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CHAPTER 1 

 

Title of Chapter: Background and Research Objectives 

 

1.1 Thyroid Cancer 

1.1.1 Prevalence  

Thyroid cancer is extremely common, with some estimates projecting thyroid cancer to be 

the 4th leading cancer by diagnosis in 2030.1 In the United States alone, there are about 50,000 

new thyroid cancer patients diagnosed each year.2 Thyroid cancer also disproportionately affects 

women, with rates of diagnosis approximately three times higher in women than in men. While 

thyroid cancer is common, it is also typically indolent, meaning that the disease does not cause 

significant morbidity, and causes practically no mortality. Most tumors can be successfully treated 

with surgical resection of the thyroid followed by radioactive iodine.3,4 However, thyroid cancer on 

average appears earlier than most other solid tumors; for example, thyroid cancer is currently the 

second most common type of cancer in adolescents and young adults (ages 15–39).5 In addition, 

thyroid cancer can recur aggressively many years after initial diagnosis and treatment. The 

median age of new cases is 51 years, while the median age of death from thyroid cancer is 74 

years.5 This 23-year difference is much longer than that of most other cancer types and provides 

a wide window of time for potential recurrence. With increased time and age also comes increased 

risk of distant metastasis or transformation to poorly differentiated thyroid cancer (PDTC) or 

anaplastic thyroid cancer (ATC)6, the later diagnosis having a median survival of just 3-5 months.7 

The current lack of molecular testing to predict future aggressive thyroid cancer results in 

challenges in patient management, such as determining who should seek radioactive iodine 

treatment. Without a clear understanding of how advanced disease develops, many people 

continue to get thyroid cancer recurrence or die from the disease. 
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1.1.2 Molecular Alterations  

Most thyroid cancers can be classified by common alterations in the mitogen-activated 

protein kinase (MAPK) pathway and the PI3K-AKT-mTOR (PI3K) pathway (Figure 1-1). These 

pathways play important roles in cell proliferation and survival, and abnormal upregulation of 

these pathways is important in many cancers. The MAPK pathway includes RAS, which is 

commonly mutated in follicular thyroid cancer subtypes, as well as BRAF, which is downstream 

in this pathway and is characteristic of papillary thyroid carcinoma (PTC).8,9 Mutations in RAS and 

BRAF are mutually exclusive. BRAF mutations have been reported to be in around 45% of PTCs, 

and even more frequently in more aggressive PTC subtypes.10 The most common BRAF mutation 

in thyroid cancer, as well as several other cancers, is the BRAF V600E point mutation. This 

mutation, accounting for up to 99% of all thyroid cancer BRAF mutations, results in constitutive 

activation of BRAF activity, driving signaling that enhances cell proliferation and supports cancer 

progression.8,11 Both RAS and BRAF mutations can also be found in de-differentiated thyroid 

cancers such as PDTC and ATC.8 In the PI3K pathway, a common thyroid cancer alteration is 

the PAX8/PPARG fusion, which is seen most commonly in follicular thyroid cancers.12 Less 

common alterations in the PI3K pathway included those affecting PI3K and PTEN.12 

 

 

 

 

 

 

 



   3 

 

Figure 1-1: Common thyroid cancer mutations in the MAPK and PI3K pathway 
Summary of the MAPK and PI3K pathways, with proteins commonly altered in thyroid cancer 
marked by red stars. This figure was generated using BioRender. 
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Mutations associated with aggressive and de-differentiated thyroid cancer include 

alterations in the genes TP53, PIK3CA, and the TERT promoter.13 TP53 is a well-established 

tumor suppressor that plays a critical role in functions such as arresting the cell cycle and initiating 

DNA repair when damage is detected, initiating senescence in response to low telomere length, 

and initiating apoptosis if DNA damage is unable to be repaired.14 While mutations have been 

recorded in all coding exons of TP53, they are most commonly found in exons 4-9, in the DNA-

binding domain; about 30% of these mutations occur within 6 “hotspot” residues: R175, G245, 

R248, R249, R273, and R282.15 DNA-binding domain mutations in TP53 promote cancer by 

destroying the ability of the p53 protein to bind to its target DNA sequences, thus preventing 

transcriptional activation of genes involved in tumor suppression.  

PIK3CA is another gene commonly mutated in many cancers, and codes for the catalytic 

subunit of PI3K. As part of the PI3K pathway, PI3K is involved in regulating a wide range of cellular 

processes including cell cycle progression, proliferation, adhesion, migration, survival, and 

differentiation.16 Of the common thyroid cancer alterations involving the PI3K pathway, alterations 

in PIK3CA are the most common for transformed subtypes PDTC and ATC, with some studies 

reporting PIK3CA mutations in 10-20% of these tumors.8 Alterations in PIK3CA include mutations 

affecting the kinase domain in exon 20, as well as copy number gains; these alterations activate 

the activity of PI3K, supporting tumor growth and progression.17,18 

TERT codes for telomerase reverse transcriptase, the catalytic subunit of telomerase. 

Telomerase functions to lengthen telomeres, protecting the ends of DNA strands from the 

shortening that occurs with each division. Two common TERT promoter mutations are C228T 

and C250T, which generate a consensus binding site in the promoter for E-twenty-six (ETS) 

transcription factors, conferring the TERT promoter with increased transcriptional activities.19 

These two mutations have been reported to occur in around 40% of PDTC and ATC tumors.19 

TERT promoter mutations have been thought to support cancer by upregulating telomerase 

activity, allowing cells to achieve replicative immortality. However, studies have also shown that 
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telomeres are shorter in thyroid cancer cells with high telomerase activity,20,21 implying other roles 

of these mutations, such as modulating changes in growth, angiogenesis, metastasis, 

inflammation, and immune surveillance.22 

To summarize how some common mutations fit into the evolution of a thyroid tumor, we 

start with a normal thyroid, composed largely of thyroid follicular cells organized into 

macrofollicles. These cells function to produce and secrete the thyroid hormones thyroxine (T4) 

and triiodothyronine (T3). During tumorigenesis, thyroid follicular cells, or thyrocytes, commonly 

acquire either a RAS or BRAF driver mutation (Figure 1-2A). This initial driver mutation can lead 

to the development of a differentiated thyroid tumor, such as follicular thyroid cancer (FTC), which 

is associated with RAS mutations, or PTC, which is associated with BRAF mutations. PTC is the 

most common form of thyroid cancer and accounts for between 80-85% of all thyroid cancers.23 

Well-differentiated tumors may then undergo a secondary hit in a gene such as TP53 or in the 

TERT promoter, which may lead the thyroid tumor to undergo transformation to a de-differentiated 

cancer, such as PDTC or ATC.8,24 This progression from normal cells to tumor and then 

transformed tumor is based on the multistep model of colorectal tumorigenesis postulated by E.F. 

