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CHAPTER 1 

 

 

INTRODUCTION AND BACKGROUND 

 

In 2009, the Health Information Technology for Economic and Clinical Health (HITECH) Act was 

signed into law in the United States.[1] Intended to incentivize the use of electronic health records 

(EHRs), this legislation played a significant role in driving widespread EHR adoption across the 

nation,[2,3] with profound effects for both healthcare and biomedical research.[4] The transition 

from paper-based charts to EHRs increased the availability of patient health data for research, 

creating unprecedented opportunities for scientific discovery. EHRs are a rich source of 

longitudinal clinical information, including patient diagnoses, laboratory values, and medications, 

which can be harnessed to examine larger patterns of human health and disease in real-time. 

However, extracting clinically meaningful information from EHRs has proven to be a challenging 

task for researchers given the high volume and velocity of data accumulation, as well as the 

complex and often fragmented nature of the data itself, prompting the development of novel 

informatics tools and approaches to optimize EHR data for research use.  

 

Electronic health record-based phenotyping 

Phenotyping, the process of identifying patients with common traits, symptoms, conditions, or 

other characteristics of interest, plays a fundamental role in the research conducted using EHRs 

by defining the patient cohorts that are analyzed.[5] Accurate phenotyping is critical; however, 
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aggregating and translating EHR data into precise and clinically meaningful phenotypes is often 

difficult because of the highly heterogeneous nature of EHR data. 

 EHRs contain multimodal data from a variety of sources recorded at different points in 

time, resulting in considerable variability in data representation and quality. Data in the EHR can 

be broadly divided into two main formats: structured data organized into discrete fields (e.g., 

demographic information, billing codes, vital signs, laboratory measurements, and prescriptions) 

and unstructured data with no pre-defined data model (e.g., free-text clinical notes, discharge 

summaries, and radiology and pathology reports, as well as medical images). Different healthcare 

providers may record the same clinical concept differently within a patient’s EHR based on 

personal preference or institutional policies and practices, enabling a single disease phenotype to 

be represented in multiple ways. Furthermore, data in the EHR may be missing, incomplete, 

outdated, or even conflicting, making it difficult to reliably identify patients with a specific clinical 

phenotype.  

To address these issues, multiple phenotyping strategies have been proposed leveraging a 

variety of data types from the EHR, including rule-based algorithms that apply clearly defined 

inclusion and exclusion criteria, typically in the form of structured data,[6–9] natural language 

processing (NLP) pipelines that extract phenotypic concepts from unstructured data,[10,11] 

machine learning approaches that identify phenotypes from patterns detected in EHR data,[12,13] 

and hybrid approaches.[14–16] Traditional methods for EHR-based phenotyping methods have 

primarily relied on the characterization of a single phenotype (for example, type 2 diabetes), with 

extensive manual chart review required to evaluate phenotype performance.[17] More recently, 

EHR phenotyping efforts have also involved the development of scalable, high-throughput 
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phenotyping approaches capable of capturing thousands of phenotypes simultaneously without the 

need for manual review.[5] 

Beyond reducing the time and effort for phenotype generation and review, high-throughput 

phenotyping presents unique opportunities for new scientific discovery by allowing researchers to 

quickly obtain a comprehensive clinical overview of many patients at once, facilitating large-scale 

analyses of EHR data capable of identifying phenotypic associations that may be missed in studies 

with smaller sample sizes. In particular, the development of high-throughput phenotyping tools 

paved the way for phenome-wide association studies (PheWAS), which investigate the association 

between a variable of interest and a wide variety of clinical phenotypes.[18–20] PheWAS 

approaches have most commonly been used to identify phenotypes associated with a single genetic 

variant in the form of a small nucleotide polymorphism (SNP), but combinations of SNPs and even 

continuous measures (e.g., laboratory values such as white blood cell count [21]) have also been 

used as the target variables in PheWAS.  

 

Phecodes for high-throughput electronic health records phenotyping  

Phecodes (phenotype codes) were originally developed to demonstrate the feasibility of PheWAS 

for identification of SNP-disease associations.[18,22] Phecodes leverage International 

Classification of Diseases (ICD) codes, a common form of structured diagnosis data present in 

virtually all EHR systems in the U.S. due to their use in medical billing and reimbursement. Before 

2015, the U.S. used the ICD-9-CM coding system to report patient diagnoses in the EHR, which 

included >13,000 numeric diagnosis codes.[23] Given the size of the ICD-9-CM code set, the 

initial phecodes created custom groupings of ICD-9-CM codes in order to reduce the phenotype 

space, allowing for clinically meaningful PheWAS outcomes.[18] The phecode groupings were 
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found to align better with diseases mentioned in clinical practice and produced superior PheWAS 

results compared with ICD-9-CM codes and the Clinical Classifications Software (CCS) for ICD-

