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CHAPTER 1

Introduction

1.1 Motivation

The engineering of Cyber-Physical Systems (CPS) plays a crucial role in shaping our everyday physical

environment. The considerable complexity inherent in their design process has rendered their engineering

endeavors a formidable undertaking. The existing design process entails the iterative execution of sequential

design selection, evaluation, and optimization, with the objective of meeting the criteria established or ex-

hausting the allocated budget. One direct consequence of adopting this method is the emergence of computing

complexity as a limiting factor, leading to extended design cycles with prolonged development duration. The

observed limitations in simulation complexity encountered during the course of my research are attributed

to the intricate nature of simulation physics involved in the design process, such as computational fluid dy-

namics and finite element analysis. These two fields possess widespread applications in designs that need

the analysis of fluid movement and interactions, encompassing both liquids and gases, with solid materials.

Addressing the challenges imposed by this bottleneck can benefit a wide range of design problems. In such a

case, there are two major directions of research that I worked on:

1. Development and integration of sample efficient optimization methods and algorithms into design tools

that can find an optimal design in very few evaluations.

2. Replacement of a computationally costly and complex process with a cheap, data-driven, trained sur-

rogate approximation that is trained on a few design points and can generalize on others.

Both areas of research have the potential to utilize current AI-ML-based methodologies in order to augment

innovation within the design process. Recent advancements in artificial intelligence (AI) have demonstrated

the potential of AI-based optimization algorithms as very effective frameworks for optimization tasks, partic-

ularly in terms of sample efficiency. Bayesian optimization and its variants, Variation Auto-Encoder (VAE)-

based Latent Space Optimisation (LSO), and Gaussian Process (GP)-based mixture models are prospective

research avenues for such an endeavor. However, the utilization of surrogate modeling as a substitute for

the original expensive function in the design optimization pipeline is increasingly being recognized as an

another incredibly efficient alternative. Another unresolved concern in these fields pertains to the absence

of open-source tools that can be utilized for research experiments without incurring substantial expenses on

licensing fee. Additionally, there is a need for these tools to possess the capacity to include contemporary

and sophisticated AI-ML algorithms.
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After the finalization of a design, whether by direct optimization or surrogate-based optimization, the

implementation of control action becomes necessary to alter the dynamic behavior of the design in order to

achieve a specified and desirable behaviour. In recent years, there has been a growing utilization of learning-

enabled components (LEC) in the field of engineering system control. When a LEC surrogate is implemented

as a constituent of system operation and engages with a given environment, a pivotal inquiry arises: to what

extent are safety criteria upheld? One common issue associated with the utilization of surrogate models

is the potential for operational safety violations due to their inherent poorer fidelity. Therefore, it is nec-

essary to assess surrogate models in safety cases in order to furnish probabilistic evidence that they do not

generate safety breaches across various operational circumstances. The objective is to ascertain that safety

remains uncompromised in all environmental circumstances. Given the impracticality of formally verifying

the integrated system under all possible environmental circumstances in most practical scenarios, it becomes

necessary to employ simulation-based methodologies for verification purposes.

1.2 Research challenges

Below, I consolidate the research challenges that serve as the motivation for my work. It focuses on certain

issues related to the CPS (Cyber-Physical Systems) design process that are of particular significance:

1. Sample efficient design optimization: In order to achieve the objective of enhancing a design with

a limited number of design analyses and, consequently, reducing design duration, it is crucial to in-

vestigate and advance contemporary artificial intelligence (AI) - driven optimization techniques and

incorporate these optimization frameworks within complex engineering design domains. In pursuit of

this objective, several interesting unresolved questions are:

Can AI-based optimization approaches enhance sample efficiency and convergence behavior in

comparison to conventional optimization techniques coupled with existing simulation and design

tools? What is the way of integrating AI-based optimization algorithms with existing engineering

design tools as well as how can their performance be empirically assessed in design problems?

2. Surrogate modeling: An alternate strategy to decrease the duration of the design optimization process

entails the development of a low-fidelity surrogate model that is computationally inexpensive and data-

driven, serving as a replacement for the computationally intensive simulation. In this particular field of

research, my focus lies on discovering:

Can an AI-based learning model or surrogate capture a complex property of two-way coupled

solid-fluid dynamics physics or finite element-based numerical physics? Can AI-based surrogates

be useful in solving inverse problems involved in these engineering domains?
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3. Challenges of data generation for surrogate modeling in complex engineering domains: In com-

plex engineering domains like CFD, FEA, etc., where data labeling is computationally costly, the

interesting question is:

What should be the sampling strategy for data generation in order to construct a surrogate model

that effectively reduces the size of the training dataset?

Once a system is designed and deployed in an environment to operate, the LEC, acting as a surrogate for

the embedded controller, is utilized to alter the system’s behavior in order to achieve a predetermined and

favorable outcome over a period of time. In this particular scenario, it is imperative to ensure the functional

correctness of the AI-based surrogate for the embedded controller. In pursuit of this objective, I delineate two

primary unresolved issues:

1. Rare even failure detection: For correct functional performance in all scenarios, it is imperative to

rapidly discover situations where the surrogate is likely to fail even for in-distribution input data and

may result in safety failures. For a well-trained LEC surrogate, these situations are rare, and their

discovery is challenging even after extensive simulation-based trials. These rare event safety failures

generally arise from various aleatory and epistemic uncertainties in the system, LECs, simulation tools,

or its environment. Since detecting the presence and removal of these uncertainties is not directly

known, the alternative approach is to detect these rare failures using statistical methods. An open

problem in this case is:

How to rapidly discover in-distribution rare event failures in a trained learning-based controller?

2. Out-of-distribution detection: Another aspect of validating the functional correctness of a trained

surrogate controller is to ensure that the surrogate is exposed only to inputs that are in the training

distribution. Any prediction made on out-of-distribution (OOD) input data may not be reliable and

should not be used. OOD detection of such input samples would be a necessary component. OOD is

classified as point OOD and contextual OOD. In the point OOD, a single input that is anomalous with

respect to the collected training data should be detected. Research in the field of OOD is active, but

good OOD detection is still an elusive task. An open problem in this case is:

How to perform point OOD detection with good accuracy?

1.3 Summary of contributions

In this section, I will provide a brief introduction of my contributions to addressing the above-mentioned

research challenges. Figure 1.1 represents an overview of the research contributions. A detailed exposi-
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Figure 1.1: Overview of research contributions

tion of these contributions and the empirical results of the work will follow in later chapters. The research

contributions are summarized here as follows:

• Sample efficient and Surrogate-based design optimization in engineering design:

1. A comprehensive evaluation of a number of optimization methods on a real-world design problem

involving complex engineering domain of CFD to find optimal design of an unmanned underwater

vehicle (UUV) hull. This benchmark study may be useful for practitioners considering adopting

these algorithms.

2. A method for dealing with infeasible designs (designs with interference) as constraints during

Bayesian optimization, along with a software package of implemented method for the UUV hull

design optimization problem.

3. A novel hybrid optimization strategy is proposed and evaluated to enhance the efficiency of de-

sign optimization issues characterized by computationally inexpensive yet high-dimensional de-

sign spaces. The approach leverages an artificial intelligence (AI) model to acquire an inverse

mapping capability, enabling it to generate promising initial designs for subsequent optimization

procedures.

4. Conducted training on various deep neural network architectures to effectively capture the com-

plex characteristics of two-way coupled solid-fluid dynamics, namely the physics related to drag

force and stress analysis for structural integrity. Additionally when these trained models are uti-

lized in the process of design optimization, as a substitute for physics-based simulations, it results

in a significant acceleration in design optimization process.
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5. Preliminary research was undertaken to explore the possibility of identifying a globally optimal

design for the hull shape of an Unmanned Underwater Vehicle (UUV), which would be near opti-

mal across various environmental and operating situations. The findings of the initial investigation

indicate the potential presence of such a design.

6. A ready-to-use software package ( called Anvil) is provided as a SciML tool for design optimiza-

tion in a toolchain by integrating computer-aided design (CAD) and computational fluid dynam-

ics (CFD) with Python and state-of-the-art AI optimization methods. This open-source software

package can be readily used for shape optimization problems for both nautical and aeronautical

design problems and to study the effect of solid-fluid dynamics for any subsonic flow conditions

with very little work by the user.

• Data-efficient surrogate modeling for engineering design: Ensemble-free batch mode deep active

learning for regression: A novel, scalable, and easy-to-train approach to batched deep active learning

for regression problems is developed by selecting strategic samples during surrogate training to learn

the input-output behavior of a function or simulator with a lesser number of labeled data than existing

methods. I empirically evaluated the proposed method on different real-world engineering design

domains (CFD, FEA, and propeller design domains) and compared it with other baseline methods

to establish the performance gains from this novel approach in terms of sample efficiency or better

accuracy.

• In-distribution rare event failure test case generation in AI controllers: An AI-based generative

method is developed to generate scenarios that have a high likelihood of revealing potential failure.

The empirical evaluation showed a speedup of a thousand times faster discovery of these failure cases

than a standard Monte Carlo method.

• Out-of-distribution detection (OOD) using RRCF: Developed a white-box method that uses RRCF

for OOD detection in a computationally efficient manner on large data sets. The empirical evaluation is

conducted first on a reinforcement learning controller with a three-dimensional data stream and second

on a high-dimensional image data stream generated by an open-source simulator CARLA [38].

The subsequent sections of this manuscript are structured in the following manner. In Chapter 2, I will

present background & relevant literature survey on related work pertaining to the aforementioned challenges.

In chapter 3, I will discuss sample efficient AI-based design optimization approaches with the use case of

unmanned underwater vehicles in the CAD-CFD domain. I will also discuss deep learning-based surrogates

in the CAD-CFD and FEA domains for sub-sea pressure vessels. Additionally, I will explore the optimiza-
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tion process carried out through these surrogate-based designs, which offers a significant acceleration of two

orders of magnitude compared to design optimization loops employing direct numerical simulation. Further-

more, I will delve into the lessons derived from this approach and the challenges associated with it. Addition-

ally, I will explore the utilization of surrogate models in a hybrid optimization strategy for the resolution of a

particular category of inverse problems. In chapter 4, I will elucidate the concept of noble active learning and

adaptive sampling techniques that have been devised through the utilization of a hybrid query approach that

can be used for deep active learning-based surrogate training. In chapter 5, the topic of rare event failures

will be formulated and the contributions to solve this challenge will be discussed. In chapter 6, the issue of

out-of-distribution (OOD) will be examined and the proposed methodology for addressing this issue will be

explored. Finally, chapter 7 will serve as a platform to give the final analysis and draw conclusions regarding

the potential future trajectory of my research contributions.
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CHAPTER 2

Background & Literature Review

2.1 Design optimization methods in engineering

This section provides background on the different sampling and optimization techniques frequently used in

engineering designs. Optimization frameworks are generally classified as gradient-based or gradient-free

methods. Since the gradient information in complex engineering domains (like finite volume-based CFD or

finite element-based FEA) are very costly and unreliable (even using adjoint solvers to compute gradients,

and computing the adjoint sensitivities could be expensive and cannot be used for baseline design but only

fine-tuning the design shape), we chose a gradient-free optimization methods for this study that is readily

used in these domains. To this end, I selected the following frequently used optimization methods for our

study:

1. Monte Carlo

2. Maximin Latin Hypercube

3. Genetic Algorithm

4. Nelder-Mead

5. Bayesian Optimization

The method called Monte Carlo sampling can be used to create a pseudo-random process from a seed for

an input with the specific ranges and dimensions. A random series of numbers with a specified probability

distribution can be used to carry out the procedure. Assuming equal likelihood for each experiment in design

space, the prescribed distribution employed in this study was uniformly random, meaning samples were

chosen from a uniform probability distribution function (pdf) between 0 and 1 and scaling in each dimension

to the specified range of parameters.

The technique of Latin hypercube sampling [100] has been widely employed in several fields due to

its extensive track record and very reliable performance. The primary characteristic of the standard LHC

is its ability to project onto a grid consisting of n points. By applying design to any given factor, a more

comprehensive representation of the design space can be achieved, resulting in n distinct levels for that

design space. However, as a result of the complex nature of combinatorial permutations, obtaining high-

quality Latin hypercube samples poses a significant challenge. The concept of LHC is expanded further to
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include the pursuit of an optimal design through the optimization of a criterion that characterizes a desirable

attribute of the design, rather than only relying on a permutation of the factors at the n-level. In order to

achieve this objective, Morris and Mitchell [100] introduced a space-filling criterion to the vanilla Latin

Hypercube Sampling (LHC) method. The primary aim of this optimization is to maximize the minimal

distance between the sampled points. Consider a design denoted by X , which is represented by a matrix of

size n×k. Let s and t be two design points within this matrix. The distance between these two points may be

determined using the formula dist(s, t) = {∑k
j=1 |s j− t j|p}1/p. The parameter p specifies the specific distance

metrics employed. An alternate conceptualization of the maximin criterion is put forth, as aim to optimize

the lowest inter-sample distance, for which a list of distances (d1;d2; ...;dm) is generated in ascending order

based on distance measurements. The distance list is accompanied by the creation of corresponding sample

pairs, denoted as Ji, which are separated by a distance of di. A design X is referred to as a maximin design

when it optimizes the variables di and Ji in a sequential manner, following the order of d1,J1,d2,J2, ...,dm,Jm.

The aforementioned method is accomplished by the utilization of a simplified scalar-valued function, which

serves the purpose of evaluating and ranking competing designs.

The Genetic Algorithm (GA) is a computational approach for the optimization which mimic the gene

evolution process in living bodies. It involves representing a design input as arrays of bits or character

strings, known as chromosomes. These chromosomes are subject to manipulation operations performed by

genetic operators. Selection of chromosomes is then carried out based on their fitness, with the objective

of identifying a favorable or even optimal solution to the given problem [65, 160]. The aforementioned

process typically involves the following main steps: the formulation of objectives or cost functions in a

coded format; the establishment of a fitness function or selection criterion; the generation of a population

comprising individual solutions; the execution of an iterative evolution cycle, which entails evaluating the

fitness of all individuals in the population, generating a new population through operations such as crossover

and mutation, and employing fitness-proportionate reproduction, etc. to replace the previous population; the

decoding of the outcomes to derive the solution.

The Nelder-Mead algorithm, proposed by Nelder and Mead in 1965 [106], is a direct search technique

that utilizes a simplex structure to solve unconstrained optimization problems in several dimensions. The

simplex S in Rn can be defined as the convex hull of n+1 vertices, denoted as S = {vi}i=1,n+1. The algorithm

utilizes an iterative process to update the size and form of the simplex by modifying a vertex in accordance

with its corresponding function value. The equation fi = f (vi) holds true for all values of i ranging from 1

to n+1. The centroid of a simplex, denoted as c( j), refers to the central point of the vertices of the simplex,

except the vertex v j. The centroid c( j) is defined as the average of the values of all vi , where i ranges from

1 to n+1, excluding the value of v j. Given that the problem at hand is a minimization problem, the vertices
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are arranged in descending order based on their respective function values f (vi), with the vertex having the

highest value assigned an index of 1, and the vertex with the lowest value assigned an index of n+ 1. By

using a selected hyper-parameter, denoted as the reflection factor ρ > 0, the method aims to replace a vertex

v j with a new vertex vnew(p, j) at each iteration. This replacement occurs along the line that connects vertex

v j to centroid c( j). The formula for the new value function, denoted as vnew, is expressed as follows:

vnew(ρ, j) = (1+ρ)c( j)−ρv( j)

The algorithm incorporates three additional parameters: the coefficient of expansion (χ), contraction factor

(γ), and shrinkage factor (σ ). These parameters play a crucial role in modifying the shape of the simplex

during the expansion or contraction steps, allowing it to better conform to the local landscape. For more

comprehensive information, please refer to Nelder and Mead’s work on the simplex method [106].

Bayesian optimization [30, 77, 173] is a AI based method that starts with a probabilistic modeling of

the function f that maps design space to observation space and use Bayes rule to iteratively update this

probabilistic model on every new observations. The function f is generally modeled by probabilistic model

called gaussian process (GP).

p( f ) = GP( f ; µ,K)

Here µ is the mean vector and K is covariance matrix. On every new evaluation data D = (X , f ) the proba-

bilistic model is updated on D as below:

p( f |D) = GP( f ; µ f |D,K f |D)

The utilization of a probabilistic model of function f enables the building of an acquisition function

(a(x)) that facilitates the identification of the optimal location for evaluating the function in next iteration.

The acquisition function is commonly a cost-effective function that may be assessed at various locations in

the domain using the probability model p( f |D). This quantified assessment is the expected to improve the

function f to the maximum at the chosen point x. For this purpose, the acquisition function is optimized in

order to identify the most suitable place for the subsequent observation. In the context of Bayesian decision

theory, it is possible to view a() as the assessment of an anticipated regret linked to the assessment of f

at a certain point x. There are two highly used acquisition functions: Expected Improvement and Lower

Confidence Bound.

Expected Improvement : Given the current belief p( f |D) on the function f , and assuming that f ′ repre-

sents the minimum value seen thus far, the Expected Improvement (EI) method, as described by Movckus
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[98] and Jones et al. [73], determines the point at which the function f is expected to exhibit the greatest

improvement above f ′. In this particular scenario, the utility function can be expressed as:

u(x) = max(0, f ′− f (x))

After conducting an evaluation, the reward can be determined as f ′− f (x), where f ′ represents the current

minimum value and f (x) represents the value of the function for the freshly evaluated sample x. If f (x) is

lower than f ′, the reward will be f ′− f (x); otherwise, the reward will be 0. The expected improvement, as a

function of x, can be determined using this utility function:

aEI(x) = E[u(x)|x,D] =
∫ f ′

−∞

( f ′− f )N( f ; µ(x),K(x,x))d f

= ( f ′−µ(x)))ψ( f ′; µ(x),K(x,x))+K(x,x)N( f ′; µ(x),K(x,x))

This expected improvement to the utility function makes an effort lower both the mean function (mu(x))

(which explicitly encodes exploitation by evaluating at locations with lower mean) and the variance K(x,x)

(which explores by evaluating in region of design space that have greater uncertainties). These improvements

are both intended to improve the function’s performance. The Bayesian decision-theory underpinnings of EI

allow it to encompass both exploration and exploitation.

Another most used acquisition function is Lower Confidence Bound (LCB) [136]. The LCB aquisition

function is defines as:

aLCB(x;β ) = µ(x)−βσ(x)

β ≥ 0 refers to a hyper-parameter that, during the optimization process, deals a balance between explo-

ration and exploitation. The standard deviation (expressed as σ(x)) of the function f (x) is defined as the

square root of the product K(x,x). Srinivas et al. [136] have provided an alternative way of looking at the

acquisition function that was discussed previously in terms of regret. The regret is defined as:

r(x) = f ′− f (x)

the optimization goal under LCB setting is:

min
T

∑
t

r(xt) = max
T

∑
t

f (xt)
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where T represents the total cost of the evaluation for the process of optimization. Srinivas et al. [136] showed

that with the value of the hyper-parameter β adjusted to
√
(v∗ τt) with v = 1 and Tt = 2log(td/2+2π2/3δ )

will have an no regret with very high probability, i.e., limT→∞RT/T = 0, where RT is cumulative regret.

2.2 Research works in underwater vehicle hull design

Gertler [50] carried out some of the earliest research that was done on the subject of discovering a UUV hull

design with a low resistance to water flow. In order to achieve this goal, he created 24 unique bodies utilizing

five parameters and a polynomial equation that describe the geometry of the UUV body. These bodies are

collectively referred to as ‘series 58’. To determine the amount of drag created by each hull design, these hulls

were pulled through the water at varying speeds. In a later experiment, Carmichael [26] showed that the drag

may be reduced for applications with a fixed frontal area or constant volume by lowering the fineness ratio

or the surface area. When compared to traditional torpedo forms of comparable volume, Carmichael’s tail-

boomed body design, which he called ‘Dolphin’, achieved a 60% reduction in the amount of drag it generated

in the Pacific Ocean during prolonged testing. This reduction is made possible due to the fact that the Dolphin

shape maintains the laminar state of the boundary layer for a longer body length distance. One of the first

people to develop a computer-based non-gradient algorithm as optimization procedure for an axisymmetric

body of revolution optimization in finite constrained parameter space was Parsons et al. [109]. However, he

used Young’s formula for the drag estimation method that only applies to laminar flow conditions. Hertel

examined the fuselage shape by considering fast swimming creatures in his research [62]. According to

the results of his analysis, bodies with a revolution of profile that is identical to NACA’s two-dimensional

laminar forms do not give the appropriate pressure gradient for the boundary layer to remain laminar. On

the other hand, bodies with a parabolic nose, such as Dolphin and Shark, provide a more laminar boundary

layer. Myring [102] introduced an empirical methodology for predicting the drag of a body of revolution

by utilizing the viscous-inviscid flow interaction method. Myring conducted stabilization of the transition

site and conducted an investigation on the variance in drag at a Reynolds number of 107, while manipulating

the body shape. He initiated the experimentation process by systematically modifying individual parameters,

observing the subsequent impact on drag experienced by various body components such as the nose, tail, and

others. Based on the his results, it has been observed that the alteration in body drag experiences a decrease

when transitioning from a slender to stout nose or tail within a specific range. However, it undergoes a notable

increase after the design surpasses this range.

Hess [63] formulated a simplified drag equation and employed it to conduct a comprehensive comparative

analysis of drag efficiency across diverse body types. Zedan and Dalton [169] conducted a comprehensive

analysis comparing the drag characteristics of various axisymmetric body shapes that were considered to be

11



among the most optimal designs. In the course of their investigation, the researchers made the assumption

that turbulent boundary layer phenomena would prevail across a significant portion of the body surface. They

subsequently arrived at the conclusion that, under conditions of a high Reynolds number, the presence of a

laminar boundary layer capable of persisting over a certain distance would result in a significant reduction in

drag. This study additionally posits that the unorthodox laminar-shaped structure exhibits the most favorable

characteristics as a potential contender for achieving the lowest drag design at a high Reynolds number.

The study direction of bionic-inspired hull shape for UUVs was gaining popularity as a means to enhance

performance. In pursuit of this objective, Dong et al. [37] developed a gliding robotic fish that emulates

the streamlined morphology of a whale shark. Additionally, the researchers demonstrated that the fish can

effectively attain both a high degree of mobility and exceptional gliding capability through the utilization

of adjustable fins and tails. In their study, Lutz et al. [92] devised a computational approach for shape

optimization and incorporated a linear stability theory to assess the drag characteristics of axisymmetric

structures. Utilizing this methodology, a low drag design was devised for a specified internal area. Alvarez et

al. [6] have devised a first-order Rankine panel approach in their study to improve the hull shape of an UUV.

In the present era, the progress in computing power and the enhancement of mesh-based analysis tools

have enabled the extensive application of CFD simulation in the evaluation of hydrodynamic performance of

underwater unmanned vehicles (UUVs). The predominant approach employed in the field of study involves

the utilization of either the Reynolds-averaged Navier-Stokes (RANS) formulation or the large eddy simula-

tions (LES). Reynolds-Averaged Navier-Stokes (RANS) theory is frequently utilized in comparison to Large

Eddy Simulation (LES) due to its enhanced treatment of viscous effects and lower computational demands.

Stevenson et al. [137] developed a series of seven discrete revolution bodies, each of which was standard-

ized to have the same volume. The major objective of their inquiry was to examine the drag characteristics

displayed by these entities. The results suggest that a UUV body featuring laminar flow may demonstrate

greater efficiency in comparison to a body shaped like a torpedo, given that the placement of external ancil-

lary components is carefully done. Nevertheless, it is important to acknowledge that this particular design is

more vulnerable to the potential consequences of manufacturing imperfections. Wei et al. [162] conducted a

study whereby they undertook the design and evaluation of five commercially available UUVs. The primary

objective of their investigation was to assess the performance of these UUVs in terms of two crucial metrics:

speed and endurance. To accomplish this goal, the researchers performed an inquiry into five various forms

at different velocities using CFD analysis. The research findings suggest that two of the participants display a

higher degree of adaptability towards higher speeds, whereas three participants exhibit a larger level of adapt-

ability towards lower speeds. In the year 2005, Yamamoto [168] created a long-range cruising autonomous

vehicle, which subsequently established a global record for the longest duration of autonomous cruising. The
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current vehicle is equipped with an X-shaped wing arrangement, which provides a larger wing surface area

and improved control force in comparison to a conventional cross-shaped tail, and vice versa. Furthermore,

he provided evidence to support the claim that the streamlined-shaped model displays a decrease in drag and

an improvement in range when compared to the cylinder-shaped model. The integration of hydrofoils into the

framework, together with the utilization of specific navigation strategies, led to a significant enhancement in

the range of the UUV by approximately two times when compared to its initial design including a cylindrical

body. In their study, Schweyher et al. [128] utilized an evolutionary strategy to minimize drag on the body,

with a specific emphasis on the optimization technique adopted. Eismann et al. [39] conducted a study to

examine the application of Bayesian optimization in the field of form optimization, specifically in the pursuit

of minimizing drag in a two-dimensional flow field.

The application of surrogate modeling has been increasingly widespread in the field of engineering during

the past few decades. The methodology employed in this study entails the replacement of complex engineer-

ing simulation techniques with Kriging/Gaussian Process-based machine learning models, as outlined in the

works of Rasmussen and Williams [116] and Forrester et al. [45]. A multitude of recent studies have con-

centrated on the advancement of surrogate models for approximating the characteristics of flow fields, while

also examining the influence of fluid flow on the morphology of designs. Bhatnagar et al. [16] devised

and executed a study whereby they constructed and deployed a convolutional neural network (CNN) frame-

work using an encode-decoder approach. The objective of this architectural design was to predict the flow

characteristics of aerodynamic flow fields on two-dimensional airfoil configurations. Chen et al. [28] uti-

lized a learning framework that incorporated U-net [121] to generate predictions of 2D velocity and pressure

distributions in laminar flows, particularly in the vicinity of irregular geometries. Machine learning-based

surrogate models are frequently utilized in various engineering disciplines to accelerate the design discov-

ery process [150, 156]. There are various areas in which these investigations demonstrate shortcomings and

present possibilities for improvement. The dynamics governing the development of fluid motion can be elu-

cidated through the utilization of either a laminar or a simplified turbulence model. The usage of advanced

modeling approaches is necessary to effectively represent the turbulent elements of flow characteristics in

real-world UUV systems due to the design constraints connected with them. The k-ω shear stress transport

(k-ω SST) turbulence model is extensively utilized in the field of UUV design owing to its proven accuracy

in predicting outcomes, as evidenced by the research conducted by Jones et al. [72]. There is a lack of

existing research that specifically examines the approximation of flow behavior and its consequences using

the k-ω SST turbulence model. Previous research in the field of CFD has predominantly concentrated on

surrogate modeling, with a particular emphasis on tiny airfoil and two-dimensional geometries. Although

the aforementioned studies offered useful insights into the behavior of CFD, they failed to comprehensively
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address the intricacies involved in developing substitutes for design scenarios seen in real-world settings. The

research did not sufficiently address factors such as the failure of the CFD process caused by meshing issues,

the time required for analyzing each sample, and the possibility of creating a satisfactory number of samples

within a reasonable period.

2.3 Surrogate-based design optimization

A surrogate model is defined as a non-physics-based approximation typically involving interpolation or re-

gression on a set of data generated from the original model [3]. We consider two fundamentally different

motivating use cases of a surrogate model from an engineering perspective:

1. Model-based design process

2. Model-based system operation

The model-based design process incrementally synthesizes the model of the designed system, usually

starting with component models. The design process typically follows the progressive refinement of the var-

ious design models while incorporating optimization and verification phases. The key characteristics of the

models are evaluation complexity and fidelity in terms of some selected properties. Generally, computation-

ally expensive high-fidelity models describe systems with high accuracy, while low-fidelity models are less

accurate but computationally cheaper than high-fidelity models. One of the primary motivations of surro-

gate modeling is to speed up the evaluation of models that are otherwise prohibitively expensive to run in

optimization processes.

In model-based system operation, embedded models are used for implementing various functions ranging

from monitoring and control to diagnostics. Since the operation time evaluation of an embedded model is

subject to real-time constraints, evaluation complexity is a driver for using a simplified surrogate model. The

primary motivation is to reduce the operation time using the surrogate model. The surrogate of the embedded

model is computationally cheaper. Another motivation for using a surrogate model is to design a human-level

intelligent control, diagnostic, or monitoring system that cannot be designed without AI-ML methods. The

goal is to learn from human intelligence or observations in simulated behavior to replace or assist humans in

the loop process.

The general approach for creating a surrogate model is to fit a generic parametric model using data

generated by simulation tools. Since AI and ML models are more flexible parametric models, these are the

only models in consideration in the context of this manuscript. The abstraction used in a high-fidelity model

mathematically describes the evolution of a set of continuous-time dynamical system equations or numerical

simulations or optimization loops or evaluation of controlled behavior under consideration.
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Surrogate Modeling- (supervised learning & use case)
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Figure 2.1: Overview of data-driven Surrogate Modeling

Figure 2.1 shows the high-level overview of a surrogate modeling process. The main elements of this

process are data generation, model selection, training, and model validation.

• Data for surrogate modeling can be generated either by running a high-fidelity simulation tool, by

gathering real-world data, or by using both sources. If we are using a simulation-based environment to

generate the data, the domain of approximation/environment of operation needs to be defined apriori

by a range of parameters. For a better approximation, we need to expose the original system with all

possible combinations of inputs or environment scenarios which exposes all possible behaviors of the

system. Design-of-experiment (DOE) is crucial for the data generation which affects the accuracy of

the surrogate. The goal of the DOE/sampling plan is to expose the original system with those possible

combinations of inputs that expose all possible behaviors. Designing a sampling plan is not trivial.