Fearon and B. Vogelstein, in which cancer arises and advances towards increasingly advanced 

disease through a series of accumulated genetic alterations.25 Transformation in thyroid cancer 

involves further loss of thyroid histologic organization, as well as loss of expression of thyroid-

specific proteins such as thyroid peroxidase and thyroglobulin.26 A complete summary of all 12 

thyroid lesion subtypes is shown in Figure 1-2B, showing proposed paths of development towards 

increasingly aggressive disease from left to right. 
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A

 
 
B 
 

 
 
Figure 1-2: A model of thyroid cancer development 
A) Diagram showing example pathway of thyroid cancer development, with representative H&E 
histology images for normal thyroid,27 differentiated tumor, and dedifferentiated tumor. Commonly 
mutated genes thought to support each transition and example thyroid lesion subtypes are 
included.  
B) Summary of the 12 thyroid lesion subtypes present in our cohort. For each subtype, the total 
number of cohort samples (n) is shown. Potential paths of evolution between different subtypes 
are indicated by arrows, with dotted arrows representing uncertain paths. Abbreviations: MNG = 
Multinodular Goiter; HT = Hashimoto Thyroiditis; FA = Follicular Adenoma; OA = Oncocytic 
Adenoma; NIFTP = Noninvasive Follicular Thyroid Neoplasm with Papillary-like Nuclear Features; 
EFVPTC = Encapsulated Follicular Variant Papillary Thyroid Carcinoma, OTC = Oncocytic 
Thyroid Carcinoma; FTC = Follicular Thyroid Carcinoma; PTC = Papillary Thyroid Carcinoma; 
IFVPTC = Infiltrative Follicular Variant Papillary Thyroid Carcinoma, PDTC = Poorly Differentiated 
Thyroid Carcinoma; ATC = Anaplastic Thyroid Carcinoma.  
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Molecular changes involved in thyroid cancer can also be found in the canonical Wnt 

pathway (Figure 1-3). In both normal development as well as in many different types of cancers, 

the Wnt pathway is involved in controlling important cellular functions such as proliferation, 

migration, and differentiation. Canonical Wnt signaling involves regulation of b-catenin, whose 

accumulation or degradation is central to Wnt signaling upregulation or downregulation. When 

the canonical Wnt pathway is turned on, Wnt ligand binds to the Frizzled receptor which leads to 

inactivation of the destruction complex and b-catenin accumulation and translocation to the 

nucleus. There, it binds to transcription factors of the T cell factor and lymphocyte enhancer factor 

(TCF/LEF) family, ultimately upregulate the expression of Wnt pathway target genes. When b-

catenin is not present, TCF/LEF interacts with the transcriptional corepressor Groucho (Gro) in 

invertebrates or Transducin-like enhancer (TLE) in vertebrates. Mutations in the Wnt pathway that 

stabilize b-catenin or disrupt its destruction complex lead to abnormal upregulation of genes 

driving cell growth, proliferation, stemness, and other behaviors that may promote cancer 

progression. While Wnt pathway mutations may act as drivers of carcinogenesis in some cancers, 

such as APC mutations in colorectal cancer,28 Wnt pathway mutations in thyroid cancer have 

been associated with more aggressive outcomes. Previous research has shown that as many as 

60-80% of transformed thyroid tumors may carry Wnt pathway mutations.29-31 One study of 22 

ATC tumors found about 82% of tumors with an AXIN1 mutation, but less than 10% of tumors 

having a CTNNB1 (b-catenin gene) or APC mutation.29 In contrast, other studies involving ATC 

have found CTNNB1 mutations to be much more common. Stabilization of β-catenin may occur 

through activating mutations in exon-3 at the phosphorylation sites for ubiquitination and 

degradation of beta-catenin. In one study of 31 ATC patients, researchers performed sequencing 

of exon-3 and found CTNNB1 mutations in about 61% of the patients analyzed.30 Another study 

involving 29 ATCs found about 66% of cases showing CTNNB1 exon 3 mutations.31 
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Figure 1-3: Canonical Wnt Signaling 
Summary of canonical Wnt signaling pathway in either the off (left) or on (right) state. This figure 
was generated using BioRender. 
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In addition to mutations driving thyroid cancer, other alterations are known to be important 

in thyroid cancer pathogenesis, such as loss of heterozygosity (LOH) alterations, copy number 

variants (CNVs), and gene fusions. LOH alterations are more common in oncocytic thyroid 

carcinomas (OTC), also known as Hürthle cell thyroid carcinomas. LOH alterations can result in 

the loss of multiple tumor suppressor genes, and tumors with these alterations can have 

enhanced genetic instabilities and tend to be activated with cyclin-dependent kinase signaling.32 

A few studies have also reported LOH alterations to occur more commonly in follicular thyroid 

cancer subtypes than in PTCs,33 and have also reported LOH alterations in ATCs on chromosome 

16p and 18q.34 CNVs can be found in follicular thyroid cancer subtypes, PTC, and ATC.35 CNVs 

in PTC are likely common but usually involve gains, while CNVs in follicular carcinoma may be 

more common and often involve deletions, such as the loss of chromosome 22. ATCs may 

commonly contain CNVs involving both gains and deletions.35 Regarding thyroid cancer fusions, 

in addition to the previously mentioned PAX8/PPARG fusion commonly found in follicular thyroid 

cancers,12 other common fusions include those involving the receptor tyrosine kinases (RTK), 

such as RET, NTRK1, NTRK3, and ALK.36 Of these fusions, RET fusions are the most common, 

particularly in PTC; these fusions sometimes referred to as RET/PTC fusions. Fusions involving 

