,vg) (12.3)

where vp and vg denotes as the vertice coordinates of the label prediction and ground-truth label respectively.

Sup and in f refer to the upper and lower bound of the distance function Dist value.

12.5 Results

12.5.1 Evaluation with Clinical Research Cohort and Multi-Organ Labeled Cohort

After cropping the abdominal regions from the raw data using body part regression, we resampled the cropped

volumes and registered them to the reference volume using DEEDs. We then qualitatively assessed the
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Table 12.1: Inverse label transfer performance of different registration methods on 13 organs average for
Clinical Research Multi-phase CT Cohort (*: p<0.0001, Wilcoxon signed-rank test, A: affine registration,
D: deformable registration)

Non-Contrast Arterial Portal Venous Delayed

Methods Dice ↑ HD (mm) ↓ Dice ↑ HD (mm) ↓ Dice ↑ HD (mm) ↓ Dice ↑ HD (mm) ↓
ANTS (A) 0.256±0.115 47.9±22.1 0.242±0.103 39.9±16.8 0.242±0.082 42.2±18.0 0.249±0.078 42.5±20.1

NIFTYREG (A) 0.232±0.141 52.8±22.8 0.200±0.131 47.8±17.3 0.201±0.117 46.4±19.0 0.211±0.103 47.5±15.9
DEEDS (A) 0.192±0.103 48.7±17.8 0.144±0.112 46.4±12.6 0.148±0.111 45.3±14.5 0.150±0.094 49.0±16.5

ANTS (A+D) 0.288±0.121 47.2±22.4 0.302±0.114 38.8±17.1 0.308±0.097 40.1±18.4 0.318±0.065 41.3±20.1
NIFTYREG (A+D) 0.314±0.154 51.7±22.2 0.334±0.180 45.7±16.3 0.350±0.176 45.6±19.1 0.378±0.150 46.8±17.8

DEEDS (A+D) 0.497±0.076* 39.2±21.9* 0.505±0.075* 32.5±14.7* 0.494±0.077* 33.3±17.5* 0.497±0.086* 37.1±20.7*

Table 12.2: Inverse label transfer performance of different registration methods on 13 organs for multi-organ
labeled portal venous phase CT Cohort (*: p<0.0001, Wilcoxon signed-rank test, A: affine registration, D:
deformable registration)

Methods Spleen R. Kid L. Kid Gall. Eso. Liver Stom. Aorta IVC PSV Panc. RAG LAG Avg

ANTS (A+D) 0.536±0.175 0.498±0.226 0.484±0.206 0.091±0.139 0.183±0.167 0.662±0.158 0.256±0.138 0.431±0.201 0.323±0.143 0.121±0.110 0.204±0.132 0.092±0.110 0.095±0.111 0.306±0.246
NIFTYREG (A+D) 0.544±0.241 0.611±0.290 0.556±0.287 0.113±0.206 0.270±0.201 0.538±0.287 0.175±0.198 0.615±0.264 0.379±0.196 0.111±0.143 0.184±0.170 0.222±0.182 0.162±0.151 0.344±0.293
DEEDS (A+D) 0.697±0.178* 0.756±0.207* 0.729±0.224* 0.211±0.283* 0.491±0.166* 0.746±0.180* 0.315±0.208* 0.756±0.200.116* 0.596±0.173* 0.329±00.165* 0.398±0.168* 0.274±0.169* 0.253±0.155* 0.504±0.280*

Figure 12.5: We perform ablation study of evaluating inverse label transfer performance with different crop-
ping value range for body part regression. We found that the optimal range for body part regression is between
-6 and +5.

registered subjects and removed those with registration failure. The average atlas for the four phases was

subsequently obtained from the registered volumes. Fig. 5 presents the tri-planar view of the average atlas, in

which the anatomical features of the pancreas can be clearly seen in all directions. Furthermore, the shape of

surrounding organs, such as the spleen, is well-preserved, providing a better anatomical context for studying

the pancreas. The variance of average templates is shown in Fig. 6. We calculate the log-scale variance

between the average template and the registered subjects used to create the atlas, normalizing them to a range
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Figure 12.6: We investigate the registration stability across all contrast phase with average mapping. We
observe that the morphology of pancreas across all phases are well preserved with clear boundaries.

of 0 to 1. Among all registered regions, the pancreas exhibits relatively low variance for all phases compared

to the spleen and spine. The non-contrast and portal venous phases have lower variance, approaching 0.

To enhance the identification and visualization of the pancreas region in the atlases, we also acquired

segmentation labels by employing a label integration technique that relies on majority voting. As depicted

in Figure 5, the pancreas’ position and shape in the multi-phase atlases closely resemble the target reference,

indicating that the anatomical and contextual information of the pancreas has been effectively transferred into

the target space. Even the areas of greatest variation, such as the head and tail of the pancreas, are distinctly

visible in the fused labels. Minor differences can be observed between the segmentation labels on atlases

across the four phases, suggesting that the anatomical features and contrast properties have been maintained

in the multi-phase atlases.

The fairness of the obtained atlas using the DEEDS registration method for different phases is also evalu-

ated with inverse transform. Table 1 displays the performance of various registration tools, including ANTS,

NIFTYREG, and DEEDS, to create the average atlas for the pancreas and other abdominal organs in terms

of Dice score and symmetric Hausdorff distance. The performance of affine registration alone is significantly

lower than that of the two-stage registration. With the two-stage registration, DEEDS achieves the highest

Dice score and the lowest Hausdorff distance for the pancreas region. Another 100 subjects in the portal

venous phase with 13 multi-organ ground truth segmentation labels are used to evaluate the performance of
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our framework, as shown in Table 2. To ensure the alignment of all organs in the atlas, we calculated the Dice

score and Hausdorff distance on 100 subjects for the pancreas and the other 12 organs without qualitative

assessment. DEEDS achieves the highest performance with a mean Dice score of 0.504 for all 13 organs.

12.5.2 Ablation Study

In our ablation study, we further investigate the influence of the BPR on the performance of DEEDs registra-

tion with different range of cropping values. We evaluate five distinct cropping range to establish a similar

field of interest between the moving subjects and the reference subject. The raw data without BPR offers a

comprehensive view of the pelvis, abdomen, and chest regions. The cropping value of -8 to 7 encompasses

parts of the pelvic area and the majority of the chest area. The cropping value of -6 to 5 excludes the pelvic

region and some of the chest region. The cropping value of -4 to 5 retains solely the abdominal region, while

the cropping value of -2 to 4 effectively preserves the pancreas and kidney regions but does not entirely main-

tain the spleen region. For the experiments without BPR, -8 to +7, and -6 to +5, we cropped only the moving

subjects. For the experiments of -4 to +5 and -2 to +4, we cropped both the reference volume and the moving

volume.