Every sampling plan introduces some bias and results in different variances. If sample D corresponds

to a random subset from the domain of interest, bias on a trained surrogate quantifies the extent to which

the surrogate model outputs differ from the true values calculated as an average over all possible data

sets D. However, variance measures the extent to which the surrogate model is sensitive to particular

data set D. In principle, we can reduce both, the bias by choosing a flexible model and the variance by

15



increasing the number of evaluated points for training.

• The next crucial step is the selection of a learning model. Each machine learning model has its ad-

vantages and disadvantages. Some ML models are easy to train (e.g., random forests, decision trees,

KNN), some can provide predictions uncertainty (e.g., Gaussian Processes (GP), Bayesian neural net-

works (BNN)), and some can extract important features from high dimensional data space (Deep Neural

Network). Disadvantages include the need for large data sets for training (Deep Neural Networks), a

very high computational complexity (GPs, BNNs) or not working well with high dimensional data (de-

cision trees, random forests, GPs). It is a strategic decision to select a model and it is decided based on

the surrogate modeling problem under consideration and the goal of the surrogate creation.

• Once the model’s training is finished, some validation technique is used to test the model’s ability to

approximate the output (or some derived property of the output) generated by a high-fidelity model or a

real system in the domain of interest. Testing machine learning models is an emerging and challenging

research topic. There are various aspects against which a machine learning model should be tested, like

correctness, robustness, security, or interpretability, but the general scope of testing is in the context

of correctness. The empirical correctness of a machine learning model is the statistical quantification

of producing the desired outcome during prediction. The goal of testing is to evaluate the correctness

of a trained model and/or find a good test scenario that can expose the failure modes in the trained

surrogate.

2.4 Major challenge in surrogate modeling of complex engineering process

During surrogate modeling, design space exploration is a process to understand the effect of design variables

on the performance metrics and analyze the complex relationship between these variables on the performance

metrics. The process usually involves successive sampling in the design space and analyzing the performance

metric to find a promising design point or subspace which satisfies all the constraints and meets the necessary

performance requirement. Learning these nonlinear hyperplanes about the relationship between input design

variables and performance metrics is the role of a human design engineer. For this purpose, the design engi-

neer evaluates/simulate the design space at various samples and tries to create a response surface in his mind.

This response surface is further used in the future to find the design for a given performance metric. How-

ever the process has multiple issues: first, without any strategic sampling approach, the trivial randomized

sampling approach to generate data becomes unavailing in high-dimension design variable space because the

number of points needed to give reasonably uniform coverage rises exponentially- this phenomenon is infa-

mously called the curse of dimensionality. Another issue is related to the simulation models and simulation

16



process, which has an iterative subroutine of optimization/convergence and consequently a long simulation

time. Due to these reasons in most practical problems, design engineers always search for optimal design

near an already explored region of design space. An alternative is to freeze many of the design variables at

hopefully meaningful values and work with just a few at a time, iterating around to understand the impact

of various variables progressively. Both of these issues do not resolve the problem of efficient global explo-

ration. The utopian solution would be ‘to learn the hyper-plane with few numbers of strategic simulation

evaluations’ and the learned model should have the ‘capability to parallelize the evaluation process’ on mod-

ern hardware (GPU). For a given design space with known boundaries, the goal of surrogate modeling is to

create an alternative model for the response surface created by the simulation process. The benefit of creat-

ing a surrogate is parallel faster evaluation of design points, which can speed up the whole design decision

process. However, the preliminary questions that need to answer before creating a data-driven surrogate in

real design space are:

In the context of surrogate modeling, the practice of design space exploration is employed to get a thor-

ough comprehension of the influence exerted by design variables on performance measurements. This inves-

tigation also entails examining the complex relationship that exists between these variables and the metrics

of performance. The standard protocol involves a repetitive process of sampling from the design space and

assessing the performance metric to locate a design point or subspace that shows potential, while also satis-

fying all constraints and meeting the necessary performance standards. The responsibility of understanding

these non-linear hyperplanes, which illustrate the relationship between input design factors and performance

metrics, lies within the domain of a human design engineer. To accomplish this goal, the design engineer

evaluates and models the design space at multiple data points, with the intention of developing a cognitive

representation of the response surface. The response surface indicated above can afterwards be employed for

the goal of determining an ideal design based on a certain performance metric. However, the approach is

afflicted by various challenges: In the absence of a well-defined strategic sampling methodology, the conven-

tional randomized sampling technique for data production proves to be inadequate when applied to a design

variable space characterized by a large number of dimensions. This phenomenon can be attributed to the

exponential growth in the necessary quantity of points needed to attain a relatively even distribution. The

widely recognized issue under discussion is frequently denoted as the ‘curse of dimensionality’. Another

worry arises in relation to the simulation models and simulation process, which involves an iterative subrou-

tine that includes optimization and convergence, leading to an extended duration for the simulation. Design

engineers continually strive to develop an ideal design within a previously explored region of the design space

due to a variety of practical challenges. The produced design exhibits local optimality, indicating its effective

performance within its immediate contextual framework. Nevertheless, it is crucial to acknowledge that this
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particular design may not exhibit optimality when compared to all possible designs. One strategy that can

be employed is the fixation of a considerable number of design variables by selectively changing a small

selection of variables at any given moment. The utilization of an iterative method facilitates a systematic and

incremental investigation of the impacts of many variables. Both of these problems fail to adequately tackle

the issue of attaining efficient global exploration. The optimal strategy would entail gaining an understanding

of the hyperplane through a restricted set of strategic simulation assessments. Furthermore, it is essential for

the obtained model to demonstrate the capability of parallelizing the assessment process on modern hardware,

particularly Graphics Processing Units (GPUs). The primary goal of surrogate modeling is to construct an

alternative model that accurately represents the response surface produced by the simulation process inside

a designated design space that has pre-established boundaries. The use of a surrogate provides the benefit

of accelerating the analysis of design factors simultaneously, hence improving the efficiency of the whole

process of making design decisions. However, it is important to consider a series of fundamental inquiries

prior to constructing a data-oriented substitute within the framework of tangible design parameters.

1. In the context of sampling, the magnitude of the step size refers to the size or interval between consecu-

tive data points or samples. The available approaches currently lack a means to determine an acceptable

step size in the absence of hyperplane information. The accuracy of replicating outcomes through the

use of a surrogate will be heavily influenced by the meticulous choice of the sampling step size.

2. What is the suitable process for sampling in order to acquire data? The utilization of planned and adap-

tive sampling strategies for data collecting is crucial due to the impracticality and probable exponential

growth associated with randomized sampling.

The selection of the sampling method is of utmost importance in the creation of the surrogate model and

has a direct influence on the precision of the acquired knowledge regarding the surrogate’s behavior. In the

next section, we will analyze the process of sampling, which includes both the traditional method of sampling

and the active/adaptive sampling technique, within the context of surrogate modeling.

2.4.1 Sampling for data generation in design space

Sampling is an essential component of surrogate modeling as it facilitates the investigation of causal rela-

tionships between input parameters and their interdependencies. The sampling process can be classified into

two primary components: the conventional Design of Experiments (DOE) and adaptive sampling methods.

The conventional Design of Experiments (DOE) includes several sampling strategies, such as Latin hyper

cube [94], factorial-based sampling (including full factorial and n-level factorial designs), response surface

designs (such as Box-Behnken and central composite designs), and randomized sampling. Additionally, the
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alternative approach referred to as active and adaptive sampling incorporates several sampling tactics like

uncertainty sampling, predicted error reduction, and variance reduction [130]. The categorization is based

on the underlying notion that machine learning algorithms in active and adaptive sampling have the ability

to autonomously choose samples. This is in contrast to the traditional strategy in which samples are pre-

determined before the training phase, making the sampling process separate from the model. The standard

sampling strategy lacks the advantage of incorporating any novel findings during the later modeling phase as

a result of the fixed selection of sample locations. In contrast, adaptive sampling refers to an approach that

utilizes previously learned information of sampled behavior to make informed recommendations regarding

the optimal locations for sampling within the design space. The primary aim is to acquire the most valu-

able data that may be utilized to improve the training model being examined. It is commonly acknowledged

that active and adaptive sampling demonstrates superior performance compared to standard sampling when

suitably calibrated. In specific situations, the integration of these two techniques might result in synergis-

tic effects, leading to optimal outcomes through the utilization of the respective strengths inherent in each

paradigm.

2.4.1.1 Traditional Design of Experiments

Traditional DoE approaches have been developed mainly for costly physical experiments (like Finite Element

Analysis, Computational Fluid Dynamics, etc) that have a long history. The most used classical sampling

approaches include factorial designs (Full Factorial design, Fractional Factorial design), response surface

designs (Box-Behnken design, central composite design), and Plackett-Burman design and other random-

ized designs ( uniform random sampling, Latin hypercube) [94] etc. These sampling approaches determine

the sample locations in order to make maximum coverage of design space based on a predetermined strat-

egy. These strategies widely affect the performance of learned behavior. Each method has a notion of pre-

determined bias based on assumptions they made during sampling. For example, full factorial tends to cover

the entire space uniformly spaced manner to gather the most information about the underlying function while

central composite design samples more points around the boundary regions rather than the interior regions

in the expectation that the most interesting things are happening in boundary regions. Similarly, the Latin

hypercube which is an extension of stratified sampling, ensures each input parameter has all portions of the

range represented [94]. All these traditional sampling methods introduce some predetermined bias in the

sampling process. Among all of them, empirically it is observed that Latin hypercube is the most used tra-

ditional sampling method [158] as it covers the entire range of each input variable and has non-colliding in

nature and extracts the most out from these samples in a more systematic way for discovering scientifically

surprising behavior.
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The vanilla Latin hypercube sampling/ simple Latin hypercube sampling was further extended in vari-

ous other flavors like maximin Latin Hypercube [146], orthogonal arrays criterion based LHC [74, 85, 91],

columnwise-pairwise [138], genetic algorithm [83], simulated annealing [111] etc. All these efforts can be

perceived as attempts to include additional information while designing the LHC scheme to create an opti-

mized DOE. However, the exact optimal solution to this DOE problem has been believed to be NP-hard [120].

The extensive study and comparison of different flavors of optimal LHC can be found in [36]. The further

extension of LHC is done to optimize the sampling budget using translational propagation idea [108, 159].

It first creates small blocks containing a good seed design with a few points and then translates them over

the entire hypercube. This approach proved to be much more efficient than the formal optimization-based

approaches.

Another aspect of traditional DOE is it works in a single shot mode which implies that all the design points

are generated in a single stage before evaluating the samples which is different from another strategy of DOE

i.e. sequential DOE. In sequential DOE, we decompose the sampling problem in multiple iterative steps on

a given computational budget. Directly converting single-shot traditional DOE to sequential DOE without

a strategy can be counter-productive, due to space-collapsing properties of samples in less useful regions of

Design Space. The more general approach to converting traditional single-shot DOE sampling to sequential

DOE is to apply a space-filling approach with a distance-based threshold to ensure the separability of samples.

This approach of constraining and generating sequential DOE is very widely studied and extended in various

works [34, 166]. This section offered an introductory review of the traditional Design of experiment-based

sampling approaches for surrogate modeling. In the next section, we will discuss the adaptive approach of

sampling for surrogate modeling.

2.4.1.2 Adaptive/Active sampling for surrogate modeling

Active learning is an interesting sub-field of machine learning and has a long history in the statistics litera-

ture, generally referred to as optimal experimental design [41]. The active sampling approach uses the key

hypothesis that if the learning algorithm is allowed to choose the data from which it learns—to be “curious,”

if you will—it will perform better with less training [130] and can achieve exponential acceleration in sample

labeling/evaluation efficiency in training process [11]. This property of less training data is desirable, espe-

cially in high dimensional computationally expensive simulation-based design decision settings. The active

learning sampling method is generally classified in the context of a scenario in which learners may be able

to ask queries. These are classified as (1) stream-based selective sampling, and (2) pool-based sampling.

In stream-based sampling, each unlabeled instance is typically drawn one at a time from the data source,

and the learner decides whether to query or discard it. The main assumption is that obtaining an unlabeled
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instance is free (or inexpensive), so it can first be sampled from the actual distribution, and then the learner

makes a decision about whether to label it or not. In pool-based sampling [81], it is assumed that we have

a large collection of unlabeled data, which is the case in many real-world machine learning problems. The

goal of this sampling process is to select a small set of data and label it and this small labeled data should

represent the whole pool of unlabeled data for the learning process. The difference between stream-based

and pool-based active learning is that stream-based scans through the data sequentially and makes query de-

cisions individually, whereas pool-based evaluates and ranks the entire collection before selecting the best

query. Both methods have been widely applied to many real-world applications ranging from part-of-speech

tagging [35], sensor scheduling [76], sentiment analysis [135], image classification and retrieval [143], video

classification and retrieval [58], cancer diagnosis [90] to name a few.
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Figure 2.2: The general process of Active Learning (AL) approach

The general flow of the active learning approach in the context of surrogate modeling is shown in figure

2.2 (in other cases, the simulator is replaced by some other oracle). Active learning is an iterative process and

involves various steps. The first step in the process is called the ‘warm-up’ stage, in which random samples

are generated using the traditional sampling method and used to train the model, shown as the ‘Build Model’

stage. Once trained, either the entire sample is assessed (in the case of pool based scheme) or sequentially
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samples are assessed using this trained model. The prediction made by the trained model on these candidate

samples is used to synthesize a query strategy. Query strategy is a statistical measure of the informativeness

of unlabelled samples. Both cases of active learning involve evaluating the informativeness of unlabeled

instances. There are different query strategies has been proposed and used by researcher and these can be

majorly classified in:

1. Uncertainty-based sampling: The most commonly used query strategy is uncertainty sampling [81].

In this approach, a query is made to the instances about which the ML model is least certain how to

label. Using Shannon’s entropy function [133], the informativeness about the certainty can be easily

evaluated mathematically. This approach is tightly bonded in the probabilistic framework and work

well with classification problem. Researchers have used this flavor of query sampling for regression

problems in the Gaussian Process framework [33], where uncertainty is equivalent to variance. In such

cases, the difference between uncertainty sampling and variance-based sampling blurs.

2. Query by committee: The query-by-committee (QBC) [46, 132] based adaptive sampling is ensemble-

based, where an ensemble of models is trained on the same or different parts of the data. The response

variances estimated by several metamodels are considered as ensemble uncertainty. Some major inves-

tigations in this field includes diversification of models [95] and boosting/bagging exploitation [2, 22].

3. Expected model change: It is a decision-theoretic approach, which selects the instance that would

impart the greatest change to the current model if its label is known. An example of this query strategy

would be the ‘expected gradient length’ (EGL) approach [131] for logistic regression class.

4. Variance reduction: The variance-based adaptive sampling [71] forces the samples in the regions with

large prediction variances estimated by the machine learning model, with the underlying assumption

that more variance results in a larger error. In this case, the ML model starts with prior probability

distribution from all points in the input domain, and then the model is trained on the observed/evaluated

sample through the Bayesian rule, which offers the posterior distribution on the prediction response on

all the sample in the design space in form of y(x)∼N(µ,σ2). The successive construction and provided

standard deviation (σ ) are regarded as estimation of actual prediction error and employed to assist the

sampling process for reducing model uncertainty.

The query strategies in the active learning paradigm are tightly interwoven with the underlying machine

learning model and the deployment of a class of query strategies can be directly related to the class of ML

model under consideration. From this perspective, the query strategies can be classified into two-part- model

dependent and model-independent query strategies. For example, most uncertainty-based query strategies
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are compatible with models which can predict probability as the output prediction. Similarly, the variance-

based approach is tightly coupled with kriging, Gaussian process [116]. The query-based committee can

be deployed only in the setting, where a population of models is deployed to learn a goal. Some model-

independent approaches like the gradient-based approach and cross-validation approach can be useful for a

large class of models but the expected benefits in each case are not guaranteed. A detailed study on various

extensions and approaches can be found here [89].

There are various potential benefits of using AL in learning problems however vanilla AL finds it dif-

ficult to work in high dimensional data [142]. Additionally, AL often queries on already extracted features

in advance and does not have the ability to extract features. On the other hand, a deep learning model/deep

neural network can automatically extract features from the input data and work very well in high dimensional

data has proven its role as a universal function approximator and strong learning capability due to its com-

plex structure can benefit to the surrogate modeling process for a regression problem. Deep active learning

(developing as a sub-field in machine learning by combining deep Neural network models with an active

learning framework) has many promises for engineering design. Merging deep learning with active learning

may achieve superior performance and it is demonstrated in various fields of work like image recognition

[47, 67], text classification [126, 171], and object detection [4, 42] etc.

From the perspective of a learning task, design problems can be classified as classification and regression

problems. The design decision which is a parametric search of a component/model is a regression problem.

Although regression problems are long studied in the context of surrogate modeling [41, 45] but still it is

challenging for most engineering problems due to input-output manifold complexity. DL has empirically

proved to learn highly non-linear complex manifolds. Most of the work in the field of DeepAL is done in

the context of classification problems, however, there is very little work for a regression problem. In the

regression case, the most sought approach is to use an ensemble of neural network [69] or Bayesian neural

network [18] to get an indirect measure of variance. These approaches are not scalable due to the training

of multiple neural networks and have very little practical utility for learning a large class of behavior. There

are few other works that try to incorporate the spirit of active learning into a single deep neural network.

[144] used random drop-outs in the trained model to get the indirect measurement of variance for selecting a

sample. [82] used the gradient-based approach for active learning in a single deep neural network. The active

learning framework directly addresses the estimation of the utility of candidate data points. On the other

hand, the deep Learning model has powerful learning capability and can scale to high dimension data and

automatically extract features in large dimensional problems. By combining DL with AL, called DeepAL we

can retain the strong learning capability of DL while getting benefited from strategic samples selected by AL.
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Table 2.1: Models and algorithms implemented in SMT and Dakota

SMT Dakota
Linear regression and Polynomial regression Polynomial regression
Kriging Gaussian process (Kriging interpolation)
Gradient enhanced neural network artificial neural network
Kriging with partial least square (KPLS) Multivariate Adaptive Regression Spline (MARS)
Inverse-distance weighting Moving least squares
Radial basis functions Radial basis function
Gradient enhanced Kriging with partial least square Voronoi Piecewise surrogate(VPS)
Regularized minimal-energy tensor-product splines

2.4.2 Software tools for surrogate modeling

In this section, we review two open-source surrogate modeling tools called SMT (Surrogate Modeling Tool-

box) [21] and Dakota (Design Analysis Kit for Optimization and Terascale Applications) [3], developed by

Aerospace Engineering laboratory at the University of Michigan and Sandia National Laboratory respectively.

There is another commercial tool for surrogate modeling which is available for limited use free version called

SUMO (SUrrogate MOdeling Toolbox) [52].

Both open-source tools have some common models and algorithms. A comparative list of machine learn-

ing models and algorithms implemented in both open-source tools is in table 2.1. Each implemented models

have distinct advantages and disadvantages. Most models fall in the category of discriminative learning ex-

cept for kriging and kriging-related methods (KPLS and gaussian process). VPS is an attractive model that

helps to tackle the exponential growth in data with increasing dimensions. Although these tools are good

starting points, they are still deficient in handling a larger class of simulation and system operations due to a

lack of tight integration with active sampling approaches. This gives the scope for further work and extending

these methods. Also, various new machine learning models are unexplored in these tools like bayesian neural

networks, gaussian process for large data, gaussian mixture models, random forests, etc. AI is an evolving

field and new methods and techniques are being developed at a rapid rate. The exhaustive list of freely avail-

able machine learning and DOE software tools is incomprehensible but we try to list down a few mostly used

and important ones below:

1. For GP and its variant [53]

2. Bayesian Optimisation in PyTorch: BOTorch [10]; GPyOpt [54]

3. Graph algorithms in PyTorch: pytorch geometric [43, 114]

4. PyMC [pyMC authors] ; TFP(Tensor Flow Probability) [probability]

5. Scikit -learn,gstat and other packages of Scikit [80]
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6. Bezier(python) for Bezier fit [61]

7. Scipy.stats for statistical methods [79]

8. pyDOE for the design of experiment in Python [pyDOE authors]

Another aspect that is missing in these tools is the rigorous evaluation of the surrogate model. As machine

learning models are prone to fail and sometimes they fail even after showing very high confidence in the

prediction. Without a rigorous evaluation framework, it would be difficult to rely on the prediction made by

these surrogate models. As there is no unified evaluation framework for ML models, they need to be studied

diligently. The next section will provide a literature study about the evaluation of surrogate models.

2.5 Evaluation of trained surrogate model in the context of functional correctness

The evaluation of machine learning models is an emerging and challenging research topic. There are various

aspects against which a machine learning model should be evaluated, like functional correctness, robustness,

security, interpretability, etc. In this manuscript, the scope of the evaluation is in the context of functional

correctness. Evaluation techniques for a surrogate model depend upon its use case. Evaluation of the sur-

rogate model used for optimization in the design process/system operation is intended to establish two key

requirements: (1) the amount of speed increase in the process of design optimization/search/prediction and

(2) functional correctness. The first evaluation metric depends on the domain-specific use case of the surro-

gate model. The second evaluation metric is more general and applied to a general framework of machine

learning testing. Functional correctness is defined as a statistical measure of equivalence between the sur-

rogate model’s behavior and desired behavior on training and validation data. Good functional performance

ensures that the surrogate model will reproduce desirable behavior on data drawn from similar distribution

as collected data. This Performance is generally measured on the testing and validation data to ensure the

learned behavior is the desired one. However, a good performance guarantee on testing data does not always

guarantee 100% functional correctness. This requirement becomes a very critical aspect when a surrogate

model is used in system operation in a safety-critical system. This lead to the challenging problem to detect

input signals on which the surrogate model is highly likely to fail. Rare events are those failures that have

a very low probability to occur, and the model performs its desirable behavior most of the time. For the

system operation use case of the surrogate model, even such rare failure can be catastrophic as it operates

on a safety-critical real-world CPS system. The standard evaluation procedure for detecting a failure in a

machine learning model is to run a simulation of a maximum up to training iteration or size of training data

for detection of failure. [145] showed that this conventional Monte Carlo approach can miss failures entirely,

leading to the deployment of unsafe embedded surrogate models. The attempt made by [145] is to screen
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out situations that are unlikely to be problematic and focus evaluation on the most difficult situations (corner

cases) in a probabilistic rigorous framework, to learn a failure probability predictor. For learning a proba-

bility predictor function, it is required to collect all these rare failures. But, a major impediment in doing

this is since failures are rare, even after running very long simulations we may get very few failures to de-

rive any conclusion. To address this problem, [145] introduces a continuation approach to learning a failure

probability predictor, which estimates the probability the agent fails given some environmental or system

conditions.

Another important aspect of evaluation is the detection of shifts in input data distribution or out-of-

distribution detection. The training process of ML models involves the collection of data and then training

on these collected data. During operation or prediction, we provide input to these trained ML models and

get an output. As machine learning models are trained and validated against collected training data, their

performance with new input that is not consistent with the statistical properties of the training data cannot be

relied on. Therefore, it is imperative to have some mechanism to verify that a given input data is sampled from

the training data distribution. An Out-of-training-distribution (OOD) data point is one that is significantly

different from the training data i.e. a data point that is an anomaly relative to the training data so that it may

stir speculation that it was generated by a different mechanism [59]. In the next section, we will see in detail

the current state of the art for both evaluation metrics.

2.5.1 Rare event failure test case generation for in-distribution training data

The goal of testing an ML model is to evaluate the correctness of a trained model and find a good test

scenario. We define a good test scenario as a test case that can expose the potential fault in the model

behavior and provide reasoning about correctness. A general software testing paradigm can not be deployed

for machine learning models as these are more statistically oriented data-driven programmable entities, where

the logical decision boundary is outlined via the training process. The behavior evolves during the training

process and the result of training cannot be outlined prior to empirical testing, which is contradictory with

the traditional software testing paradigm, where the desired behavior is fixed first and then the underlying

behavior of software is designed. This behavior does not dynamically alter with the amount of information in

data. Contrary to traditional software testing, test case generation in machine learning is based on observed

training data. Most machine learning models operate in high dimensional space, where sufficient testing by

sampling the entire data space is not possible due to the enormous number of required samples. Another

aspect that is challenging for ML model testing is the oracle problem [12] because the machine learning

model is designed to find the solution to a problem for which the actual answer is not known. With any

previous answer, it is difficult to do accurate testing [101]. Due to these challenges sometime ML models are
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regarded as ‘non-testable’ software. With limited computational resources or available time, the alternative

approach of testing is used by either separating collected data in train & test class or generating input test

cases by vanilla Monte Carlo sampling up to the maximum size of training data for detection of failure.

Empirical observation reflects that such testing may miss failures entirely, leading to the deployment of an

unsafe trained model. Rare event failure is those failures that have a very low probability to occur, and

the model performs its desirable behavior most of the time. For example, failures in Google’s autonomous

vehicle fleet, which was test-driven approximately 1.3 million miles in autonomous mode and was involved

in 11 crash failures from 2009 to 2015 [19] are rare failure scenarios. These rare failures can be catastrophic

in some cases. Finding these scenarios may help to retrain these models and increase the correctness of the

model. A systematic and extensively automatable way to search for a good test scenario may increase the

effectiveness and efficiency of the test and thus reduce the cost of testing as well as increase correctness in

the system. Some early work for searching a good test case in an autonomous system uses a fitness function,

that assigns numerical qualitative value to a test case [161]. By defining a fitness function, the search problem

can be converted into an optimization problem, which is mathematically and computationally tractable. The

fitness function framework is extended for generating test cases in the context of machine learning models.

[57] addressed the methodological challenge of creating suitable fitness functions by formulating a fitness

functions template for testing automated and autonomous driving systems. By attaching fitness functions to

different test scenarios, recent works use either clustering algorithms or evolutionary algorithms to find a good

test case for both single and multi-objective fitness function [1, 15]. Another approach to generating a failure

test scenario is attempted through adversarial attack [170, 174]. [140] proposed several adversarial example

generation methods for attacking deep neural networks. These methods majorly generated an adversarial

example via adding calibrated perturbation to an image data that can confuse the DNN. [51, 99] have shown

various techniques to generate adversarial examples in deep neural network (DNN). Although these works

are done for image data we use the same DNN to learn a policy in a reinforcement learning setting and

consequently they fail in a similar way. Some early work in finding failure in RL agent is done by [66, 86].

[66] proposes an adversarial attack tactic where the adversary attacks a deep RL agent at every time step in

an episode. To create failure, it considers adversaries have the capability to introduce small perturbations to

the raw input of the DNN. They added different perturbations based on whether the adversary has access to

the deep policy network or not. [86] modified this approach in attempting to find the failure of the RL agent.

For that, they designed two different attacks on the trained agent. In one case, they aimed to minimize the

agent’s reward by attacking the agent in some intermittent simulation time steps in an episode. In another

form of attack, they lured the agent to some designated state rather than reaching the target state. In this kind

of attack, they predicted the future state by using a generative model and generated a sequence of actions
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that divert the agent from its target position. In all the above Adversarial input test cases are a perturbed

version of original inputs so, they may or may not belongs to training data distribution. Although these inputs

expose robustness or security flaws in the trained model, it is not justified to demand the ML model to work

on a distribution that is not seen during training. The goal of a good testing process is to expeditiously find

failures scenario in input training data distribution. There are only a few works in machine learning testing in

the context of in-distribution rare event failure search. [145] implemented a guided search approach to find a

rare event failure scenario by learning from training data and focusing on a region of input space that has a

high probability to fail based on failures that occurred during training. Data from earlier failures were used

as a driving signal for the segregation of input search space. Using these earlier failures, a failure predictor

(called AVF) was trained, which produce the likelihood of failure on the given input sample. However, this

guided search process has high variance, which depends on the training process. This underlying reason is

the result of non-monotonic improvement in policies during training. As these policies are used for data

generation by adding stochastic noise/variable to the action for exploration, the convergence to a good policy

is arbitrary and earlier failure scenarios become ineffective to train a good failure predictor. Attempts were

also made to control the step size for policy updates for making learning smooth, but it had a small effect on

the performance of the predictor, and finding a good step size for monotonic improvement in policy is not a

trivial problem.

2.5.2 Anomaly detection/Out-of-distribution detection

The OOD detection goal is to find whether input data X ′ given during prediction is sampled from Et (envi-

ronment, in which it is trained) or not. If X ′ ∼ Et , then we call this observed state non-OOD, or else we call

it OOD, i.e. the trained agent has not seen this kind of input during training and the trained agent may behave

unexpectedly to this OOD input data. This kind of anomaly when single point data is anomalous with respect

to the rest of data is called point anomaly [27]. Point anomaly detection is the most difficult to detect. Other

anomalies like contextual anomaly [27] is looser version of point anomaly, where data instance is anomalous

in a specific context. There are three major categories of approaches to detect out-of-training distribution

data: statistical detection techniques, deviation-based techniques, proximity-based techniques [7]. Statistical

detection techniques attempt to fit the training data in a parametric/non-parametric probability distribution.