RTK genes that drive cancer can occur when the 3′ portion of the RTK gene, coding for the kinase 

domain, becomes fused with the 5′ portion of a partner gene, usually carrying with it ubiquitous 

expression which replaces normal regulation of the original RTK gene.36 

 

1.1.3 Tumor Microenvironment 

In addition to mutations and gene expression changes, the tumor microenvironment may 

also influence tumor progression as well as response to immunotherapy. The tumor 

microenvironment includes the extracellular matrix (ECM), signaling molecules, and non-tumor 

cells, such as immune cells and stromal cells (Figure 1-4). While many thyroid tumors are 

generally considered to be immune cold, recent research has shown that neutrophils may be 
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associated with larger thyroid tumor size.37 In addition, thyroid cancer-derived soluble factors have 

been found to activate neutrophils and induce pro-tumorigenic activities; for example, thyroid 

cancer-derived CXCL8/IL-8 can act on CXCR1 and CXCR2 expressed on neutrophil to promote 

chemotaxis, while granulocyte-macrophage colony-stimulating factor (GM-CSF) can prolong 

neutrophil survival.37 These activated neutrophils may then go on to express pro-tumorigenic and 

angiogenic factors such as VEGF-A, CXCL8/IL-8, and MMP-9, which are known contributors of 

cancer-related inflammation.37 

In addition, tumor associated macrophages (TAMs) may also be associated with thyroid 

cancer aggression. For example, TAMs have been shown to be correlated with lymph node 

metastasis in PTC, potentially supported by TAM production of CXCL8/IL-8 as demonstrated by 

in-vivo studies.38 Another study involving high-throughput single-cell RNA-Seq (scRNA-Seq) 

analysis of PTCs and ATCs found that both subtypes may have high myeloid cell populations.39 

Their findings also suggested that during ATC progression, macrophages may be reprogrammed 

from an M1 state, which is associated with antitumor functions such as promoting inflammation 

and mediating cytotoxicity against tumor cells, toward an M2 state, which is associated with 

aggression-promoting behaviors such as suppressing immune responses and promoting 

angiogenesis and metastasis.39,40 

Cancer associated fibroblasts, or CAFs, are another key component of the tumor 

microenvironment. CAFs are a heterogenous and highly plastic group of cells whose roles include 

secretion of growth factors, inflammatory ligands, and extracellular matrix (ECM) proteins. CAFs 

may also promote tumor proliferation, metastasis, immune exclusion, and therapy resistance.41,42 

CAFs may be recruited by factors such as TGFβ, PDGF, and FGF2, produced by cancer cells, 

stromal cells, or immune cells.41 As CAFs are active players during wound healing, and tumors 

are sometimes considered wounds that do not heal, CAFs recruited to tumors may be perpetually 

activated and drive increasing stromal content, which can include collagens, laminins, 

fibronectins, proteoglycans, periostin, and tenascin C.41 Activated fibroblasts can also produce 
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ECM-degrading proteases, such as the MMPs, supporting aggression by promoting epithelial to 

mesenchymal transition (EMT), motility, and invasion.41 Recent studies exploring the clinical and 

therapeutic relevance of CAFs have highlighted the difficulty of targeting this diverse and complex 

class of cells and have emphasized the importance of understanding both the tumor-promoting 

and tumor-restraining subtypes of CAFs.42 While recent studies have begun to characterize CAFs 

in other cancers, such as pancreatic cancer and breast cancer, less is known about the role of 

CAFs in thyroid cancer. Some recent research has found that CAFs may be associated with 

thyroid cancer dedifferentiation and aggressive outcomes.43 
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Figure 1-4: The tumor microenvironment 
Summary of the tumor microenvironment. This figure was generated using BioRender. 
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1.1.4 Prediction 

Accurate molecular testing for cancer prediction is critical for both preventing cancer and 

guiding therapy. Thyroid cancer typically occurs in thyroid nodules, which are highly common and 

can be detected by palpation and imaging. As the majority of thyroid nodules are benign, testing 

is required to determine which nodules contain cancer and require further treatment.8,9,44-47 A 

widely used malignancy testing method for thyroid cancer is fine-needle aspiration (FNA) 

cytology, a minimally invasive biopsy technique that uses a needle and syringe to extract a sample 

of cells from the thyroid nodule, followed by cytologic examination of collected cells. While FNA 

cytology is able to diagnose of a malignant or benign nodule in most cases, as high as 25% of 

nodules may have an inconclusive diagnosis using this method.8,9,44-47 Such nodules may be 

diagnosed conclusively by diagnostic lobectomy; however, this method is more invasive and 

unfavorable both for patients with malignant disease, who are required to undergo additional 

surgery for completion thyroidectomy, and for patients with benign disease, who had surgery 

performed for benign nodules.8,9,44-47 

Therefore, recent research to predict thyroid nodule malignancy at the time of initial biopsy 

has focused on molecular testing. The majority of molecular tests developed for thyroid cancer 

for malignancy prediction typically involve screening for common driver alterations in well-

differentiated thyroid cancers; these include mutations in the MAPK and PI3K–AKT signaling 

pathways, such as BRAF and RAS mutations. Classes of alterations that may be used in such 

tests include point mutations, insertions/deletions, gene fusions, copy number alterations, or gene 

expression alterations.8,9,44-47 For example, ThyroSeq v3 is a 112-gene test that uses both DNA- 

and RNA-based next-generation sequencing to look at a broad range of thyroid cancer-related 

point mutations, insertions/deletions, gene fusions, copy number alterations, and gene expression 

alterations.45,48 Another commercial molecular test for thyroid malignancy is the Afirma Genomic 

Sequencing Classifier (GSC), which uses analysis of RNA sequencing data to look at 905 

genomic variants and 235 fusion pairs from 593 genes to rule out malignancy and reclassify 
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cytologically indeterminate nodules to molecularly benign or suspicious.44 A third commercial test, 