9-CM.[24] In October 2015, ICD-9-CM was replaced by ICD-10-CM in the U.S. (>68,000 

alphanumeric codes), and the phecode system was extended to include a mapping for ICD-10-CM 

codes and internationally used ICD-10 codes to phecodes, providing comprehensive coverage of 

existing ICD codes.[25]  

Phecodes offer several unique advantages for PheWAS. Importantly, the phecodes system 

defines exclusion phecodes for each phecode, which are used to generate appropriate case and 

control groups for all phecodes. The exclusion phecodes restrict the ICD codes that patients in the 

control group can have (i.e., controls for a phecode cannot exhibit any of the phenotypes 

represented by that phecode’s exclusion criteria), effectively ensuring that controls do not have 

diseases related to the phecode of interest, which could reduce the strength of the signals detected 

in PheWAS. Similarly, the phecodes system applies sex restrictions for sex-specific phecodes, 

which pertain only to males (e.g., prostate cancer) or females (e.g., endometriosis). For these sex-

specific phecodes, only patients with the relevant sex are counted as cases and controls, again 

ensuring that the case and control groups are appropriately formed for PheWAS analysis. Finally, 

phecodes provide a means of standardizing phenotype definitions across different studies and 

datasets, allowing for reliable and reproducible phenotyping.   

 

Phecodes applied to pediatric cohorts 

Phecodes have been used widely to perform PheWAS in a wide range of patient populations;[26–

29] however, they are best suited for use in adult populations. The phenotypes represented by the 

phecodes include a variety of chronic conditions that predominantly affect older patients (e.g., 
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dementia, colorectal cancer, and osteoarthritis), and do not capture certain pediatric phenotypes 

with appropriate granularity (e.g., chromosomal anomalies). However, the existing phecodes could 

be optimized for use in pediatric cohorts by removing phecodes representing uncommon pediatric 

phenotypes and creating new, more detailed phecodes for common pediatric conditions. Creating 

such specialized pediatric phecodes presents a valuable opportunity to conduct meaningful large-

scale PheWAS analyses in pediatric populations and develop a better understanding of pediatric 

disease.  

 

Motivation and research aims  

The study presented in this thesis was motivated by a critical need for high-throughput EHR 

phenotyping tools specialized for use in pediatric populations. Pediatric disease remains 

understudied in comparison to adult disease, and existing high-throughput EHR phenotyping tools 

do not account for disease differences between pediatric and adult patients, necessitating the 

development of new pediatric-specific phenotyping tools. This thesis is presented in three chapters. 

The first chapter introduces the background and motivation for this research. The second chapter 

describes the development and validation of specialized pediatric phecodes (Peds-Phecodes) to 

support large-scale analyses of pediatric EHR data. The final chapter summarizes and discusses 

the limitations and future directions of this work.  
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CHAPTER 2 

 

 

DEVELOPING AND EVALUATING PEDIATRIC PHECODES (PEDS-PHECODES) FOR 
HIGH-THROUGHPUT PHENOTYPING USING ELECTRONIC HEALTH RECORDS 

 

Background and significance  

The pediatric spectrum of disease is distinct from its adult counterpart.[1] Children experience a 

variety of illnesses not commonly observed in adults. This includes congenital anomalies, genetic 

disorders with early mortality, and certain infectious diseases.[2,3] Conversely, adults experience 

many diseases unlikely to affect pediatric patients, such as Alzheimer’s disease, breast and prostate 

cancer, osteoarthritis, and many other conditions associated with aging.[4] Although pediatric data 

have rapidly accumulated in electronic health records (EHRs), pediatric patients have not been 

prioritized in developing high-throughput phenotyping tools such as phecodes, preventing 

researchers from performing focused large-scale analyses of pediatric data, including pediatric-

specific phenome-wide association studies (PheWAS) and genome-wide association studies 

(GWAS), contributing to missed opportunities for scientific discovery. 

The development of phecodes represents a key effort in EHR phenotyping. Phecodes 

aggregate relevant International Classification of Diseases (ICD-9-CM, ICD-10-CM, and ICD-10) 

codes into distinct phenotypes to better represent clinically meaningful diseases and traits (e.g., 

grouping ICD-9-CM codes 162.* representing lung cancer and ICD-9-CM codes V10.1* 

representing a history of lung cancer).[5,6] Phecodes are represented using numeric codes arranged 

in a three-level hierarchy, allowing phenotypes to be captured at various levels of granularity. Root 

phecodes, located at the top of the phecode hierarchy, provide the broadest phenotype definitions 
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and are represented using whole numbers. These root phecodes can then branch into progressively 

more detailed sub-phecodes, indicated by decimal digits. In the current phecodes (version 1.2), up 

to two levels of additional phenotypic granularity (i.e., two decimal places) are available for each 

root phecode. Phecodes with a single digit following the decimal point are referred to as level 1 

sub-phecodes; level 2 sub-phecodes have two digits after the decimal point. For example, root 

phecode 008 “Intestinal infection” branches into level 1 sub-phecode 008.5 “Bacterial enteritis”, 

which then branches into level 2 sub-phecode 008.51 “Intestinal E. coli”. 