Figure 4 displays the Dice scores for 13 abdominal organs on 20 registered subjects in the portal venous

phase from the BTCV public dataset. The use of body part regression significantly improves the registration

performance for all cropping values. The cropping value of -6 to +5 results in the highest average Dice score

on the 13 organs and the highest value on the pancreas. Consequently, we employ the -6 to +5 value to crop

multi-phase subjects and compute the average atlas from them. Additionally, the value of -6 to +5 maintains

a complete view of all abdominal regions, facilitating a more comprehensive analysis of abdominal organs

within an anatomical context.

12.6 Discussion

Population-based tissue maps play a crucial role in studying human organs by generalizing the variability

between individuals. In abdominal scans, the heterogeneity of abdominal and retroperitoneal scans presents

challenges in constructing an atlas capable of visualizing anatomical features and spatial relationships be-

tween organs. This study aims to propose a framework for constructing an abdominal atlas optimized for the

pancreas region in multi-contrast CT.

Given the varying anatomical features across different phases of multi-contrast CT, it is essential to gen-

eralize the characteristics for each phase rather than using a single atlas template. The non-contrast phase

involves acquiring images before injecting the contrast agent and serves as the baseline reference. For the

pancreas, the arterial and portal venous phases are frequently used for detecting and characterizing lesions
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Figure 12.7: We further evaluate the intensity variance across the registration outputs with the average tem-
plate in each contrast phase. The variance mapping in both non-contrast phase and portal venous phase
demonstrates the pancreas context transferal with stability and the variance value near the pancreas region is
0, while the range of variance value is higher in both arterial and delayed phases.

when blood vessels and abdominal organs have been further enhanced by the contrast agent.

To transfer the anatomical characteristics of each phase, we register individual subjects in different phases

to the high-resolution atlas template. The robustness of registration tools is vital for the quality of the average

atlas. A two-stage registration is used, where the affine registration provides prior information for the de-

formable registration in the second stage. As shown in Table 2, DEEDs registration achieves an average Dice

score of 0.504 on 13 organs, demonstrating accurate transfer of anatomical information for all abdominal

organs. ANTs is the least robust, potentially due to its surface-based registration nature. When using ANTs

for label registrations, its performance improves, but 3D intensity images are still problematic due to par-

tial matching, especially in aligning the boundaries of abdominal organs. NIFTYREG slightly outperforms

ANTs, employing a block-matching approach for non-linear registration, which provides more accurate re-

sults in the presence of large deformations but requires longer computation time. DEEDs, a voxel-based

method, surpasses the other two methods in performance, possibly because it relies on discrete optimiza-

tion, allowing greater control over the displacement space (82). One advantage of DEEDs is its use of dense

stochastic sampling approaches, sampling random voxels from non-overlapping cubes, and then calculating

the displacement on cubes. It ensures accurate registration of small anatomical features undergoing large

motion. Additionally, discrete optimization reduces computational complexity, making it more efficient than
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continuous optimization.

Nonetheless, registration accuracy is still not ideal and could influence the quality of the average atlas.

Challenges for these registration tools include 1) the dissimilar field of view between moving subjects and

the target template, and 2) the variation of secondary structures (e.g., muscles, bones) across the population.

Many registration failures occur due to mismatched fields of view between subjects, necessitating better pre-

processing steps. In the ablation study, we demonstrated the effectiveness of body part regression in matching

the field of view. Secondary structures could also distract from the registration of target organs. The variation

of these parts could cause undesirable deformation, especially when they occupy a large space in abdominal

scans(232). Similarly, small or medium-sized organs could be affected by surrounding organs. For instance,

pancreas deformation might be negatively affected by other surrounding target organs with larger sizes, such

as the spleen.

In addition to traditional optimization-based registration, learning-based registration methods have gained

popularity due to their fast speed. However, concerns remain regarding the use of learning-based methods

for constructing average maps in our study. Optimization-based models generally exhibit better expressive

power because model parameters are optimized for a specific pair of images, enabling sharper deformation to

preserve the details of anatomical features of abdominal organs. On the other hand, learning-based methods

optimize the model for the entire dataset, which tends to produce over-smoothed transformations, potentially

losing individual characteristics during registration and making them less suitable for high-resolution images

(164). Furthermore, learning-based methods typically exhibit less generalizability and are more specific to

the dataset.

In addition to constructing average atlases, fused labels on the atlas provide clearer anatomical character-

istics and contextualization of the pancreas. As demonstrated in Figure 6, the shape and positions of average

segmentation labels closely resemble those in the atlas template. However, limitations still exist. Since the

segmentation represents the average of subjects, it is not specific to individual subjects; thus, detailed features

and irregular boundary may not be accurately represented on the fused labels, providing only an estimated

shape of the pancreas. Another concern regarding segmentation labels on atlases is the accuracy of the seg-

mentation performance of the model. We employed UNesT, which was trained on the BTCV dataset in the

portal venous phase. However, due to minor differences in anatomical features between subjects in each

phase, segmentation in other phases may not be as accurate as in the portal venous phase.

12.7 Conclusion

This study introduces a high-resolution pancreas atlas framework to generalize the healthy biomarker across

population with multi-contrast abdominal CT. By utilizing body part regression to match the field of view
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between the target template and moving subjects, and employing the DEEDs registration method to transfer

subjects into the target space, our atlas effectively captures population-wide features of the pancreas organ

and contextualizes the anatomical characteristics of the pancreas within the entire abdominal scans. Future

work involving the use of pancreas atlases could further explore areas such as enhancing the segmentation

accuracy of the pancreas and improving the localization of the pancreas in the context of pathological changes.
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CHAPTER 13

Unsupervised Registration Refinement for Generating Unbiased Eye Atlas

13.1 Overview

1With the confounding effects of demographics across large-scale imaging surveys, substantial variation is

demonstrated with the volumetric structure of orbit and eye anthropometry. Such variability increases the

level of difficulty to localize the anatomical features of the eye organs for populational analysis. In order to

adapt the variability of eye organs with stable registration transfer, we propose an unbiased eye atlas template

following with a hierarchical coarse-to-fine approach to provide generalized eye organ context across popu-

lations. Furthermore, we retrieved volumetric scans from 1842 healthy patients for generating an eye atlas

template with minimal biases. Briefly, we select 20 subject scans and use an iterative approach to generate

an initial unbiased template. We then perform metric-based registration to the remaining samples with the

unbiased template and generate coarse registered outputs. The coarse registered outputs are further leveraged

to train a deep probabilistic network, which aims to refine the organ deformation in unsupervised setting.

Computed tomography (CT) scans of 100 de-identified subjects are used to generate and evaluate the unbi-

ased atlas template with the hierarchical pipeline. The refined registration shows the stable transfer of the

eye organs, which well- localized in the high-resolution (0.5mm3) atlas space and demonstrated a significant

improvement of 2.37% Dice for inverse label transfer performance. The subject-wise qualitative representa-

tions with surface rendering successfully demonstrates the transfer details of the organ context and showed

the applicability of generalizing the morphological variation across patients.