Interpace Diagnostics ThyGeNEXT + ThyraMIR, uses both a mutation panel and a microRNA 

panel to diagnose cytologically indeterminate thyroid lesions.49,50  

Current molecular tests are capable of distinguishing malignant from benign thyroid 

lesions with high sensitivity, specificity, and accuracy.44,45,48 However, there are currently only a 

few established molecular tests for predicting aggressive thyroid cancer. Aggressive thyroid 

cancer can include recurrence of disease, transformation to PDTC or ATC, and distant 

metastasis. While ThyroSeq is used for malignancy prediction, it also provides pre-operative 

assessment of cancer recurrence risk.45,48 However, while this test has been evaluated in 

published studies, it has not yet been widely utilized to confirm its the real-world utility and 

performance. Afirma also states that its assay has the potential to predict tumor behavior, such 

as lymph node metastasis and extrathyroidal extension, with inclusion of its newer test, XA. XA 

uses RNA seq data to identify variants and fusions instead.44 However, similar to ThyroSeq’s risk 

of recurrence score, the real-world utility of Afirma’s test has not yet been evaluated. 

In addition to improving aggressive thyroid cancer prediction, molecular tests also have 

the potential to further improve other aspects of patient care. Importantly, such molecular tests 

could offer is the ability to inform specific targetable alterations or therapies for each patient. For 

example, testing to detect molecular markers in a patient’s tumor microenvironment could 

potentially inform their response to immunotherapy. These advances could be particularly 

important for treating the most aggressive thyroid cancer subtype, ATC, which currently has no 

curative therapy. However, regardless of the markers used or information gained, future molecular 

tests must also demonstrate clear advantages over existing methods. For example, some studies 

have suggested that current diagnostic molecular tests may not be cost-effective compared to 

diagnostic lobectomy.51 Addition research is needed to ensure that future molecular tests 

significantly improve patient care and outcomes when compared to established methods.  
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1.2 Research objectives 

To study the molecular markers of thyroid cancer aggression, our lab has collected and 

curated a large thyroid lesion cohort with patient samples from Vanderbilt University Medical 

Center (VUMC) and the University of Washington Medical Center (UWMC). In other thyroid 

cancer studies, cohorts can be limited to one or a few specific thyroid lesion subtypes, limiting the 

ability to comprehensively assess alteration patterns across different diagnoses. In addition, as 

aggressive thyroid cancer is rare in comparison to the numerous cases of well-differentiated 

subtypes such as PTC, thyroid cancer cohorts typically contain smaller numbers of aggressive 

thyroid lesion samples. These cohorts reflect real-world populations but may also limit the study 

of aggressive thyroid cancer. To try and maximize the value of our cohort, we collected a wide 

range of thyroid lesion subtypes spanning 12 unique diagnoses, and deliberately enriched our 

cohort for aggressive thyroid cancer cases. Our first objective was to analyze DNA sequencing 

data from this cohort to identify mutations driving aggressive thyroid cancer behaviors, such as 

distant metastasis, recurrence, and transformation to dedifferentiated subtypes such as poorly 

differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC). 

Our next research objective was to look at gene expression changes associated with 

thyroid cancer aggression. One key pathway of interest in our lab has been the canonical Wnt 

pathway, which has been implicated in the development and progressions of many cancers 

including thyroid cancer. We aimed to use bulk RNA sequencing data to analyze patterns of gene 

expression changes that may explain aggression even when common aggression-associated 

mutations are not present. 

Our final objective was to determine the role of the immune microenvironment in thyroid 

cancer progression. We planned to use both computational deconvolution tools to analyze bulk 

RNA sequencing data as well as tissue sample staining and imaging to validate our computational 

findings. Previous research in other cancers has suggested that infiltrating immune cells may 
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support tumor growth and progression to aggressive disease. We hypothesize that infiltrating 

immune cells in the thyroid tumor may support metastasis, recurrence, and transformation.  

In summary, our overall objective was to uncover a diverse set of genetic, gene 

expression, and tumor microenvironment changes that support thyroid cancer aggression. Using 

these findings, we also aimed to create a new molecular score based on novel biomarkers with 

the ability to accurately predict poor outcome risk in thyroid cancer patients. Finally, we anticipate 

that our findings will ultimately open up new paths for the development of novel therapies targeting 

aggressive thyroid cancer.  
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CHAPTER 2 

 

Title of Chapter: Molecular Profiling of a Large Thyroid Lesion Patient Cohort 

 

This chapter includes adaptation of contents from the following manuscript: 
 
Xu, G., Loberg, M., et al. Molecular Assessment of Tumor Mutations and Microenvironment 
Enhances Prediction of Thyroid Cancer Outcome. Cell Genomics. 2023. 
 
Contributions: Matt Loberg and I contributed equally to this paper. I performed cohort collection 
and curation, sequencing, omics analysis and computational deconvolution methods. Matt 
performed RNA sequencing analysis, tissue staining, microscopic imaging, and spatial 
transcriptomics methods. 
 

2.1 Introduction 

DNA and RNA sequencing have revolutionized cancer research, driving advances in 

cancer classification, diagnosis, risk prediction, and therapy. However, genomic understanding of 

thyroid cancer has lagged behind other cancers. Most advances in molecular testing of thyroid 

cancer have focused on malignancy detection, using common driver mutations in well-

differentiated thyroid cancers such as BRAF V600E and RAS mutations.8,9,46,47 In our research, 

we sought to characterize the genetic landscape of a large cohort of thyroid lesion patients. For 

our initial sequencing research objectives, we aimed to 1) confirm the presence of known thyroid 

cancer mutations and gene expression changes in our cohort, and 2) investigate associations 

between mutations/gene expression changes and thyroid cancer aggression. 

 

2.2 Methods 

2.2.1 Patient Cohort 

 Our patient cohort contains 312 formalin-fixed paraffin-embedded (FFPE) resection 

samples from 251 patients with thyroid nodules. Patients from Vanderbilt University Medical 

Center (VUMC) and the University of Washington Medical Center (UWMC) were included, and 
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this study was performed in compliance with VUMC and UWMC Institutional Review Boards. 