Parametric models like the Gaussian Mixture Model (GMM) or non-parametric models like kernel-density

estimation can be used to define a probability distribution. The goal of learning is to find the training data

distribution model and its parameters that can explain the training data. Using this learned densities distri-

bution, inferences about new data points can be made. Most of these are based on the probability of it being

generated from the trained densities. A data point is defined as an OOD if the probability of it being generated
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is very low. The major limitation of this approach is the difficulty to find a good probability fit, even when

the dimension of the problem increase beyond a hundred and consequently detecting anomalous data in high

dimensions using learned densities is hard. [103] claim that state-of-the-art learned densities are not suitable

for anomaly detection since they assign a higher probability to some out-of-distribution data than the data on

which the models were trained and proposed performing an anomaly detection test based on the typicality of

data under the learned density instead of the likelihood of data under the learned density.

Proximity-based techniques assume that anomalous data are isolated from the majority of the data and

use various approaches to measure density or cluster representation and the relationship of data-point with

the cluster. There are three ways to model proximity-based anomaly detection, clustering-based, density-

based, and distance based. In the clustering-based approach, a clustering algorithm is applied to data, and

the relationship of each data point with respect to a cluster is measured as an anomaly score. An example

anomaly score can be distance from the centroid of the cluster. Density-based clustering approach tries to

define anomaly as a data point that lies in a sparse region and the number of data points in a localized region

can be measured as an anomaly score. Distance-based anomaly detection uses measurements that are related

to the neighboring data points of a data point, and the distance value can be used as an anomaly score. In

proximity-based approaches, the selection of algorithm and data structure should be such that relationships of

the data points in metric space must be preserved in this data structure. The early work in this context is done

by using randomized cut forests/isolation forests [88]. The isolation forest approach has several drawbacks,

such as not being compatible with streaming data and missing crucial OODs in the presence of irrelevant

dimensions. etc [55]. To address these challenges, [55] proposed Robust Random Cut Forest (RRCF) as a

data structure, which is very promising in terms of a very small false alarm rate (high accuracy), and can

work on streaming data, but it is not scaleable on large data [56].

Deviation-based approaches are based on one or other flavors of the encoder-decoder settings. The en-

coder is trained to embed the data in latent space and the decoder is trained to reconstruct the data from latent

space. During the training of this model, the goal is to reconstruct the input data as the output of the decoder.

Once trained, inference about a data point can be made by passing it through the encoder and decoder setting

and estimating the reconstruction error/probability gap. The underlying assumption of deviation-based meth-

ods is data from out-of-distribution will have high reconstruction error as the encoder-decoder parameters

are not trained for it. The encoder tries to find the lower dimensional embedding of the original data where

anomalies and normal data are expected to be separated. Once the encoder-decoder is trained on training data

there are three major approaches that are used to find the anomaly :

1. Reconstruction error in the encoder-decoder setting.
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2. Reconstruction probability difference (KL divergence) in VAE

3. Latent space probability difference (KL divergence) in VAE

In comparison to other techniques for measuring deviation, the deep learning model has the most used

method. The deep learning-based OOD detection algorithms can be classified into two of the following

methods based on the kind of training data.

1. Supervised methods, which involves training a detector on a labeled dataset that contains both OOD

and non-OOD samples.

2. Semi-supervised methods, which involves training a Deep learning-based detector on a dataset consid-

ered to only have non-OOD samples.

Supervised methods are really straight forward and the training problem is a binary classification prob-

lem. But the unavailability of labeled non-OOD data has resulted in the wide usage of semi-supervised

and unsupervised detection techniques. Semi-supervised OOD detection is a complex process and involves

automatic learning of intrinsic latent behavior hidden in data and does not require explicit labels. A deep

learning-based encoder-decoder setting is majorly deployed in the deviation-based semi-supervised OOD de-

tection process. A well-trained autoencoder would result in a low reconstruction error for samples similar to

the training dataset and a high reconstruction error for samples that are not similar to the training dataset. For

example, autoencoder [123] training is semi-supervised. A well-trained autoencoder would result in a low

reconstruction error for samples similar to the training dataset and a high reconstruction error for samples that

are not similar to the training dataset. Discriminative deep learning models like multilayer perceptron [32]

and Deep-SVDD [122] have shown robust detection capability on high-dimensional data such as images.

Among them, Deep-SVDD is the most prominent model. It trains a neural network to learn a minimum vol-

ume hypersphere that encloses the network’s representation of the training data samples [122]. The results

from Cai et al. [25] have shown that a well-trained Deep-SVDD can detect OOD images with high precision.

However, improper selection of network hyperparameters results in a hyper-sphere collapse problem of the

Deep-SVDD network [29].
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CHAPTER 3

AI-ML approaches in Design optimization

3.1 Problem formulation

The area of design optimization in complex engineering domains presents significant challenges, and the

utilization of artificial intelligence and machine learning models and algorithms holds promise for expediting

engineering design problems. This chapter examines the various possibilities for implementing artificial

intelligence and machine learning models and algorithms in practical engineering design optimization issues.

It encompasses multiple scenarios, application cases, and experimental approaches. The challenges can be

classified below according to the quantity of labeled data that can be generated as a consequence of complex

computational complexity, the size of the design space, and the optimization objective. I am particularly

interested in examining three distinct categories of problems and analyzing the corresponding methodologies

employed in solving them.

I. Design optimization problem that involves computationally costly evaluation (labeling cost is very high,

like in the CFD and FEA domains) and has a parametric design search space that is continuous (it may

have infeasible regions in this continuous space), and the goal is to optimize for only one set of design

requirements.

II. Design optimization problem that involves computationally cheap evaluation (due to the availability of

a coarser approximate model that is very fast to evaluate) and has a parametric design search space that

is high-dimensional and continuous. The challenge of design optimization in this case arises from a

high-dimensional design space, called the curse of dimensionality. And the goal is to optimize for only

one set of design requirements.

III. Problem of study and explore the capability of available AI-ML models to learn complex physical

behavior encountered in engineering design and use these trained surrogates in the optimization process.

In the case of the first problem, the challenge is in the creation of a surrogate model that is not feasible due

to computational complexity on a given limited time in hand, and the objective of the research is to identify

a framework for sample-efficient optimization. In the second problem, too, the design of a cheap surrogate

model is unwarranted (since we already have a cheap evaluation model), so the strategy is to formulate the

design optimization problem as an inverse problem and use AI-ML to solve it. In the third scenario, the

method investigates the capability of available AI-ML models to learn complex physical behavior and uses
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the trained surrogate in the optimization process. By leveraging the generalization capability of AI-ML

models much faster than conventional methods, it is anticipated that a large number of design optimization

probelm can be solved. The disadvantage of this method is that the data generation and training processes are

time-consuming and computationally costly.

Apart from the above-mentioned problems, I also present my research efforts in search of a universal

hull shape that is optimal/near-optimal across a range of environmental and operating conditions. Finally, I

present a tool called Anvil, which is a general-purpose SciML (Scientific Machine Learning) tool for CFD-

based design evaluators integrated with AI-based optimization algorithms and can be used by researchers and

engineers in the field of shape optimization involving solid-fluid coupling.

3.2 Approach to problem I: Search for a sample efficient optimization framework

The discipline of design optimization, encompassing both shape (geometry) and topology optimization, is

widely studied in the field of computational physics. While the potential benefits of utilizing high-fidelity

simulations in computer-aided design (CAD) are attractive, a significant obstacle that arises is the curse

of dimensionality that arises when simulating intricate systems governed by partial differential equations

(PDEs) with multiple physical phenomena (such as the O(n4) complexity of three-dimensional Eulerian fluid

simulations in terms of space and time). One potential option is to develop cost-effective and approximate

surrogate models for this intricate behavior. However, this approach necessitates a substantial investment

of time and effort in activities such as data acquisition, training, validation, and so forth. In this particular

scenario, it is essential to use a more prudent approach towards design optimization by formulating a highly

efficient framework that minimizes the number of simulations required to identify an optimal design. In

pursuit of this objective, this section aims to enhance sample efficiency in the context of a practical design

optimization problem that necessitates the evaluation of CFD. In the subsequent part, the approach employed

for the evaluation of CFD-based design is initially elaborated upon.

3.2.1 Methodology for CFD-based design evaluation

For design evaluation, the first step is to integrate different engineering design domains in a toolchain and

design a CAD seed whose parameter defines the surface geometry.

3.2.1.1 Integrated tool chain

In Computer Aided Engineering (CAE), the first step in design automation and exploration is the integra-

tion and automation of simulation tools for end-to-end highly automated execution. The UUV hull design

process involves two engineering design simulation tools and one optimization/sampling framework. The

32



engineering domain simulation tool consists of freeCAD [119] - a parametric CAD modeling tool built on

concepts and algorithms of the Cascade Kernel, and OpenFoam [70] - a C++-based tool for fluid physics sim-

ulations that transforms continuum mechanics partial differential equations using finite volume discretization

and solves their evolution. OpenFoam also consists of other auxiliary tools for meshing, parallelism, and

different solvers integrated for seamless fluid simulation. For optimization and sampling purposes, I chose

a python-based implementation of the optimization and sampling algorithms due to their easy deployment,

extendibility, and availability as open-source software packages. All three tools are integrated in unison to

create an integrated toolchain (refer to figure 3.1). The initial stage of design automation and exploration in

Computer Aided Engineering (CAE) involves the integration and automation of simulation tools to provide

a comprehensive and fully automated execution process. The process of designing the hull for an Unmanned

Underwater Vehicle (UUV) entails the utilization of two engineering design simulation tools, along with

an optimization/sampling framework. The engineering domain simulation tool comprises two main compo-

nents: freeCAD and OpenFoam. freeCAD is a parametric CAD modeling tool that is constructed based on

the Cascade Kernel. On the other hand, OpenFoam [70] is a C++-based software tool used for conducting

fluid physics simulations. It employs finite volume discretization to transform partial differential equations

derived from continuum mechanics and solves them to determine their evolution. In addition to its core func-

tionalities, OpenFoam incorporates supplementary tools for mesh generation, parallel computing, and several

solvers, which are seamlessly integrated to facilitate fluid simulation. In order to facilitate optimization and

sample procedures, I have opted for a python-based implementation of the optimization and sampling algo-

rithms. This decision is based on the advantages of quick deployment, extendibility, and the availability of

these algorithms as open-source software packages. The three tools are combined together to form a cohe-

sive toolchain (see figure 3.1). The utilization of Docker as a packaging and software delivery method was

employed to establish a standardized software unit and ensure the maintenance of software version consis-

tency, given that FreeCAD and OpenFOAM are self-contained entities encompassing numerous components.

In the realm of parametric design optimization and data production, a parametric 3D CAD seed design is

formulated. This seed design encompasses a spectrum of characteristics that govern the extent of flexibility

and adaptability exhibited by a three-dimensional model. The CAD tool, namely freeCAD, has the capabil-

ity to autonomously build a 3D geometry based on a specified parameter value. Subsequently, it employs a

tessellation method to transform the generated geometry into the STL file format. This tessellation process

involves the creation of a collection of 3D triangles that accurately represent the CAD model. The STL file

that is produced is thereafter sent via a file exchange mechanism to another Docker environment in order to

execute the fluid simulation on the provided STL design. Prior to executing OpenFOAM, it is imperative to

do preliminary procedures such as mesh generation, flow initialization, and boundary condition specification,

33



among others. A comprehensive elucidation of these methods may be found in a subsequent section. All of

these operations can be managed within a Python programming environment. After the simulation reaches

convergence, the CFD docker provides the value of the drag force corresponding to the specified design

parameter. To perform in-loop optimization for CFD, I employed the GPyOpt (Gaussian Processes for Opti-

mization) [54], pyMOO (Multi-Objective Optimization) [20], and pyDOE (Design of Experiments) software

packages. These programs were utilized to execute optimization algorithms and sampling methods. In the

data collecting phase of surrogate modeling, a uniformly random selection of design points was employed

within the design space to execute the simulation.

CAD Docker Container CFD Docker Container

Python environment and scripts

CAD Seed
Design

CAD Design + Body
Meshing + STL

process

CAD Design
Tool (FreeCAD) STL File

Meshing + RANS
+ k-w SST

CFD
Simulation

Tool (openFOAM)
Drag Force

Initialization
and Boundary

Conditions

Chosen parameters

Random
Sampling

Data
Collection

Bounded
Design
Space

Figure 3.1: An integrated tool chain incorporating freeCAD (parametric CAD modeling tool), OpenFOAM
(Computational Fluid Dynamics simulation tool) with Python environment (control the process flow and run
optimizer and sampler) for CAD design generation, its drag evaluation and optimization in our workflow.

3.2.1.2 Shape generation/ Surface geometry

The drag of a vehicle is greatly affected by the hull geometry. The hull profile referred to as the ‘Myring’

[102] is extensively utilized among the several contemporary hull designs. The hull profile is a rotational

symmetry around an axis, resembling a cylindrical structure with a specified ratio of length to diameter. The

aforementioned design has numerous advantages, such as improved utilization of internal volume, less drag

force, optimized flow characteristics, and a suitable geometry for dynamic and hydrostatic pressure.
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Figure 3.2: Myring hull profile

The nose shape and the tail shape for the Myring hull profile (refer to figure 3.2) are given by:
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The variables r1 and r2 are used to describe the geometric properties of the nose/bow and the tail/stern of the

hull, respectively. The variable x is defined as the distance measured from the tip of the nose. Let D be the

diameter of the hull, and let a, b, and c denote the lengths of the nose, body, and tail accordingly (see to figure

3.2). The variables n and θ are employed to define the geometric properties of the nose and tail portions in

different streamlined profiles. By manipulating the variables n and θ , one may effectively control the body

profile of the hull. The influence of different values of n and θ on the structure of the hull is seen in figure

3.3. The analysis fails to account for the potential influence of nose and tail offset. The utilization of the six

parameters, namely a, b, c, d, n, and θ , has the potential to yield a multitude of geometric configurations.

a b c

dd d/
/ /

22 2

θθθ === 555◦

θθθ === 111555◦

θθθ === 222555◦

nnn === 000...555

nnn === 222...000

nnn === 111...555

Figure 3.3: Myring hull profile change with nnn and θθθ
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3.2.1.3 CAD design

With the goal of generating a surrogate for a large class of problems, it was imperative to design a parametric

CAD model that should have flexibility and adaptability to design a 3D CAD model from a given parameter

without manual intervention. The parametric mechanical CAD design should maintain the experimenter’s

assumption to generate a valid CAD design for the given parameter. Invalid designs can be generated due

to the intrinsic nature of schema for parameterization or CAD tool issues. Ensuring this using a CAD de-

sign is hard [64]. I tackled this problem in two steps: first, by using stringent design methodology with

completely constrained designs and second step storing a cross-section of the design in point-based schema

during simulation to validate all schema by visual inspection.

3.2.1.4 Numerical equations and turbulence model for simulation

The utilization of CFD enables the numerical solution of the Navier-Stokes equation, enabling the study of

the effects of fluid flow on a specific geometric design. There are two alternative methodologies that offer

reasonable approximations to direct numerical simulation (DNS) of the Navier-Stokes equations, mostly be-

cause to the substantial processing expense involved. The two methodologies under discussion are Reynolds-

averaged Navier-Stokes (RANS) simulation with closure-based turbulence models and large eddy simulation

(LES) [124]. The Reynolds Averaged Navier-Stokes equation (RANS) was employed as the computational

technique for solving the equations of mass and moment conservation over a temporal average. The Navier-

Stokes equation that describe the dynamics of a Newtonian fluid, for incompressible and isothermal behaviour

can be described as:

ρ
d⃗v
dt

=−∇p+µ∇
2v+ρ g⃗ (3.3)

∇ · v⃗ = 0 (3.4)

The symbol v represents the velocity field, µ denotes the viscosity of the fluid, p corresponds to the

pressure, and g represents the gravitational acceleration vector. Given the assumption of the fluid being

incompressible, the density ρ remains constant.

The turbulence physics utilized in this investigation involved the mathematical formulation of the k-ω

shear stress transport (k-ω SST) model, which was originally presented by Menter [96]. According to it,

this particular turbulence model has demonstrated greater reliability in forecasting flow separation when

compared to alternative turbulence models. The closure model utilized in this investigation is the Shear

Stress Transport (SST) methodology, which is rooted in the Boussinesq hypothesis on the Reynolds stress
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tensor. Furthermore, the model integrates a modified formulation for the scalar eddy viscosity component.

The underlying assumption posits the existence of a correlation between the Reynolds stress tensor and the

mean rate-of-strain tensor, alongside the turbulent kinetic energy symbolized as k. In k-ω SST, two different

turbulence models are utilized in different regions of the flow. The k-ω model [163] is used to capture the flow

characteristics in the vicinity of the wall, while the k-ε model [78] is adopted to analyze the flow behavior

in the region away from the boundary layer, commonly referred to as the free stream region. Furthermore,

this model takes into account the inclusion of primary shear stress transmission inside boundary layers that

are subjected to adverse pressure gradients. Furthermore, this methodology addresses the challenge posed by

the k-ω model, which is known for its susceptibility to changes in the inlet free-stream turbulence parameter

values. k-ω SST closure model has demonstrated considerable efficacy and has been empirically validated in

several turbulent flow scenarios, owing to its multiple benefits. This turbulence model is commonly utilized

in real world CFD simulations for the purpose of system design and has great success and validated against

many real-world turbulence flow problems. The mathematical representation of the k-ω SST model utilized

in OpenFOAM is described by Menter [96] and is stated as follows:

∂ (ρk)
∂ t

+
∂ (ρUik)

∂xi
= Pk−β

∗
ρkω +

∂

∂xi

[
(µ +σkµt)

∂k
∂xi

]
(3.5)

∂ (ρω)

∂ t
+

∂ (ρUiω)

∂xi
= αρS2−βρω

2 +
∂

∂xi

[
(µ +σω µt)

∂ω

∂xi

]
+2(1−F1)ρσw2

1
ω

∂k
∂xi

∂ω

∂xi
(3.6)

The blending function F1 is defined by:

F1 = tanh

{{
min

[
max

( √
k

β ∗ωy
,

500v
y2ω

)
,

4ρσω2k
CDkω y2

]}4}
(3.7)

with CDkω = max

(
2ρσω2

1
ω

∂k
∂xi

∂ω

∂xi
,10−10

)
and y is the distance to the nearest wall.

F1 is equal to zero away from the surface (k-ε model) and switches over to one inside the boundary layer

(k-ω model). The turbulent eddy viscosity is defined as follows:

vt =
a1k

max(a1ω,SF2)
(3.8)

where S is the invariant measure of the strain rate and F2 is a second blending function defined by :

S =
1
2

(
∂Ui

∂x j
+

∂U j

∂xi

)
(3.9)
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F2 = tanh

[[
max

(
2
√

k
β ∗ωy

,
500v
y2ω

)]2]
(3.10)

In the k-ω SST model, a limiter is employed to mitigate the accumulation of turbulence in regions of

stagnation and defined below:

Pk = µt
∂Ui

∂x j

(
∂Ui

∂x j
+

∂U j

∂xi

)
→ P̃k = min(Pk,10.β ∗ρkω) (3.11)

All the constants are computed by a blend funtion from the corresponding constants of k-ε and k-ω model via

α = α1F +α2(1−F) etc. The constants for this model are β ∗ = 0.09, α1 = 0.31, β1 = 0.075, σk1 = 0.85,

σω1 = 0.5, α2 = 0.44, β2 = 0.0828, σk2 = 1, σw2 = 0.856.

Initialization: The turbulent energy k is defined as:

k =
3
2
(UI)2 (3.12)

Where U is the initial flow velocity and I is the turbulence intensity. The turbulence intensity gives the level

of turbulence and can be defined as follows:

I =
u′

U
(3.13)

Where u′ is the root–mean–square of the turbulent velocity fluctuations given as:

u′ =

√
1
3
(
u′x

2 +u′y
2 +u′z

2) (3.14)

The mean velocity U can be calculated as follows:

U =
√

Ux
2 +Uy

2 +Uz
2 (3.15)

The specific turbulent dissipation rate can be calculated using the following formula:

ω =
k

1
2

l ∗Cµ

1
4

(3.16)

Where Cµ is the turbulence model constant which usually takes the value 0.09, k is the turbulent energy, and

l is the turbulent length scale.
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3.2.1.5 Mesh generation

The meshing involved two steps: it starts with the creation of castellated 3D parametric volumetric mesh to

fill the whole 3D volume using the OpenFOAM blockMesh utility. Our volume meshing process uses only

hexahedral elements whose number is defined by the parameter in the blockMeshDict file. The volumetric

mesh is further split and refined in the vicinity of the body surfaces. Once the mesh in the locality of the body

is refined and split, cells inside the body shape are removed keeping the constraint that at least one volumetric

region must be bounded inside the domain. This results in separating the body shape from the volume mesh

and creating a volume mesh around the surface. The next step is refining these mesh near the boundary to

generate three-dimensional unstructured or hybrid meshes consisting of hexahedra (hex) and split-hexahedra

(split-hex) elements to remove cells that violate the mesh quality parameters in proximity volume of external

walls of the hull using snappyHexMesh tool. Figure 3.4a and 3.4b provides a view of the mesh in the vicinity

of the hull for one of the simulations.

3.2.1.6 Initial and boundary conditions

All simulations utilize the conventional Dirichlet boundary conditions that are appropriate for modeling in-

compressible flow around a solid object. At the inflow, the velocity inlet boundary condition was enforced

with a magnitude of 5 knots, while at the outflow, a zero pressure outlet boundary condition was applied.

The hull surface was imposed with a no-slip boundary condition, whilst the side wall, symmetry wall, and far

field surfaces were defined as symmetry surfaces. The simulations were performed with a flow velocity of

2 m/s, assuming an inflow turbulence intensity level of 4%. The selection of medium turbulence was based

on the flow’s low-speed characteristics. The starting values for the variables k and ω were obtained using the

same methods described in equations 3.12 and 3.16. The calculated values for the parameters k and ω are

around 0.01m2/s2 and 57 per second, respectively. Assuming the Newtonian model, the kinematic viscosity

is assigned a constant value of 1.7 mm2/sec.

3.2.1.7 Solver setting

The fvSchemes, controlDict, and fvSolution files are set as part of the solution setting. The gradSchemes,

laplacianSchemes, ddtSchemes, divSchemes (divergence scheme), interpolationSchemes, and snGradSchemes

(surface normal gradient scheme) are controlled by the fvSchemes file. The gradSchemes are set to Gauss

linear, the laplacianSchemes are set to Gauss linear uncorrected, and the div(phi,k) and div(phi, omega) terms

are set to limited Gauss upwind. The controlDict sets the start time, end time, time step, etc. for the simula-

tion. The maximum simulation time is set for up to 500 seconds, or until convergence, whichever comes first.

The solver is set to SimpleFoam, which is a steady-state solver for non-compressible turbulent flow that uses
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(a)

(b)

Figure 3.4: Meshing in the OpenFOAM after blockMesh based mesh generation and snappyHex based re-
finement (a) cross-sectional view, (b) oblique view.

the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm. In the fvSolution file, the

pressure solver was GAMG (Geometric agglomerated algebraic multigrid preconditioner) with symGauss-

Seidel smoother and a tolerance of 1.0×e−7 and a relative tolerance of 0.01. The GaussSeidel smoother was

used with the smoothsolver for U , k, and ω . In each case, the range is set to 1.0e−07, with relTol = 0.1.

3.2.1.8 Example simulation results

The simulation output of one of the simulation experiments utilizing a UUV hull design in openFoam, with

the aforementioned configuration and approach, is depicted in figure 3.5. The contour plot of the mean axial

velocity and pressure field in the flow zone was generated using the Paraview post-processing software tool.
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(a)

(b)

Figure 3.5: An example steady state flow properties (a) mean axial velocity, (b) pressure field.

3.2.2 Unconstrained sample efficient design optimization problem with UUV hull design use case

The objective of this section is to examine the performance of various optimization and sampling techniques

when used in loop with a CFD simulator to find the optimal design parameters of an Unmanned Under-

water Vehicle (UUV) hull. I undertake a comparative analysis of various numerical methods, which have

been chosen based on our understanding of prevailing methodologies. In order to evaluate the efficacy of

these various methods, two key metrics are of interest: the predicted sample efficiency in identifying the

best design, and the variance in the search process, which reflects the convergence behavior. The following

definitions are provided: Consider the set S comprising of labeled sample designs involved in the process

of design optimization. Let f denote the mapping that associates each candidate hull design Si with the

steady-state drag force F experienced by the underwater unmanned vehicle (UUV) with design Si as it moves

through water. A sample-efficient design optimization process aims to decrease the size of the set S, while

finds an optimal design. To address the inherent variability in optimization processes either due to intializa-

tion condition or randomness in the optimization process, I estimate the expected sample efficiency (E(|S|)).
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Specifically, I aim to identify the method that, on a given budget, is expected to deliver the most optimal de-

sign. The measurement of convergence behavior in the search process pertains to the assessment of variance

in the optimization procedure when initiated with various initializations conditons. Variance is quantified

through the absolute difference between the maximum and minimum values of the drag coefficients, de-

noted as |Fmax−Fmin|, which represents the range observed over each iteration. In the context of design

optimization, certain commercial CFD simulation software packages are equipped with a range of design

exploration techniques, including response surface methods, sensitivity analysis methods, and classic opti-

mization algorithms such as genetic algorithms. The recent advancements in artificial intelligence (AI)-based

optimization techniques exhibit potential for surpassing the performance of current optimization methods. I

am interested in doing a comparative analysis of a broad range of algorithms in order to ascertain the optimal

combination of sample efficiency and convergence behavior for UUV hull design optimization. In order to

achieve this objective, I have chosen six distinct design of experiment (DOE) and optimization algorithms,

namely: Monte Carlo with sampling from a uniform random distribution, maximin Latin Hypercube-based

optimization, Vanilla Genetic Algorithm, Nelder-Mead, Bayesian Optimization—Lower Confidence Bound

(BO-LCB), and Bayesian Optimization—Expected Improvement (BO-EI). The specifics of each algorithm

can be found in Chapter 2.

To formally define the optimization problem, I denote the 3D hull shape by Ω, which is parameterized on

a multivariate parameter X , i.e. Ω = Ω(X). Let f : Ω 7→ F be a function that maps the 3D hull shape design

Ω to the steady-state drag force F . Our optimization goal is then to minimize f on the domain of interest DS,

X ⊂ DS:

Ω
∗ = argmin

X∈DS
f (X) (3.17)

The Remus100 class design, as discussed in the work of Winey et al. [164], serves as a relevant real-world

case study that I utilize as the basis for our design space. The design of the Remus100 is characterized by a

Myring hull-based shape, with a diameter of 0.191m and a total length of 1.33m. For the sake of optimization,

I consider the diameter and total length of the Myring hull as constants, while allowing the remaining shape

parameters (a,b,c,n,θ ) to vary and be included in the optimization process. The search domain for design

parameters (a,b,c,n,θ ) is given in table 3.1.

The allocated budget for optimization has been established to be 50 evaluations as each evaluation is

costly and takes approximately 10 minutes per evalution. The results of the design and its corresponding

drag force, as obtained from the various methods under evaluation, are shown in figure 3.6. The top diagram

illustrates that BO-LCB achieves the most optimal design with the fewest amount of samples. BO-EI exhibits

similar expected sample efficiency to BO-LCB, however, it is important to note that the variance in finding the
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Figure 3.6: Optimal F vs. the number of evaluated designs. The top plot shows the expected optimal
drag found by each optimization algorithm as the design space is explored. The expectation is calculated
over five different optimization runs. The bottom six plots show the mean (the thick line) and the vari-
ance (shaded region) of drag forces found by using different optimization algorithms. Here BO-EI refers
to Bayesian Optimization—Expected Improvement, BO-LCB refers to Bayesian Optimization—Lower Con-
fidence Bound, GA refers to Genetic Algorithm, LHC refers to maximin Latin Hypercube, VMC refers to
Vanilla Monte Carlo, and NM refers to Nelder-Mead method.

optimal design is significantly higher for BO-EI compared to BO-LCB. This observation can be corroborated

by referring to the lower plots of figure 3.6, where it is evident that BO-LCB consistently converges to the

same optimal design after approximately 30 iterations. Alternative approaches find optimal solutions that are

significantly inferior within the specified budgetary constraints.

The design found by of one of five experiments are depicted in figure 3.7. This figure 3.7 displays the

optimal hull form of an Unmanned Underwater Vehicle (UUV) that was found using above-mentioned ap-

proaches. The design achieved by BO-LCB exhibits a significantly streamlined body. The design obtained

via BO-EI has the highest degree of proximity to the ideal design achieved from BO-LCB. The designs de-

rived from the Genetic Algorithm (GA) and Nelder-Mead optimization methods exhibit degenerate nose and
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Parameter Symbol Minimum Maximum

Length of nose section a 50 mm 573 mm
Length of tail section c 50 mm 573 mm
Index of nose shape n 1.0 50.0
Tail semi-angle θ 0o 50o

b = 1910− (a+ c)

Table 3.1: Design space: Range of design space parameters for optimization.

(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Results of one optimization run: optimal design discovered after exhausting the budget of sim-
ulation, using different optimization algorithms. (a) Bayesian Optimisation—Expected Improvement, (b)
Bayesian Optimization—Lowest confidence bound, (c) Genetic Algorithm, (d) Nelder Mead, (e) maximin
Latin Hypercube and (f) Vanilla Monte Carlo. The design produced by BO-LCB (design (b)) has lowest
drag.

tail characteristics, which deviate significantly from the near-optimal design effectively identified by the BO-

LCB approach. The design achieved by the maximin Latin Hypercube Sampling (LHC) approach exhibits

good performance, akin to the design produced through Bayesian Optimization with Expected Improvement

(BO-EI). However, it is important to note that both designs still not the optimal design.