13.2 Introduction

Significant effort has been invested by the Human BioMolecular Atlas Program (HuBMAP) to relate the

molecular findings in organ anatomy across scales (from cellular to organ system level). Previous efforts have

been focused mapping the organization and molecular profile in cellular level (183), while several studies

have been focused on generating an initial imaging template to adapt contextual information in organ scale.

Medical imaging such as computed tomography (CT) and magnetic resonance imaging (MRI) provided the

imaging platform to visualize organ anatomy in systematic level. Contrast enhancement is leveraged to

emphasize the structural and anatomical context between neighboring organs with the injection of contrast

agent and guide to extract information from regions of interest (ROIs). However, the morphology of organs

1Published at: Lee, Ho Hin, et al., “Unsupervised Registration Refinement for Generating Unbiased Eye Atlas.”, Medical Imaging
2023: Image Processing. Vol. 12464. SPIE, 2023. (127)
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Figure 13.1: The complete pipeline for generating unbiased eye atlas template can be divided into two stages:
1) initial unbiased template generation and 2) hierarchical registration refinement. We leverage the small
portion of samples to generate an unbiased template with iterative registration. The average template gen-
erated in each iteration is used to be the fixed template for next registration iteration. After the registration
is converged , we further use the generated template to perform metric-based registration for the remaining
samples. As the coarse output is limited adapt the significant variability of organ structure, a probabilistic
refinement network is used to generate large deformation and further aligned the anatomical details across
eye organs and head skull.

varies significantly across different demographics, especially in eye organs. The orbital shape and the length

of optic nerve varies with age and sex (224). In order to adapt and generalize the population profiles of eye

organs, it is important to contextualize the variable anatomy of organs in well-defined reference templates

(atlas) to act as a common framework for mapping correspondence across patients (132; 126). From technical

perspective, current studies have shown the opportunity to adapt the anatomical variability to one single

atlas template with image registrations. However, the anatomical transferred context is biased to the chosen

template subject and the registration algorithm is limited to provide large deformation field to localize organ

anatomy (156). Therefore, we aim to adapt the conventional information of eye organs with minimal biases

and adapt the contextual variability across large scale of patients with robust registration algorithms following

the work of (11; 42; 41).

Previous works have been developed an atlas platform with neuroimaging (64; 165). Aging brain atlases

are built to visualize the variability of brain organs in both adults and infants population (100; 175; 113).

Apart from looking into the anatomical characteristics, single atlas reference is chosen to perform segmenta-

tion with unsupervised settings (216; 135). Also, multiple atlas references are randomly picked and perform
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registration between the subject moving scans to the multiple atlases’ platform (84). Segmentation predic-

tions are computed with joint label fusion using the guidance of multiple registered outputs. Apart from

the applicational usage of atlas template, organ-specific atlas template has been proposed to adapt the multi-

contrast characteristics and the significant shape variability across large scale of patients. Contrast-specific

substructure template has also proposed to look into the fine-grained anatomical details of kidney substruc-

ture and stably generalize the variation of small substructures in single template. Furthermore, unbiased

template brain atlases have been proposed using brain MRI to reveal the anatomical characteristics of popu-

lations across different perspectives such as ages and disease conditions. However, none of works have been

proposed in generating unbiased atlas frameworks for the eye organs. Apart from the limited work in gen-

erating organ-specific unbiased atlas, challenges are also raised for the robustness of registration pipelines.

Significant efforts have been demonstrated in image registration with metric-based and deep learning based

approaches (5; 11). VoxelMorph have been proposed as the current network basis to perform deformable reg-

istration in unsupervised setting (11). However, the input for the network is needed to be affine aligned and

such basis structure is limited to provide diffeomorphism for inverse transformation (42). It is challenging

to well align the correspondence between the atlas template and the moving image (41). Therefore, a robust

pipeline is demanded to generate an eye-specific template with minimal biases.

In this study, we propose a hierarchical registration approach to construct a unbiased atlas template in

unsupervised setting and aim to increase the generalizability of adapting eye organ context across popula-

tions. With a total of 100 contrast- enhanced head CT scans without known for ocular diseases, we initial

performed iterative registration to generate an unbiased average mapping with small portion of subject scans

( 20 scans). We further performed a hierarchical registration pipeline to leverage the coarse output from

metric-based registration for further registration refinement with deep learning network. Furthermore, we

introduce the probabilistic estimation to model the diffeomorphism and compute accurate transformation to

enhance the stability of the registration across patients. The generated atlas target and moving subject scans

are downsampled to input for the deep registration pipeline. The predicted deformation field is upsampled

back to the atlas resolution and perform inverse transformation with atlas label for label evaluation as quanti-

tative measures. Qualitative visualization is further demonstrated the convergence of unbiased template and

the proposed registration performance in image level.

13.3 Methods

13.3.1 Initial Unbiased Template Generation

To adapt the variability of eye organs across patients, image registrations are performed to match the anatomi-

cal context to single spatial-defined template using different registration tools such as ANTs (5) and NiftyReg
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(155). However, the contextual information of each organs from the registered output is then biased and have

similar anatomical structure to the single template. Here, we introduce an unbiased template generation

module to generate an initial coarse atlas with small portion of data samples and minimize the registration

bias instead of using a single fixed template. Specifically, we first input 20 samples and directly generate

an average map to coarsely align the morphological structure of head. Hierarchical metric-based registration

(following with rigid, affine and deformable registrations) are performed with ANTs and compute an average

template with all registered outputs. We use the computed average template in each epoch as the next fixed

template and iteratively perform the same hierarchical procedures to the average template until the registra-

tion loss across all samples is converged. We hypothesis that such template has the minimal biases and is

beneficial to further adapt the population characteristics of eye organs.

13.3.2 Hierarchical Registration Refinement

After generating the initial template with minimal bias, we perform registration to the remaining samples and

aim to generalize the anatomical characteristics of eye organs across populations. However, with the visual-

ization of checkerboard overlay in Figure 13.3, we found that the metric-based registration is limited to per-

form significant deformation to align the head boundaries and the orbital anatomy. Motivated by VoxelMorph

and probabilistic network , we introduce a deep probabilistic model de fw(a, f ) that leverages convolutional

neural network (CNN) with diffeomorphic integration and spatial transform layers. Such registration model

is trained in unsupervised setting and demonstrates better ability to generate significant deformation towards

specific organ anatomies. We define a and m as the 3D volumetric atlas image and moving images, and z

as the latent representation that parametrizes the transformation function ψz : R3 → R3. In our registration

scenario, the deformation field is defined as the following differential equation (ODE):

∂ψ t

∂ t
= v(ψ t), (13.1)

where ψ0 = Id is the identity transformation and t corresponds to time. We compute the stationary velocity

field v over t = [0,1] and output the deformation field that are differentiable and invertible (). To model the

diffeomorphism with CNN, we model the prior probability of z as following:

p(z) = M(z;0,∑
z
), (13.2)

where M(·; µ,∑) is the multivariate normal distribution that models with mean µ and covariance ∑. In

our registration scenario, the representations z is defined as the stationary velocity field that correlates the
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diffeomorphism through equation 1. With the basis of above modeling, we can then convert equation 2 to

estimate the posterior registration probability with the fixed template and moving image as following:

p(z|a;m) = M(a;m ·ψz), (13.3)

With Equation 3, we can approximately predict the diffeomorphic registration field ψz to warp moving image

m to the atlas template a via MAP estimation. Furthermore, to evaluate p(z|a;m), a variational approach is

used and introduce an approximate estimation of the posterior probability qψ(z|a;m) parameterized by ψ .