We previously demonstrated that phecodes produced superior results in PheWAS 

compared to other coding systems, including ICD and the Clinical Classifications Software.[5] 

Since their introduction, phecodes have been globally used in multiple studies to both replicate 

known genotype-phenotype associations and discover new ones.[7–9] Phecodes have also been 

used beyond genetics to study long-term disease effects.[10] The latest version of phecodes can be 

found at: https://wei-lab.app.vumc.org/phecode-data/phecodes 

While the existing phecodes are valuable in biomedical research, they need to be optimized 

for use in pediatric phenomic analyses. Phecodes were developed using population-based 

diagnoses predominantly from adult patients, which do not accurately reflect pediatric conditions. 

Modifying the existing phecodes to capture diseases primarily affecting pediatric patients with 

increased granularity and exclude age-related diseases uncommon in the pediatric population 

presents an opportunity to increase statistical power for identifying signals more efficiently and 

accurately.  

In this study, we use current phecodes as a starting point to create Peds-Phecodes, 

specialized pediatric phecodes that more appropriately reflect the unique spectrum of pediatric 

disease, and evaluate their performance in large-scale PheWAS analyses using real-world data.  

https://wei-lab.app.vumc.org/phecode-data/phecodes
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Materials and methods 

Data source 

We used de-identified EHRs from Vanderbilt University Medical Center’s (VUMC) Synthetic 

Derivative, a repository of rich, longitudinal clinical information encompassing data from >3.5 

million patients, including data from >1 million pediatric individuals.[11] For our validation 

analyses, we also used data from VUMC’s DNA biobank, BioVU,[12] which links the genetic 

data of >100,000 individuals to their de-identified EHR data (>50,000 individuals with available 

pediatric EHR data).  

 
Pediatric phecode (Peds-Phecodes) development 

We mapped ICD diagnoses captured while patients were <18 years (pediatric) and ≥18 years 

(adult) in VUMC’s EHR to current phecodes (N = 1,866) and compared the prevalence of each 

phecode in the pediatric and adult populations. We used the chi-square test to assess for significant 

differences in prevalence between the two groups if both proportions were over 5%. Otherwise, 

we used Fisher’s exact test to assess the difference. We used a Bonferroni-corrected significance 

threshold to adjust for multiple testing. Additionally, we flagged phecodes with low pediatric 

patient representation (N<50 pediatric patients) as phecodes for potential removal, as 50 cases has 

been suggested to be the minimum sample size required to detect an association in PheWAS 

analyses of binary traits.[13] 

We adopted a hybrid data- and knowledge-driven approach to develop the pediatric 

phecodes (Peds-Phecodes) (Figure 1). Because of the three-tiered hierarchical structure of the 

phecodes (root phecodes, level 1 sub-phecodes, and level 2 sub-phecodes), an important 

component of this work involved ensuring that all modified phecodes continued to belong to the 

correct phecode “tree”. 
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From bottom-up, we pruned the phecodes without sufficient pediatric patient 

representation to identify potential phecodes for removal. We iteratively remapped each sub-

phecode with <50 pediatric patients (from a study population of >1 million pediatric patients) to 

the phecode directly above it in the phecode hierarchy, starting at the most granular level of the 

hierarchy (level 2 sub-phecodes) and working up to the root phecode. In this way, we collapsed 

uncommon sub-phecodes while preserving the underlying hierarchical structure of the phecodes. 

For example, sub-phecodes 153.2 “Colon cancer” and 153.3 “Malignant neoplasm of rectum, 

rectosigmoid junction, and anus” were consolidated into their root phecode 153 “Colorectal 

cancer”. Two pediatricians (SLV and PJK) reviewed the remaining low count phecodes to identify 

those that represented diseases not applicable to the pediatric population (e.g., phecode 453 

“Chronic venous hypertension” and phecode 796 “Elevated prostate specific antigen”), which 

were then removed. Low pediatric count phecodes representing rare diseases (e.g., phecode 209 

“Neuroendocrine tumors”) were preserved. 

From top-down, we focused on the phecodes with significantly higher prevalence in our 

pediatric cohort. For each phecode with higher pediatric prevalence, the two pediatricians 

reviewed the distribution of pediatric and adult patient diagnoses mapped to the phecode and 

provided recommendations for new phecodes reflecting diseases of particular importance to the 

pediatric population. To provide a clearer picture of the intra-phecode ICD distributions, ICD-10-

CM diagnoses were converted to ICD-9-CM using the General Equivalence Mappings (GEMS) 

provided by the Centers for Medicare & Medicaid Services.[14] Both the ICD-9-CM codes and 

matching ICD-10-CM codes were remapped to the newly created phecodes. We also mapped 

several ICD-10-CM codes without ICD-9-CM analogs (e.g., ICD-10-CM codes related to COVID-

19) to new phecodes. 
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Figure 1. Workflow for Peds-Phecodes development. We used a hybrid data- and knowledge-
driven approach combining patient diagnosis counts from VUMC with clinician-led manual 
review to prune out phenotypes with little pediatric relevance (left) and create new phecodes for 
important pediatric phenotypes (right).  
 