Diagnostic criteria are based on WHO and ATA guidelines, and each specimen’s histopathology 

was reviewed by board-certified pathologists. Manual review of patient charts was performed to 

collect additional patient demographics (e.g. race), clinical histories (e.g. prior exposures to 

ionizing radiation), treatment courses (e.g. surgery type), tumor details (e.g. size), and outcomes 

(e.g. survival).  

To categorize aggressive disease, patients were grouped into “indolent” or “aggressive 

disease” groups. The indolent category includes patients with no evidence of disease (NED), 

indeterminate disease, persistent disease, or recurrent disease in remission. NED was defined 

by undetectable thyroglobulin (Tg), undetectable anti-thyroglobulin antibodies (aThyG), and 

thyroid ultrasound indicating no evidence of disease. Patients without imaging follow-up were 

categorized as NED by laboratory testing (undetectable Tg or aThyG) alone, and patients with 

imaging alone (no labs) were categorized as NED if the patient had a hemithyroidectomy or no 

radioactive iodine. Indeterminate disease was defined by stable/detectable Tg < 1.0 ng/mL, 

stimulated Tg < 10 ng/mL, positive aThyG levels that were stable or decreasing, imaging without 

Tg labs, and/or inconclusive imaging. Persistent disease was defined by stable Tg > 1.0 ng/mL, 

stimulated Tg > 10 ng/mL, and/or a persistent lesion by imaging that did not increase in size over 

multiple years of follow-up. Recurrent disease in remission includes malignancies measurable by 

imaging/laboratory testing after NED designation but then had stable or decreasing tumor size/Tg 

following local intervention. Aggressive disease was defined by metastatic or transformed disease 

at presentation, distant metastasis after initial therapy completion, biopsy showing transformation 

to ATC; local disease recurrence without stabilization or remission following subsequent localized 

treatment; or increasing lesion size after initial therapy. 

Progression-free survival (PFS) was calculated as the time between date of initial therapy 

completion and date of progression. Progression date was determined by the first date of either 

increasing Tg (in a thyroid stimulating hormone-suppressed patient) or increasing tumor size by 
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imaging. All patients that were progressive by Tg had subsequent imaging evidence of 

progressive disease. For patients without progression, the date of last follow-up was used to 

calculate PFS, and the data was appropriately censored. Patients without follow-up after therapy 

were omitted from analysis. Overall survival (OS) was calculated as the time between date of 

initial therapy completion and date of death or last follow-up (censored in the case of a living 

patient). For well-differentiated tumors, the date of initial therapy completion was either the date 

of post-operative radioactive iodine administration or the date of surgery for low-risk tumors not 

requiring post-operative radioactive iodine. For undifferentiated tumors, the surgery date was 

used as the initial therapy completion date. 

 

2.2.2 Whole Exome Sequencing and Analysis 

 Nucleic acids were extracted using the COVARIS truXTRAC FFPE Total NA Kit 

(COVARIS, Woburn, MA) and DNA libraries were built using the NEB Ultra II DNA Library Prep 

Kit (NEB, Ipswich, MA) per the manufacturer’s instructions. Sequencing was completed at the 

Vanderbilt Technologies for Advanced Genomics (VANTAGE) core facility using the IDT xGen® 

Exome Research Panel on an Illumina NovaSeq 6000 platform (Illumina, San Diego, CA). Raw 

150 bp paired-end reads were trimmed to remove adapter sequences using Cutadapt (v2.10)52 

and the quality of the reads before and after trimming was measured by FastQC 

(www.bioinformatics.babraham.ac.uk/projects/fastqc).53 Trimmed reads were aligned to the hg38 

genome using Burrows-Wheeler Aligner (v0.7.17-r1188),54 and GATK v. 4.1.8.1 was used to 

remove duplicate reads, perform base quality score recalibration, and discover variants.55  Variant 

calling was first performed on individual samples with HaplotypeCaller in gVCF mode, all samples 

were jointly genotyped, and variant filtering was performed using VQSR. Variant annotation was 

conducted using ANNOVAR (v2018-04-16).56 To exclude variants common in the population, 

variants with minor allele frequency ≥0.1% in at least one of the ExAC (Exome Aggregation 

Consortium),57 1000G (1000 Genomes Project),57 and gnomAD (Genome Aggregation 
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Database)58 databases were filtered out. BRAF, RAS, TP53, and PIK3CA mutations were 

assessed according to the standards and guidelines for the reporting of sequence variants in 

cancer by the Association for Molecular Pathology, American Society of Clinical Oncology, and 

the College of American Pathologists.59 Whole exome sequencing average depth was 157X, and 

coverage was 91X. Mutation data was visualized by oncoplots generated using the R packages 

maftools60 and ComplexHeatmap.61 

 

2.2.3 Sanger Sequencing of the TERT promoter  

TERT promoter alterations C228T and C250T were probed using Sanger sequencing. 

Using DNA purified as described in section 2.2.2, primers [5- TAATACGACTCACTATAGGGCA 

CCCGTCCTGCCCCTTCACCTT-3’ (forward+T7 tail) and 5’- GTAAAACGACGGCCAGGGCTTC 

CCACGTGCGCAGCAGGA-3’ (reverse+M13F tail)],62 and the HotStarTaq DNA Polymerase kit 

(QIAGEN, Hilden, Germany), thermal cycling was performed using the following conditions: 95°C 

(15 minutes), 35 cycles of 94°C (30 seconds), 56°C (30 seconds), and 72°C (20 seconds), 

followed by 72°C (10 minutes) and 4°C hold. Sanger sequencing was then used to analyze the 

purified PCR products (GENEWIZ, South Plainfield, NJ). 

 

2.2.4 Bulk RNA Sequencing and Analysis 

Nucleic acids were extracted using the COVARIS truXTRAC FFPE Total NA Kit 

(COVARIS, Woburn, MA), and Illumina TruSeq mRNA sequencing libraries were prepared. 