We aim to minimize the difference of the predicted posterior probability p(z|a;m) and qψ(z|a;m) through KL

divergence for unsupervised training as following:

L = min
φ

KL [qφ (z|a;m)∥p(z|a;m)]

= min
φ

Eq [log qφ (z|a;m)− log p(z|a;m)]

= min
φ

Eq [log qφ (z|a;m)− log p(z,a;m)]+ log p(a;m)

= min
φ

KL [qφ (z|a;m)∥p(z)]−Eq [log p(z|a;m)]

(13.4)

13.4 Data and Experiments

13.4.1 Data and Parameters

To evaluate the unbiased atlas template and our proposed hierarchical registration pipeline, head CT volu-

metric scans from 1842 patients were retrieved in de-identified form from ImageVU with the approval of

the Institutional Review Board. 100 subjects were retrospectively selected to generate and evaluate the at-

las template. All selected subject scans consist of 4 organs ground-truth label, which corresponds to optic

nerve, rectus muscle, globe and orbital fat. To generate the unbiased atlas, we selected 20 subject scans

and resampled to isotropic resolution (0.8mm× 0.8mm× 0.8mm) for iterative registration with a dimension

of 512× 512× 224. The criteria of choosing subjects for unbiased template generation are based on the

morphological characteristics of eye organs and the high-resolution characteristics of the volumetric image.

For the probabilistic registration, both the atlas template and moving subject scans are downsampled to an

isotropic voxel resolution of (1.0mm× 1.0mm× 1.0mm) with a dimension of 256× 256× 224. The batch

size is 1 and the learning rate is 0.0001 for the network initialization. The predicted deformation field are

upsampled back to the original atlas resolution and compute inverse transform for label evaluation.
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Registration 
Iterations

Figure 13.2: The qualitative representations to visualize the convergence of anatomical details across eye
organs and the boundaries of head skull in the generation process of unbiased template.

13.4.2 Experiments

13.4.2.1 Iterative Template Comparison

We performed a conventional registration algorithm ANTs as our registration baseline and leverage small

portion of subject scans to use the template generation tool (antsMultivariateTempalteConstruction) for coarse

atlas construction. We initially applied both rigid and affine registration to align the anatomical location of the

head skull and eye organs. SyN registration are then performed for deformable registration with similarity

metric of cross-correlation (CC). In total, there are 4 resolution levels for registration and the number of

iterations is defined as 100× 100× 70× 20. The registration loss become converged when the templates

updates to 6 iterations. Figure 13.2 further demonstrates the qualitative visualization of the unbiased template

in tri-planar view.

13.4.2.2 Hierarchical Registration Refinement

After we generate the unbiased template, we further leverage the unbiased template to register the remaining

samples for adapting the eye organ context and evaluate the registration pipeline. We first perform ANTs

registration with the remaining 80 subjects following with the same hierarchical manner in atlas generation
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Unbiased Atlas Template

Moving Image
(Coarse Output from ANTs)

Checkerboard
(Coarse Output from ANTs)

Checkerboard
(Our Proposed Output)

Figure 13.3: The qualitative representation that demonstrates the registration performance comparing with
metric-based method as coarse output and the final output with our proposed hierarchical registration pipeline.
The checkerboard overlay shows that the second stage refinement allows to further deform significantly and
adapt the variability in boundaries and anatomical structure of organs.

Table 13.1: Quantitative evaluation of inverse transferred label for eye organs across all patients (*: p ¡ 0.001)

Methods Optic Nerve Rectus muscle Globe Orbital Fat Mean Organ

ANTS () 0.586±0.0532 0.634±0.0339 0.904±0.0253 0.782±0.0362 0.727±0.132
VoxelMorph () 0.635±0.0420 0.687±0.0420 0.920±0.0274 0.790±0.0343 0.758±0.140

Ours 0.651±0.0358 0.712±0.0301 0.931±0.0227 0.810±0.0319 0.776±0.115*

(rigid, affine and deformable). We then perform deep learning registration algorithm to enhance the contex-

tual matching in eye organs and the skull boundaries. We perform VoxelMorph as our baseline network to

concentrate on enhancing the registration performance. We further integrate the probabilistic ideas with the

basis of VoxelMorph to smooth the deformable field and prevent the over-deformation across the eye organs.

We compare the registration performance by computing the inverse transform of atlas label with the predicted

deformation field and transform back to the moving image space. Dice Coefficient is used to measure the

overlapping regions between the transferred label and ground truth labels.
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13.5 Results

To minimize the biases of using single atlas template for registration, we want to first investigate the quality

and following with the effectiveness of the unbiased atlas template. We evaluate the quality of the unbiased

template with qualitative visualization. From Figure 13.3, with the increase of registration iterations, signif-

icant changes can be seen in particular anatomies within the orange bounding boxes. The skull boundaries

become clearer and the contrast of boundaries is enhanced to provide better guidance to localize the head

skull after several iterations. Furthermore, some of the eye organs, especially the retus muscle and the globe,

is demonstrated with enhancing contrast level in both the boundaries and the morphology of the organ struc-

ture. Regions near the eye organs also demonstrate to be stably localized with clear structural characteristics

comparing with the initial iterations. After generating the minimal biased atlas template from small portion

of data, we want to further enhance the generalizability of the atlas template and adapt the anatomical context

with remaining samples using different registration approaches. We first compare the registration perfor-

mance qualitatively and manually visualize the quality of the registered eye organs. As shown in Figure

13.3, the registered outputs from ANTs demonstrates a fair registration quality that localize the boundaries of

head skull and can align some of the morphological characteristics in eye organs. However, when we further

perform the checkerboard overlay to the atlas template, the boundaries of eye organs are not well aligned,

especially for the globe and the orbital muscle nearby. The deformable registration of ANTs is limited to gen-

erate significant deformation to match the atlas context when significant difference in eye organs morphology

or skull shape. By using the hierarchical registration refinement, the anatomical context of both the head

skull and eye organs is comparable to the atlas-defined space without over-deformation. The checkerboard

with our proposed registration method demonstrates a more distinctive appearance and alignment to the eye

organs and match the boundaries well. The contrastive and morphological characteristics can be well trans-

ferred with stability across all populations. Apart from the qualitative measures, we further inversely applied

the predicted deformation field to the atlas label and transformed back to the original moving image space

for label similarity evaluation in Table 13.1. By using ANTs registration only, the transferred label across

all organs demonstrates with a mean Dice of 0.727 comparing to the atlas label. After we add the second

stage process for registration refinement, the label transferred performance significantly increase from 0.727

to 0.758 across all organs with the basis of VoxelMorph network. Such significant increases demonstrate

the possibility of refining coarse output from metric-based registration and further performed deformation to

adapt the variability of organs across population. Furthermore, by introducing the probabilistic estimation

into registration network, the label transfer performance outperforms VoxelMorph and demonstrates another

significant increase of Dice 0.758 to 0.776.
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13.6 Discussion and Conclusion