 
PheWAS analyses  

To validate the Peds-Phecodes, we conducted PheWAS analyses using Peds-Phecodes and the 

current phecodes independently and compared their ability to replicate known genotype-phenotype 

associations from previous pediatric studies. We queried the NHGRI-EBI GWAS Catalog[15] to 

find genetic variants associated with pediatric phenotypes for our PheWAS replication studies. We 

identified 687 SNPs in the GWAS Catalog that could be investigated using VUMC’s DNA 

biobank. These SNPs were associated with eight different pediatric phenotypes: congenital heart 

disease, pyloric stenosis, Hirschsprung’s disease, hypospadias, café-au-lait spots (observed in 

neurofibromatosis type I), pediatric eosinophilic esophagitis, childhood-onset asthma, and juvenile 
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idiopathic arthritis. We performed PheWAS analyses for all 687 SNPs using binary logistic 

regression, adjusting for sex and race. We only used diagnoses made during the pediatric age 

window (i.e., ICD-9-CM and ICD-10-CM codes recorded at <18 years of age) in creating the 

phenotypes for PheWAS. We required a minimum of two ICD codes (both recorded at <18 years 

of age) for a patient to be counted as a case. 

As in previous studies, replication was defined as the detection of signals related to the 

phenotype of interest with concordant effect directionality and p<0.05.[6] We evaluated replication 

using both an exact and approximate phenotype match. In the exact phenotype match, we focused 

only on the PheWAS signal for the singular phecode best representing the phenotype of the genetic 

association from the GWAS Catalog (e.g., Peds-Phecode 747.1113 “Transposition of great 

vessels” and phecode 747.13 “Congenital anomalies of great vessels” for replication of the 

association between rs150246290 and transposition of the great arteries[16]). In the approximate 

match, we broadened our replication phenotype, examining the signals for all sub-phecodes 

stemming from the root phecode best matching the phenotype of the known association. For 

example, the approximated replication phenotype for the association between rs150246290 and 

transposition of the great arteries was represented by root phecode 747 “Cardiac and circulatory 

congenital anomalies” and all its sub-phecodes (N = 57 sub-phecodes in Peds-Phecodes, N = 5 in 

the current phecodes).  

Beyond replication, we also evaluated the ability of the Peds-Phecodes to detect novel 

genetic associations compared to the existing phecodes. We compared the overlapping and unique 

signals generated in each PheWAS and examined the significant signals detected using Peds-

Phecodes but not phecodes (p<Bonferroni-corrected p).  
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We developed the PedsPheWAS R package to facilitate PheWAS analysis using the Peds-

Phecodes (https://github.com/The-Wei-Lab/PedsPheWAS).   

 
Results 

Differences in disease prevalence in the pediatric and adult populations 

We observed marked differences in the distribution of disease between the pediatric and adult 

populations. Phecode 465 “Acute upper respiratory infections of multiple or unspecified sites” 

represented the most common overall pediatric disease phenotype, with a prevalence of 26.4% in 

the pediatric population compared to a prevalence of 16.9% in the adult population (p<0.001), 

followed by phecode 656 “Other perinatal conditions of fetus or newborn” (pediatric prevalence 

= 23.7%, adult prevalence = 1.7%, p<0.001). In contrast, the most common overall disease 

phenotype among the adult population was phecode 401 “Hypertension” (adult prevalence = 

31.8%, pediatric prevalence = 1.8%, p<0.001). 

Consistent with our hypothesis that pediatric and adult patients are differentially affected 

by disease, we found that nearly all phecodes (1,783/1,866, or 95.6%) differed significantly in 

prevalence in the pediatric and adult populations. We identified 317 phecodes with higher 

prevalence among pediatric patients at VUMC compared to adult patients and 1,466 phecodes with 

lower prevalence in pediatric patients compared to adults (Bonferroni-corrected p = 0.05/1,866 = 

2.7 x 10-5). The phecodes with significantly higher pediatric prevalence included congenital 

anomalies (N = 51), disorders affecting the sense organs (N = 30), diseases affecting the digestive 

system (N = 26), and injuries and poisonings (N = 26). Among the phecodes with significantly 

higher prevalence in the adult population were diseases of the circulatory system (N = 164), 

genitourinary conditions (N = 157), and endocrine/metabolic conditions (N = 136). Figure 2 shows 

the top five level 2 sub-phecodes with significantly higher prevalence in the pediatric population, 

https://github.com/The-Wei-Lab/PedsPheWAS
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ordered by descending prevalence, along with the corresponding sub-phecodes with significantly 

higher prevalence in the adult population. 