Sequencing was performed at VANTAGE on a NovaSeq 6000 platform Raw (Illumina, San Diego, 

CA). Raw 150 bp paired-end reads were trimmed to remove adapter sequences using Cutadapt 

(v2.10).52 Alignment to the GENCODE GRCh38.p13 genome63 was performed using STAR 

(v2.7.8a),64 and GENCODE v38 gene annotations were provided to STAR to improve the 

accuracy of mapping. Quality control was performed on both raw reads and adaptor-trimmed 

reads using FastQC,53 and featureCounts (v2.0.2)65 was used to count the number of mapped 
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reads to each gene. Genes that were significantly differentially expressed with FDR-adjusted p 

value < 0.05 and absolute fold change > 2.0 were detected by DESeq2 (v1.30.1)66 and visualized 

using the R package EnhancedVolcano (1.18),67 while the R package Heatmap368 was used for 

cluster analysis and visualization. Gene Ontology was performed on differentially expressed 

genes using the Gene Ontology Consortium resource,69,70 and gene set enrichment analysis was 

performed using GSEA (v4.1.0) on the msigdb v7.1 database.71 TIMER2.0 

(http://timer.cistrome.org/),72 a web-based deconvolution program for estimating tumor-infiltrating 

immune cells based on gene expression profiles across diverse cancer types, was run using 

THCA (Thyroid Carcinoma) as the cancer type gene signature. Deconvolution scores in TIMER 

2.0 that were used included those from CIBERSORT-Abs73, EPIC73, and MCPCOUNTER,74 and 

descriptive results were plotted using the R package ggplot2.75 We also used the computation 

tool TIDE (http://tide.dfci.harvard.edu/)76 which used gene expression data to make estimates 

pertaining to immune checkpoint blockade response. TIDE was run using the following settings: 

Cancer type = Other, Previous Immunotherapy = No. Both TIMER and TIDE score heatmaps 

were generated with the R package ComplexHeatmap.77  

For fusion analysis, the STAR-Fusion (v2.7.8a) pipeline78 was used to align and map 

paired-end RNA-seq reads to the human genome (GRCh38_gencode_v37) using parameters 

optimized to capture fusion transcripts,79 and FusionInspector, a component of the STAR-Fusion 

suite, was used to validate fusion transcripts in silico. Manual review of RNA data was performed 

using the Integrated Genomics Viewer.80 Two additional RET fusions were also identified by 

blasting soft clip reads to the human genome. 

 

 2.2.5 RNA Sequencing Score Calculation 

The BRAF-RAS score (BRS) was calculated using 69 genes from a previously defined 

gene list.81 Two genes from the original gene list were not covered in our sequencing data and 

were omitted from our score calculation. Bulk RNA-sequencing data was transformed into z-score 
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format, and BRAF-mutant ([B]) and RAS-mutant ([R]) centroids were calculated from PTCs and 

FVPTCs lesions with BRAF V600E and RAS mutations (NRAS, HRAS, or KRAS). A vector 

containing the expression of the 69 BRS genes was generated ([S]) for each sample, and then 

the normalized squared Euclidean distance between [S] and [B] and [S] and [R] was calculated. 

Finally, the BRS was calculated as the difference between these normalized squared Euclidean 

distances.  

 

BRS(S) = |[S] − [B]| − |[S] − [R]| 

 

The thyroid differentiation score (TDS) was calculated from the expression of 16 genes 

related to thyroid function and metabolism, as previously described.81 To calculate TDS, the 

variance stabilized gene expression data were subtracted by the median across all tumor 

samples, and the TDS was calculated from the average values across the 16 genes in each 

tumor.  

The PI3K score was calculated using a previously described hallmark PI3K-AKT-mTOR 

(PI3K) signaling gene set.82 Looking at all samples in our cohort except MNG and HT, we log2 

transformed and calculated Z-scores of RNA-expression data for each of the 105 genes in the 

PI3K gene set. We then calculated the score for each sample as the sum of the Z-scores for these 

105 genes. 

The ERK score was calculated according to previously described methods,81 using a set 

of 48 genes previously shown to be down-regulated with MEK inhibition (set A) as well as 4 genes 

previously shown to be up-regulated with MEK inhibition (set B).83 For samples across our cohort 

excluding MNG and HT, we took expression data for each gene from set A and set B, and then 

applied log2 transformation before calculating Z-score. For each sample, Z-scores of set A genes 

were summed, and Z-scores of set B genes were summed. The final ERK score for each sample 
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was calculated by subtracting the Z-score sum of set B genes from the Z-score sum of set A 

genes. Complete gene lists for each gene expression-based score are shown in Table 2-1. 

 

2.2.6 Data Sharing 

Code for all analyses is available at the following GitHub link (https://github.com/xgj797/ 

Molecular-Signature-Incorporating-Immune-Microenvironment-Enhances-Thyroid-Cancer-

Outcome-Prediction). Individual-level patient clinical and sequencing data is not able to be shared 

due to the retrospective nature of our cohort; patients with historic samples cannot be consented, 

especially those with highly aggressive and rapidly lethal disease. However, aggregate-level data 

reported in this paper will be shared by corresponding author (Dr. Vivian Weiss, VW) of the Cell 

Genomics paper “Molecular Assessment of Tumor Mutations and Microenvironment Enhances 

Prediction of Thyroid Cancer Outcome” upon request. 
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Table 2-1: BRS, TDS, PI3K, and ERK score genes 
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2.3 Results 

 2.3.1 Mutation Landscape of our Thyroid Lesion Patient Cohort 

To begin investigating the genetic landscape of our cohort of thyroid lesions, we collected 

mutation and fusion data using whole-exome sequencing and bulk RNA sequencing, respectively. 