With the qualitative and quantitative representation above, the contrastive and morphological context of the

eye organs are stably localized with minimal bias using the hierarchical registration pipeline. The label trans-

fer performance in all sub-organ regions of the eye demonstrates significant improvement with decrease of

variance in trend. The deep learning registration network in the second is trained in unsupervised setting

and leverage the estimation of probability distribution to enhance the accuracy of the predicted deformation

field. With the opportunity of integrating metric-based registration and deep learning registration as hier-

archical pipeline, we leverage the characteristics of deep learning network characteristics to generate large

deformation and solve the limitation of metric-based registration to adapt morphological variability of both

eye organs and the head skull. Furthermore, the probabilistic estimation for registration demonstrates the

diffeomorphism in deep learning networks and enhance the stability by comparing the probabilistic repre-

sentation in the latent space. In this paper, we constructed an unbiased anatomical reference to localize the

context of eye organs and further propose a hierarchical registration pipeline integrating both metric-based

and deep learning registration. The unbiased average mapping demonstrated the contrastive characteristics of

both eye organs and well localized with skull morphology across patients. The atlas target stably adapted the

eye organs information with the illustration of checkerboard overlay and demonstrate significant improve-

ment in label transfer performance with our proposed registration pipeline. We aim to create a minimal bias

average template that adapt multi-modality imaging for eye organs as our future long- term goal and analyze

variability across demographics.

166



CHAPTER 14

Conclusion & Future Works

14.1 Explore Deep Learning Optimization in Medical Image Segmentation

Medical image segmentation is a important perspective for clinicians to access contextual information of each

organ ROIs with pixel/voxel-wise guidance. To enhance the efficiency for further investigation, substantial

efforts have integrated deep learning into downstream segmentation task. In this work, we first propose a

coarse-to-fine network to adapt deep learning strategy and predict refine segmentation with limited well-

annotated samples. Such hierarchical 2-stage network adapts multi-scale knowledge (e.g., anatomical prior

as additional channel input) in anatomy and innovate an effective generic backbone for hierarchical segmen-

tation (Chapter 2). However, we observe that the model generalizability is limited across imaging collected

from different domains (e.g., contrast-enhanced CT vs non-contrast CT). We further leverage our proposed

hierarchical network as the initial backbone and adapt unseen domain samples in unsupervised setting. We

employ teacher-student network architecture to enhance the prediction certainty in target domain with unsu-

pervised learning (Chapter 3). In addition to the challenges in domain shift, we tackle the limitation of large

population in unlabeled samples. We propose a semi-supervised learning strategy that quantifies the pseudo

segmentation quality from unlabeled data as a regression score. We backpropagate it as an unsupervised loss

function for training (Chapter 4) to adapt large population of unlabeled samples from different domains.

Instead of only focusing on the data and training strategies, a big step is pushed forward to adapt the

concepts of transformer from NLP domain into computer vision. Vision transformers have been introduced

to enhance the robustness in different medical tasks. However, we observe that the key contributions of vision

transformer can be achieved with CNN modules. Here, we provide a new exploratory direction to investigate

the effectiveness of large kernel convolution for medical image segmentation, which simulate the capabilities

of vision transformer at the same time (Chapter 5). We further investigate the effectiveness of scaling up the

kernel size for convolution. We found that the segmentation performance become saturated or even degraded

if the kernel size is too large (e.g., 21× 21× 21). We proposed an explainable optimization strategy that

models the behavior of spatial frequency in our human visual systems to weight the learning convergence

of each elements. The learning convergence of the large kernel convolution are then rescaled from local to

global, which further enhances the segmentation performance, instead of degradation.
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14.1.1 Technical Innovation

• We innovated a coarse-to-fine network as the genric backbone to adapt multi-scale prior knowledge

and refine the intermediate segmentation prediction with supervised learning.

• We leveraged our proposed coarse-to-fine network to generalize unseen imaging domains with signifi-

cant shift in contrast.

• In addition to addressing the domain shift challenge in data perspective, we adapted large population

of unlabeled imaging by quantifying the pseudo segmentation quality as an innovative semi-supervised

learning technique.

• For the generic backbone design in deep neural networks, we provided a new exploratory direction

to revisit the concepts of convolution and simulated the hierarchical transformer behaviors with large

kernel sizes.

• With the observation of how the deep neural network learns, we modeled the receptive field of each

neuron as the spatial frequency in our human visual behavior and provided feasibility to adapt signifi-

cantly large kernels (e.g., 21×21×21) for volumetric segmentation with robust performance.

14.1.2 Clinical Impact

• We adapted deep learning strategy to enhance the convenience for clinical teams to obtain segmentation

across large population samples by leveraging limited samples with good quality annotations.

• We generalized deep neural network models to unseen domain samples (from contrast-enhanced do-

main to non-contrast domain) without using additional labels for training and demonstrate robust per-

formance.

• We adapted large population of unlabeled samples (in real clinical scenario) to enhance the model

generalizability across imaging from different domains.

• We introduced a simple CNNs design and revisited the concepts of large kernel convolution as the

generic backbone for medical image segmentation to generate robust segmentation with less parame-

ters.

• We introduced an explainable optimization by modeling the spatial frequency in the human visual

behavior to enhance the learning convergence of large kernel convolution and demonstrated the inter-

pretabillity of ”how the model learns” with the receptive field.
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14.1.3 Future Directions

With the trends from CNNs to vision transformers, we already simulate the scaling behavior and the large

receptive field characteristics with our proposed network. However, with the intrinsic ability of limited in-

ductive bias in vision transformers, self-supervised learning become a ”must” step to perform and pretrain

the model as prior knowledge to enhance both the stability and robustness of the model. Currently, signifi-

cant efforts have been put to adapt transformer-based self-supervised learning. However, limited studies have

been proposed to evaluate the ability of self-supervised learning in large kernel convolution. Meanwhile, it is

challenging to directly apply the transformer-based self-supervised strategies into large kernel convolution.

Potential direction of innovating self-supervised strategies with large kernel convolution can be one of our

future work.

Another challenges in large kernel convolution is the computation efficiency. We observe that the compu-

tation time significantly increases if we continue to scale up the kernel size, thus reducing the efficiency for

both training and inference stage. To tackle such limitations, sparse neural network can be another potential

direction to adapt sparsity in generic network design or in training strategies. With fewer model parameters

in both training and inference, we hypothesize that the computation efficiency can be signficantly improved.