3.2.3 Constrained Bayesian optimization with UUV hull design use case

In the previous experiment, I showed that Bayesian Optimization (BO) [30, 98, 173] has emerged as a promis-

ing paradigm for optimizing expensive-to-evaluate functions in a sample-efficient manner, and it has been

successfully applied to other scientific domains. In some optimization problem, constraints may exist which

make some of the designs and design space infeasible, and these must be handled appropriately during the

optimization process. In this section, I formulate the UUV hull design problem as a constrained optimization

problem. The UUV hull contains electronics, sensors, and other mechanical and electrical components. Pack-

ing them into the hull imposes a non-linear constraint on the optimization process. The hull design problem
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can then be formulated as a constrained optimization problem defined as follows:

Ω
∗ = argmin

x∈DS
f (X) (3.18)

s.t. g(x)≤ 0 (3.19)

Here, constraint function g(x) ensures that all selected components can be packed inside the designed UUV

hull. To solve this optimization problem, I utilize a constrained Bayesian Optimization framework as formu-

lated by [48].

3.2.3.1 Constrained Bayesian optimization

Bayesian Optimization relies on a probabilistic model of the system of interest during optimization, and the

fidelity of the model is the most decisive factor in the optimization process. I use the Gaussian process [116]

defined below to model system behavior ( f ):

f ∼ G P(µ(.),κ(., .)) (3.20)

Here µ(.) is the mean function and κ(., .) is the covariance kernel. For any given pair of input points x,x′ ∈Rd ,

these are defined as:

µ(x) = E[ f (x)] (3.21)

κ(x,x′) = E[( f (x)−µ(x))( f (x′)−µ(x′)] (3.22)

In the Bayesian sequential design optimization process, a crucial step at each iteration is to select the most

promising candidate x∗ for evaluation in the next iteration. In the BO setting, this is done by defining an ac-

quisition function. The design of an acquisition function is a critical component in the performance efficiency

of the BO. Let x+ be the best-evaluated sample so far. To select a candidate point x̂ in the next iteration, an

improvement is defined according to Mockus et al. [98] as follows:

I(x̂) = max{0, f (x̂)− f (x+)} (3.23)
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The expected improvement in such a case is defined as an EI acquisition function, which has a closed-form

solution for estimating it from a new candidate point, as given by Mockus et al. [98] and Jones et al. [73]:

EI(x̂) = E
[
I(x̂)|x̂)|

]
(3.24)

EI(x+) = ( f (x∗)−µ
+)Φ(

f (x∗)−µ+)

σ+
+σ

+
φ(

f (x∗)−µ+)

σ+
) (3.25)

Here, φ is the standard normal cumulative distribution and Φ is the standard normal probability density

function. Using this EI function, the most promising candidate sample is selected by choosing x+ that has

the maximum EI value.

x∗ = argmax
x+∈DS

EI(x+) (3.26)

The newly selected sample x∗ is evaluated and is included in the evaluated data set, called X . Accordingly,

the posterior probability distribution is estimated by the conditioning rules for Gaussian random variables, as

below:

µ
∗ = µ(x∗)+κ(x∗,X)κ(X ,X)−1( f (X)−µ(X)) (3.27)

(σ∗)2 = κ(x∗,x∗)−κ(x∗,X)κ(X ,X)−1
κ(X ,x∗) (3.28)

Constrained BO, which is an extension to standard BO meant to model infeasibility during the inequality-

constrained optimization routine, is formulated and proposed by [48]. I use this formulation for our experi-

mentation, and it models both function and constraint as Gaussian processes. Let g be the constraint function

that is unknown a priori; the first step in this setting is to model f and g as Gaussian processes:

f ∼ G P(µ1(x),κ1(x)) (3.29)

g∼ G P(µ2(x),κ2(x)) (3.30)

µ1(x) = E[ f (x)] (3.31)

κ1(x,x′) = E[{ f (x)−µ1(x)}{ f (x′)−µ1(x′)}] (3.32)

µ2(x) = E[g(x)] (3.33)

κ2(x,x′) = E[{g(x)−µ2(x)}{g(x′)−µ2(x′)}] (3.34)
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The improvement function in this case is modified as:

IC(x+) = ∆(x+)max{0, f (x∗)− f (x+)} (3.35)

∆(x+) ∈ {0,1} (3.36)

∆(x+) is a feasibility indicator function that is 1 if g(x+) ≤ 0, and 0 otherwise. It causes ∆(x+) to be a

Bernoulli random variable whose probability of getting a feasible design is:

PF(x+) := Pr(g(x)≤ 0) =
∫ 0

−∞

P(g(x+)|x+,X)dg(x+) (3.37)

Due to the Gaussian behavior of g(.), ∆(x+) would be a univariate Gaussian random variable. The modified

expected improvement to include the effect of infeasibility gives a joint acquisition function:

EIC(x+) = E[IC(x+)|x+] (3.38)

= E[∆(x+)I(x+)|x+] (3.39)

= PF(x+)EI(x+) (3.40)

This joint acquisition function can be further optimized using standard optimization algorithms. Since our

acquisition function has the property of being smooth and continuous, I used a two-step optimization to find

x∗. The first step is Monte Carlo optimization and the second step is limited memory BFGS [44] (see Figure

3.8).

This integration of tools and capability to control the parameters and environmental conditions gives us

the flexibility to run an optimization framework with design tools in the loop without human intervention

(refer to figure 3.9).

3.2.3.2 Parametric CAD model and baseline packing geometry

For automatic design optimization, for the parametric CAD model is designed based on Myring hull [102]

as the outer hull architecture (details are in section 3.2.1.2). The baseline design parameter values used for

internal component packing and placement comes from another automated tool [93]. Component selection

and packing are not within the scope of this paper; however, three-dimensional packing of components in an

arbitrary shape is an NP-complete problem. Based on the capabilities of our external component selection

and packing tool, I utilized a simple design with conical end caps (nose and tail) and a cylindrical body to

determine the exact required hull dimensions. These conical-shaped parametric designs are optimized to
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Figure 3.8: Constrained Bayesian optimization - o verview

Figure 3.9: Optimization pipeline using integrated CAD and CFD tools with Bayesian Optimization
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minimize internal hull volume while ensuring that packed components have no interferences. These baseline

designs, however, are not optimal from the perspective of producing minimal-drag designs. Once components

are packed and the parameters of a baseline design are found, this fixed geometry will act as a minimal

constraint in the optimization of the hull design (refer to figures 3.10 and 3.11).

Figure 3.10: Selected components in the UUV in a specific packing configuration [93]

Figure 3.11: The components in the packing configuration inside a baseline packed geometry

3.2.3.3 Infeasible design heuristics

Since a parametric Myring hull can assume a wide range of shapes [102], the generated hull shape needs to be

tested for interference with the baseline packed design. Any Myring hull parameters that cause interference

with the baseline design are deemed to be infeasible. Since the computational cost of CAD assembly and

running an interference test is much less than CFD simulation, the in-feasibility test on an optimized design is

conducted during the CAD modeling and assembly stage (refer to figure 3.9). Running full CFD analysis on

an infeasible design is a waste of computational time and resources, and it delays the optimization process.

To address this situation, I implemented a heuristic that works as follows (for a minimization problem): for

an infeasible design that is detected during CAD assembly, return the maximum drag value to the optimizer

for all evaluated samples up to that point, instead of running a full CFD analysis. The opposite can be done

for a maximization problem. However, for starting the experiment I need at least one drag value of in-feasible

design. Accordingly, I run the first infeasible design and store its drag value.
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Symbol Minimum Maximum

a aB aB +2500 mm
c cB cB +2500 mm
n 0.1 5.0
θ 0o 50o

l = a+b+ c

Table 3.2: Range of design parameters for optimization

3.2.3.4 Experimentation and results

In this section, I present two different experiments carried out using our optimization pipeline. In both cases,

selected components are the same and consequently, the baseline packing geometry is identical. The operat-

ing conditions (i.e., the velocity of operation, initial and boundary conditions) and environmental conditions

(e.g., turbulence intensity) are kept constant based on mission requirements. The baseline packing geometry

is as shown in figure 3.12. The design space (DS) of the search process is selected as shown in Table 3.2.

DB

aB bB cB

Figure 3.12: Baseline 3D hull design with abaseline = 555 mm, bbaseline = 2664 mm, cbaseline = 512 mm,
Dbaseline = 1026 mm

3.2.3.4.1 Experiment 1

In this experiment, I only optimize the nose and tail shapes, defined by parameters n and θ . The range of the

design space for optimization of parameters n and θ is given in Table 3.2. Due to it being a computationally

costly process, I run 50 iterations of optimization using our optimization pipeline. The most optimal design

(shown in figure 3.13) has a drag value of approx 69 Newtons.

Figure 3.13: Optimal UUV hull shape with fixed nose and tail length. Optimal design parameters: n = 1.0;
θ = 50.0
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Figure 3.14: Optimization process vs number of evaluation/iteration: L2 distance between successive
selected samples (left), drag value of best-selected sample in Newton (right)

3.2.3.4.2 Experiment 2

In this experiment, I also optimized the nose and tail length (parameters a and b) in addition to their shapes

(parameters n and θ ). The design space for optimization of all four variables is given in table 3.2. Again, I

run 50 sequential optimization steps using our optimization pipeline. The most optimal design is shown in

figure 3.15 and had a drag value of approximately 36 Newtons. This is a 50% reduction in drag due to the

streamlined nose and tail shapes and would save a large amount of energy consumption during real-world

operation of the vehicle.

Figure 3.15: Optimal UUV hull shape with nose and tail length as free parameters. Optimal design
parameters: a = 2643.86; c = 1348.72; n = 1.144; θ = 22.03

3.2.3.5 Analysis of result

In both experiments, the allocated budget was 50 evaluations since the evaluation time was tens of minutes.

But BO converges to optimal/near-optimal design in a few iterations. In exp1 (refer to right side plot in

figure 3.14) even in 12 iterations a near-optimal design was found and no significant further improvement is

observed. In exp2 (refer to right plot in figure 3.16) only in 10 iterations the optimal design was found and no

further improvement was observed. This sample efficiency is due to the dynamic probabilistic modeling of the

design space on labeled samples and state-of-the-art acquisition functions and accordingly costly optimization
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Figure 3.16: Optimization process vs number of evaluation/iteration: L2 distance between successive
selected samples (left), drag value of the best-selected sample in Newton (right)

calculation. However, with the current multi-core implementation of BO, it takes milli-second to seconds for

finding a new sample to evaluate and it is prudent to use BO in use cases where sample labeling and evaluation

time can not be reduced beyond seconds.

3.3 Approach to problem II: Hybrid approach to optimization: Surrogate Assisted Optimization

(SAO) with a use case in propeller design

In this section, I take a class of design optimization problem, that is computationally cheap to evaluate but

has high dimensional design space. In such cases, traditional surrogate-based optimization does not offer any

benefits. In this work, I propose an alternative way to use ML model to surrogate the design process that

formulates the search problem as an inverse problem and can save time by finding the optimal design or at

least a good initial seed design for optimization. By using this trained surrogate model with the traditional

optimization method, I can get the best of both worlds. I call this as Surrogate Assisted Optimization (SAO)-

a hybrid approach by mixing ML surrogate with the traditional optimization method. Empirical evaluations

of propeller design problems show that a better efficient design can be found in fewer evaluations using SAO.

In such cases, the trained surrogate acts as a memory of experience (similar to an expert human designer) and

is used to find good design directly or at least provide a good seed design for further optimization. For this

purpose, the surrogate uses both nonlinear interpolation and nonlinear mapping to provide a good baseline for

further optimization. The challenge of creating a surrogate in this case arises due to modeling expectations

in this case. The modeling expectation is to try to get a good design from the requirement directly. Due to

the acausal relationship between the requirement on design and the design parameter, it must be modeled as

an inverse problem. Due to the causality principle, the forward problem in engineering systems has a distinct

solution. On the other hand, the inverse problem might have numerous solutions if various system parameters
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predict the same effect. Generally, the Inverse modeling problem is formalized in a probabilistic framework

which is complex and not very accurate for high dimensional input-output and design space. I attempt this

problem from geometric data summarizing algorithms that can model inverse problems and are useful in

these problems. To differentiate this approach from surrogate-based optimization (SBO), I call this approach

Surrogate-Assisted-Optimization (SAO). The main difference between SBO and SAO is that in SBO, we use

a surrogate in the optimization loop while in SAO, a surrogate is external to the optimization loop and only

used to get a good initial baseline, further design optimization starts with this initial seed design provided by

surrogate. The other difference is, in SAO surrogate attempts to inverse modeling problem instead of forward

modeling problem in SBO. In SAO, the role of a surrogate is to provide all possible good designs or seed

designs. For surrogate modeling, our choice of models are random forest and decision tree. The random

forest has empirically shown to work the best for inverse modeling problems [5]. I also selected to train one

decision tree on the entire data to create a memory map of collected data. Empirically I observed adding one

decision tree trained on the entire data set along with a random forest of decision trees trained on various

sub-samples of the dataset and using averaging improves the predictive accuracy and control over-fitting.

For empirical evaluation, I take the use case problem of propeller design [156], and the design space

after coarse discretization is of the order of approximately 1038. Based on the collected data requirement and

training, when the SAO approach is applied to multiple optimization problems sampled from the requirement

space. In all cases, I found SAO that leverage on initial good seed design from surrogate can find a better

design on a given budget in comparison to the traditional method.

3.3.1 Propeller and openProp

Propellers are mechanical devices that convert rotational energy to thrust by forcing incoming forward fluids

axially toward the outgoing direction. On a given operating condition such as the advance ratio (J) rpm of the

motor and desired thrust, the performance of a propeller is characterized by its physical parameters such as the

number of blades (Z), diameter of the propeller (D), chord radial distribution (C/D), pitch radial distribution

(P/R) and hub diameter(Dhub) [40, 156]. The goal of a propeller designer is to find the optimal geometric

parameters that can meet this thrust requirement with maximum power efficiency (η) (refer to figure 3.17). I

use openprop [40] as our numerical simulation tool in this work. The output of simulation informs about the

quality of the design choice, and accordingly, a bad design choice may result in poor efficiency or infeasible

design and vice versa. The biggest challenge in the design search process arises from the exponentially large

design space of the geometric parameter.

Openprop is a propeller design tool based on the theory of the moderately loaded lifting line, with trailing

vorticity oriented to the regional flow rate. Optimization processes in openprop involve solving the Lagrange
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Figure 3.17: Propeller design optimization process in openProp. Sample evaluation is done in openProp
simulator and performance is measured by the efficiency of the propeller.

multiplier (λ1) for finding the ideal circulation distribution along the blade’s span given the inflow conditions

and blade 2D section parameters. The openprop applies Coney’s formulation [31] to determine produced

torque Q, thrust T , and circulation distribution Gamma for a given required thrust T S. For optimization

purposes, an auxiliary function is defined as follows:

H = Q+λ1(T −Ts) (3.41)

If T = TS then a minimum value of H coincides with a minimum value of Q. To find the minimum, the partial

derivative with respect to unknowns is set to zero.

∂H
∂Γ(i)

= 0 f or i = 1,2, ...,M (3.42)

∂H
∂λ1

= 0 (3.43)

By solving these M systems of non-linear equations using the iterative method -i.e. by thawing other vari-

ables and linearizing the equations with unknowns Γ̂, λ̂1, an optimal circulation distribution and a physically

realistic design can be found. For more details on numerical methods, refer to [31, 40]. Based on a given

Figure 3.18: OpenProp numerical simulation

requirement imposed on a design in terms of operational and performance conditions, the goal of a designer
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is to find an optimal geometric parameter of the propeller in minimum time. In OpenProp, the input design

space can be split into two parts: (1) Requirement space (R) that comprises of thrust, velocity of vehicle,

rpm, and (2) Geometric design space (G ) comprises of chord profile radial distribution (C/D), diameter (D),

hub diameter (Dhub), etc). The design space considered for this study is taken from [156]. Once samples

were taken from this space, the requirement, and geometric design are put in the iterative numerical simu-

lation algorithm to find the efficiency (η) of the design. The goal of design optimization is formalized as

:

argmax
g∈G

η f or a given r ∼R (3.44)

Since this design optimization process for a given requirement involves running a sequential design selection

from the input geometric space (G ), its evaluation and optimization until the requirements are satisfied. In

such a case, another important aspect is to reduce the inception to design time (Tdesign) i.e. design optimiza-

tion time. Collectively, it can be written as:

argmax
g∈G

η f or a given r ∼R (3.45)

min Tdesign (3.46)

3.3.2 Formulation of design search as an inverse problem

In forward modeling and prediction problems, we use a physical theory or simulation model for predicting

the outcome (η) of the parameter (g) defining a design behavior. The optimization process in the forward

problem involves sampling from parameter space (G ) and striving to find the best parameter (g∗) that meets

the requirement on the performance metrics (η). In the reciprocal situation, in inverse modeling and pre-

diction problem, the values of the parameters representing a system are inferred from values of the desired

output and the goal is to find the desired values of the parameters (g∗) that represent the output (η) directly.

In the propeller design use case, the objective of a designer is to determine the best geometric charac-

teristics of the propeller in minimum time, based on a particular demand imposed on the design in terms of

operational and performance conditions. The inverse setting in this case has some unique features:

1. One part of the input variables is known i.e. requirement. The other part of the input is unknown

(geometry).

2. The effect or desired output is not fixed and the goal is to get the maximum possible efficiency that

depends on requirements. ( for example, it is not possible to produce a thrust with a small rpm motor
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at some specific speed.)

To address these situations I formulate our inverse modeling problem as selecting and training a prediction

model that can map a given requirement to the geometry and efficiency.

I M : R 7→ {G ,η}

Since it is not possible to find the maximum efficiency apriori, I filter all low-efficiency data sets (I treat

these as infeasible designs) and keep only designs whose efficiency is higher. To model this inverse problem,

I rely on geometric data summarizing techniques that learn the mapping between input and output space as

sketches and the ability to regress between them. A sketch is a compressed mapping of output data set onto

a data structure.

3.3.3 Why random forest and decision tree is our choice for modeling the inverse problem?

In the geometric data summarizing technique, the aim is to abstract data from the metric space to a compressed

representation in a data structure that is quick to update with new information and supports queries. Let

D = {d1,d2, ...,dn} are set of datapoints such that di ∈ Rm. For the purpose of representing data in sketches

(S), the main requirement is the relationship (ψ) between the data points in metric space must be preserved

in this data structure i.e ψ{T (dk,dl)} ≈ ψ{S(dk,dl)}.

One of the selected relationships (ψ) between datapoints in metric space is Lp distance between data-

points. In such case, a distance-preserving embedding of this relationship in metric space is equivalent to tree

distance between two data points dk and dl in a data structure (S). Tree distance is defined as the weight of the

least common ancestor of dk and dl [55], then according to the Johnson-Lindenstrauss lemma [87] the tree

distance can be bounded from at least L1(dk,dl) to maximum O(d ∗ log|k|/L1(dk,dl)). Accordingly, a point

that is far from other points in the metric space will continue to be at least as far in a randomized decision

tree.

L1(dk,dl)≤ tree distance≤ O(d ∗ log|k|/L1(dk,dl))

Random Forest is a collection of specific kind of decision tree where each tree in a random forest depends

on the values of a random vector that was sampled randomly and with the same distribution for all the trees

in the forest. When the number of trees in a forest increases, the generalization error converges to a limit.

The strength of each individual tree in the forest and the correlation between them determine the accuracy of

a forest of tree. The error rates are better than Adaboost when each node is split using a random selection
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of features [23]. To create a tree (h(x,θk) in the forest, θk is independent identically distributed random

vectors independent of the past random vectors θ1, ...,θk−1 but from the same distribution. Due to ensembling

and randomness in the forest generation process, the variance in tree distance also reduces to L1(dk,dl).

Accordingly, geometric summarization of data from metric space to random forest can maintains the L1 norm

between data points in expectation. The decision tree trained on entire data-set has over-fitting issue and not

suitable for generalization but due to space partitioning nature, it can map each observed requirement with

multiple geometric designs and its efficiency when trained. By using both trained models in parallel, I can

capitalize on both nonlinear mapping feature of decision tree as well as non linear regression/interpolation

feature of random forest.

3.3.4 A hybrid optimization approach : Surrogate Assisted Optimization (SAO)

Figure 3.19: Surrogate assisted design optimization for propeller design

Figure 3.19 shows our approach to solving the propeller design optimization problem. It is a hybrid

approach when the ML model is fused with a traditional algorithm with numerical physics in the loop of

optimization. During training time, I train our random forest and decision tree. For training both models,

I used requirement data (r ∼ R) as an input and the corresponding geometric design values (g ∼ G) and

resulting efficiency (η) forming a tuple as output. The random forest is trained to learn the inverse regression

and predict the design geometry along with efficiency on a given requirement. The decision tree on the other

hand does inverse mapping from requirement space to design geometry and efficiency searched during data

generation. The goal of random forest is to learn a function f : R 7→ G ,η that is continuous so that I can

regress for in between points however, the decision tree is a memory map and just does space partitioning on

seen data. Using both gives up a good quality seed initial design. Since I do not know possible efficiency

that can be achieved on a given requirement, I possibly take all possible predictions and sort on bases on

efficiency to get the best design found yet. Direct prediction of random forest is an average of all geometric
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designs and efficiency corresponding to the given requirement, which may or may not be a very good initial

design. Here the role of random forest is generalization and regression on unseen data. The role of a decision

tree is to do non-linear one-to-many inverse mapping. I selected all the designs that are on the leaf of the

decision tree and include those as well to our baseline designs- this is called baseline prediction. Using both

models, I get good quality initial seed designs. In the next stage, I take these baseline designs as the initial

population and start the genetic algorithm search for the final optimized design. (refer to figure 3.19). In

GA, chromosomes are represented by arrays of bits or character strings that have an optimization function

encoded in them. Strings are then processed by genetic operators, and the fittest candidates are chosen. I run

GA in a loop with the openProp numerical simulator until the budget.

3.3.5 Data generation & Training

For data generation, I took the design space used by [156]. The geometric design space is of the order of 1027

(diameter * nine alternative chord radial profiles), whereas the requirement space after coarse discretization

is on the order of 1011 (thrust × velShip × RPM) with combined search space is 1038. I take a single sample

point from the physical design space and the requirement space and input it into the OpenProp optimizer.

OpenProp internally optimizes this design using iterative numerical methods and computes the performance

metric (η). I used this 0.205 million valid design data point for our training and testing. Using this design

corpus, I trained both the random forest regression [23] model and the decision tree. Other hyperparameters

of the random forest model are an ensemble of 100 decision trees with mean squared error as splitting criteria

of the node. For the decision tree model, I chose squared error as the splitting criteria of the node, and nodes

are expanded until all leaves are pure. Other hyperparameters are kept as default settings as in SKlearn [110].

3.3.6 Experiment results

For sharing the result, I have two things to share:

1. prediction accuracy of random forest on test data.

2. Empirical evaluation of SAO (on example design optimization problems and its comparison with base-

line (Genetic Algorithm).

For testing the prediction accuracy of our trained model I selected 5% of data randomly from the dataset. To

assess the quality of prediction, I used the following common statistics as evaluation metrics:

1. average residual, ∆Z = (ηtruth−ηpredicted)/ηtruth per sample

2. the accuracy, percentage of the number of samples whose residual is within acceptable error of 5% i.e

|∆Z|< 0.05.
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It measures the percentage of test data on which the prediction of efficiency is within 5% of error (since

efficiency is a good metric and target of final prediction). I found percentage prediction accuracy on test data

for the random forest is around 90%. For the decision tree, I fitted it with the entire data, since I just want

space partitioning of collected data.

For the empirical evaluation of SAO, I chose Genetic Algorithm as our baseline optimization algorithm

that is frequently deployed in such situations. Figure 3.20 shows the evaluation traces of the optimization

process. It can be observed that due to the trained surrogate, I get a better initial seed design, and further

optimization in the second step using GA provides better designs on the given budget in comparison to

applying GA which starts with a random seed design.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.20: Results of sample optimization runs using GA and Surrogate Assisted Opti-
mization (SAO): Due to learned manifold SAO provided better seed design for evolution-
ary optimization and get better performing design in given budget. Requirements for op-
timization are sampled randomly for Design space:{thrust (Newton) ,velocity of ship (m/s),
RPM}(a) {51783,7.5,3551}, (b) {127769,12.5,699},(c) {391825,12.5,719},(d) {205328,19.5,1096},(e)
{301149,7.5,1215},(f) {314350,16.0,777}, (g) {31669,17.5,2789},(h {476713,15.5,2975}.
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3.4 Approach to problem III: Surrogate modeling in CFD and FEA domains and Surrogate Based

Optimization (SBO)

Surrogate model is a non-physics-based approximation that typically involves interpolation or regression on a

set of data generated from the original model. Mathematically it can be seen as a non-linear inverse problem

for which a function ( f ) needs to be discovered from a limited set of available data while minimizing the

approximation error (e) on other points in the design domain. In the Engineering design field, the role of

the surrogate model is to gain insight into the problem/process to make decisions based on the analysis. The

most use of surrogate models is to augment the results coming from expensive simulation code to gain the

key benefit of a significant increase in speed for the evaluation of a design. For designing a useful surrogate

this benefit is possible only when acceptable accuracy is achieved by the surrogate model. The gain in run

time for design evaluation becomes really important for some physical process that takes a very long time to

evaluate, for example, computational fluid dynamics, Finite element-based analysis, etc. These computation-

ally expensive high-fidelity models describe systems with high accuracy, while low-fidelity models are less

accurate but computationally cheaper than high-fidelity models. The primary motivation of surrogate model-

ing is to speed up the evaluation of models that are otherwise prohibitively expensive to run in optimization

and verification processes.

3.4.1 Deep learning-based FEA surrogate for sub-sea pressure vessel

The pressure vessel is a critical component in modern-day Unmanned Underwater Vehicles, Remotely oper-

ated Vehicles, etc. It is designed to withstand the sub-sea hydro-static pressure conditions while remaining

watertight and contains power sources and electronic and other sensors that cannot be flooded. For this pur-

pose, an FEA-based simulation is conducted to measure the maximum induced stress in a design subject

to the subsea pressurized environment. The simulation consists of multiple steps - CAD modeling, body

meshing, and numerical solution of FEA to get the stress distribution. The measured maximum static stress

is compared with the yield strength of the material to check the integrity of the pressure vessel during op-

eration. This process is repeated until an optimal design that can withstand the sub-sea pressure is found.

In this work, our goal is to learn a surrogate model for this entire simulation process for a large class of

problems. Since each simulation is computationally very costly (≈ 202 seconds per simulation on a 20-core

CPU), it is not possible to run many simulations and generate dense data. The motivation for learning a

surrogate is the ability to interpolate or predict the numerical simulator’s output at a very low cost using

trainable models. Once trained the surrogate can replace the numerical simulator for outer loop optimization

operations. The expected benefit is the ability to design the pressure vessel on a given requirement at a very

small computational time for a range of problems.
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Figure 3.21: Finite element analysis and surrogate modeling process

The class of problem is defined by the design space (which are parameters that can be changed for chang-

ing the design and environmental conditions). For learning a surrogate, I first create a design space. Our

design space consists of the maximum depth of the sea, which decides the maximum applied sub-sea pres-

sure on the pressure vessel. Most pressure vessels have a circular cylindrical shell with two hemisphere end

caps configuration, justified by its benefits such as balanced structural integrity, homeostatic balance, and

better internal volume. This cylindrical pressure vessel is parameterized by 3 parameters (length of cylin-

der, radius of end-cap, thickness of vessel). Accordingly, the design space consists of 4 variable spaces

(Dsea,Lv,T hv,Rend) (refer to figure 3.21). In this paper, I am interested in designing a range of pressure

vessels that can work between range 0-6000 meters of sea depth. The material used to design the vessel is

Aluminium alloy (Al6061-T6) which is the most commonly used material for pressure vessel design.

The training process of the ML model starts with the collection of simulated data (Dsimulated). The sim-

ulation involves the design of CAD geometry based on design parameters, the meshing of CAD designs, the

application of desired hydrostatic pressure on an external surface of design, and then a numerical solution us-

ing finite element analysis. Once the FEA simulation converges, the maximum Von-mises stress is measured

(refer to figure 3.21). After the collection of training data, I split it into train data (Dtrain) and test data (Dtest ).

The NN architecture is a multilayered NN with 9 layers. Our network has four major constituents- a fully

connected layer (linear+ReLU), a dropout layer, skip connections, and an output layer. The input layer is the

concatenation of the normalized vector of design variables and sub-sea pressure ([Dsea,LV ,T hV ,Rend ]). The

fully connected layer (linear+ReLU) consists of linear weights and biases with the commonly used nonlinear

activation function ReLU (Rectified Linear Unit [167]) defined by f (x) = max(x,0). All the neurons in the

previous layer are connected to every neuron in the current layer. Two dropout layers are added in between

these fully connected layers for regularisation and to prevent over-fitting with a dropout factor of 0.2. The

output of the FEA simulation is a scalar value s ∈ R, so our choice of the output layer is a linear fully con-
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nected layer. The last important feature is the skip connection, which is a residual network added for smooth

learning and to handle vanishing gradient or exploding gradient [60].