In our mutation and fusion data (Figure 2-1, Table 2-2), we observed patterns consistent with 

those described in past literature. For example, BRAF mutations are the most common in our 

cohort overall and are present in a majority of our papillary lesions, with 64% of PTCs and 33% 

of IFVPTCs showing these mutations. RAS mutations were also common and are enriched in our 

follicular lesions as expected; RAS mutations were found in 40% of NIFTPs, 42% of EFVPTCs, 

and 40% of FTCs. In addition, known thyroid cancer fusions were identified and followed expected 

trends; most of the PPARG fusions identified were found in FTC and PDTC samples, while RET 

fusions were associated with papillary subtypes PTC and IFVPTC. Other fusions we identified 

included those involving genes NTRK3, BRAF, and TERT. As our cohort was designed to be 

enriched in aggressive lesions, mutations in genes associated with aggressive thyroid cancer 

were common. We found that mutations in the TERT promoter, TP53, and PIK3CA were 

associated with transformed subtypes ATC and PDTC, with 31% TERT promoter, 27% TP53, and 

19% PIK3CA mutations in ATC, and 33% TERT promoter, 19% TP53, and 12% PIK3CA 

mutations in PDTC. Additionally, TERT promoter, TP53, and PIK3CA were also enriched in the 

aggressive subset of our papillary samples. For example, for IFVPTC/PTCs with distant 

metastases, 41% had TERTp mutations, 18% had TP53 mutations, and 12% had PIK3CA 

mutations, while for all other IFVPTC/PTCs, 28% had TERTp mutations, 2% had TP53 mutations, 

and 7% had PIK3CA mutations. 

 

 

 

 



   26 

 

Figure 2-1: Oncoplot of select malignant thyroid lesions 
Our oncoplot shows the top 20 mutated genes and top 7 genes involved in fusions in malignant 
samples in our cohort. 
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Table 2-2: Quantification of key mutations organized by diagnosis 
Table describing percent and counts of thyroid lesion samples with mutations in BRAF, RAS, 
TERT promoter, TP53, and PIK3CA. Lesion subtype are ordered by behavior from least to most 
aggressive from top to bottom. Sanger sequencing was used to detect TERT promoter mutations 
(n=276), and whole exome sequencing was used to find BRAF and TP53 mutations (n=310). 
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 2.3.2 Aggression-Associated Mutations are Associated with Worse Survival  

We next looked at our mutation data in the context of thyroid cancer aggression. Using 

progression-free survival (PFS) analysis, we found that mutations in the TERT promoter, TP53, 

and PIK3CA were associated with significantly shorter progression-free survival time and overall 

survival time (Figure 2-2). We also generated oncoplots of our most commonly mutated genes in 

either well-differentiated papillary malignancies (PTC/IFVPTC/EFVPTC) or well-differentiated 

follicular malignancies (FTC/OTC) from patients with either indolent or aggressive disease (Figure 

2-3). We found that well-differentiated papillary malignancies from patients with aggressive 

disease were more likely to have TERT promoter, TP53, and PIK3CA mutations, while well-

differentiated follicular malignancies from patients with aggressive disease had a higher 

proportion of TERT promoter and TP53 mutations as well. Overall, about 42% of well-

differentiated tumor samples from patients with aggressive disease lacked mutations in the TERT 

promoter, TP53, or PIK3CA. In summary, while mutations in the TERT promoter, TP53, and 

PIK3CA are associated with worse survival, our data also suggest that a significant proportion of 

clinically aggressive thyroid cancers lack these common high-risk mutations.   
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A 

 

B

 

 

Figure 2-2: Survival curves of patients with and without mutations in the TERT promoter, 
TP53, and PIK3CA 
A) Progression-free survival (PFS) of patients with and without mutations in TERT promoter, 
TP53, and PIK3CA. P values were calculated with log-rank test. 
B) Overall survival (OS) of patients with and without mutations in TERT promoter, TP53, and 
PIK3CA. P values were calculated with log-rank test. 
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Figure 2-3: Oncoplots comparing indolent vs aggressive samples 
A) Top 20 mutations in local PTC, IFVPTC, and EFVPTC lesions from patient with either indolent 
(left) or aggressive disease (right). TERT, TP53, and PIK3CA mutations are marked by red 
asterisks.  
B) Top 20 mutations in local FTC and OTC lesions from patient with either indolent (left) or 
aggressive disease (right). TERT, TP53, and PIK3CA mutations are marked by red asterisks. 
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 2.3.3 Thyroid Cancer Gene Expression Scores 

 We performed differentiational gene expression analysis of our bulk RNA sequencing 

data. It’s known that BRAF and RAS mutations are the most common driver alterations in thyroid 

cancers. BRAF and RAS mutations are mutually exclusive with one another, with BRAF mutations 

being characteristic of papillary thyroid cancer (PTC), the most common type of thyroid cancer, 

and RAS being commonly mutated in follicular thyroid cancer subtypes.8,9  Therefore, thyroid 

cancers have commonly been classified as either BRAF-like or RAS-like when analyzing gene 

expression.81 In a heatmap showing differential expression of the 69 genes comprising the BRAF-

RAS score (BRS) (Figure 2-4A), we see two general patterns of gene expression corresponding 

to our follicular lesions (FA, OA, NIFTP or EFVPTC, OTC, FTC), which are thought to be largely 

RAS-like, and our papillary lesions (PTC or IFVPTC) which are thought to be predominantly 

BRAF-like. PDTC and ATC are less clearly defined by these categories but overall tend to show 

RAS-like and BRAF-like patterns in our heatmap, respectively. Plotting our BRS scores as a 

boxplot organized by diagnoses (Figure 2-4B), we see that most of our ATCs and a significant 

proportion of our PTCs are BRAF-like. Previous research has found a slight association between 

BRAF-like status and thyroid cancer aggression; however, most thyroid cancers with BRAF 

mutations have good outcomes, so these signatures alone do not significantly predict aggressive 

disease for differentiated tumors. When looking at only well-differentiated cancer samples in our 

cohort, we find that BRAF-like status alone is not significantly associated with worse PFS (Figure 

2-4C). Only after including transformed tumors PDTC and ATC is BRAF-like status significantly 

associated with shorter PFS, consistent with highly lethal ATCs being predominantly BRAF-like 

in our cohort.  