14.2 Enhance Feature Interpretability for Medical Segmentation Network

14.2.1 Summary

While we have put significant efforts to enhance the robustness of deep neural network models for medical

image segmentation, another important aspect is to know ”why the model works”. While we can quantify

the model performance with different evaluation metric, it is challenging to interpret the model capability

in the feature level, especially for multi-organ segmentation. One of the self-supervised learning strategy

called contrastive learning demonstrates the feasibility of defining the extracted features into corresponding

clusters. In this work, we first adapt the concepts of contrastive learning and introduce multiple semantic

meanings as image-level labels to classify the features into corresponding clusters, which hypothesize to

be beneficial for downstream segmentation task (Chapter 7). However, when we further investigate the fine-

grain details from the imaging samples, a wide range of contrast level difference is demonstrated across organ

ROIs. The fixed image-level labels are limited to provide dynamic correlation to classify the features in the

latent space. Therefore, instead of leveraging image-level labels, we propose an adaptive contrastive learning

strategy that leverage the contrast correlation between organs to evaluate the cosine distance between pairwise

features. Even thought the pairwise features are in different modalities, the cosine distance are re-weighted

with the contrast difference between organ regions (Chapter 8). Both approaches demonstrate the feasibility

of generating meaningful latent space to provide better initialization for downstream segmentation task.
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14.2.2 Technical Innovation

• We introduce multiple semantic meanings into the learned features with contrastive learning to en-

hance the feature interpretability. Meanwhile, such defined latent space is beneficial to enhance model

generalizability for downstream segmentation.

• With the introduction of multi-contrast phases CT, we extend the concepts of contrastive learning with

adaptive data-driven knowledge. The learned latent space is defined based on the contrast difference

between organ ROIs, which adaptively controls the cosine distances between organ-specific features

with respect to the contrast correlation.

14.2.3 Clinical Impact

• We enhanced the feature interpretability of the model by introducing semantic meanings to classify

features into separable clusters. Performance can be evaluated and explained by interpreting the quality

of the defined latent space.

• We further adapted the multi-contrast characteristics in CT by dynamically defining the learn feature

with respect to the contrast correlation. Instead of integrating semantic meanings, we weighted the

cosine distance between pairwise features to generate a meaningful latent space for generalizing multi-

contrast imaging.

14.2.4 Future Directions

We already observed that defining the learned representations into clusters with multiple semantic mean-

ings can benefit both the interpretability and generalizability of segmentation models. With the inspiration

of current multi-modal approaches, such as CLIP, we can further extend to investigate the effectiveness of

language-wise semantic meanings into segmentation network as one of our future direction in model explain-

abilty. Furthermore, our proposed contrastive learning strategy are limited to leverage the anatomical prior

knowledge as our additional input channel for training. With the inspiration of segmenting anything model,

a potential thought of leveraging pseudo anatomical context as the prompt prior knowledge can be another

alternative future direction to enhance the interpretability of segmentation model.

14.3 Generalize Population-wise Biomarkers with Organ-Specific Atlas

14.3.1 Summary

After we enhance both the model interpretability and its robustness for organ segmentation towards medical

imaging in different domains, we can then perform organ segmentation across large population of unlabeled
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samples and observe the population characteristics of specific organs. Meanwhile, with the quantitative mea-

sures from the predicted segmentation of certain organs (e.g., kidney), substantial variation is demonstrated

due to different demographics across population. Such variation limits the feasibility to standardize the

biomarkers of the organs in specific condition (e.g., healthy, metastasis). Previous efforts only demonstrates

to standardize the biomarkers in cellular perspective, while limited efforts have been put to adapt multi-scale

knowledge with volumetric imaging. Here, we propose a multi-contrast atlas template to generalize the both

the contrast and the morphological charactersitics of kidney organs for population analysis. We further ob-

serve that there are significant morphological difference in both left and right kidneys across sex (Chapter 10

& 11). We leverage deep learning based algorithm to transfer the anatomical context of kidney substructure

in arterial phase CT and generate a kidney substructure atlas to further investigate the anatomical context of

each substructure in healthy condition (Chapter 12). In addition to kidney organs, we observe that the eye

organs also demonstrate substantial variation in each sub-organ region such as the optic nerve and the orbital.

However, previous generated atlas are completely biased to one fixed template that defined with our chosen

criteria. We introduce a combined registration framework with metric-based and deep learning based regis-

tration to generate a minimal biased eye atlas template and generalize the population feature of eye organs in

healthy condition (Chapter 13).

14.3.2 Technical Innovation

• We constructed multi-contrast phase atlas template to generalize the population biomarkers of kidney

organs in healthy condition.

• We extended to specialize arterial phase CT to generalize the population biomarkers of kidney sub-

structures in healthy condition.

• Apart from kidney organs, we constructed unbiased atlas template to generalize the population features

of eye organs with both metric-based and deep learning based registration.

14.3.3 Clinical Impact

• We identified and distinguished the population biomarkers of kidney organs in healthy conditions

across demographics (e.g., sex).

• We further investigated the population characteristics of kidney substructures in healthy condition (e.g.,

renal cortex, medulla, pelvicalyceal system).

• We constructed an unbiased template to generalize the population characteristics of eye organs and

quantify the volumetric biomarkers of eye organs (e.g., orbital fat, optic nerve, globe, retus muscle) in
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healthy condition.

14.3.4 Future Directions

With the previous efforts of generating atlas template, one main limitation is to only demonstrate the atlas

applicability in computed tomography. The first future direction is to adapt and generalize multi-domain

(e.g., MRI in different protocols) anatomical knowledge on single atlas template. However, the resolution of

through-plane axis significantly varies, which limits to provide sufficient context for visualizing the distinc-

tive appearance of specific organ ROIs. Integrating robust super-resolution algorithms may further provide

additional opportunities to extend and adapt large population of low-resolution imaging.

In addition to the data perspective, having a robust image registration algorithm to transfer anatomical

context is also vitally important. Currently, from the qualitative result from our experiments, we leverage

metric-based registration (e.g., DEEDS) for abdominal organ registration, rather than using deep learning

based algorithms due to over-deformation of neighboring anatomies and the instability performance with

domain shift. Instead of adapting metric-based registration by registering each subject scan one-by-one, a

potential future opportunity is to adapt deep learning strategy to generate an atlas template, which directly

to match the a large population of subject scans in unsupervised setting, thus to facilitate the computation

efficiency and enhance the effectiveness of transferring anatomical context.
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[19] Mariano Cabezas, Arnau Oliver, Xavier Lladó, Jordi Freixenet, and Meritxell Bach Cuadra. A review
of atlas-based segmentation for magnetic resonance brain images. Computer methods and programs
in biomedicine, 104(3):e158–e177, 2011.

173



[20] Leon Y Cai, Ho Hin Lee, Nancy R Newlin, Cailey I Kerley, Praitayini Kanakaraj, Qi Yang, Graham W
Johnson, Daniel Moyer, Kurt G Schilling, Francois Rheault, et al. Convolutional-recurrent neural
networks approximate diffusion tractography from t1-weighted mri and associated anatomical context.
bioRxiv, pages 2023–02, 2023.