Figure 2. Comparison of phecode prevalence between the pediatric and adult populations at 
VUMC. Patient diagnoses at <18 years of age were mapped to the most recent phecodes version. 
The top five phecodes with significantly higher pediatric prevalence are displayed in the top half 
the dumbbell plot; the top five phecodes with significantly higher prevalence among adults are 
shown in the bottom half. Because of the multiple levels of phecode granularity available, direct 
comparisons can only be made between phecodes existing at the same level of the phecode 
hierarchy. Here, we show results for the level 2 (i.e., most granular) sub-phecodes in the current 
phecode hierarchy.  
 

Pediatric phecodes (Peds-Phecodes) 

The final Peds-Phecodes set consists of 2,051 phecodes, compared with 1,866 phecodes in the 

most recent phecodes iteration. The 2,051 Peds-Phecodes are subdivided into 586 root phecodes 
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106 level 3, N = 18 level 4, and N = 3 level 5), in contrast to the 1,866 phecodes, which contain 

585 root phecodes with two possible levels of sub-phecodes (N = 1,012 level 1, N = 269 level 2). 

These 2,051 phecodes provide a mapping for 15,533 ICD-9-CM codes and 82,949 ICD-10-CM 
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codes. As the pediatric phecodes were developed using the existing phecodes as a starting point, 

there is still much overlap between the two, with 1,693 shared phecodes (Figure 3). In developing 

the Peds-Phecodes, 173 phecodes were removed from the starting phecode set and 358 new 

phecodes were created. The majority of the new phecodes created (351/358) were sub-phecodes 

of existing root phecodes, resulting in an extension of the phecode hierarchy to a maximum of six 

levels rather than three. 

 

 
Figure 3. Comparison of Peds-Phecodes and phecodes. Weighted Venn diagram showing the 
overlap between Peds-Phecodes and phecodes.   
 
 

Furthermore, the Peds-Phecodes were recategorized into 19 disease categories: circulatory 

system, dermatologic, endocrine/metabolic, digestive, genitourinary, hematologic, 

musculoskeletal, neurological, renal/kidney, respiratory, sense organs, congenital anomalies and 

genetic disorders, infections, immunologic and inflammatory disorders, neoplasms, mental 

disorders, pregnancy complications, symptoms, and injuries and poisonings. The renal/kidney and 

Peds−Phecodes                                                                          Phecodes

173358 1693
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immunologic and inflammatory disorders categories were newly created for the Peds-Phecodes. 

We sought to group the Peds-Phecodes into disease categories based on the affected anatomical 

location – for instance, Peds-Phecode 747 “Cardiac and circulatory congenital anomalies” was 

placed into the circulatory system disease category, although phecode 747 belongs to the 

congenital anomalies category in phecodes version 1.2.  

 
Replication of known genotype-phenotype associations 

Considering only the signal for the singular phecode best matching the phenotype of interest (i.e., 

exact phenotype match), use of the Peds-Phecodes replicated 88/687 (12.8%) of the SNP-

phenotype associations extracted from the GWAS Catalog with p<0.05, compared to 80/687 

(11.6%) replicated using the phecodes. Given this relatively low replication rate for both phecode 

sets in the context of limited pediatric GWAS availability and the smaller pediatric sample sizes 

for PheWAS, we expanded our definition of the replication phenotype. Rather than using a single 

phecode as the replication phenotype, we defined the replication phenotype using the root phecode 

best matching the phenotype of interest as well as all its sub-phecodes (i.e., approximate phenotype 

match).  

Using the approximate phenotype match, we successfully replicated 248/687 (36.1%) 

associations at p<0.05 using the Peds-Phecodes, a significant increase from the 192/687 (27.9%) 

replicated using the phecodes (p<0.001 using McNemar’s exact test). Additionally, use of the 

Peds-Phecodes generally yielded smaller p-values for known genotype-phenotype associations 

compared to the phecodes, despite similar statistical power based on the number of identified cases 

(Figure 4).  
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Figure 4. Performance of Peds-Phecodes and phecodes in PheWAS replication studies. 
Weighted Venn diagrams comparing Peds-Phecodes and phecodes in terms of their ability to 
replicate known genotype-phenotype associations (panel A), the replication p-values (panel B), 
and statistical power (panel C).  
 