Skip
Connection

⊕
Input Fully Connected

(ReLU)
Dropout Layer (0.2) Fully Connected

(Linear)
⊕

Add

Figure 3.22: Our custom deep neural architecture

The overall architecture is represented in figure 3.22. The network has given the input in a batch of n

with each sample vector size is 4. The number of parameters in our architecture is 22,993. A large network

(22,993 parameters) in comparison with the small data size (8000 training data points) raises concerns about

over-fitting. The drop-out layer and cross-validation-based early stopping are used to counter this in our

regression model.

I divide the collected data (11311 data points) randomly into a training sample containing 8000 FEA

evaluations and a testing sample containing the remaining 3311 evaluations. Due to the unavailability of large

data, to increase the performance of prediction, I trained a family of deep learning networks as it has been

seen to be more accurate than individual classifiers [125]. For this purpose, I used 5-fold cross-validation and

trained one base deep neural network on each fold dataset. I further divided each fold dataset into the training

dataset (90%) and the validation dataset (10%). The prediction of the individual trained networks was then

averaged out to obtain the final values of the maximum Von-mises stress on a given design (refer to figure

3.23). After experimenting with different loss functions and learning rates, I found that L1 loss performed

better than other losses with a learning rate of 0.001. I used Adam [75] optimizer with Xavier initialization

for training the model. Apart from our deep learning-based learning model, I also trained the decision trees-

based model to predict the maximum Vonmises stress. Most popular decision trees based predictive model

random forest [23] and Gradient boost regressor [22] is trained which are considered the best classification

and regression models and most popular predictive analytic techniques among practitioners, due to being

relatively straightforward to build and understand, as well as handling both nominal and continuous inputs

[24]. I trained 100 different decision trees and tuned their depth, number of trees, and split criteria to get the

most accurate model. To assess the quality of prediction, I used the following common statistics:

1. average residual, ∆Z = (Vtruth−Vpredicted)/Vtruth per sample
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Figure 3.23: Ensemble of learning models

Table 3.3. Result on key performance metrics

Model Accuracy Residual Outlier Deviation
Deep ensemble 92.20% 0.045 48 118.67
Random Forest 72.27% 0.13 164 141.23
Gradient Boost 47.47% 0.21 157 132.60

2. the accuracy, percentage of the number of samples whose residual is within acceptable error of 10%

i.e |∆Z|< 0.10,

3. η : the number of outlier, |∆Z|> 0.50, number of samples who which prediction has a high error.

4. the standard deviation,(σ ) of prediction.

Here, Vtruth and Vpredicted are the real label and the predicted outcome of the trained regression models.

For comparison purposes, apart from our model I also trained other regression models i.e. Random forest

regression model and the Gradient Boosting regression model. Models have been developed and trained using

SKlearn, PyTorch, and XGBoost (extreme gradient boosting) Python libraries.

3.4.1.1 Results on model performance metrics

For regression modeling, the quantitative performance metrics are residual/mean absolute error (MAE) and

root mean squared error (RMSE)/ standard deviation. I also have other evaluation metrics- accuracy and

outlier which are defined earlier. The lower the MAE/residual, the more precise the model is. The accuracy

metrics give us statistics about how many samples are with an acceptable level of accuracy. The standard

deviation estimates the average proportion of the variation in the response around the mean. The outlier in
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prediction provides insight into how many large error samples are in the prediction, which gives a better

picture of the distribution of deviation. Table 3.5 shows the performance metrics on all three trained models

on the test data set. All three models are trained on the same 8000 training data set and tested on the 3311 test

data set. The DNN model performed at significantly higher accuracy (92%) in comparison to other models -

Random forest (72%) and Gradient boost regressor (47 %). The DNN model also has one-third less number

of outliers than the Random forest and Gradient Boost models. In all the metrics ensemble DNN model

performs much better than Random forest and Gradient Boost-based regressors.

3.4.2 Deep learning-based surrogate for drag prediction on underwater vehicle hull

For evaluating the effect of hull shape on drag, I take CFD based simulation outcome as ground truth. The

CFD is a great engineering process that revolutionized the field of aerodynamic and nautical design problems

because it saves both cost and time in comparison to making a prototype, adjusting a real model, and quickly

changing the computer-generated model to find a more refined design outcome before the design process.

With many developments in numerical techniques over the years, CFD has become more and more accurate

and in conformity with real-world behavior. The water tank/ wind tunnel testing is conducted in order to

validate the results obtained with computer simulations.

For data generation using CFD simulation, I consider the space of solutions with a range shown in table

3.4. I tried to cover the design space for small UUV shapes. I used the Myring hull as our baseline parametric

design shape which is the most frequently used UUV shape. The design of the hull is randomly sampled

from the space from the range mentioned in the design space. For CFD physics evaluation, RANS simulation

was used with k-ω turbulence model, which is inspired from real-world UUV design process [72] using

open source tool OpenFOAM. For CAD modeling of each parametric design, I employ an open-source CAD

design tool called freeCAD. The STL file generated by the CAD processing tool is used as the final design for

the CFD. The pipeline of parametric CAD design and CFD process is automated and run in different Docker

containers and coordinate through the file sharing system controlled by python scripts. The inflow horizontal

velocity is kept fixed for all simulated designs at the nominal operating speed of small UUV Remus 100

class to approx 4 knots. The other flow characteristics are also kept constant for all different designs and

obtained from empirical values. The flow characteristics which are kept constant for all designs are in-

compressible flow, with flow density of 1027 Kg/m3, the kinematic viscosity of water is 1.73 centiStoke,

the inlet turbulence intensity is assumed between medium and low due to moderate speed of flow and not-

so-complex geometries at 1%. The turbulence model constant (Cµ ) is also kept constant at 0.09. Data

generation is done in multiple phases since each simulation is very costly and took an average evaluation time

of approximately 10 minutes per simulation on a 20-core CPU (Intel i9-9820X 10-core CPU @ 3.30GHz and
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Parameter Symbol Minimum Maximum

Diameter of middle section d 50 mm 200 mm
Length of nose section a 50 mm 600 mm
Length of middle section b 1 mm 1850 mm
Length of tail section c 50 mm 600 mm
Index of nose shape n 1.0 5.0
Tail semi-angle θ 0o 50o

Total length l = a+b+ c

Table 3.4: Design space: Range of design parameters for surrogate modeling

64GB of RAM). Due to the intermittent errors that occurred during meshing or flow filed calculation, the

simulation is restarted multiple times. The number of the generated designs was 3333 and of which 312 were

invalid designs and the rest 3021 were valid designs. For learning the larger spatial extent design space, it

is typically preferable to generate a large number of data points. The choice of size of generated data was

guided by the number of resources, time available, and accuracy of the trained model during experimentation.

In the initial phase, I started with 500 data points and trained and tested different neural networks for desirable

accuracy. Due to the failure to get desirable accuracy, I kept growing the data set. After every phase, I did

testing and training on the collected data on different networks to get desirable accuracy. For maintaining

sanity, I deleted everything done in the last stage of training and testing and do everything from scratch when

moving to the next stage of data generation except the data.

Our neural network model is a custom neural architecture designed based on a fully connected network,

which is widely used for a wide variety of tasks. Considering the size of the data, I started with a multi-layer

feed-forward network because our model had 6 input features and 1 output. A neural network is an inter-

connected web of elementary computation units (neurons). When organized in multiple layers, it becomes

a very powerful universal function approximator. Our NN architecture has a multilayered architecture with

9 layers. The main components in the network are: the fully connected nonlinear layer, dropout layer, skip

connections, and output layer. The inputs are stacked in the following order x1 = a, x2 = b, x3 = c,x4 = d,

x5 = n, x6 = θ and the concatenated vector X = [x1,x2,x3,x4,x5,x6] of input data is normalized across each

features using Min-Max Normalization.

X̂ [:, i] =
X [:, i]−min(X [:, i])

max(X [:, i]−min(X [:, i])

The normalized vector X̂ is fed into as the neural network input for prediction. The fully connected layer

encompasses one linear matrix operation with a trainable weight parameter (W ) and then is added with train-

able bias (b). The outcome of this linear operation is passed through the nonlinear activation function ReLU
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(Rectified Linear Unit [167]) defined by f (x) = max(x,0). Each section of the fully connected layer does this

information processing (max(WX + b,0)) and passes this information to the next layer. Two dropout layers

were added in between these fully connected layers for regularisation and to prevent over-fitting and improve

generalization. At the dropout layer, Hadamard product between last layer output vector size (let’s assume

Q) and generated random Bernoulli variable of the size Q (Qi ∼ B(p) and z = {Q1,Q2, ...,Qn}) is carried on.

The dropout parameter p decides the probability of Bernoulli’s output B ∈ {0,1} is decided by the dropout

parameter p. Here, p is the probability of outcome 1, and (1− p) is the probability of outcome 0. The com-

bined output of the fully connected layer and dropout layer can be written as max(WX +b,0)oz, where o is

the Hadamard product. The number of parameters in our architecture is 25,664. A large network (25,664

parameters) in comparison with the small data size (2,400 training data points) raises concerns about over-

fitting. The drop-out layer and cross-validation-based early stopping are used to counter this in our regression

model. The dropout parameter in our network is set to 0.2 for both drop-out layers. I also added a skip

connection /residual layer at the inner hidden layer, which facilitates smooth learning and handles vanishing

gradient or exploding gradient [60]. Our output layer is a linear layer, with only one linear unit.

The neural network is trained using a back-propagation algorithm with the evaluated cost function based

on the error between the predicted output of the trained network and the ground truth generated from CAD-

CFD simulation. I used Adam [75] optimizer built in PyTorch to train the parameters of our network. Initially,

I used mean squared error (L2 loss) to train the network but I found that L1 loss (mean absolute error) gave

a better result in comparison to L2 loss. I also deployed early stopping to prevent over-fitting and improve

generalization on our model on training data apart from the dropout layer used in the network architecture.

For training and testing purposes, I first split the total collected data points (3021) into two sets - the first

set consists of 2400 data points, and the second set consists of 621 datapoints. For early stopping and cross-

validation of the model, I divide the first set of data (2400 data points) further into a 90 : 10 ratio and used the

90% part for training to find the network parameters that minimize the cost error function and used the rest

10% for validation and early stopping of training to get better generalization error from the trained network.

The validation error is compared to the training error after each epoch of training and during the training

process is model is saved only when the gap between the training error and validation error is reduced. The

second set of data 621 data points are used for testing the performance of the trained surrogate.

To test the prediction accuracy and generalization capability of the trained surrogate, I used the following

metrics:

1. Residual, ∆Z =
(Fgt

d −F p
d )

Fgt
d

2. The accuracy (α), percentage number of test samples whose residual is within acceptable error of 5%

67



Table 3.5. Key performance metrics

Number of test data points Accuracy (α) Number of Outliers %age outlier (η)
621 97.0% 9 1.4%

i.e |∆Z| ≤ 0.05

3. The outliers (η), percentage number of test samples on which trained surrogate prediction error is

more than acceptable accuracy,|∆Z|> 0.10.

Here, Fgt
d is the ground truth drag force estimated by running computational fluid dynamics simulations, and

F p
d is the predicted outcome using the trained DNN surrogate model. For each test sample in the test data, I

calculate the residual error. Since, for regression problems whose output is a scalar value, the most effective

way to measure the prediction outcome is whether the predicted output scalar is within an acceptable accuracy

range.
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Figure 3.24: Ground truth vs. predicted values of drag forces (Fd) by the DNN surrogate. The green markers
denote predictions with less than 5%, error; yellow markers denote predictions between 5%–10% error and
the red markers denote predictions with errors greater than 10%
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3.4.3 Surrogate-based design optimization for UUV hull design

In this section, I consider evaluating the performance of surrogate-based optimization. For this purpose,

I consider three different design problems and run the surrogate-in-loop-optimization along with full Open-

FOAM solver-in-loop-optimization using Bayesian optimization-Lower Confidence Bound (BO-LCB) as our

optimizer (refer to figure 3.25). The goal of optimization is to find the UUV hull shape that produces the min-

imal drag force. The operating conditions like inlet velocity, turbulence intensity, boundary layer conditions,

etc. are kept constant as what I used during the data generation process. The optimization objective in all

Neural Network
based surrogate

Bayesian
Optimization–LCB

Design
parameter(x)

Drag

Figure 3.25: Surrogate based optimization

three cases is to minimize the drag force on the hull’s body by finding the optimal shape parameters S (where

S := Ω and S ∈DS). The Reynolds number RL is based on the length of the UUV (L) and is different in each

problem.

In order to validate to drag forces predicted by the DNN surrogate, I hypothesized that, on a given random

seed (initial conditions), the optimal design obtained using the BO–LCB algorithm when used with our DNN

surrogate in the loop should be similar to the running BO–LCB algorithm with OpenFOAM in the loop. To

that end, I ran the following design problems with constraints on some of the variables:

1. Design with constraints on total length (l), and the maximum diameter (d).

2. Design with constraints on nose length (a) , total length (l), and the maximum diameter (d).

3. Design with constraints on nose length (a), body length (b), tail length (c), and the maximum diameter

(d).

These constraints are the conditions that must be met. In UUV design, the constraint is dictated by space

taken by the components (battery, sensors, electronics, motors, etc.) and their placement for sensing and

operation. During optimization, these constraints are imposed both on the CAD-CFD integrated simulation

tool as well as our trained DNN surrogate.

Table 3.6 shows the optimal design parameters when using both OpenFOAM and the trained DNN surro-

gate in the loop. When the optimization process converges or the budget gets over, I compared the obtained
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Table 3.6: Optimal design parameters(a,b,c,d,n,θ) and drag force (Fd) found for selected design variable
constraints using BO-LCB with both OpenFOAM and neural network surrogate in the loop. Here D is
diameter , L is length and k denotes the number samples evaluated by optimizer before convergence

(D, L) OpenFOAM in loop DNN surrogate in loop

a b c n θ Fd k t(sec) a b c n θ Fd k t(sec)
(180.0,1750.0) 573.0 604.0 573.0 10.0 1.0 6.089 46 4181 573.0 604.0 573.0 10.0 1.0 6.01 50 0.14
(190.0,1330.0) 50.0 834.61 445.38 4.467 2.544 7.89 50 2982 50.0 682.10 597.89 2.498 1.685 6.34 50 0.115
(100.0,500.0) 100.0 150.0 250.0 1.1 4.51 1.54 50 1625 100 150 250.0 1.0 19.95 1.86 50 0.14

(a) openFOAM CFD

(b) DNN surrogate

Figure 3.26: Results: Optimal design with lowest drag force (Fd) founds using BO-LCB optimizer for design
problem 1 (D = 180,L = 1750) (a) with OpenFOAM in the loop (b) with neural network surrogate in the
loop.

optimal designs. In some cases, the optimal design obtained from the OpenFOAM and DNN surrogate are

almost identical and their parameters are the same up to two decimal points (D = 180,L = 1750). In some

cases, the designs are somewhat different but still, they are pretty close and need a careful visual inspection

to find the differences (D = 190,L = 1330). In most cases, drag coefficients attached to each optimal design

have good accuracy with what I obtain from OpenFOAM. Also the optimal design parameters for both yield

very close drag forces and in some cases (D = 180,L = 1750), are identical while in other cases, it is similar.

This can be easily addressed by the addition of some more data. However, our DNN surrogate in loop BO–

LCB–the most sample-efficient optimization framework–requires more sample evaluations to converge than

when using OpenFOAM in the loop. However, the time taken for finding the optimal design by our DNN

surrogate is approximately 10,000 times faster when compared with the time taken for finding the optimal

design using OpenFOAM (refer to table 3.6).
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(a) openFOAM CFD

(b)DNN surrogate

Figure 3.27: Results: Optimal design with lowest drag force (Fd) founds using BO-LCB optimizer for design
problem 2 (D = 190,L = 1330) (a) with OpenFOAM in the loop (b) with neural network surrogate in the
loop.

(a)openFOAM CFD

(b) DNN surrogate

Figure 3.28: Results: Optimal design with lowest drag force (Fd) founds using BO-LCB optimizer for design
problem 3 (D = 100,L = 500) (a) with OpenFOAM in the loop (b) with neural network surrogate in the loop.

3.5 Preliminary result in search of universally optimal UUV hull shape

In UUV design, hull resistance affects range of the vehicle, battery size, weight, and volume requirement of

the design. By running the optimization at different operating velocities and turbulence intensity, I want to

study/search for the possibility of a universal design that will provide the least resistance/near-optimal design
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across all operating conditions (operating velocity) and environmental conditions (turbulence intensity) or to

find what kind of different shapes that will emerges as the optimal design in different scenarios and is there

any invariant feature in it. For creating the different environment and operating conditions for AUV, I con-

sider five different environmental conditions (turbulence intensity of flow {0.1,2,5,10,20} percent of mean

flow velocity) and five different operating conditions (velocity of AUV {1,2.5,5,7.5,10} in meters/second).

The operating velocity and turbulence intensity values are taken from empirical ranges observed in real world

underwater vehicle. Accordingly, the cartesian product of these two sets creates 25 different scenarios with

different operating velocities and turbulence intensity. By running Bayesian optimization for each 25 scenar-

ios with CFD in the loop, I want to find the optimal hull design in all scenarios. For running CFD, I chose

our integrated tool chain and methodology explained above. For experimentation, I consider an axisymmetric

body of revolution with a fixed hull length (1 meter) and fixed fineness ratio (5) that poses a constraint on

the hull diameter, which is 0.2 meters. The rest of the shape of the hull can be changed by 6 control points

across the body by changing its location in space. For each of the 25 experiments, the turbulence energy

and dissipation rate are provided as initial conditions. The hull has two parts -nose and tail and their lengths

can be controlled by the parameter nose length and the tail length (tail length=1-nose length (in meters)).

By changing the length of the nose, I can move the fineness ratio constraint across the body and provide an

optimizer capability to search for a wide variety of shapes. For the optimization algorithm, I chose Bayesian

optimization, since it is a very sample-efficient optimization framework involving expensive functions.

Figure 3.29: Optimal designs

At every 25 scenarios, I ran our optimization algorithm until convergence or up to the allocated budget

of 100 iterations. At the end of the optimization process, the discovered optimal designs are shown in figure

3.29, and the related drag force is shown in figure 3.30. The preliminary results show that at high turbulence
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Figure 3.30: Ground truth drag values of UUV designs

Figure 3.31: Two chosen extreme designs

intensity, the optimization converged to a single design (rightmost column of figure 3.29). For comparing the

performance of optimal designs, in this work, I selected two optimal designs for study (refer to figure 3.31)

first, the design obtained at lowest turbulence and lowest speed (D1: velocity:1m/s and turbulence 0.1%) and

second, the design obtained at highest turbulence and highest speed (D2: vel:10m/s and turbulence 20%)).

Once I tested both these designs’ performance in all 25 scenarios, I observed, that design D1 produced more

drag in all 24 scenarios while design D2 produced significantly lesser drag resistance in 18 out of 24 scenarios

when compared to optimal design obtained by running BO (refer to figure 3.32 for drag resistance values).

Also, the drag resistance of design D1 increases significantly at high velocity and high turbulence conditions

in comparison to design D2. The future direction would be to conclude this research by analyzing all 25

optimal design and their performance across all considered environmental and operating conditions.
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Figure 3.32: Ground truth values of designs D1 and D2 at all 25 different scenarios.

3.6 Tool outcome: Anvil- A SciML tool for CFD based shape optimization

In engineering design involving fluid mechanics, CFD offers numerical analysis to study and understand the

effect of coupled solid-fluid dynamics of a shape. The shape optimization or prototyping process in this case

involves iterative evaluation of different shapes using CFD until the design objectives are met. In this context,

there are two main challenges: first, iterative evaluation without manual intervention requires integration of

the CAD tools with the CFD tool, where CAD is used to create, modify and generate a design for CFD

analysis. Some advanced commercial tools offer this integrated CAD-CFD to complete automatic CFD-based

studies, however, there is no open-source version available to researchers in this field. The second challenge is

the integration of state–of–the–art optimization algorithms developed in recent research or sampling process

with this CAD-CFD tool that can make decisions about the design choices during the optimization or data

generation process.

In this work, I offer an open-source freely available integrated CAD-CFD tool by integrating two open-

source tools FreeCAD (for CAD modeling) and OpenFOAM (for CFD) that is integrated with AI-based based

sample efficient optimization method (Bayesian optimization) and other sampling algorithms. I call this tool

Anvil and present it as a scientific machine learning tool in the field of shape optimization that can be used

in different modes: first, the data generation mode where on a given parametric CAD seed design, design

space, computational resources, and budget the tool can automatically run CFD evaluations and generate data
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for training a surrogate model, second in an optimization mode, where a given parametric CAD shape and

objective, design space and budget, it searches to find the optimal design. Anvil is easy to set up and the

experimenter only needs to provide a JSON file as a configuration file and a parametric CAD seed design.

It can be used to study the effect of solid-fluid dynamics for any subsonic flow conditions (underwater,

land, or air). Since it is integrated with Python, that also provides a means to easily extend its capabilities

like integrating new and other optimization algorithms or sampling methods like GFlowNet, OpenMDAO,

etc. I demonstrate the capability of Anvil in different simulation use cases. The open source code for the

tool, installation process, artifacts (like CAD seed design, example STL models), experimentation results,

detailed documentation, etc can be found at https://github.com/symbench/Anvil. The configurable parameters

of JSON config file, its meaning, and options are given in table 3.7. Anvil can be used in three modes of

operation. These modes are:

1. CFD evaluation: CFD evaluation is one of the primary building blocks of this tool. In this mode, the

tool behaves as a CFD analysis tool on a given design and flow condition.

2. Data generation: Data generation on a given parametric design, design space, and budget.

3. Optimization: Optimization of a design using Bayesian optimization.

The selection of mesh size depends on the size and the shape of the design. Since there is no analytical

equation to find the right mesh size, accordingly if an inappropriate mesh size is provided, the simulation fails.

To address this, I provide an auto-meshing capability in Anvil, where the mesh size is selected automatically

by capturing log errors from the meshing tool and by refining the mesh size accordingly to find the suitable

mesh size. Some of the example simulations are shown below.

3.6.1 Example simulation experiments

I demonstrate the Anvil’s capability and highlight its features through different CFD evaluation experiments.

The ease of doing CFD analysis is demonstrated by the work that needs to be done by the experimenter

while using this tool. For a CFD analysis, the designer needs to provide the STL of the design and input

configuration file for setting up the turbulence models and fluid parameters. An example configuration file is

shown in figure 3.39.

1. Unmanned Underwater Vehicle (UUV): To showcase the capability of the tool to simulate underwater

designs just by proving a configuration file and the STL of the design, I ran our CFD evaluation tool

with the following settings. The design is simulated at a speed of 2.25 miles/hr. The fluid density is

of open sea density 1027.0Kg/m3, the dynamic viscosity of the fluid is for open sea value 1.789×

10−5N− s/m2, and the turbulence intensity is assumed to be 4%.
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Figure 3.33: A concept UUV design in CAD environment

(a) (b)

Figure 3.34: Steady state flow at the surface layer of design, with the flow field colored by (a) magnitude of
the velocity (meters/second), (b) pressure (Pascals).

2. Land vehicle: The CFD simulation of the land vehicle is carried on at a speed of 70 miles/hr. The fluid

density is assigned sea-level air density 1.225Kg/m3, with dynamic viscosity 1.789×10−5N− s/m2,

and the empirical turbulence intensity to 1%.

3. Unmanned Air Vehicle (UAV): UAV is Simulated at a speed of 50 meters/sec. The fluid density is the

air density at 400 feet i.e. the flying height of most small UAVs 1.225Kg/m3, dynamic viscosity at this

altitude is 1.789×10−5N− s/m2, and the turbulence intensity is 1%.

3.7 Summary of contributions

In various works and experiments explained in this chapter, I have the following contributions:
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Figure 3.35: A concept model of a land vehicle.

(a) (b)

Figure 3.36: Steady state flow at the boundary layer of design, with the flow field colored by (a) magnitude
of the velocity (meters/second), (b) pressure (Pascals).

1. I provide a comprehensive evaluation of a number of optimization methods on a real-world design

optimization problem involving complex simulation domains, which is useful for practitioners consid-

ering adopting these algorithms. The empirical evaluation suggests that Bayesian optimization-Lower

Confidence Bound (BO-LCB) has the best convergence guarantee and sample efficiency in comparison

to other selected gradient-free optimization methods.

2. I also showed the way infeasibility constraint can be handled during Bayesian optimization and provide

a software package to do it for UUV hull design optimization problem.

3. I proposed a hybrid optimization approach for speeding up the design optimization problems for com-

putationally cheap but high-dimensional design space. I call it Surrogate Assisted Optimization (SAO),
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Figure 3.37: A concept unmanned air vehicle - Tiltie along with its cargo.

(a) (b)

Figure 3.38: Steady state flow at the boundary layer of design, with the flow field colored by (a) magnitude
of the velocity (meters/second), (b) pressure (Pascals).

where AI model tries to learn the inverse mapping and at least provides good seed designs for further

optimization.

4. I demonstrated that deep neural network architectures can accurately capture a complex property of

two-way coupled solid-fluid dynamics (drag force/drag coefficient) as well as the effect of finite ele-

ment analysis on pressure vessels to a very good agreement.

5. I showed that a surrogate-based design optimization algorithm can find optimal UUV hull designs in

milliseconds, representing a two-orders-of-magnitude speedup over design optimization loops that use

direct numerical simulation. Moreover, I am not aware of any previous studies that leverage an AI

model for drag in the context of RANS with k-ω SST to optimize UUVs.

6. I provide a ready-to-use software package for drag-based design optimization for UUV design that can

be readily generalized to other UUV designs.
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1 {
2 "seed_cad": "../usr_input/param_UUV_hull.FCStd",
3 "cad_param": {
4 "nose": 200,
5 "first_y": 95,
6 "second_y": 200,
7 "third_y": 1000,
8 ...
9 },

10 "foam_config": {
11 "casefoldername": "UUVhull",
12 "maxiter": 500,
13 "infile": "./stl_repo/design.stl",
14 "aoa": 0,
15 "Uinlet": 20.0,
16 "kinematic_viscosity": 0.000362,
17 "kInlet": 0.06,
18 "density": 1.225,
19 "omegaInlet": 25.55,
20 "meshing": "auto",
21 "meshsize": 0.2
22 },
23 "design_space": {
24 "nose": {
25 "min": 100,
26 "max": 800
27 },
28 "first_y": {
29 "min": 5,
30 "max": 100
31 },
32 "second_y": {
33 "min": 5,
34 "max": 100
35 },
36 "third_y": {
37 "min": 5,
38 "max": 100
39 },
40 ...
41 },
42
43 "mode": "data_generation",
44 "sampling_method": "random",
45 "budget": 8,
46 "optimizer": {
47 "method": "BayesOpt",
48 "acquisition": "LCB"
49 }
50 }

Figure 3.39: A configuration for a CFD evaluation of a design using Anvil. The parameters of the configura-
tion parameters can be changed and the valid values of these fields are given in table 3.7
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7. I also conducted preliminary research in search of a universally optimal UUV hull shape design that

is near optimal for a range of environmental and operating ranges. Our preliminary study suggests the

possibility of the existence of such a design.

8. Finally, I presented a SciML tool called Anvil, which is the integration of AI methods and CAD-CFD in

unison that can be used for data generation or design optimization for engineering or research in shape

optimization of designs and study the effect of solid-fluid dynamics for any subsonic flow conditions

(underwater, land, or air). with very little work by the user.
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Configurable
parameter

sub-
parameter

Options for
parameter Meaning

seed cad
Location of parametric CAD seed design

along with CAD file name

cad param
Name of the parameters that can be changed

in CAD seed design and its default values

foam config

casefoldername Name of folder from where CFD runs

maxiter Z+ Maximum CFD simulation steps

subdomians {2,4,8,16,32} Number of cores to use for CFD

aoa R Angle of attack of vehicle

Uinlet R+ Velocity of vehicle

kinematic viscosity R+ Fluid viscous property

kInlet R+ Inlet turbulent energy

density R+ Fluid’s density

omegaInlet R+ Turbulence dissipation rate

meshing {auto,self} Mesh size selection process

meshsize R+ Size of the mesh when meshing is ”self”

design space
Ranges (max and min) of design parameters

that creates a design space

mode
data generation Generate and store sim data
optimization Optimize design for the target
cfd eval Single CFD evaluation on given STL

sampling method
random Uniform random sampling
lhc minmaxcorr Latin hypercube with minimize the maximum

correlation coefficient
lhc maximin Latin hypercube with maximize the minimum

distance between points

budget positive integer (Z+) Number of maximum CFD evaluation

optimizer

method BayesOpt Bayesian optimization

acquisition
LCB Lowest Confidence Bound
EI Expected Improvement

target
lift Maximize lift force
drag Minimize the drag force
lift drag ratio Maximize the lift to drag ratio

Table 3.7: Details of configurable options in Anvil.
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CHAPTER 4

Data efficient surrogate modeling for engineering design: DeepAL for regression problem

4.1 Problem formulation

Various works explained in chapter 2 show that it is possible to capture complex behavior using deep learning-

based surrogate models, and once a data-driven surrogate is created, it speeds up the design optimization

process by multiple folds. Still, there are many hurdles that hinder surrogate modeling, especially in the

complex engineering design domain. The main challenge in creating an inexpensivedata-driven surrogate is

the generation of a sheer number of data using these computationally expensivenumerical simulations. In

such cases, Active Learning (AL) methods have been used to attempt to learnan input-output behavior while

labeling the fewest samples possible. The current trend in AL for a regressionproblem is dominated by the

Bayesian framework that needs training an ensemble of learning models thatmakes surrogate training compu-

tationally tedious if the underlying learning model is Deep Neural Networks(DNNs). However, DNNs have

an excellent capability to learn highly nonlinear and complex relationshipseven for a very high-dimensional

problem. Our interest is to leverage the excellent learning capability of deep networks while avoiding the

computational complexity of the Bayesian paradigm so that a simple and scalable approach can be devel-

oped to create a surrogate model. Merging a deep learning model directly with AL outside of the Bayesian

framework is difficult. The underlying reason is the lack of ways to design a query strategy for prediction.