[21] Hu Cao, Yueyue Wang, Joy Chen, Dongsheng Jiang, Xiaopeng Zhang, Qi Tian, and Manning
Wang. Swin-unet: Unet-like pure transformer for medical image segmentation. arXiv preprint
arXiv:2105.05537, 2021.

[22] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
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erarchical transformer: Towards accurate, data-efficient and interpretable visual understanding. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 3417–3425, 2022.

[246] Shengyu Zhao, Yue Dong, Eric I Chang, Yan Xu, et al. Recursive cascaded networks for unsupervised
medical image registration. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 10600–10610, 2019.

[247] Xiangyun Zhao, Raviteja Vemulapalli, Philip Mansfield, Boqing Gong, Bradley Green, Lior Shapira,
and Ying Wu. Contrastive learning for label-efficient semantic segmentation. arXiv preprint
arXiv:2012.06985, 2020.

[248] Xiangyun Zhao, Raviteja Vemulapalli, Philip Mansfield, Boqing Gong, Bradley Green, Lior Shapira,
and Ying Wu. Contrastive learning for label-efficient semantic segmentation, 2021.

[249] Yu-qian Zhao, Zhen Yang, Yan-jin Wang, Fan Zhang, Ling-li Yu, Xiao-bin Wen, et al. Target organ
non-rigid registration on abdominal ct images via deep-learning based detection. Biomedical Signal
Processing and Control, 70:102976, 2021.

[250] Aoxiao Zhong, Xiang Li, Dufan Wu, Hui Ren, Kyungsang Kim, Younggon Kim, Varun Buch, Nir
Neumark, Bernardo Bizzo, Won Young Tak, et al. Deep metric learning-based image retrieval system
for chest radiograph and its clinical applications in covid-19. Medical Image Analysis, 70:101993,
2021.

[251] Yiwu Zhong, Jianwei Yang, Pengchuan Zhang, Chunyuan Li, Noel Codella, Liunian Harold Li, Lu-
owei Zhou, Xiyang Dai, Lu Yuan, Yin Li, et al. Regionclip: Region-based language-image pretrain-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
16793–16803, 2022.

[252] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2921–2929, 2016.

[253] Hong-Yu Zhou, Jiansen Guo, Yinghao Zhang, Lequan Yu, Liansheng Wang, and Yizhou Yu. nnformer:
Interleaved transformer for volumetric segmentation. arXiv preprint arXiv:2109.03201, 2021.

[254] Xiangrong Zhou, Takaaki Ito, Ryosuke Takayama, Song Wang, Takeshi Hara, and Hiroshi Fujita.
Three-dimensional ct image segmentation by combining 2d fully convolutional network with 3d ma-
jority voting. In Deep Learning and Data Labeling for Medical Applications, pages 111–120. Springer,
2016.

[255] Yuyin Zhou, Zhe Li, Song Bai, Chong Wang, Xinlei Chen, Mei Han, Elliot Fishman, and Alan L.
Yuille. Prior-aware neural network for partially-supervised multi-organ segmentation. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019.

[256] Yuyin Zhou, Lingxi Xie, Wei Shen, Yan Wang, Elliot K Fishman, and Alan L Yuille. A fixed-point
model for pancreas segmentation in abdominal ct scans. In Medical Image Computing and Com-
puter Assisted Intervention- MICCAI 2017: 20th International Conference, Quebec City, QC, Canada,
September 11-13, 2017, Proceedings, Part I, pages 693–701. Springer, 2017.

[257] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang. Unet++:
Redesigning skip connections to exploit multiscale features in image segmentation. IEEE transactions
on medical imaging, 39(6):1856–1867, 2019.

186



[258] Zongwei Zhou, Vatsal Sodha, Jiaxuan Pang, Michael B Gotway, and Jianming Liang. Models genesis.
Medical image analysis, 67:101840, 2021.

[259] Zhuotun Zhu, Yingda Xia, Lingxi Xie, Elliot K Fishman, and Alan L Yuille. Multi-scale coarse-to-fine
segmentation for screening pancreatic ductal adenocarcinoma. In International conference on medical
image computing and computer-assisted intervention, pages 3–12. Springer, 2019.

[260] Xinrui Zhuang, Yuexiang Li, Yifan Hu, Kai Ma, Yujiu Yang, and Yefeng Zheng. Self-supervised
feature learning for 3d medical images by playing a rubik’s cube. In International Conference on
Medical Image Computing and Computer-Assisted Intervention, pages 420–428. Springer, 2019.

[261] Hasib Zunair and A Ben Hamza. Sharp u-net: depthwise convolutional network for biomedical image
segmentation. Computers in Biology and Medicine, 136:104699, 2021.

187


	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	1.1 Overview
	1.2 Medical Imaging
	1.3 Medical Image Segmentation
	1.4 Organ Segmentation with Machine Learning
	1.4.1 Convolutional Neural Network (CNN) Approaches
	1.4.2 Vision Transformer Approaches
	1.4.3 Challenges & Exploration

	1.5 Explainable Machine Learning in Medical Domain
	1.5.1 Defining Latent Space with Contrastive Learning
	1.5.2 Contrastive Learning for Medical Image Segmentation
	1.5.3 Challenges

	1.6 Generalizing Organ Context across Population
	1.6.1 Anatomical Atlas Reference

	1.7 Contributed Work
	1.7.1 Contribution 1: Explore Deep Learning Optimization for Medical Image Segmentation
	1.7.2 Contribution 2: Enhance Feature Interpretability for Medical Segmentation Network
	1.7.3 Contribution 3: Generalize Population-wise Biomarkers with Organ-specific Atlas


	2 RAP-Net: Coarse-To-Fine Multi-Organ Segmentation With Single Random Anatomical Prior
	2.1 Overview
	2.2 Introduction
	2.3 Materials and Methods
	2.3.1 Data
	2.3.2 Global Anatomical Multi-Organ Prior Extraction
	2.3.3 Single Classifier with Local Anatomical Random Priors
	2.3.4 Implementation Details

	2.4 Results & Discussion
	2.5 Conclusion

	3 Pseudo-Label Guided Multi-Contrast Generalization for Non-Contrast Organ-Aware Segmentation
	3.1 Overview
	3.2 Introduction
	3.3 Related Works
	3.4 Method
	3.4.1 Intra-Modal Registration for Anatomical Prior Generation
	3.4.2 Self-Predicted Knowledge Distillation
	3.4.3 Cross-Domain Intensity-Prior Mixing
	3.4.4 Loss Functions

	3.5 Experiments
	3.5.1 Datasets
	3.5.2 Experimental Setup

	3.6 Results
	3.6.1 Internal Testing Performance
	3.6.2 External Testing Performance
	3.6.3 Ablation Studies

	3.7 Disucssions
	3.8 Conclusion

	4 Semi-Supervised Multi-Organ Segmentation through Quality Assurance Supervision
	4.1 Overview
	4.1.1 Introduction

	4.2 Methods
	4.2.1 Preprocessing
	4.2.2 Network
	4.2.3 Segmentation Quality Discriminator
	4.2.4 Loss Functions for Semi-Supervised Multi-Organ Segmentation