Using Peds-Phecodes, we were able to replicate several genotype-phenotype associations 

that we were unable to replicate using the phecodes. In Figure 5, we show the results of our 

PheWAS for SNP rs2505998, a genetic variant in the RET gene, which has previously been shown 
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to be associated with Hirschsprung’s disease, a congenital defect of the intestine that most 

commonly affects the colon and rectum.[17] The PheWAS performed using Peds-Phecodes 

captured the expected association between phecode 750.214 “Hirschsprung's disease and other 

congenital functional disorders of colon” (OR = 2.23, p = 6.02 x 10-4); however, the PheWAS 

using the phecodes was not able to exactly replicate the association (OR = 1.13, p = 0.22);. Our 

PheWAS analyses also reflected the higher granularity of phenotypes available through the Peds-

Phecodes. In the PheWAS for rs138741144, an ASIC2 variant previously associated with cardiac 

septal defects,[16] using Peds-Phecodes revealed significant associations with phecode 747.113 

“Common ventricle”, phecode 747.128 “Atresia and stenosis of aorta”, phecode 747.13 

“Congenital anomalies of great vessels”, and phecode 747.133 “Patent ductus arteriosus”. In 

contrast, the PheWAS using the phecodes produced a much less granular signal, with only one 

significant association related to congenital heart disease: phecode 747.13 “Congenital anomalies 

of great vessels” (Figure 6).  
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Figure 5. Comparative PheWAS analyses for rs2505998, which has previously been 
associated with Hirschsprung’s disease. PheWAS was performed using Peds-Phecodes (top) and 
phecodes (bottom). The horizontal blue line indicates p = 0.05; the red line indicates the 
Bonferroni-corrected p-value threshold. In both analyses, the most significant PheWAS 
association for rs2505998 was observed for phecode 070.2 “Viral hepatitis B”. 
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Figure 6. Comparative PheWAS analyses for rs138741144, which has previously been 
associated with cardiac septal defects. PheWAS was performed using Peds-Phecodes (top) and 
phecodes (bottom). The horizontal blue line indicates p = 0.05. No signals cross the Bonferroni-
corrected p-value threshold (red line).  
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analysis using Peds-Phecodes resulted in a larger number of signals with p<0.05 compared to the 

PheWAS using the phecodes. We found a significant difference between the number of significant 

signals in the Peds-Phecodes PheWAS compared to the phecode PheWAS using a paired t-test 

(p<0.001). The number of overlapping signals with p<0.05 ranged from 2.3% (16/687) to 29.5% 

(203/687). For each genotype-phenotype association, the PheWAS using Peds-Phecodes revealed 

several signals (minimum N = 3, maximum N = 75) that were not detected using the phecodes, 

representing potentially novel SNP-phenotype associations.  

To further explore the novel associations identified using the Peds-Phecodes, we examined 

the unique signals detected in the Peds-Phecodes PheWAS analyses applying a Bonferroni-

corrected significance threshold rather than a replication p-value threshold. We found that the 

Peds-Phecodes identified novel associations for 147/687 (21.4%) of the SNPs tested in PheWAS, 

with a total of 348 novel associations detected (maximum N = 16 for the TLR1 variant rs5743618). 

Interestingly, these new associations were not limited to new phecodes created when developing 

the Peds-Phecodes from the existing phecodes – we identified new genetic associations for 55 

distinct phenotypes, 27 of which were phecodes shared by Peds-Phecodes and the phecodes. For 

example, we identified 97 new genetic associations for phecode 465.3 “Acute upper respiratory 

infection” (a new phecode) and 43 new associations for phecode 079 “Viral infection” (a shared 

phecode).  

Discussion 

The Peds-Phecodes represent a first attempt to develop a high-throughput EHR phenotyping tool 

specifically designed for pediatric research, with the aim of facilitating large-scale pediatric-

specific phenome-wide and genome-wide studies by streamlining and standardizing the 

phenotyping process in a manner that reflects the unique pediatric spectrum of disease.  



 21 

EHRs provide an archive of longitudinal clinical data with vast potential for research use. 

However, defining phenotypes efficiently and accurately for research within the EHR remains a 

challenging and nuanced process. Phecodes emerged from an effort to characterize the phenome 

by creating standardized groupings of ICD codes to represent clinically meaningful phenotypes, 

making it possible to perform PheWAS analyses quickly and effectively using EHR data. 

However, phecodes were developed using population-based diagnoses predominantly affecting 

adult patients, and thus are best suited for cohorts primarily composed of adult patients.  

When we mapped patient diagnoses in VUMC’s EHR to the current phecodes version, we 

observed distinct differences in the diagnoses recorded while patients were <18 years of age (i.e., 

pediatric patients) and those recorded after patients were ≥18 years of age. As shown in Figure 2, 

phecodes related to infections (e.g., otitis media) and congenital anomalies had higher prevalence 

in the pediatric population, whereas chronic diseases (e.g., gastroesophageal reflux disease, 

obstructive sleep apnea, and major depressive disorder) were more common among adults. These 

differences reflect the unique distributions of disease among pediatric and adult populations and 

highlight the need for modified phecodes for pediatric-specific PheWAS. Other studies have 

reported similar differences in patterns of disease among children and adults,[18,19] providing 

further motivation for specialized pediatric phecodes. 