For a classification problem, researchers benefit from a sigmoid-based output probability distribution and can

leverage Shannon’s entropy function [133] to design a query strategy for active sampling (refer to figure 4.1),

however, this aspect is missing in the case of the regression problem.

Figure 4.1: Deep active learning for logistic regression problem

For regression problems, due to the lack of any probability measure, the researchers resort to an ensemble
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of models to measure uncertainty indirectly. For this purpose, they use models like the Bayesian neural

network or Gaussian processes (GP). Bayesian neural network methods are expensive due to the training of

a family of neural networks. In such a scenario, I lose the gain from active learning in terms of training time

for a family of neural networks because ensemble methods require independent training of several models,

which is very time-consuming and even intractable when I am dealing with DNNs. The Gaussian processes,

on the other hand, have O(n3) time complexity during both training and prediction time. In such cases, using

GP for even thousands of samples becomes computationally intractable. Another challenge arises from the

active learning paradigm. AL framework works on single samples per iteration, while retraining a family

of neural networks on just one added sample is not feasible. In this work, an attempt is made to solve this

problem out of the Bayesian framework and ensemble models to make it scalable and practically useful for a

large class of problems. To that end, I will first formalize the problem.

Let

y = f (x),x ∈ X ⊂ Rn,y ∈ Y ⊂ Rm (4.1)

be an unknown function for which I want a surrogate approximation using the training data generated by a

high-fidelity simulation process. Here X stands for the unlabeled data set in the design space DS and Y for

the solution set that the simulation process evaluated. Accordingly, in the given DS, I view the simulator as a

nonlinear function that maps the input space to the solution space (simulator : X 7→ Y ) and whose behavior

I want to model using a k–parameter DNN (NN). For data-driven surrogate modeling, the first step is the

generation of training data.

Dtrain = (xtrain
j ,ytrain

j ), j = 1,2, ...,Ntrain (4.2)

Since most engineering simulators have scalar outputs, in this work, I am interested in regression prob-

lems. The training goal is to minimize a loss function l() by using Dtrain along with getting acceptable pre-

diction accuracy on test data Dtest . As some numerical simulation processes are computationally very costly,

it is necessary to be strategic during the training data generation process to achieve acceptable accuracy with

a minimal number of training data points. This problem can be formalized as:

argmin
θ

E(x,y)[l(NN(x,θ |Dtrain)] : Dtrain ⊆ DS,(x,y) ∈ Dtrain (4.3)

min Ntrain (4.4)

subject to NN(x,θ) = y, ∀x ∈ DS : y≈ y∗ (4.5)
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Instead of a given training data set (X) and its label (Y ), I assume that I don’t have any data a priori and the

designer has to select samples for labeling. To this end, I work in a pool-based setting, where unlabeled pool

data (U) is given that contains a set of candidate points in DS for simulation. The heuristic-based research

field called AL, if used, tries to choose the most informative sample for evaluation on which I want to run our

simulations.

U = {x j, j = 1,2, ...,Npool} ,U ⊂ DS

As a subfield of machine learning, AL has been well-studied, and if deployed for training a learning

model attempts to do it by evaluating the fewest samples possible. For such a purpose, AL methods rely

on an acquisition function (A) which computes a scalar score (s ∈ R+) for a trained state of the model and

unlabeled pool data (U).

A(NN,U) : U 7→ R+ (4.6)

The acquisition function ranks the points in U , which indirectly measures the utility of data points for training

the surrogate. The unlabeled candidate data point with a maximum score is most appealing for maximizing

the model’s performance gain in the next iteration of model training, and vice versa. Therefore, the design

of the acquisition function is crucial to the performance of AL methods. For a classification problem, the

output of regression is a relative probability. In such a case, Shannon’s entropy function [133] can be used to

measure the uncertainty measurement of samples and can guide the sampling in the next iteration:

A =−
k

∑
i=1

p(yi|x).log(p(yi|x)) : p(yi|x) = NN(x) ∀ x ∈U (4.7)

Here k is the number of possible output classes of an input sample. At each iteration after training, the output

likelihood of each sample is estimated using a trained surrogate. The acquisition value is then estimated using

these probability measurements and equation 4.7. Based on these acquisition function values, samples are

selected from the unlabeled pool for the next iteration of training. However, this approach does not work for a

regression problem, which is our interest. In a regression problem, output prediction on an unlabeled sample

using a trained surrogate is a scalar value (in the case of a single output) or a vector of scalars (in the case of

a multi-output). In such cases, researchers took the route of measuring uncertainty in prediction. A principal

way to measure uncertainty in regression problems is to use Bayesian inference. For this purpose, I start with

an informed or uninformed prior and compute the posterior distribution over the model parameters.

p(θ |Dtrain) ∝ p(θ)
Ntrain

∏
i=1

p(yi|xi,θ) where (x,y) ∈ Dtrain (4.8)
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Then I compute the posterior predictive distribution p(y|x,Dtrain) =
∫

p(y|x,θ)p(θ |Dtrain)dθ for each test

point x ∈U . The full Bayesian inference (integration) is not computationally tractable for high-dimensional

parameter space on the entire distribution p(θ |Dtrain). For computational reasons, the common approach is

to approximate the posterior distribution by various point estimates and ensemble their outcomes to replace

the integral to summation. Another alternative and indirect approach to measuring uncertainty is an ensemble

of predictors trained on a separate subset of data. Both scenarios require the training of multiple networks.

Given a family of neural networks NNi for i = {1,2, ...,n}, and the prediction made on an unlabeled sample

(U) after an iteration of training is pi = NNi(x) for i = {1,2, ...,n}, an acquisition function is created using

the prediction as a function of mean and variance measurement and given as:

A = f (µi,σi) : µi =
1
n

n

∑
i=1

pi & σ
2
i =

1
n

n

∑
i=1

(x−µi)
2 ∀x ∈U (4.9)

Some example functions are maximum variance, Expected Improvement, etc. By estimating the acquisition

values on U , new samples for labeling are selected for the next iteration of training. The problem with this

approach is to train multiple neural networks. In complex behavior modeling, training even one network

takes a very long time. Training a family of neural networks in such a scenario is computationally tedious.

I propose a different approach for deep active learning in a regression problem to avoid this situation. The

proposed approach is simple, scalable, and called student-teacher-based surrogate modeling. I discuss it in

the next section.

4.2 Proposed solution

In this section, I will present our proposed solution for the above-mentioned problem.

4.2.1 Student-teacher based surrogate modeling

For designing the acquisition function (A), I propose to use two networks (one regressor and another clas-

sifier). These networks are called student and teacher networks based on their abstract purposes. The goal

of the student network is to learn the simulator’s behavior (student : X 7→ Y ), while the goal of the teacher

network is to guide the sampling and labeling for the next iteration of training based on the performance of

the student network. Active learning is an iterative approach, and at each iteration, I train teacher and student

networks. For training the student network, I first split the already labeled data (Xlabeled ,Ylabeled) into train

and test data. After the completion of training the student network, I create a custom dataset based on the

evaluation of the student network on already labeled training and test data. For evaluation purposes, I first
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define a threshold for fractional error called acceptable accuracy (aa : aa 7→ [0,1]).

f ractional error =
|Ylabeled−Ypredicted |

|Ylabeled |
(4.10)

The threshold value (aa) is a user choice that indicates the permissible maximum percentage error in pre-

dictions made by a trained student network. I declare predictions made by the student to be accurate when

the fractional error is less than aa and vice versa. I chose the value of aa = 0.05 (±5% error) for all ex-

periments. By using this evaluation report, I label each sample with a binary failure indicator (F), where

F : Xlabeled 7→ {0,1}, where F = 0, indicates the student network is able to predict the sample within an

acceptable level of accuracy; otherwise, F = 1 (in the case of a multi-output regression problem, I can use

logical and on all outputs to indicate a failure).

Dlabeled = {xi,I(yi− y∗i )≥ aa∗ y∗i } ∀ xi in Xlabeled ,where yi = prediction,y∗i : true label (4.11)

Using the labeled binary failure outcome data (Dlabeled), the teacher network is trained to learn a failure

probability distribution of the student on the entire design space (DS). Due to the 0/1 prediction, this problem

is converted into a classification problem. The failure probability guides the sampling in the next iteration to

the regions in DS on which the student network has poor performance or a high likelihood of failing. At each

iteration of learning, I retrain the student and teacher networks on further evaluated samples at each iteration

until I exhaust our budget for iterations (refer to figure 4.2).
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Figure 4.2: Student-teacher architecture: the process

Due to the classification job of a teacher, I used a smaller teacher neural network in comparison to a

student neural network because creating a coarse approximation of the decision boundary is a simpler job than

creating a nonlinear regression manifold in a given design domain. By leveraging the GPU implementation

of a neural network, I can make inferences on thousands of samples at a cost negligible to running the costly
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simulation. With the knowledge of the failure probability of the student network, it is possible to identify at

each iteration, what are the samples x ∈ DS on which the student network has the highest likelihood to fail.

S∗ = argmax
x

ft(x) ∀x ∈U (4.12)

4.2.2 Batching

As mentioned above, the AL-based approach uses one-by-one sample selection, which leads to the retraining

of the neural network with a minimal change in the training data. There are two problems with this: first,

retraining the entire network with one added sample will take a lot of training time and ruin the benefits

gained from AL. Second, frequent retraining without adding much information to the data can also easily

lead to overfitting [117]. To address this, at each active learning iteration, I want to select a batch of samples

instead of only one sample. For this purpose, I score a batch of candidate unlabeled data samples B =

{x1,x2, ...,xb} ⊆U . Based on the acquisition function A that is derived by a trained teacher, the goal is to

select a batch of data samples B∗ = {x∗1,x∗2, ...,x∗b} at each active learning iteration, which can be formulated

as

B∗ = argmax
B⊆U

P(B, ft(x)) (4.13)

Here P is a policy or algorithm or heuristic that chooses a batch of samples. In this work, I explored the

following policies for batching drawn from current research in AL :

1. Top-b

2. Diverse Batched Active Learning (DBAL)

3. Epsilon(ε)-weighted Hybrid Query Strategy (ε-HQS)

4. Batched random

Now I will explain these policies of batching and its algorithms in detail.

4.2.2.1 Top-b

It is a greedy strategy, here b is the batch size at each iteration. In this approach, after evaluating the failure

probability score on all unlabeled samples U , top-b samples are selected that have the maximum probability

of failure. The selection policy, in this case, is defined as:

B∗(P = top–b) = argmax
B⊂U,|B|=b

Σ ft(x) ; x ∈U (4.14)
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This is a naive approach to selecting a batch of samples, and this method considers each sample indepen-

dently. In such a situation, it may select highly information-rich but similar samples that collectively do not

add much information to the learning process. Without considering the correlation between the samples, it

may result in a waste of the evaluation budget and make the batch samples insufficiently optimized.The goal

of the most optimal batch sampling should be to add the most collective information to the learning process.

For this purpose, the goal is to select information-rich but diverse samples. The pseudo-code of the top-b

algorithm is given in the algorithm 1.

Algorithm 1 Top-b in student-teacher setting

1: Require: student network fs(x,θ), teacher network ft(x,w), unlabeled sample pool U , number of initial
samples M, number of AL iterations T , acceptable accuracy aa, and batch size b

2: Create training data for surrogate: S←M examples drawn uniformly randomly from U and label it.
3: Train the student model to get θ1 on S by minimizing ES[lMAE( fs(x;θ),y)] ▷ mean absolute error loss
4: Create labeled dataset: Dlabeled = {xi,I(yi− y∗i )≥ aa× yi} ∀ xi ∈ S
5: Train the teacher model to get w1 on Dlabeled by minimizing EDlabeled [lCE( ft(x;w),y)] ▷ binary cross

entropy error loss
6: for t = 1,2, ...,T : do
7: For all examples x in U \S:

1. Compute its failure probability p(x) = ft(x)

2. Select set St such that argmax
St⊂U\S,|St |=b

∑ p(x) and label it.

8: S← S
⋃

St
9: Train the student model to get θt+1 on S by minimizing ES[lMAE( fs(x;θt),y)]

10: Create labeled dataset: Dlabeled = {xi,I(yi− y∗i )≥ aa× yi} ∀ xi ∈ S
11: Train the teacher model to get wt+1 on S by minimizing EDlabeled [lCE( fs(x;wt),y)]
12: end for
13: return surrogate student model and its weights θT+1

4.2.2.2 Diverse Batched Active Learning (DBAL)

The general approach to imparting the maximum collective information in AL literature is to include diversity

in the sample selection. Wei et al. [162] include diversity by formulating a submodular function on the

distances between samples and selecting a batch of unlabeled samples, which optimizes the submodular

function. Another approach to including diversity is attempted [129] as a core-set selection problem, i.e.,

choosing a set of points such that a model learned over the selected subset is competitive for the remaining

data points. For this purpose, they defined a loss function called core-set loss, which is the difference between

the average empirical loss over the labeled set of points and the average empirical loss over the entire data

set, including unlabeled points. Since I do not have access to all the labels, the core-set loss reduction is

not directly computable; consequently, [129] gave an upper bound for this objective function, which I can

optimize. This upper bound for the loss function of the core-set selection problem is optimized by minimizing

its equivalent to the k-Center problem (minimax facility location [165]). A similar approach is taken by
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Zhdanov [172], who proposed the batch active learning using the clustering approach and proposed to solve

it as a facility location problem. Since the direct solution to the facility location problem is NP-hard, the

alternative formulation using the k-center/k-medoid algorithm is used in both [129, 172]. I took the Zhdanov

[172] formulation to include diversity in the batch sample selection. K-mean cluster minimizes the below

objective function to find the center of cluster µb and the cluster assignment zi,b.

∑
xi∈U

∑
b

zi,b||xi−µb||2 (4.15)

This clustering approach is further given informativeness about its probability to fail, i.e., failure probability

estimation p(x) : p(x) ∈ [0,1] for every unlabeled sample in U . This informativeness gives the weightage of

different samples in clustering, and the modified objective for the minimization problem is defined as:

∑
xi∈U

∑
b

zi,b pi(x)||xi−µb||2 (4.16)

This is solved by a weighted K-means clustering algorithm. In order to improve the scalability of this ap-

proach, a pre-filtering process is adopted to select βb most informative samples before clustering. The good

choice of β would depend upon data and batch size. For this experiment, I selected the same β values

(β = 10 & 50) that are used in Zhdanov [172] and called it DBAL-10 and DBAL-50. The complete pseudo-

algorithm is given in algorithm 2.

4.2.2.3 Epsilon-weighted Hybrid Query Strategy (ε-HQS)

One new batched sample selection policy is proposed in this work, which capitalizes on the solution proposed

to solve the exploration versus exploitation dilemma in reinforcement learning literature [139, 151]; I call this

ε-HQS. The role of a teacher in the student-teacher framework is to estimate the performance of the trained

surrogate in the design space ( ft : x 7→ [0,1] ∀ x ∈ DS) by providing a failure estimate. At each iteration of

training, I want to estimate the following:

f ∗(x) = P( fs(x)≥ aa∗ y∗), x ∈ DS,y∗ = true label (4.17)

Here f ∗ is the true failure probability of the student surrogates in the design space (DS) at the end of training.

However, since I do not have true labels (y∗) for all unlabeled points in U . In such a case, the goal of a teacher

is to learn an approximation ft ≈ f ∗. I want this approximation to be as accurate as possible. However, at each

iteration of training, I have a limited amount of labeled data, consequently, Dlabeled has limited information
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Algorithm 2 DBAL in student-teacher setting

1: Require: student; network fs(x,θ), teacher network ft(x,w), unlabeled sample pool U , number of initial
samples M, number of AL iterations T , batch size b, acceptable accuracy aa, and parameter β

2: Create training data for surrogate: S←M examples drawn uniformly randomly from U and label it.
3: Train the student model to get θ1 on S by minimizing ES[lMAE( fs(x;θ),y)] ▷ mean absolute error loss
4: Create labeled dataset: Dlabeled = {xi,I(yi− y∗i )≥ aa× yi} ∀ xi ∈ S
5: Train the teacher model to get w1 on Dlabeled by minimizing EDlabeled [lCE( ft(x;w),y)] ▷ binary cross

entropy error loss
6: for t = 1,2, ...,T : do
7: For all examples x in U \S:

1. Compute its failure probability p(x) = ft(x)

2. pre-filter the top βb informative samples (Is): argmax
Is⊂U\S,|Is|=βb

Σ p(x)

3. Create b clusters on Is using weighted K-Means: ∑
xi∈U

∑
b

zi,b pi(x)||xi−µb||2

4. St =select b samples closest to the cluster centers and label it.

8: S← S
⋃

St
9: Train the student model to get θt+1 on S by minimizing ES[lMAE( fs(x;θt),y)]

10: Create labeled dataset: Dlabeled = {xi,I(yi− y∗i )≥ aa× yi} ∀ xi ∈ S
11: Train the teacher model to get wt+1 on S by minimizing EDlabeled [lCE( fs(x;wt),y)]
12: end for
13: return surrogate student model and its weights θT+1

about the design space DS (a maximum up to training and testing data).

ft(x) = P( fs(x,w)|Dlabeled), ∀ x ∈ DS (4.18)

In such a case, I can only approximate f ∗ up to some relative accuracy (ρ approximation of f ∗). It results

in a biased estimation of the performance of the student network by the teacher network. The estimation

or bound on ρ is an open research question, but I can increase the robustness of the teacher network and

reduce the sensitivity of mismatches between the distributions of ft and f ∗. For this purpose, I introduce

a two-step process: first, I filter all samples with the teacher’s prediction (likelihood to fail) more than a

threshold value (samples with a high probability of failure), and second, I introduce a belief weightage on the

teacher network. For this end, I introduce two hyperparameters: threshold and ε . Since the output layer of the

teacher network is a sigmoid function, I kept a standard threshold of 0.5 for all experiments (i.e. select all x if

ft(x)≥ 0.5 ∀ x ∈ DS). ε is a belief factor that I assign to the teacher network. ε is a scalar real value ranging

between 0 (indicates complete disbelief in the teacher network’s estimate) and 1 (indicates a complete belief

in the teacher’s estimation) (ε ∈ [0,1]).

ε-greedy based policy is inspired by RL [139] literature, the ε factor controls the balance between ex-

ploration and exploitation. Since the teacher network does not know what it does not know - the explo-
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ration versus exploitation dilemma exists in this situation similar to RL, i.e., the search for a balance be-

tween exploring the design space to find regions where I have not explored while exploiting the knowledge

gained so far by the teacher network. The fixed value of ε expresses linear belief in the teacher’s predic-

tion. Another famous approach is to let ε go to one with a certain rate to increase our belief in the teacher

with more and more labeled data available for its training in later iterations. It turns out that at a rate of

1
T (T = number of training iterations) proved to have a logarithmic bound on the regret (maximum gain) [9].

ε-greedy rule [139] is a simple and well-known policy for the bandit problem.At each iteration of active

sampling, this policy selects a ε×b number of samples from the filtered unlabeled data (samples that have a

likelihood to fail more than the threshold), and the rest of the samples, (1−ε)×b are selected uniformly ran-

domly from leftover unlabeled samples. The complete pseudo-code for this approach is given in the algorithm

3.

Algorithm 3 ε-HQS

1: Require: student network fs(,θ); teacher network ft(x,w); unlabeled sample pool U ; number of initial
samples M; number of AL iterations T ; batch size b, acceptable accuracy aa, hyper-parameter ε

2: Create labeled data: S←M examples drawn uniformly randomly from U and label it.
3: Train the student model to get θ1 on S by minimizing ES[lMAE( fs(x;θ),y)]
4: Create labeled data: Dlabeled = {xi,I(yi− y∗i )≥ aa× yi} ∀ xi ∈ S
5: Train the teacher model to get w1 on Dlabeled by minimizing EDlabeled [lCE( fs(x;w),y)]
6: for t = 1,2, ...,T : do
7: For all examples x in U \S:

1. Compute its failure probability p(x) = ft(x)

2. X f = {x | p(x)≥ 0.5} ▷ samples with high failure probability

3. Xsel =Choose (ε×b) number o f samples uni f ormly randomly f rom X f .

4. S← S+Xsel

5. Xrest =Choose ((1− ε)×b) number o f samples uni f ormly randomly f rom U \Xsel

6. S← S+Xrest

8: S← S
⋃

St
9: Train the student model to get θt+1 on S by minimizing ES[lMAE( fs(x;θt),y)]

10: Create labeled dataset: Dlabeled = {xi,I(yi− y∗i )≥ aa× yi} ∀ xi ∈ S
11: Train the teacher model to get wt+1 on S by minimizing EDlabeled [lCE( fs(x;wt),y)]
12: end for
13: return surrogate student model and its weights θT+1

4.2.2.4 Batched random sampling

This algorithm samples a batch of random samples B from the unlabeled pool U and labels them at each

iteration of training. The probability distribution for the random sample selection is assumed to be uniformly
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distributed within the interval [xl ,xh) and given by:

p(x) =
1

xh− xl
(4.19)

Where xh and xl are the highest and lowest values in each dimension of the design space. This is the simple

batched sampling approach and has a computational complexity of O(1).

In the next section, I empirically evaluate and compare all the above-mentioned methods to train neural

network-based surrogate models in three different engineering domains.

4.3 Experiments and its evaluation

4.3.1 Experimental setup

In each experiment, I follow the same procedure as explained below. Since I am interested in a pool-based

setting where I assume that I already have collected a pool of unlabeled input data (U) and during the selection

process of data for training, I remove the budgeted data per iteration (b) from the pool and label it. For a given

total number of iterations of the active learning (T ), the entire procedure is outlined below:

1. Warm-up stage: Selection of initial data set (selected randomly from the pool) and getting its label

to create a training data Dtrain. Initialize the training weights, bias, and learning hyperparameters.

Initialize AL iteration counter t.

2. For each iteration of the AL:

While t ≤ T :

(a) The student network is trained on Dtrain. After completion of training, the train and test data is

evaluated on the trained student model.

(b) The labeled data set is created and used to train the teacher network.

(c) The score/ failure probability is computed using the trained teacher network on leftover pool data

U .

(d) The query policy is deployed on the computed failure probability to select the new batch of

candidate samples (Scandidate) for training in the next iteration.

(e) Exclude Scandidate from corresponding U : U :=U \Scandidate

(f) Get the label (L) for Scandidate and create newly added data. Dnew =< Scandidate,Lcandidate >

(g) Add Dnew to Dtrain: Dtrain := Dtrain
⋃

Dnew
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For evaluating the performance of the trained student surrogate, I used the left-over data (U \Dtrain) as our

test data and evaluated the student surrogate after each iteration of active learning. To rigorously evaluate

our approach and to ensure performance consistency, I ran each algorithm multiple times (every time with

different random seeds) and averaged their results.

4.3.2 Metrics

For testing the performance of the trained surrogate model, I chose the evaluation metric as the fraction of

test predictions that are within acceptable accuracy, I defined a regression output as acceptable if it is within

5% of error (+/- 5% error) i.e.,

Accuracy =
∑

Ntest
i=1 I(|yi− y∗i | ≤ 0.05∗ |y∗i |)

Ntest
(4.20)

Here yi is a prediction on ith test sample with ground truth y∗i and Ntest is the total number of samples in the

test data. Since other accuracy metrics like MSE/MAE do not explain whether the error value is due to a

generalization error or outliers, our chosen metric gives a better understanding of prediction results. During

the surrogate training, I choose L1 loss (MAE) as our optimization objective for the student network. I treated

the optimization objective as a hyper-parameter, tested both L1 loss (MAE) and L2 loss (MSE), and observed

better performance on test data using MAE. For training the teacher network, our loss function was binary

cross-entropy, since the teacher’s goal is to create a pass-fail (0-1) probabilistic map.

4.3.3 Intuitive explanation and validation of ε-HQS approach in 2D problem

To develop an intuitive understanding of this approach, I test our method on a low-dimensional example

problem. In a low-dimensional problem, I can visualize the learning process and understand the roles of the

teacher and student during surrogate training. For this purpose, I take a classic static regression problem as

our example that comprises two input variables and one output scalar value. This function is called the bird

function [97] and is defined as:

f (x,y) = sin(x)e(1−cos(y))2
+ cos(y)e(1−sin(x))2

+(x− y)2 (4.21)

−10≤ x≤ 0 ;−6.5≤ y≤ 0 (4.22)

The input ranges that make up the design space of interest are a subset of R2. Figure 4.3 shows the multi-

modal non-linear manifold created by this function. The surrogate training goal is to learn this nonlinear

manifold using a deep neural network. For this purpose, I apply the ε-HQS method as explained above and

observe the evolution of the learning process after active learning iterations. Since the function’s evaluation
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Figure 4.3: The two variables bird function (manifold-on left) and contour map (on right).

is very cheap, I first created dense mesh grid samples in design space with 10000 samples and evaluated

these samples on the bird function to create a labeled mesh grid data {input samples, output label}(Xm,Ym). I

started the surrogate training using the ε-HQS process by sampling budgeted initial random samples from the

input space, evaluating its output using the bird function, and training the student network. Then the labeled

dataset (Dlabeled) is created to train the teacher network (refer algorithm 3 for more information). Once the

training phase (for both teacher and student networks) is finished for an iteration, I evaluate the mesh grid

sample data (Xm) on the student network ( fs) and compare it with the ground truth (Ym). If | fs(Xm)−Ym| is

within acceptable accuracy, I label it as 1 or else 0. This label indicates the mesh grid samples that the student

network has failed to predict with acceptable accuracy. The goal of the teacher network ( ft ) is to discover

this failed design space, which guides the sampling process in the next iteration. To find out whether the

teacher network is able to guide the student network in the right region of its weakness or failure, I make a

prediction using the teacher network on the same (Xm) and observe the failure probability for each sample

( ft(Xm)). For evaluating teacher prediction, I keep the threshold at 0.5 which is generally the case in a binary

classification problem. The failure probability greater than 0.5 indicates the teacher’s belief in regions on

DS on which I have a high probability to fail and vice versa. The performance measured on the mesh grid

gives us a visual explanation and evaluates the teacher’s ability to predict the regions where the student is not

performing well, which can guide the sampling in the next iteration. I show the results of this learning and

evaluation process in figure 4.4. The left column shows the performance of the student on the mesh grid data

at the end of the labeled iteration, and the right column shows the performance of the teacher on the same

mesh grid data in the corresponding iteration (red color in figure 4.4 indicates failure, and blue is a success).
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As can be observed from the figure, using the student-teacher approach with the ε-HQS method, the teacher

is able to estimate the design space region on which the student has a high probability of failure with good

consistency. The difference in the exact failure prediction and the teacher’s prediction is due to the limited

labeled sampled information for training the teacher (up to the training and test data). But this approximated

failure prediction by the teacher (red region) is good enough to guide sampling for student training in the next

iteration.
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Figure 4.4: The ground truth of trained student network in the design space (shows prediction performance
on mesh grid data - red: fail to predict within acceptable accuracy, blue: able to predict within acceptable
accuracy) and its failure estimated by the teacher network at end of different AL iterations. left column:
ground truth of student network’s performance; right column: student network’s performance estimated or
approximated by teacher network on mesh grid data.
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4.3.4 Empirical evaluation in different Engineering design domains

I take three different use cases of real-world engineering problems (multi-input, single-output regression

problems) of surrogate modeling. The pooled data is accumulated either by generating data from the available

open-source simulators or from already-collected baseline data from prior works. In the Finite Element

Analysis (FEA) domain, I took the data generated by Vardhan et al. [150]. It uses FreeCAD [119] which is a

toolbox for parametric 3D CAD designs and has numerical solvers like CalculiX for the FEA analysis. In the

propeller design domain, I used the pool data generated by [156]. It uses the openProp numerical simulation

tool for designing a propeller. Openprop [40] is a computational tool for designing and analyzing marine

propellers and horizontal-axis turbines based on the vortex lattice lifting line methods. In the CFD domain,

data generation is done using an integrated tool chain consisting of freeCAD [119] (for CAD modeling)

and OpenFOAM [70] (for computational fluid dynamics solver). In all three cases, I want to replace a

physics-based simulation process with a computationally cheap DNN-based surrogate model for a given

design space (DS). For this end, I want to model the relationship between input (design parameters) and

output (behavior of interest) using a neural network. By training a neural network in a given design space,

I want to capitalize on the excellent generalization capability of the neural network and make predictions

on other designs in the design space without running the actual simulation. Accordingly, it will result in

huge savings in computational cost and can get the design’s behavior of interest in almost negligible time

in comparison to running simulation. In the FEA domain, the learning goal is to train a surrogate to predict

the maximum Von-mises stress (which determines the hull’s integrity when submerged at a depth) in the

capsule-shaped pressure vessel used in an underwater vehicle [150]. In the propeller domain, the goal is to

train a surrogate to predict the propeller’s efficiency based on the given requirements and geometric design

[156]. In the CFD domain, the surrogate learning goal is to predict the drag force on a given UUV (unmanned

underwater vehicle) hull shape defined by hull parameters. The size of the design space (dimensionality and

extension) dictates the amount of data required for training in each domain. Larger and higher-dimensional

design spaces need more labeled samples for surrogate training, and vice versa. For all experiments, I chose

a reasonable-sized design space and collected or labeled a reasonable amount of data for experimentation. I

aim to evaluate the performance of all the above-mentioned sampling approaches in these real-world design

domain problems.