	4.3 Data and Experiments
	4.3.1 Data and Platform
	4.3.2 Experiment Design
	4.3.2.1 Multi-Organ Segmentation
	4.3.2.2 3D U-Net
	4.3.2.3 Discriminator Module
	4.3.2.4 Visual Quality Assessment

	4.3.3 Results

	4.4 Conclusion

	5 3D UX-Net: A Large Kernel Volumetric ConvNet Modernizing Hierarchical Transformer for Medical Image Segmentation
	5.1 Overview
	5.2 Introduction
	5.3 Related Work
	5.3.1 Transformer-based Segmentation
	5.3.2 Depthwise convolution based Segmentation

	5.4 3D UX-Net: Intuition
	5.5 3D UX-Net: Complete Network Description
	5.5.1 Depth-wise Convolution Encoder
	5.5.2 Decoder

	5.6 Experimental Setup
	5.7 Results
	5.7.1 Evaluation on FeTA & FLARE
	5.7.2 Transfer Learning with AMOS
	5.7.3 Ablation Analysis

	5.8 Discussion
	5.9 Conclusion
	5.10 Supplementary
	5.10.1 Data Preprocessing & Model Training
	5.10.2 Public Datasets Details
	5.10.3 Further Discussions Comparing to nn-UNet
	5.10.4 Further Discussions on Training and Inference Efficiency


	6 Scaling Up 3D Kernels with Bayesian Frequency Re-parameterization for Medical Image Segmentation
	6.1 Overview
	6.2 Introduction
	6.3 Related Works
	6.4 Methods
	6.4.1 Variable Learning Convergence in Multi-Branch Design
	6.4.2 Bayesian Frequency Re-parameterization (BFR)
	6.4.3 Model Architecture

	6.5 Experimental Setup
	6.6 Results
	6.7 Conclusion
	6.8 Supplementary Material
	6.8.1 Derivation of Variable Convergence in Multi-Branch Design


	7 Semantic-Aware Contrastive Learning for Multi-object Medical Image Segmentation
	7.1 Overview
	7.2 Introduction
	7.3 Related Works
	7.4 Method
	7.4.1 Hierarchical Coarse Segmentation
	7.4.2 Data Preprocessing
	7.4.3 Contrastive learning with Organ-Specific Attention
	7.4.4 Co-training with Multi-Organ Segmentation

	7.5 Experiments
	7.5.1 Segmentation Performance
	7.5.2 Ablation Study for AGCL
	7.5.3 Discussion & Limitations

	7.6 Conclusion

	8 Adaptive Contrastive Learning with Dynamic Correlation for Multi-Phase Organ Segmentation
	8.1 Overview
	8.2 Introduction
	8.3 Related Works
	8.4 Methods
	8.4.1 Organ-Specific Attention from Coarse Segmentation
	8.4.2 Contrastive Learning with Contrast Correlation
	8.4.2.1 Phase-Driven Contrast Correlation
	8.4.2.2 Dynamic Contrast Correlation Contrastive Loss

	8.4.3 Fine-tuning for Organ Segmentation Refinement

	8.5 Experimental Setup
	8.5.1 Datasets
	8.5.2 Data Preprocessing
	8.5.3 Model & Training Details
	8.5.4 Implementation Details

	8.6 Experimental Results
	8.6.1 Comparison with Fully/Partially Supervised Approaches
	8.6.2 Comparison with Contrastive Learning Approaches
	8.6.3 Ablation Studies
	8.6.4 Discussion & Limitations

	8.7 Conclusion

	9 Region-based Contrastive Pretraining for Medical Image Retrieval with Anatomic Query
	9.1 Overview
	9.2 Introduction
	9.3 Methods
	9.3.1 Semantic Region-Guided Contrastive Pretraining
	9.3.2 Finetuning with Anatomy Classification
	9.3.3 Image Retrieval with Anatomic Query

	9.4 Implementation Setups
	9.5 Results
	9.6 Discussions
	9.7 Conclusion

	10 Multi-contrast computed tomography healthy kidney atlas
	10.1 Overview
	10.2 Introduction
	10.3 Materials and Methods
	10.3.1 Datasets of Studies
	10.3.2 Deep Body Part Regression Network
	10.3.3 Two-Stage Hierarchical Metric-Based Registration Pipeline
	10.3.4 Experimental Settings
	10.3.5 Evaluation Metric

	10.4 Results
	10.5 Discussion
	10.6 Conclusion

	11 Supervised Deep Generation of High-Resolution Arterial Phase Computed Tomography Kidney Substructure Atlas
	11.1 Overview
	11.2 Introduction
	11.3 Methods
	11.3.1 Preprocessing
	11.3.2 Registration Pipeline
	11.3.3 Deep Label Supervision for Registration

	11.4 Data and Experiments
	11.4.1 Data and Platform
	11.4.2 Experiments
	11.4.2.1 Registration Comparison
	11.4.2.2 Atlas Construction
	11.4.2.3 Deep Registration Model


	11.5 Results
	11.6 Discussion and Conclusion

	12 Multi-Contrast Computed Tomography Atlas of Healthy Pancreas
	12.1 Overview
	12.2 Introduction
	12.3 Methods
	12.3.1 Self-Supervised Body Part Regression Network for Preprocessing
	12.3.2 Transformer-Based Segmentation Network
	12.3.3 2-Stage Hierarchical Registration

	12.4 Experimental Setup
	12.4.1 Datasets
	12.4.2 Implementation Details
	12.4.3 Evaluation Metrics

	12.5 Results
	12.5.1 Evaluation with Clinical Research Cohort and Multi-Organ Labeled Cohort
	12.5.2 Ablation Study

	12.6 Discussion
	12.7 Conclusion

	13 Unsupervised Registration Refinement for Generating Unbiased Eye Atlas
	13.1 Overview
	13.2 Introduction
	13.3 Methods
	13.3.1 Initial Unbiased Template Generation
	13.3.2 Hierarchical Registration Refinement

	13.4 Data and Experiments
	13.4.1 Data and Parameters
	13.4.2 Experiments
	13.4.2.1 Iterative Template Comparison
	13.4.2.2 Hierarchical Registration Refinement


	13.5 Results
	13.6 Discussion and Conclusion

	14 Conclusion & Future Works
	14.1 Explore Deep Learning Optimization in Medical Image Segmentation
	14.1.1 Technical Innovation
	14.1.2 Clinical Impact
	14.1.3 Future Directions

	14.2 Enhance Feature Interpretability for Medical Segmentation Network
	14.2.1 Summary
	14.2.2 Technical Innovation
	14.2.3 Clinical Impact
	14.2.4 Future Directions

	14.3 Generalize Population-wise Biomarkers with Organ-Specific Atlas
	14.3.1 Summary
	14.3.2 Technical Innovation
	14.3.3 Clinical Impact
	14.3.4 Future Directions


	 References 