We developed the pediatric phecodes using a hybrid data- and knowledge-driven approach 

– we leveraged diagnosis code counts to help us approximate the importance (or lack thereof) of 

each existing phecode in the pediatric population. Diagnosis codes provided a consistent and 

replicable way of performing the initial assessment and significantly reduced manual review 

efforts. Clinical domain knowledge then fine-tuned the detected signals and ascertained their 

practical importance. With this insight, we modified the existing phecodes to capture diseases 
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primarily affecting pediatric patients with increased granularity and exclude diseases not relevant 

to pediatric patients, capturing clinically meaningful pediatric phenotypes. The results of our 

PheWAS analyses reflect the ability of Peds-Phecodes to better capture pediatric conditions. Using 

Peds-Phecodes, we replicated more of the genotype-phenotype associations extracted from the 

GWAS Catalog compared to the phecodes. We also found that using the Peds-Phecodes tended to 

produce smaller p-values in our PheWAS replication studies.  

Peds-Phecodes substantially increased the granularity with which certain phenotypes could 

be characterized. In developing Peds-Phecodes, we did not remove the underlying hierarchical 

structure of phecodes; rather, we further extended the hierarchy vertically to accommodate a 

maximum of five levels of added granularity rather than two. We also extended the phecode 

hierarchy horizontally, incorporating alphanumeric codes to allow a phecode to directly branch 

into more than nine possible sub-phecodes (e.g., phecode 758.1A “Gonadal dysgenesis”). The 

results of our comparative PheWAS analyses highlight the advantages of the added granularity 

built into the Peds-Phecodes. When attempting to find an exact phenotype match for the replication 

studies, phecodes tended to represent phenotypes that were much broader than the target 

phenotype. For instance, phecodes 751.12 “Congenital anomalies of male genital organs” and 

750.21 “Congenital anomalies of intestine” were the best matches for hypospadias and 

Hirschsprung’s disease, respectively. However, the Peds-Phecodes directly represented these 

phenotypes (phecodes 751.124 “Hypospadias” and 750.214 “Hirschsprung's disease and other 

congenital functional disorders of colon”). Using an approximate phenotype match, we were able 

to replicate more known genotype-phenotype associations using the Peds-Phecodes largely 

because of their increased granularity. 
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Differences in the significant signals obtained in PheWAS using Peds-Phecodes and 

phecodes also revealed the potential of the Peds-Phecodes to detect novel associations. Although 

we found at least sixteen overlapping phecodes with p<0.05 in each PheWAS comparison, we also 

found at least three signals with p<0.05 unique to each Peds-Phecodes PheWAS for each SNP. 

Furthermore, we identified a total of 348 novel SNP-phenotype associations with Bonferroni 

significance using the Peds-Phecodes. These signals warrant further investigation, and we hope to 

further explore the novel associations identified using the Peds-Phecodes in large-scale pediatric 

PheWAS analyses in future studies. 

This study has several limitations. While we created over 350 new phecodes in developing 

the Peds-Phecodes, we faced difficulties in finding SNPs associated with pediatric phenotypes for 

PheWAS validation, particularly in the realm of infectious diseases. This may in part have been 

due to our reliance on the GWAS Catalog to identify genetic associations; use of other repositories 

of genotype-phenotype data (e.g., Online Mendelian Inheritance in Man), particularly those 

focusing specifically on rare diseases, may have yielded other genetic variants for testing, and 

should be explored in subsequent studies. Still, pediatric patients are comparatively understudied 

in GWAS and the pediatric-specific studies available tend to focus on a relatively small number 

of conditions, limiting the breadth of the replication PheWAS analyses that we were able to 

perform. We extracted 687 SNPs associated with eight pediatric phenotypes from the GWAS 

Catalog. Four of these eight pediatric phenotypes were congenital anomalies, two were pediatric 

autoimmune diseases, one was a common inflammatory disease (asthma), and one was a rare 

disease (neurofibromatosis type I), providing some level of variety but nothing close to 

comprehensive coverage of the pediatric phenome. Our replication analyses were also limited by 

smaller sample sizes resulting in lower statistical power, as there are less pediatric data contained 
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within EHRs. However, pediatric EHR data will accumulate over time, paving the way for more 

high-powered PheWAS analyses in pediatric cohorts in the future. Finally, we acknowledge that 

the ICD code to phecode mapping will likely always have room for improvement. Knowledge 

assembly is an iterative process – as researchers apply the pediatric phecodes in their work, we 

hope to incorporate their feedback and continue to update the mapping. We will also continue to 

extend the pediatric phecode map to include newly added ICD-10-CM codes.  

The Peds-Phecodes can be browsed and downloaded at:  

https://wei-lab.app.vumc.org/phecode-data/pediatric_phecodes 

Conclusion 

There is an urgent need for high-throughput EHR phenotyping tools specialized for use in pediatric 

populations. Building on the existing phecodes, we developed new pediatric phecodes (Peds-

Phecodes) using a hybrid approach integrating diagnosis data and clinical domain knowledge. 