4.3.4.1 Pressure vessel design problem using Finite Element Analysis (FEA)

4.3.4.1.1 Problem setting and numerical method

Static stress analysis is the most common type of structural integrity analysis of the sub-sea pressure vessel.

A subsea pressure vessel contains dry components like electronics, batteries, sensors, and various underwater
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equipment. During the design phase of the vessel, these pressure vessels are tested by subjecting them to

external pressure to test the integrity of the design during subsea operation and to find an optimal vessel

design that can withstand the operating pressurized environmental conditions (generally, optimal designs are

the thinnest possible designs).For the parametric design of the vessel, [150] chose a cylindrical vessel with

hemispherical end caps. This simplified geometry allows for an efficient distribution of the external pressure.

Cylindrical pressure vessels have wide applications in thermal and nuclear power plants, process and chemical

industries, space and ocean depths, and fluid supply systems in industries [68]. The material that is used in

this research study is aluminum alloy (Al− 6061T 6) which is a widely used material for sub-sea pressure

vessel design with material properties (density = 2700 Kg/m3, Young’s modulus = 69×106 Pa, Poisson ratio

= 0.33) [150]. The accuracy of the FEA is highly dependent on the mesh employed. For an accurate result,

an automated process of refining the mesh and evaluating the results is carried on until the result stabilizes

and further refinement does not change the output [150].

Figure 4.5: Parametric geometry of pressure vessel design

These design parameters and the depth of the sea (which determines the applied external pressure to the

vessel) are parameterized, and a combination of these parameters creates a design space. For estimation

of applied crush pressure, the following formulation is being used with water density as open sea density

1027 kg/m3:

External pressure = ρ×g×depth× sa f ety f actor (4.23)

The value of the safety factor is taken to 1.5. For a given internal radius of the cylinder (a), uniform thickness

of vessel (t) , the outside radius (b = a+ t) , the internal pressure by pi, and the external pressure by p0 the

tangential and radial stresses are given by [134]:

σt =
pia2− pob2 +a2b2(pi− po)/r2

b2−a2 (4.24)

σr =
pia2− pob2−a2b2(pi− po)/r2

b2−a2 (4.25)
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These equations of radial and tangential stress as a function of radius are known as Lamé’s equations. Axial

or longitudinal stress for this closed-end cylinder can be found by force equilibrium condition and is given

by:

σl =
pia2− pob2

b2−a2 (4.26)

In this experiment setting, it is assumed to have only external pressure i.e. pi = 0. In such a case, the stress

equations as a function of radius can be written as :

σt =
−pob2

b2−a2

[
1+

a2

r2

]
(4.27)

σr =
−pob2

b2−a2

[
1− a2

r2

]
(4.28)

σl =
−pob2

b2−a2 (4.29)

All these three stresses represent the three principal stresses acting on a cylinder. Hence the Von-mises

stress (also known as equivalent stress σeqv) is estimated by using three principal stresses and given by:

σeqv =

√
(σl−σt)2 +(σt −σr)2 +(σr−σl)2

2
(4.30)

Figure 4.6 shows the outcome of one of the simulation experiments using a UUV hull design simulation

outcome in OpenFOAM using the above-mentioned setting and methodology.

Figure 4.6: Example FEA simulation experiment result. (tested at sea depth =500 meters, the applied crush-
ing pressure is calculated for open seawater density with safety factor 1.5 resulting in crushing pressure of
7.5MPa. The estimated maximum von-mises stress was 37MPa which is much less than the yield stress of
(Al-6061T 6) which is 69MPa ). The hull shape parameter for this design: L: 100 mm, a : 40 mm, t: 10 mm,
and Dsea:500 meters.
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Parameter Symbol Minimum Maximum

Depth of the sea Dsea 0 m 6000 m
Length L 50 mm 600 mm
Radius a 1 mm 1850 mm
Thickness t 50 mm 600 mm

Table 4.1: Design Space: Range of design parameters for surrogate modeling - FEA domain

4.3.4.1.2 Design space and data generation

The design space for this experiment is composed of 4 variables (Dsea,L,R, t) (refer table 4.1). From this de-

sign space, [150] randomly sampled 11311 data points and ran the FEA simulation to get the maximum

Von-mises stress. I use this as our pool data. The sample labeling cost in terms of evaluation time is

200 sec/sample. At each iteration of training the surrogate model, I chose 50 samples (b = 50) from the

pool of collected data and conducted 50 AL iterations on all the above-mentioned approaches, which resulted

in 2500 evaluated samples used for training the surrogate.
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Figure 4.7: Surrogate prediction accuracy on test data using different proposed AL-based strategic sampling
methods

4.3.4.1.3 Results

Figure 4.7 and table 4.2 show the accuracy result of trained surrogates on the test data using different strategic

sampling methods. It can be seen that all ε-HQS methods (with different values of ε) perform better than

other strategic sampling-based surrogate models. DBAL and Top-B methods perform worse than the batched

random sampling method due to not handling bias and diversity properly during sample selection. In figure
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Figure 4.8: Comparison of accuracy between non-parametric ε-greedy method and best baseline methods
non ε-HQS method

Sampling strategy Accuracy

Random 83.76%
top-b 83.11%
DBAL-10 57.28%
DBAL-50 47.9%6
ε-greedy 86.47%
ε = 0.25 85.85%
ε = 0.50 87.01%
ε = 0.75 86.96%
ε = 1.0 87.56%

Table 4.2: Accuracy of a trained surrogate after exhausting the training budget in FEA domain: after iteration=50,
budget/iteration=50 (total budget = 2500)

4.8, I show the comparison between batched random sampling strategy with the ε method with logarithmic

varying ε (ε-greedy). It is empirically observed in this domain to get similar surrogate accuracy as the best-

performing baseline (batched random) I need 42% fewer samples. Since the time for training the teacher

network and making inferences on prediction is very cheap (approximately 120 seconds per iteration ) in

comparison to the simulation time (200 Sec), it saves days of sample labeling/simulation time. Since the

time for training of teacher network and making inferences on prediction is very cheap (approximately 120

seconds per iteration ) in comparison to the simulation time (approximately 200 seconds per sample), it saves

days of sample labeling/simulation time.
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4.3.4.2 Propeller design using lifting line method using OpenProp

4.3.4.2.1 Problem setting and numerical method

A propeller is a widely used mechanical design that converts rotational energy into thrust. The performance

of a propeller depends on its geometrical characteristics and physical parameters. For example, [40] considers

the number of blades (Z), propeller’s diameter (D), chord radial distribution (C/D), pitch radial distribution

(P/R), and hub diameter (Dhub) as geometrical characteristics and thrust coefficient (Ct ), power coefficient

(Cp) and advance ratio (J) as governing physical parameters. For a given thrust requirement at well-defined

operational points (e.g., cruising speed and the actuator’s spinning rate (RPM)), the goal of a designer is to

search for the optimal geometric characteristics that can fulfill the thrust requirement at maximum efficiency

(E).The numerical tool used for propeller design in this work is openprop [40]. Openprop is a moderately-

loaded lifting line theory-based propeller blade design method with trailing vorticity aligned to the local flow

velocity. The goal of the propeller design optimization procedures in openprop is to determine the optimum

circulation distribution along the span of the blade under given inflow conditions and blade 2D section prop-

erties. For a given required thrust TS, the openprop uses Coney’s formulation [31] to determine produced

torque Q, thrust T , and circulation distribution Γ. For optimization, an unknown Lagrange multiplier (λ1)

is introduced to perform circulation optimization to get an optimal design. For this purpose, an auxiliary

function is defined as below:

H = Q+λ1(T −Ts) (4.31)

If T = TS then a minimum value of H coincides with a minimum value of Q. To find the minimum, the partial

derivative with respect to unknowns is set to zero.

∂H
∂Γ(i)

= 0 f or i = 1,2, ...,M (4.32)

∂H
∂λ1

= 0 (4.33)

These M systems of equations are non-linear, and an iterative approach is used to solve them by freezing other

variables and linearizing the system of equations with linearized unknowns Γ̂, λ̂1. The system of equations

4.32 and 4.33 is solved for the linear Γ̂, λ̂1, and the new linearized circulation distribution Γ̂ is used to update

the flow parameters. This process is repeated until convergence, which does yield an optimized circulation

distribution and a physically realistic design. For more details on numerical methods, refer to [31, 40].
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4.3.4.2.2 Design space and data generation

I used the design space used by Vardhan et al. [156]. Since the evaluation of each design is cheap and the

dimensionality of the problem is high (14 dimensions), [156] generated approximately 200000 valid designs

as pool data. For surrogate training, at each iteration of training, I chose 50 samples and trained the surrogate

for 50 iterations, the same as the FEA domain.

Figure 4.9: Result of a propeller design simulation [156] operating at cruising speed of 14 m/s with rotation
rate 338 rpm with an efficiency of 90%.

0 4 8 12 16 20 24 28 32 36 40 44 48
Number of samples = index × 50

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

DBAL50
DBAL10
top-B

random
ep 025
ep 05

ep 075
ep greedy
ep 1

Figure 4.10: The comparison of expected/mean test accuracy of trained surrogate in propeller domain using
all proposed approaches at the different iterations of training. DBAL50 (Diverse Batch Active Learning with
β=50), DBAL10 (Diverse Batch Active Learning with β=10), random (batch uniformly random), ep 025
(ε-HQS with constant ε=0.25), ep 05 (ε-HQS with constant ε=0.5), ep 075 (ε-HQS with constant ε=0.75),
ep 1 (ε-HQS with constant ε=1.0), ep greedy (ε-HQS with logarithmic increasing ε).
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Figure 4.11: The mean and variance of test accuracy using ep greedy (ε-HQS with logarithmic increasing ε)
and DBAL50 (Diverse Batch Active Learning with β=50) strategy

Sampling strategy Accuracy

Random 55.07%
Top-b 31.83%
DBAL-10 35.84%
DBAL-50 36.66%
ε-greedy 63.9%
ε = 0.25 67.18%
ε = 0.50 63.9%
ε = 0.75 60.92%
ε = 1.0 58.01%

Table 4.3: Accuracy table in propeller design domain: iteration=50,budget/iteration=50 (total budget = 2500)

4.3.4.2.3 Results

Figure 4.10 and table 4.3 show the accuracy result of trained surrogates on the test data using different

strategic sampling methods. It can be seen that all ε weighted methods perform better than other strategic

sampling-based surrogate modeling. DBAL50, DBAL10, and Top-B perform worse than the random batch

uniform sampling method. Figure 4.11 shows the comparison between the batched random sampling strategy

when compared with our proposed method with logarithmic varying ε (no parameter). It is empirically

observed in this domain to get similar surrogate accuracy as the best-performing baseline (batched random)

but with 32% fewer samples. It can also be seen that the prediction accuracy gap between the best ε-HQS

method and the best baseline method (batched random in this case) is more than 12%. In this domain, the

labeling cost is not much, but the goal of its inclusion was to analyze the performance of this approach in

high-dimensional problems. A wider gap in this example domain reflects that in high-dimension problems

103



Sampling strategy Accuracy

Random 94.27%
top-b 88.33%
DBAL-10 90.55%
DBAL-50 95.09%
ε–greedy 96.81%
ε = 0.25 95.93%
ε = 0.50 96.97%
ε = 0.75 96.67%
ε = 1.0 97.09%

Table 4.4: Accuracy table in CFD design domain: iteration=50, budget/iteration=10 (total budget = 500)

(14 dimensions in this case) the ε-HQS based ε-greedy is more sample efficient than sample labeling by other

strategic sampling methods.

4.3.4.3 UUV hull design using CFD analysis

4.3.4.3.1 Problem setting and numerical method

In the design process of a UUV’s hull, the drag resistance has the most dominant effect, and the goal of design

optimization is to minimize the drag resistance for a given set of design requirements. For the pooled data set,

I take the pool data from the experiment explained in section 3.4.2 that uses the process explained in section

3.2.1. Since, in this case, I have a small data pool, at each iteration of training, I chose 10 samples from the

pool of collected data. I conducted this iterative training for 50 iterations, which resulted in 500 samples.

While choosing samples at each iteration, I deployed all the policies mentioned above for batching.

Figure 4.12: Output steady state pressure field of one of the simulations.
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Figure 4.13: The comparison of expected / mean test accuracy of trained surrogate in CFD domain using all
proposed approaches at the different iterations of training. DBAL50 (Diverse Batch Active Learning with
β=50), DBAL10 (Diverse Batch Active Learning with β=10), random (batch uniformly random), ep 025
(ε-HQS with constant ε=0.25), ep 05 (ε-HQS with constant ε=0.5), ep 075 (ε-HQS with constant ε=0.75),
ep 1 (ε-HQS with constant ε=1.0), ep greedy (ε-HQS with logarithmic increasing ε).

4.3.4.3.2 Results

Figure 4.13 and table 4.4 show the accuracy result of trained surrogates on the test data using different

sampling methods. It can be seen that all ε-HQS methods have better accuracy on test data than other

sampling approaches for surrogate modeling. In this domain, DBAL-50 performed slightly better than the

batched random sampling but still less than all ε-HQS methods. The Top-B approach performs worse than

all other approaches due to a lack of consideration of diversification in sample selection. Figure 4.14 shows

the accuracy of DBAL-50 sampling strategy-based trained surrogate and ε-HQS with logarithmic varying ε

sampling-based trained surrogate on multiple runs across all iterations. It shows the mean accuracy as well as

the variance in accuracy prediction. The predicted test accuracy performance suggests that empirically in this

domain, to get similar surrogate accuracy as the alternative policy-based best-performing approach (DBAL-

50), ε-HQS with non-parametric ε-greedy approach needs approximately 20% fewer samples. Since the

time for training the teacher network and making inferences on prediction is very cheap (approximately 120

seconds per iteration ) compared to the simulation time (approximately 300 seconds per sample), it saves

days of sample labeling and simulation time.
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Figure 4.14: The mean and variance of test accuracy using ep greedy (ε-HQS with logarithmic increasing ε)
and DBAL50 (Diverse Batch Active Learning with β=50) strategy

4.4 Summary of contribution

In this work, I developed and evaluated a novel deep active learning approach for data-efficient surrogate

modeling in regression problems. This method is computationally tractable and scalable since it does not

use an ensemble of learning models for query design. I brought knowledge and approaches from the current

research on active learning to increase collective information and diversity in a batch learning setting and de-

signed algorithms based on them. When I compared these methods with different benchmarks and generated

data sets, I found that ε-HQS outperforms all of them in all cases. I also observed that as the dimension of

the problem increases, the performance gap between ε-HQS and other baselines becomes wider. This is a

new paradigm for deep active learning in a regression problem.
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CHAPTER 5

Discovering rare event failure in LEC

5.1 Problem formulation

When a surrogate model is used in system operation, ensuring functional correctness is critical for its reliable

operation. For studying this problem, a reinforcement learning-based car braking controller is trained as a

surrogate model. For designing a machine learning-based controller in a reinforcement learning setting, the

training process involves running simulation experiments with the aim of learning a policy for the desired

behavior through continuous interaction with the environment. These trained models are generally called an

agent. Let’s introduce some notation to formulate the problem. The state information X represents the agent’s

state in the environment, which the agent perceives from its environment. Z represents the environment’s state

(which may be the environment’s private representation), which is sampled from some unknown distribution

PZ . In our experimental setting, the experimenter neither observes nor controls Z. X is drawn from some dis-

tribution PX , which does not need to be known. The only requirement imposed on X is that the experimenter

should be able to sample it quickly with approximately no cost in comparison to running the simulation. Our

interest is the agent’s performance on the environment distribution (PZ) over initial conditions X ∼ PX . Once

training is done, assessment of the trained agent is carried out by rolling out experiments with the trained

agent given an initial condition X ∼ PX . The outcome of the experiment can be failure or success, which is a

random variable called failure indicator C. Here, C has a binary value, and C = 1 indicates a ”failure”. Our

interest here is to find a good test case that can reveal the potential fault in the trained controller. The problem

can be formulated as finding those X ∼ PX on which the trained controller fails.

In the naive approach to finding a failure, Vanilla Monte Carlo may not find a failure even after evaluating

the same number of episodes as training episodes. It may give a sense of a safe controller, which may or may

not be true. To make evaluation more rigorous, one approach is to use a priority replay (PR) adversary search,

which tests the trained model on all earlier failures that happened during training. Generally, a well-trained

agent does not fail during a priority replay search, as it has learned from all failures that occurred during

training. After failing to find failure during PR adversary search, it is obvious to switch to randomized search

(Monte Carlo sampling) from the input search space and run a simulation to observe the results. In a system

with a large input search space, especially in the case of all CPS that work in a continuous domain, finding a

failure using Monte Carlo is really expensive in terms of the number of simulation episodes required to find

a failure case.
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To speed up the search for failures in learned agents, [145] proposed AVF (failure probability predictor)

guided search. The motivation behind AVF-guided search is to screen out situations that are unlikely to be

problematic and focus evaluation on the most difficult situations (corner cases) in a probabilistic rigorous

framework. AVF learns the failure pattern from the earlier agent’s failure. During the testing of the agent, it

assigns a probability of failure for each input search space. It is advantageous because if sampling from the

search space and its prediction using AVF are computationally cheaper, it can narrow our search for failure

scenarios to regions with a high probability of failure and save on the simulation’s computation. Given input

data, AVF predicts the probability of failure based on observed training data. Finding failure using AVF

involves two phases of training: controller training and AVF training (refer to figure 5.1). In the controller

training phase, an AI model is trained using reinforcement learning methods to achieve a learning goal. As

training progresses, the learned controller becomes more robust and will have fewer and fewer failures. At

each episode during training, the experiment starts with initial conditions X ∼PX , and its outcome is observed

C → {0,1}. For any episodic simulation, it is guaranteed to get a return value of C. During training, initial

condition (X), simulation episodic outcome (C) and information about the agent (θ ) are collected. Here, θ

encodes all information that can tell about the agent state (like stochastic noise added during each episode or

episode number). So, at each episode of training t, simulation starts with Xt and Ct and θt is observed. The

training data in the form of {(X1;θ1;C1),(X2;θ2;C2), · · · ,(Xn;θn;Cn)} will be used to train AVF in the AVF

training phase. Once training is finished, the controller is tested up to the maximum of the training episode.

If testing does not give us any failures, it is assumed that our trained model is functionally robust, which

may or may not be true. During the AVF training phase, training data is used to train a neural network in a

supervised setting. In the initial phase of training, the agent is more likely to fail, so failure data from the

initial phase of training is ignored, and only training data from the last phase of training is used for training

AVF. X and θ form the input feature space, and C would be the output of the neural network. A neural

network is trained to return the probability of failure given an initial condition and information about the

agent. N N : (X ,θ) → [0,1].

If f∗ is the real failure probability function given the initial state X and θ , the goal of training AVF (N N )

is to approximate f∗ up to a normalization constant.

f∗(x) = P(C = 1|X ,θ); X ∼ PX

N N ≈ f∗

In search of a failure condition, the traditional Vanilla Monte Carlo (VMC) sampling samples X from PX

and runs the experiment. If the experiment is episodic, then the result of the simulation will be a success
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Figure 5.1: Phases of Training

Figure 5.2: Failure search - AVF and Monte Carlo

(C = 0) or failure (C = 1). For a well-trained agent, finding a failure case may take way more than training

episodes. In contrast, when using AVF-guided search to find a failure, the obvious approach is to evaluate

the agent on argmaxN N (x). However, maximization using a neural network is not feasible, and I also

only have knowledge of approximate probability, so a feasible approach is to sample n initial conditions

from PX , pick the initial condition from this set where N N is the largest, and run the experiment from the

found initial condition. This process is repeated until a failure is found. The reasoning behind predicting first

through N N is to discard all the search space samples that have a very low probability of failure and select

the one that has a greater chance of failure. One assumption is implicit: if the cost of evaluating a sample

on N N is negligible in comparison to running an experiment, then only AVF-guided search is advisable in

comparison to VMC. The idea is to use N N to save on the cost of experimentation.

This guided search method has some limitations that are observed during empirical evaluation and also

has scope for improvement. The first limitation of AVF-guided search is to rely completely on training

data and the training processes for searching for failure. The training process in reinforcement learning is

not guaranteed to be monotonic. Research efforts like constraining gradient updates of policy parameters
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(TRPO) [127], stochastic weight averaging (SWA) [107] etc. attempt to learn a monotonically increasing

control policy, but there is no guarantee for such convergence. The second limitation of AVF-guided search

is it does not adapt to discoveries of new failed cases; in such cases, AVF does not improve this search

process. In large state spaces, the adaptive search process is beneficial by saving cost and time by adapting to

new discoveries. The third limitation is that there is no way to influence this guided search by including data

derived using expert knowledge, statistics collected in the real-world or other simulators, similar experiments,

etc. that may help to find a more realistic and speedier discovery of test scenarios.

5.2 Proposed work

To tackle all the above-mentioned issues, the following solution is proposed: Let’s assume if X f 1,X f 2, · · · ,X f n

are a collection of failure instances, the goal is to model P(X f ). This trained probability distribution tries to

imitate and approximate the real failure probability distribution. Once trained, a sample can be generated

from this distribution to generate a test scenario that has a high probability of failure. For this purpose, a

mixture model-based clustering algorithm is used to model the P(X f ). A parametric probability distribution

model P(X f |w) fits our data distribution by finding the best parameter (w) which represents P(X f ), where w is

the parameter of the model. Gaussian Mixture Model [118], which is a popular mixture model, is a reasonable

model to work with. So, the problem of modeling the probability distribution of data is now training a GMM

which can be written as:

P(X f |w) = π1 ∗N (X f |µ1,Σ1)+ · · ·+πn ∗N (X f |µn,Σn)

w = {µ1,Σ1,π1, · · · ,µn,Σn}

Here n is a hyper-parameter, which depends on the distribution structure of data and can be tuned using the

Bayesian Information Criterion (BIC) and cross-validation. The training problem, in this case, would be

max
w

N

∏
i=1

P(X f |w) =
N

∏
i=1

(π1 ∗N (X f |µ1,Σ1)+ · · ·)

sub jected to π1 + · · ·+πn = 1;πk ⩾ 0; k = 1, · · ·n

Σk > 0 k = 1, · · ·n

The first hyperparameter to tune is the number of mixture models (n). This hyper-tuning can be done based

on Bayesian information criteria and cross-validation. Expectation-Maximisation (EM) algorithm [17] with

a full covariance matrix is used to train the GMM. EM is an iterative process to find maximum a posteriori

(MAP) estimates of the parameter (w), where the data is modeled on unobserved latent variables. EM also
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depends on the initialization value of w, so making different initializations and selecting one that represents

the data the most This generative ML model may work stand-alone or in the augmentation of AVF. The

preliminary result reflects that in augmentation with AVF, it can predict good test scenarios faster than AVF.

It can be trained online, i.e., a new failure scenario data is obtained, the old posterior becomes the new prior,

and then the condition on the prior using the Bayes rule is carried on to get the new posterior (i.e., a new

probability distribution).

/

Figure 5.3: The motivation behind generative model-guided search

Figure 5.4: Failure search - AVF in augmentation with Generative model

Training data that was used for AVF training can be a reasonable starting point for modeling this distri-

111



bution. Once more and more data from various sources is available, the model can be retrained to make it

better. After training, a sample is generated from this family of multivariate normal distributions for a proba-

ble test candidate. By running the simulation experiment with this sampled initial condition (X) the outcome

is observed in terms of failure or success (C). Trained using earlier failure cases and other data sources, there

is a high probability of generating samples that can fail and a very low probability of generating data in the

region of search space that is less likely to fail. This generative model can also work in the augmentation

of AVF-guided search, where failure cases generated by AVF-guided search also contribute to dynamically

modifying the probability distribution model (refer to figure 5.4).

5.3 Empirical evaluation and results

Figure 5.5: Scenario 1

To empirically evaluate the above-mentioned approaches, two different experiments were conducted (re-

fer to figures 5.5, 5.6). In both cases, a reinforcement learning approach called DDPG (Deep Deterministic

Policy Gradient) [84] based learning model was trained to design the braking system of a car. In Scenario 1,

an approaching car detects an obstacle at a distance of 100 meters, and the learning goal is to stop without

crashing (refer to figure 5.5). The friction coefficient of the road was constant (assuming a dry road) through-

out the experiment, and it was 0.9. The random variable in this scenario was the speed of the car when it

detects the obstacle, which was drawn from a normal distribution with a mean velocity of 38 miles per hour

and a standard deviation of 11 miles per hour. Initial Speed(v)∼N (38,11)

In Scenario 2, I added a patch of road with different friction coefficients (from ‘0.6’ for a dry surface to

‘0.1’ for a wet surface) to make the environment more complicated. The size of this patch is drawn from a

normal distribution with a mean of 15 meters and a standard deviation of 5 meters, and it can be anywhere

between 0 and 100 meters (see figure 5.6). The speed of the car when it detects the obstacle in this scenario

was drawn from a normal distribution with a mean velocity of 35 miles per hour and a standard deviation of

9 miles per hour. Initial Speed ∼N (35,9). The learning goal in both cases was to learn a controller for
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Figure 5.6: Scenario 2

Failure number VMC AVF GMM
1 16349 13 1
2 518 1 1
3 131188 66 8
4 8217 2 13
5 28033 20 7
6 25481 11 1
7 21184 24 5
8 26979 41 3
9 8566 49 15

10 36466 16 2
Average 30298 24 6

Table 5.1: Episodes of simulation for 10 consecutive failure search in Scenario2. The agent is trained for 15000
episodes. The average number of episodes required in the case of VMC is almost double the number of training episodes

and way higher than AVF and GMM guided search.

braking. The reward setting was such that the vehicle, when it brakes around a region of 5–10 meters, gets the

maximum rewards. The output brake is b ∈ [0,1], where b = 0 means no brake and b = 1 means maximum

brake. I used a nonlinear slip-based braking equation to model the effect of slipping on braking friction.

For comparing vanilla Monte Carlo-based failure search with AVF-guided search and GMM-guided

search, I chose the number of episodes required to find an initial condition whose trajectory resulted in a

failure. Our purpose was to illustrate three key points. First, VMC-guided search, even when using the

same number of episodes as training the agent, can lead to a false sense of safety by failing to detect any

catastrophic failures. Second, AVF-guided search addresses this issue and reduces the cost of finding failures

to a large extent. Third, generative model-guided search also does better than VMC-guided search, and in

augmentation, with AVF, it was the most flexible and dynamic approach to finding a failure.

Table 5.1 shows the number of simulation episodes rolled out in search of ten different failure cases in

Scenario 2. In an average case, the VMC took 30298 episodes, which was almost double the number of

training episodes. In such a case, if an agent is tested only up to a maximum number of training episodes, it
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Scenario VMC AVF GMM GMM +AVF
Scenario1 82/10738/47323 1/6/34 4/3991/21393 1/3/26
Scenario2 3/22252/154374 1/36/102 1/4/19 1/5/27

Table 5.2. The cost of various search strategies to find a failure case, expressed as the quantity of simulation
episodes (for 100 failures). Each column reports the Min/Average/Max number of simulation episodes for
100 failures. In Scenario1, AVF+GMM guided search is two times faster than AVF guided search in the

average case. However GMM guided search does worse in scenario 1 than in scenario 2, but it is still faster
than VMC. Training Episodes: Scenario1(5000) ; Scenario2(15000)

has a high probability of giving a false sense of the correctness of this trained system. However, AVF took

only six episodes to find a failure. So, VMC-based failure search is not only inefficient, but it may also lead

to deploying an agent, which may result in catastrophic failure.

Table 5.2 shows the number of episodes rolled out required in a minimum, maximum, and average case

in search of 100 different failures in both scenario 1 and scenario 2. I also tested GMM-guided search and

GMM in augmentation with AVF-guided search. For GMM and GMM+AVF, I did not use data from domain

expert knowledge and real-world statistics. However, including these data will surely increase the probability

of getting better failure cases. For GMM, I used the same data that I used for AVF training. However, while

using GMM+AVF, I first trained GMM, and during the failure search process, I sampled one test case from

both GMM and AVF alternatively. If I encounter any failures in a sample that AVF generated, I update

our probability distribution to account for these newly discovered data. For scenario1, in an average case,

VMC took 10738 episodes, which is almost double the number of training episodes. AVF-guided search

took only 6 episodes to find a failure in the average case. For scenario2, in an average case, the agent took

22252 episodes, which is almost 1.5 times the number of training episodes. AVF-guided search took only

36 episodes to find a failure in the average case. AVF-guided search does way better than the Vanilla Monte

Carlo search.

In the average case, GMM-guided search did better than VMC in both scenarios. However, in Scenario2,

GMM search was faster than the AVF-guided search. This was due to the nature of the data generated during

training. If the training data used for AVF/GMM training is far from real failure data in the search space, then

GMM performs poorer. However, it still did better than VMC. Our motivation for using the GMM model is to

reduce dependency only on training data for generating failures and incorporate data from other sources like

domain expert knowledge and real-world collected statistics, which is not possible in the case of AVF-guided

search. GMM in augmentation of AVF performs twice faster than AVF only guided search in scenario1 and

five times faster than AVF only in scenario2. AVF with GMM was the most flexible and dynamic approach

to finding failure in learning enable controller.
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5.4 Summary of Contributions

The main contribution of this work was the development of a novel approach for detecting rare failure cases

in an AI-based surrogate model. The need for this approach arises because standard approaches to evaluating

failure in machine learning models are highly inefficient in detecting rare failure cases. In such a case, there

is a possibility of deploying a trained model, which will give the illusion of completeness and safety. This

approach can find such rare failures much faster than using traditional methods.
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CHAPTER 6

Anomaly/Outlier detection using Robust Random Cut Forest

6.1 Problem formulation

As discussed in chapter 1, in modern CPS systems, LECs are being used to replace the traditional embedded

controller. The expected gain is cheaper evaluation cost using LEC; however, it comes with challenges to

ensure the input in these LEC is not coming from out-of-distribution input data. For problem formulation,

let’s introduce some notations. Let X represent an input data point given to a machine learning model during

training. This information may be a result of observations made by sensors connected to the CPS system,

such as image data from the camera or distance data from LIDAR, etc. During training, I collect all such

Xs. From the ML model’s perspective, this collection of all observed X represents the environment in which

the model has been trained, I collectively call this distribution Et . Here, I am interested in point anomaly

detection. The OOD detection goal is to find whether input data X ′ given during prediction is sampled from

Et or not. If X ′ ∼ Et , then I call this observed state non-OOD or else I call it OOD, i.e., the trained agent has

not seen this kind of input during training, and the trained agent may behave unexpectedly to this OOD input

data. As we do not control or know PT , even after extensive training, it is possible to encounter X which was

not part of Et . The detection of OOD may raise a flag about the reliability of predictions made by a trained

model.

6.2 Proposed work

Our approach for anomaly detection relies on learning the data cluster (T ) ’s shape from metric space to

a data structure (S). The motivation behind learning the cluster’s shape into a data structure is to abstract

the information from metric space in a structured manner such that computer and related algorithms can be

efficiently deployed for inference. If D = {d1,d2, ...,dn} are set of data points such that di ∈ Rm. For the

purpose of Out-of-Distribution detection, the following requirements are imposed on this data structure (S):

1. S should represent the cluster of data in a structured way.

2. Relationships (ψ) between the data points in metric space must be preserved in this data structure. i.e

ψ{T (dk,dl)} ≈ ψ{S(dk,dl)}

3. Relationship (φ ) of a data point with the cluster can be encoded in simple quantitative measure. i.e.
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φ(T,dk) can be measured as a scalar value in the data-structure (S).

I chose the RRCF [55] as our data structure to represent our cluster in a structured way. Robust Random Cut

Forest can be formally defined as :

Definition 1 Robust Random Cut Tree on set of data point D = {d1,d2, ...,dn} can be generated by following

procedure:

1. ri = maxX∈D(Xi)−minX∈D(Xi) ∀i ∈ m

2. pi =
ri

∑
i=m
i=1 ri

∀i

3. select a random dimension i with probability proportional to pi

4. choose xi | xi ∼Uni f orm(max(Xi)−min(Xi))

5. D1 = {X | X ∈ D,Xi ≤ xi}

6. D2 = D\D1

recurse on D1 and D2 until Di ≥ 1

Robust Random Cut Forest is an ensemble of various RRCTs. The selected relationship (ψ) between data

points in metric space is captured as the Lp distance between data points, then I require a distance-preserving

embedding of this relationship in the data structure. For this purpose, the tree distance between two data

points dk and dl in the data structure (S) is defined as the weight of the least common ancestor of dk and

dl [55], then according to Johnson-Landatrauss lemma [87] the tree distance can be bounded from at least

L1(dk,dl) to maximum O(d ∗ log|k|/L1(dk,dl)). Accordingly, a point that is far from other points in metric

space will continue to be at least as far in a random-cut tree. The relationship (φ ) of a data point with the

cluster can be encoded in simple quantitative measure by displacement, which is an estimate of the change

in model complexity (summation of the leaves’ depth) before and after inserting a given point x in the tree

data-structure.

RRCF data structure contains sufficient information about the given data set (Y ) and approximately pre-

serves distances in metric space, i.e., if a point is far from others, it will continue to be at least as far in a

random cut tree in expectation and vice versa (proof can be found in Guha et al [55]). The anomaly score (also

called DispValue) of the data point measures the change in model complexity incurred by inserting a given

data point x in RRCF. The model complexity of a binary tree (RRCT) is defined as the sum of the depths of

all data points in the tree. During the insertion of a data point that is far off the cluster in metric space, there is

a high probability of being partitioned in the initial stage of RRCT construction. This will increase the depth
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of all leaves below it and consequently increase the model complexity by a large number. On the other hand,

if the inserted point is inside the cluster, it will be partitioned in the lower part of a tree, and consequently, it

will have fewer leaves below it, which will reduce the model complexity by a small amount. Given a training

dataset Y , I first create these random cut trees and find the maximum Disp value of all inserted data points.

I define OOD as a data point that is significantly different from data used in training, i.e., it is away from

the training data cluster (Y ) in the normed vector space. These off-the-cluster data-point points have a high

probability of being isolated in the initial stage of RRCT construction. Insertion of this point in the tree will

significantly increase the model complexity.

Applying this approach to large, high-dimensional training data results in the creation of a large forest,

and consequently, any inference will have high prediction inaccuracy, be computationally costly, and even

sometimes be computationally infeasible. The underlying reason is as current learning models and processes

are not very sample efficient, and a well-trained agent needs big training data. Research efforts are being

made to make these processes more sample efficient [8] but they have few practical generalities. [49] showed

that on large data sub-sampling may improve random forest performance, but these forests are sensitive to

the extent of sub-sampling and become inconsistent with either no sub-sampling or too severe sub-sampling

[141].

Algorithm 4 Reduced Robust Random Cut Forest(offline)

1: Input: training data (Y )
2: Output: reduced RRCF, threshold
3: Parameter: number of trees
4: Initialization : randomly select Z | Z ⊂ Y
5: rrc finit = createForest(Z)
6: DispValZ = DispValue(Z)
7: DispValthreshold = mean(DispValue(Z))
8: L = Y \Z
9: for i = 0; i < len(L); i = i+1 do

10: for j = 0; j < numbero f trees; j = i+1 do
11: rrc fnew( j) = insert point(rrc finit( j),L(i))
12: mci( j) = Dispvalue(L(i))
13: end for
14: pointdispValue = mean(mci)
15: if pointdispValue ≥ DispValthreshold then ▷ include L(i) in featured Datapoint set
16: DispValZ .append(pointdispValue)
17: DispValthreshold = mean(DispValue(Z))
18: else ▷ Do not include L(i) in featured Datapoint set
19: for j = 0; j < numbero f trees; j = i+1 do
20: rrc fnew( j) = Deletepoint(rrc finit( j),L(i))
21: end for
22: end if
23: end for
24: threshold = max(DispValZ)
25: return rrc fnew , threshold
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To address these issues, I attempted to find only those featured data points that will create an outline of the

data cluster space and have significance in making a decision about OOD and dropping all other data points

for the construction of RRCF. The underlying intuition is that in a dense data space, I need a few data points to

gain information about the data space they represent, and I can drop most of the other data points. However,

in the sparser regions, I select most of the data points to represent the data space they acquire. The sparsity

and density in the dataspace are correlated with the average model complexity increment by the inclusion of

datapoints in the data structure. Using this approach, I can significantly reduce the number of training data

points that need to be stored for the construction of RRCF. RRCF created using these featured data points is

called the Reduced Robust Random Cut Forest (RRRCF). For the reduction of the entire data to the featured

data, I run a process of insertion and conditional deletion on each data point in training data. After one sweep

of this process on the whole training data, I collect all featured data points which represent identical data

subspace as training data space. For initialization, I first create an RRCF using a very small dataset (Z),

where Z ⊂ Y , this will give us an initial small forest. Once I have created the RRCF using Z, I calculate the

DispValue of all points in Z. For making a decision on whether a given point can be included in the RRCF

or not, I choose the mean of all DispValue calculated over Z as the threshold. This threshold represents the

average complexity of the data structure. For the rest of the data points (Y \Z), I insert each point in the forest

and I calculate the DispValue for this point. If DispValue is more than the threshold DispValue of the initial

forest then I will keep this point in the forest or else I will reject this point and delete it from the RRCF. I

recursively apply this on all left-over data points ( Y \Z). The final forest created from this process would

be our reduced robust random-cut forest and can be used for making inferences during prediction for making

decisions about OOD for a given data point. This is an offline method and needs to run only once. I can store

the reduced RRCF (RRRCF) and threshold, which is the maximum model complexity from already included

featured training data points of selected featured data points to be used for prediction. This reduced forest is

a structured representation of our training data sub-space.

Algorithm 5 OOD detector(online)

Input: RRRCF(T ) , Data-point(x), threshold
Output: Inference about x being OOD
T ′ = Insert point(T,x)
mci = calculatemodel complexity
T = Deletepoint(T ′,x)
mcd = calculatemodel complexity
DispValue = mci−mcd
if DispValue≥ threshold then

x is OOD
else

x is not OOD
end if
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During prediction, I insert a newly observed input data point (x) into the stored RRRCF model (obtained

from the algorithm 4) and check whether the inclusion of this point increases the model complexity to an

extent higher than a threshold value. Every new observation can be passed to this detector, and predictions

made by the machine learning-based model can be accepted only if the scalar measure of the datapoint by the

OOD detector is lower than the threshold generated by the algorithm 4. The setup for deploying this OOD

detector is shown in figure 6.1.

Figure 6.1: Deployment architecture of OOD detector

If the DispValue of the new point is greater than the threshold obtained from the algorithm 4, then I declare

this datapoint as OOD and vice versa (refer to the algorithm 5). For making inferences on a data point, I do

the insertion step, where I include a new data point in RRRCF and measure its increased complexity, and then

I do the deletion step to remove the inserted point. So, during prediction, I do not extend our forest; I just do

one insertion and one deletion step per prediction, and our reduced robust random-cut forest remains intact.

6.3 Empirical evaluation and results:

To empirically evaluate the above-mentioned approach, I set up two experiments. In both cases, the ma-

chine learning model is a reinforcement learning-based controller for a car braking system, wherein in the

first experiment, observations are in low dimensions (3 dimensions), while in the second experiment, our

observations are in high dimensions of image data.

In the first experiment, an approaching car detects a stationary obstacle at a distance of 100 meters, and

the learning goal is to self-train a controller for the braking system to stop the car without crashing (refer to

figure 6.2). I used a reinforcement learning algorithm called DDPG (Deep Deterministic Policy Gradient)

[84] based learning model to design the braking system of a car. The static and kinetic friction coefficients

of the road are constant throughout the experiment. The random variable in this scenario is the speed of

the car when it detects the obstacle, which is drawn from a uniform distribution between 40 and 70 miles

per hour. Initial Speed(v) ∼ U (40,70). The reward setting is done in such a way that the vehicle, when

it brakes around the region of 5–10 meters from the obstacle, gets the maximum reward. During training, I
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observe three variables: d (distance from the obstacle), v (velocity of the car), and mu (friction coefficient).

X = {d,v,mu} provides state information about the vehicle in the environment. During training, X becomes

the input of the neural network, and brake value b is the output. The braking system is trained and tested in

Figure 6.2: Training Scenario setup

this environmental setting. During prediction, I make some changes in the environment, which were never

observed during the training process. I created two such scenarios: first, in place of a stationary obstacle, I

used an obstacle that is moving toward the car at some small velocity(for this experiment, it is drawn from

a uniform random distribution between 0.1-2 meters/second; refer figure 6.3, moving obstacle is represented

by a walker). This situation was never observed during training, and the braking system does not respond

to this changed scenario appropriately, which leads to a crash. In the second scenario, I kept the obstacle

Figure 6.3: Prediction Scenario I

stationary but spawned the vehicle at a velocity of 75 miles per hour. It means the vehicle, when it detects

the obstacle and invokes the braking system, has a velocity out of the training range (40–70 miles per hour).

In this scenario also, the braking system fails to brake and leads to a crash because, during training, I never

observed this speed.

In both cases, our RRRCF-based detection scheme detected these evolved situations and raised a flag for

data being out of distribution. Figure 6.4 shows the results of the above three different test roll-outs. Dispvalue

which is a scalar measure for each datapoint given to this RRRCF detector, provides an inference about the

possibility of data being in or out of the training distribution. The threshold maximum Dispvalue derived for

this set of experiments by running algorithm 4 is approximately 118.58, which is shown by the red horizontal

121



Figure 6.4: Three rollouts and respective output Dispvalue and threshold. Rollout1: Environment is same as
training scenario (stationary obstacle with initial speed ∼U (40,70)) ; Rollout2: Moving obstacle (walker)

with initial speed ∼U (40,70) ; Rollout3: Stationary obstacle with initial speed (v) ≁ U (40,70)

line in figure 6.4. During test rollouts, at each step of the simulation, I estimated DispValue for the datapoint

observed, i.e., X = {d,v,mu} as the simulation progressed. In the first roll-out (Rollout 1), I did not make

any changes in the environment, and the environment was similar to the training scenarios. The observed

Dispvalue for each datapoint during rollout is always less than the threshold value, which implies there was
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not any state observed during this rollout, which is OOD. In the case of the second roll-out (Rollout2), I made

the obstacle move towards the car at a speed of 2 meters per second. It was observed that in the initial stage of

simulation, the Disp value is less than the threshold value. It is because the obstacle is moving slowly and, at

the initial stage, there is a very small change in the observed state. Once the car approaches the obstacle, the

new state information X is slowly shifting from (i.e., getting far off) from the training data cluster, resulting

in a higher and higher Disp value as the car reaches the end of the rollout. It is also observed that the change

in Disp value is quite significant, which facilitates easy detection of such scenarios and fewer false alarms.

In the case of the third roll-out (Rollout3), I kept the obstacle stationary, but I changed the initial spawning

velocity of the car to 75 miles per hour. I observed Dispvalue higher than the threshold almost throughout

the simulation step, the underlying reason the initial spawned velocity of the car is out of training range, and

when the OOD detector observes this first initial state, it finds it as out-of-distribution. It can also be seen

that the initially measured Dispvalue fluctuates around the threshold, which reflects very proximal OODs but

with the progress of the simulation, this gap increases and results in a higher value of measured DispValue.

Figure 6.5: Image data stream given as an input to OOD detector (Stream I)

In the second experiment, I used the work done by Cai et al [25] for training a braking controller, but I

trained it on a wider range of speeds (30–75 m/s) with different reward policy. Input in this case is the image

scene from the car’s camera, and the predicted output is the brake value. I trained and tested this model on

image data generated with no precipitation condition in simulator CARLA. I collected all these images with

no precipitation in several episodic rollouts and labeled them as non-OOD training scenario data. I used all

these image data to build our RRRCF-based OOD detector by running algorithm 4. Threshold scalar Disp

Value in this experiment was calculated and has a value of 23.26. For creating OOD scenarios, I changed

the no-precipitation condition to three different participation conditions: Case1: Heavy precipitation, Case2:

Medium precipitation, and Case3: Low precipitation (refer to figure 6.9 ) and collected image data captured

by the camera. Our goal is to evaluate the performance of our OOD detector on the stream of image data.

For this purpose, I created a stream of images called stream I, which has first 125 image frames with no

precipitation scenario, then 5 frames of each of three different precipitation cases (heavy, medium, and low)
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Figure 6.6: Output Disp value of stream I

with 30 intermittent frames of no precipitation in-between as shown in figure 6.5.

Figure 6.7: Image data stream given as input to OOD detector (Stream II)

With a given input image, if Disp Value is greater than the threshold value, then I declare it as OOD.

Figure 6.6 shows the Disp value generated by the OOD detector for the data stream I. The red horizontal line

represents the threshold value of the detector. It can be easily observed that the detector output is significantly

higher than the threshold value in all three OOD cases (heavy, medium, and low precipitation) and lower for

all non-OOD cases. I tried to find the performance of the detector in the context of point OOD, i.e., is the

detector able to detect even a single OOD in the stream of non-OOD data? To find an answer to this question,

I created another stream of image frames called Stream II. In stream II, I inserted a single frame of different
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Figure 6.8: Output Disp value of stream II

precipitation cases (heavy, medium, and low) in a stream of image frames similar to training data, i.e., no

precipitation (refer figure 6.7). I observed that the OOD detector can even detect a single OOD in a stream of

no-OOD data ( refer to figure 6.8).

6.4 Discussion

6.4.1 Time complexity analysis

The algorithmic complexity of the ODD detection process should be low during prediction time. Its time

complexity depends upon the process required to make inferences on a data point by detector, i.e., ‘Forest

maintenance on stream’. Forest Maintenance on the stream of data involves two processes per data point:

first, insertion of a point in the tree data structure and second, deletion of a point from the tree data structure.

If I store each data point, i.e., the leaf of a tree, in a hash table, then the search process for locating a leaf

will have a time complexity O(1). Given a set of points Y and a point x ∈ Y , I construct a tree T on data

Y . Consider if I want to delete a leaf x from the tree and produce tree T (Y − x), I just need to remove the

parent of x and make another child’s parent pointer to its grandparent accordingly (refer to figure 6.10). This

deletion process has a time complexity of O(1). The total time complexity of the deletion process of a point

(search and deletion) from a tree is O(1). I can efficiently insert and delete data points into a random cut tree
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Figure 6.9: Different precipitation conditions generated during the training and prediction (no precipitation,
heavy precipitation, medium precipitation, low precipitation)

data structure. Insertion of a point in a tree is a process when I have a tree T and I want to insert a leaf x to

Figure 6.10: Deletion of a data point from a tree

the tree and produce tree T (Y ∪x), where x /∈Y . In the worst case, the time complexity of this process would

be O(n), while in the average and best case it would be O(logn) and O(1) respectively, where n is the size of
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the tree, i.e., the number of data-points used to create the tree. If I have m trees in a forest, then the total time

complexity of the process is O(mn),O(mlogn), and O(m) in the worst, average, and best cases, respectively.

The effect of m on the RRRCF creation, insertion, and deletion process can be made O(1) for time complexity

analysis purposes as the process is completely parallelizable, i.e., I can do insertion and deletion on each tree

on different threads or cores in parallel if a GPU- or multi-core-based parallel implementation of RRRCF is

used. Consequently, the insertion process on the forest will have a time complexity of O(n),O(logn), and

O(1) respectively for worst, average, and best-case scenarios. Here a reasonable question is how big the

variable n can be. As the machine learning process is not very sample-efficient, a well-trained model results

in large training data. For example, training a braking system perception LEC for a speed range variance of

10 km/hr (90 km/h to 100 km/h) in the Cai et al. [25] experimental setup took approximately 8160 images

over a 100-meter distance. Similarly, in experiment set 1, our training data point was approximately 0.36

million. But for ODD detection, it is not required to use whole training data, and it is enough if I can make a

sketch or outline of the data, i.e., I can ignore many data points that are densely clustered and use only those

featured data points, which represent the outline of the data subspace.

I used our offline algorithm to select the number of data points that may represent the whole data. For the

first set of experiments, our algorithm gave 11134 featured data points out of a total of 367035 data points.

For the second set of experiments, our algorithm gave 1050 featured data points out of a total of 8197 image

data points. Selection on n also depends upon the resources available. With the availability of a large number

of parallel cores in modern GPU, it is also possible to increase m and reduce n and randomly choose a subset

of elements out of n for creating a tree. With very large training data, it is possible to extract only a small

segment of data to sketch the RRRCF outline.

6.4.2 Sensitivity on change in distribution

A good OOD detector should be able to detect even a very small deviation in input data from the training data

distribution. For testing the sensitivity of the OOD detector, in experiment set 2, I used image frames gener-

ated from different weather conditions (different levels of precipitation: heavy, medium, and low. refer figure

6.9). The higher the precipitation level, the greater the deviation of the data from the training distribution.

The empirical result suggests that this RRRCF-based detector can detect all three different levels of change

in distribution. The empirical result also suggests that as test data points move away from the training data

cluster in metric space, the anomaly score i.e. DispValue progressively increases in expectation.
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6.4.3 Sensitivity on single OOD data in a stream of non-OOD data

Most work in the field of out-of-distribution has been done in the context of classification tasks in computer

vision. OOD detection problems in machine learning can generally be classified in two parts- contextual

OOD and point OOD. In the case of contextual OOD, the goal is to detect the anomaly in observed input data

in the environmental context. These detection techniques do not take into consideration of dynamic nature of

CPS and will not be suitable for its use. [25] proposed a method for OOD detection for CPS systems but this

method needs a number of OOD data before making a conclusion about the OOD. It may fail in scenarios

where I do not have a continuous stream of OOD data. rrrcf has tried to fill this gap, where it can detect even

a single OOD data in the stream of non-OOD data.

6.4.4 Ease of training

Other OOD detectors, like GMM-based and VAE-based need to be tuned by selecting various hyper-parameters.

These hyperparameter tuning and re-training is an iterative processes and the search for an effective hyperpa-

rameter is a slow process and time-consuming. In contrast, rrrcf has only two hyperparameters- first, number

of trees in the forest and second, the depth of each tree. As rrrcf works on the expectation value of the anomaly

score, any reasonable number of trees would work. I used 100 trees for both experimental setups. The second

hyperparameter is actually derived from our algorithm 4 so, I do not need to tune it anyway while creating an

rrrcf.

6.5 Training and experiment details

6.5.1 RRRCF training details

In the case of experiment set 1, I collected approximately 367035 training data points (Y ), where each data

point is a tuple of distance, velocity, and friction coefficient; {d,v,µ}. For constructing the initial RRCF, I

selected 1000 random data from a pool of total data, i.e., Z = 1000. After the construction of the initial rrcf

data structure, the mean DispValue is calculated over all points in Z. It is the initial threshold value, and its

value was approximately 6.4. This threshold was used for making decisions about the inclusion or discard

of other points in training data (Y \Z). After every 5000 data point, I recalculated the mean DispValue as

our new threshold. The reason for repeatedly updating our threshold is to accommodate the changes made in

the tree structure by the inclusion of data points. I recursively applied this process to the rest of the training

data. After running algorithm 4, 10134 featured data points were selected, and the rest 355574 data points

were rejected. These total 11134(10134+1000) data points were used to represent our whole data (367035)

in the reduced RRCF data structure, which is approximately 3.03% percent of the whole data. In the case of

experiment set 2, the same experimental setting as by Cai et al. [25] was used, and 8197 images were collected
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Table 6.1. Total data points and featured data points for reduced robust random cut and percentage of total
data points selected as featured datapoint

Scenario Training points Featured points % reduction
1 367035 11134 96.97
2 8197 1050 87.2

for the training scenario, i.e., with no precipitation condition. For the creation of the initial RRCF, I selected

100 images i.e. Z = 100. Once the initial RRCF was created, the average threshold for Z was calculated

and it was approximately 5.62. This threshold was used for making decisions about the inclusion/discard of

other points in training data (Y \Z). After every 100 data points, I recalculated the mean DispValue as our

new threshold. After running algorithm 4, 950 datapoints were selected, and the rest 7147 datapoints were

rejected. These featured 1050 datapoints were used to represent our whole data (8197 images) in the reduced

RRCF data structure, which is approximately 12.8% percent of the whole data. For the construction of a

random-cut tree, a modified version of the implementation of the tree written by Barto et al [13] was used.

6.5.2 Braking system training details

The braking system in experiment set 1 is trained using the actor-critic-based Deep Deterministic Policy

Gradient algorithm with both actor and critic networks are three-layer neural networks, with 50 (layer1) and

30 (layer2) neurons in the hidden layer and 1 neuron in the output layer. For hidden layers in both cases,

relu activation function was used and for the output layer, a sigmoid activation layer was used in actor and

linear activation was used in critic. The model was trained using Adam [75] optimization method by tuning

different learning rate for 5000 episodes. In the case of the experiment set 2, I used the same setting as done

by Cai et al [25].

6.6 Summary of contributions

In this work, I looked into the problem of OOD from a geometric perspective, attempted to learn the Euclidean

space occupied by the training data, and introduced a novel approach for this detection process using the

Reduced Robust Random Cut Forest (RRRCF) data structure, which is also a white-box interpretable method

for out-of-distribution detection. This method relies on a robust random-cut forest and derives a reduced

robust random-cut forest data structure. From this data structure, I can calculate anomaly scores for every

input data to the trained model. This anomaly score is used to make inferences about the new input data

being in or out of the training data subspace. I also showed that this method can detect even a single OOD

in a stream of non-OOD data. I demonstrated the effectiveness of this approach for both low- and high-

dimensional input data spaces. I also discussed that a GPU-based parallel implementation of reduced RRCF
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can significantly reduce the execution time. Parallel implementation of reduced rrcf may be used in real-time

systems for real-time OOD detection.
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CHAPTER 7

Conclusions

7.1 The future of AI-driven design optimization

System design has always been at the center of progress as well as challenges in human endeavors. To

this end, for the last many decades, design processes have relied on using hand-crafted heuristics, human

expert knowledge about the domain, running sequential decision-making processes that involve generat-

ing candidate design architectures, evaluating, selecting, and refining design options, and integrating the

different components of designs until requirements are satisfied. This creates an exploration challenge to

explore the high-dimensional design spaces that involve computationally costly design tools. Recent de-

velopments in AI hold potential promises in this sub-field. Concretely, it would be interesting to find the

answer to the question: can AI-based optimization and search processes be faster than existing optimization

approaches and consequently reduce inception to design time significantly? Based on the results of my re-

search work, AI-based optimization algorithms showed promising results in finding optimal designs faster

than traditional methods and having the better convergence properties. However, its scalability in handling

large-scale, high-dimensional design spaces in these sample efficient optimization frameworks is the most

exciting and still not known. There are many potential directions for research, like using AI for design space

reconstruction by transforming these high-dimensional design spaces into low-dimensional spaces and using

these low-dimensionally constructed design spaces for optimization, developing new algorithms that scale

to high-dimensional problems, etc. On the other hand, there are many engineering domains that have very

high computational complexity and act as bottlenecks in the optimization loop. In such cases, replacing these

complex domains with a data-driven surrogate is desirable for speeding up the design exploration. During

experimentation, superior performance of trained AI models, especially deep learning, is observed in learning

these complex physics and solving them at negligible cost. The performance of surrogate-based optimization

in complex engineering domains is exciting and can speed up the design search process. However, for training

these data-driven surrogates, there is a need to generate a sheer amount of data that is not feasible, especially

in complex engineering domains. In this scenario, research in data-efficient surrogate modeling would be a

key player in removing the main bottleneck of data generation. I proposed and evaluated a new data-efficient

surrogate training strategy called student-teacher with ε-HQS policy and when empirically evaluated, it per-

formed better than all other baselines. This strategy showed that it can save days in the data generation and

training processes for surrogate modeling. Our empirical result in this direction is phenomenal, and it opens
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a multitude of future research directions, listed as follows:

1. To explore the possibility of design space reconstruction using modern AI methods to warp high dimen-

sional design space to low dimensional design space and find possibilities for sample efficient design

optimization for these high dimensional problems.

2. To find whether these AI-based sample efficient optimization methods can be parallelized and work on

multi-objection constrained problems?

3. Can we provide a theoretical guarantee or bounds (upper and lower) on the performance of the ε-HQS

approach?

4. Can a heuristic-based or AI-based method can be developed to design new batching policies or algo-

rithms that can further improve sample efficiency?

Addressing these questions as future work can take this research sub-field in the forward direction. In all

these experiments and research the toolchain Anvil can be really helpful for evaluating the design and testing

new algorithms by simply extending the Python script to integrate new algorithms.

7.2 The future of AI-based system operation in the context of functional correctness

When an AI component is used during system operation, the functional correctness of this LEC behavior is

critical. Since formal verification of most LECs is not possible, these models need to be evaluated probabilis-

tically using simulation-based approaches. There are two aspects of functional correctness: in-distribution

rare event failure and out-of-distribution detection. The standard approach to finding in-distribution rare event

failure is Monte Carlo based and is highly inefficient in detecting rare event in-distribution failure cases. In

such a case, there is a possibility of deploying a trained model that may give the illusion of correctness and

safety. The guided search approach using the adversary failure indicator (AVF) is not robust and adaptive.

Augmenting AVF with a generative model increases the robustness, flexibility, and adaptability of the search

process and can include prior information, and information from other sources like domain expert knowledge,

data from real-world collected statistics or other simulators, etc. The limitations of the generative approach

are increased computational resources for training and inference of generative models and the difficult train-

ing process of these models in high dimensions. Research addressing these limitations would be an exciting

direction.

Another aspect of functional correctness is OOD detection. OOD data point is significantly different from

the training data, and predictions made by the trained model based on these data point can not be reliable.

Despite various methods being developed for OOD detection, a robust and reliable OOD detector system is
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still elusive. The proposed method of OOD relies on robust random-cut forest and derives a reduced robust

random-cut forest data structure. From this data structure, we can calculate the anomaly score for every input

data to the trained model that is used to make inferences about the new input data for being in or out of the

training data subspace. Although our method can detect point OOD on streaming data, which is difficult to

detect using a deviation-based detector, its computational complexity increases with the increasing dimen-

sionality of the problem. A GPU-based parallel implementation of reduced RRCF can significantly reduce

the execution time. A parallel implementation of reduced rrcf may be used in the real-time system for real-

time OOD detection. Writing an open-source GPU and multi-core implementation of reduced RRCF and its

evaluation for real-time performance can be an interesting direction for future work.
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