Using the Peds-Phecodes to conduct PheWAS analyses, we were able to replicate significantly 

more known genotype-phenotype associations for pediatric conditions compared to using the 

phecodes, as well as identify potentially novel genotype-phenotype associations. We have made a 

PedsPheWAS R package to perform PheWAS using the Peds-Phecodes. 

https://wei-lab.app.vumc.org/phecode-data/pediatric_phecodes
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CHAPTER 3 

 

 

SUMMARY 

 

This study introduces Peds-Phecodes as a novel high-throughput EHR phenotyping tool for use in 

pediatric cohorts. Like the existing phecodes, the Peds-Phecodes group ICD-9-CM and ICD-10-

CM codes into clinically meaningful diseases and traits; however, in contrast to phecodes, Peds-

Phecodes were specifically designed to capture the unique pediatric spectrum of disease. We first 

demonstrated the need for specialized pediatric phecodes by confirming the presence of significant 

differences in disease distribution among pediatric and adult populations. We then developed the 

Peds-Phecodes from the existing phecodes using a hybrid data- and knowledge-driven approach. 

Briefly, patient diagnosis counts from VUMC were used to flag phecodes that could potentially be 

removed (i.e., phecodes with low pediatric counts) as well as phecodes that could be extended (i.e., 

phecodes with high pediatric prevalence). These initial signals were then reviewed by two 

clinicians, who decided how the flagged phecodes should be modified to best reflect the pediatric 

spectrum of disease. The final Peds-Phecodes set contained 2,051 distinct phecodes, providing a 

mapping for 15,533 ICD-9-CM codes and 82,949 ICD-10-CM codes to phecodes. During the 

development process, 173 phecodes were removed from the starting phecode set and 358 new 

phecodes were created.  

Next, we evaluated the performance of the Peds-Phecodes in comparison to the existing 

phecodes using PheWAS analyses. We showed that the Peds-Phecodes replicated more known 

pediatric genotype-phenotype associations compared to phecodes (248 versus 192 out of 687 SNP-
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phenotype associations extracted from the GWAS Catalog, p<0.001). We also demonstrated the 

potential of Peds-Phecodes to identify novel associations. Using the Peds-Phecodes to perform 

PheWAS analyses, we identified 348 SNP-phenotype associations (p<Bonferroni-corrected p) that 

were not detected in the PheWAS analyses using the phecodes. Together, these findings 

demonstrate the ability of the Peds-Phecodes to capture higher-quality pediatric phenotypes and 

deliver superior PheWAS outcomes compared to phecodes, suggesting that the Peds-Phecodes are 

an effective tool for performing large-scale phenotypic analyses in pediatric populations.   

 

Limitations 

Our study has some limitations. First, although phecodes are a well-validated tool that have been 

widely used to perform PheWAS analyses, it is important to acknowledge that the Peds-Phecodes 

were created from the existing phecodes using data-driven insights about disease prevalence from 

a single academic medical center (VUMC), which may limit the generalizability of the Peds-

Phecodes to other pediatric populations. Future studies will need to evaluate the performance of 

Peds-Phecodes in pediatric-specific PheWAS using EHR data from other institutions to assess 

whether the Peds-Phecodes reasonably cover the pediatric clinical phenome or require additional 

modification. Second, both phecodes and Peds-Phecodes use only one form of structured EHR 

data, ICD codes, in phenotype definition, and thus may not reliably capture certain disease 

phenotypes, particularly for rare diseases which often do not have designated ICD codes.[47] 

Deeper phenotyping efforts leveraging other types of EHR data will likely be needed to 

appropriately phenotype patients with pediatric rare diseases.  
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Future directions of research 

We plan to use the Peds-Phecodes to perform large-scale PheWAS analyses combining pediatric 

EHR data from multiple sources. We are particularly interested in further exploring the ability of 

Peds-Phecodes to identify novel pediatric genotype-phenotype associations. Another avenue of 

future research may involve extending the phecode mapping. Currently, both phecodes and Peds-

Phecodes map only ICD codes to phecodes; however, other types of EHR data may also feasibly 

be mapped to phecodes, such as lab values, prescriptions, and concepts extracted from clinical 

notes. Incorporating other data types into the phecodes structure may improve phenotyping 

performance, particularly for rare diseases.  

 

Conclusion 

As pediatric data continues to accumulate in EHRs, there is an urgent need for high-throughput 

EHR phenotyping tools intended for use in pediatric cohorts. This work proposes Peds-Phecodes 

as a new high-throughput EHR phenotyping tool specifically designed to capture the distinctive 

pediatric spectrum of disease, building on the existing concept of phecodes. Our evaluation showed 

that Peds-Phecodes delivered superior results in pediatric-specific PheWAS analyses compared to 

phecodes. We expect that the Peds-Phecodes will facilitate future large-scale phenomic and 

genomic analyses in pediatric populations, contributing to new opportunities for scientific 

discovery in pediatrics.   
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