As thyroid cancer progresses and becomes more aggressive, tumors become increasingly 

de-differentiated, losing characteristics such as their original thyroid cellular organization, 

functions, and markers. With this in mind, we also used gene expression analysis data to assess 

genes related to thyroid differentiation. Looking at 16 genes related to thyroid function and 
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metabolism in a gene expression heatmap (Figure 2-5A), we observed generally lower expression 

of a subset of these genes in PTCs/IFVPTCs, and a larger subset of these genes in our ATCs, 

as expected. While most ATCs have generally lower expression of FOXE1, PAX8, TSHR, NKX2-

1, DUOX2, DUOX1, and TG, about half also have relatively high expression of genes SLC5A8, 

DIO1, TPO, SLC26A4, and DIO2. Our PDTCs do not appear to show the same extent of 

downregulation of these genes compared to our ATCs, which is expected as ATC is considered 

more de-differentiated than PDTC; however, our PDTCs also appear to have higher TDS gene 

expression even compared to our PTCs which are well-differentiated. Using these genes to 

calculate thyroid differentiation scores (TDS) and plotting them against diagnosis (Figure 2-5B), 

we observe a similar pattern as the one in our heatmap, with PTCs/IFVPTCs and ATCs showing 

overall lower TDS scores compared to other subtypes, suggesting lower differentiation.  

The PI3K-AKT-mTOR (PI3K) signaling pathway is involved in regulating a wide range of 

processes including cell cycle progression, proliferation, adhesion, migration, survival, and 

differentiation.16 This pathway is also known to be important in many cancers including thyroid 

cancer, especially in the transformed subtypes PDTC and ATC; some studies report one of the 

most commonly mutated PI3K pathway genes, PIK3CA, to be altered in 10-20% of these tumors.8 

Therefore, we also calculated PI3K signaling scores for our thyroid lesion cohort based on 

previously published methods. In our expression heatmap of genes used to calculate the PI3K 

score, we found patterns of gene upregulation shared between PTCs as compared to follicular 

subtypes. Similar to our heatmap containing TDS score genes, our PI3K gene score heatmap 

also shows what appear to be two unique subgroups in our ATCs (Figure 2-6A). Plotting our PI3K 

score against diagnosis, we find higher PI3K scores among our ATC samples compared to other 

those in other diagnosis (Figure 2-6B), suggesting especially strong PI3K signaling in this 

aggressive thyroid cancer subtype. We note that while most of our ATCs have high PI3K signaling, 

mutations associated with this pathway seem insufficient to explain this upregulation; for example, 

just 19% of ATCs have a PIK3CA mutation. However, we also note that copy number variations, 
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such as PIK3CA copy number gain, are also known drivers of upregulated PI3K signaling in 

thyroid cancer,18 but were not studied in our cohort,. 

The ERK (and MAPK) signaling pathway is a key pathway commonly altered in thyroid 

cancer; two of the most commonly mutated genes in thyroid cancer are BRAF and RAS, which 

both code for components of the ERK signaling pathway. We use previously published methods 

to calculate ERK signaling scores for tumors in our cohort. In a gene expression heatmap of genes 

used to calculate the ERK score, ATCs appear to be the most distinct and show particularly high 

expression of many ERK score genes (Figure 2-6A). In a boxplot with ERK score plotted against 

diagnosis, we find that ATC, and to a lesser extent papillary thyroid cancer subtypes PTC and 

IFVPTC, generally appear to show the highest ERK scores in our cohort (Figure 2-6B). 

We perform principal component analysis (PCA) on our gene expression data, with colors 

annotating thyroid lesion diagnosis, BRS, TDS, and PI3K score (Figure 2-7). Our PCA results 

reaffirmed many of the patterns we observed in our previous gene expression heatmaps. 

Spatially, ATCs, PTCs, and follicular subtype appear to separate into distinct groups. However, 

PDTCs can be found intermixed with our follicular lesions, and FVPTCs are scattered both among 

PTCs and follicular subtypes. Looking at BRS score and TDS score annotations, our follicular 

subtype cluster stands out, with high BRS scores indicating RAS-like gene expression profiles, 

and high TDS scores indicating high differentiation, as expected. PI3K scores highlight our ATC 

cluster, predicting high PI3K signaling in this subtype. 
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Figure 2-4: BRAF-RAS Score 
A) Normalized gene expression heatmap showing 69 genes used to calculate BRAF-RAS score 
(BRS). Samples are ordered by diagnosis, and genes are ordered by hierarchical clustering. 
B) Box plots showing BRS from local disease samples, with dot color indicating clinical behavior 
(pink = aggressive; black = indolent; grey = no clinical follow-up after sample collection). 
C) PFS of BRAF-like (red) and RAS-like (blue) differentiated thyroid tumors (left) or both 
differentiated and transformed thyroid lesions (right). Local disease location only, all lesion 
subtypes included except MNG, OTC, FA, and OA. P values calculated using log-rank test. 
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Figure 2-5: TDS Score 
A) Normalized gene expression heatmap showing 16 genes used to calculate TDS. Samples are 
ordered by diagnosis, and genes are ordered by hierarchical clustering. 
B) Box plots showing TDS from local disease samples. 
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Figure 2-6: PI3K Score 
A) Normalized gene expression heatmap showing 105 genes used to calculate PI3K score. 
Samples are ordered by diagnosis, and genes are ordered by hierarchical clustering. 
B) Box plots showing PI3K score from local disease samples. 
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Figure 2-7: ERK Score 
A) Normalized gene expression heatmap showing 48 genes used to calculate ERK score. 
Samples are ordered by diagnosis, and genes are ordered by hierarchical clustering. 
B) Box plots showing ERK score from local disease samples. 
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Figure 2-8: Principal component analysis 
Principal component analysis (PCA) performed on bulk RNA-sequencing data from neoplastic 
thyroid lesions. Plots are shown colored by diagnosis, BRS, TDS, and PI3K score. 
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2.4 Discussion 

 While malignancy prediction has been the primary focus of thyroid lesion molecular 

profiling, recent research has made significant progress in predicting high-risk disease.84 For 

example, high-risk mutations in thyroid cancer have been identified in the TERT promoter, TP53, 

and PIK3CA, often together with BRAF V600E.13 However, many patients with metastatic, 

recurrent, or progressive thyroid cancer still lack known high-risk mutational biomarkers. In our 

thyroid lesion patient cohort enriched for aggressive disease, we use whole exome and bulk RNA 

sequencing to identify known thyroid cancer mutations, including those associated with 

aggressive disease. We found that BRAF and RAS mutations were associated with papillary and 

follicular thyroid lesions, respectively, while TERTp, TP53, and PIK3CA mutations were 

associated with decreased progression-free survival. However, our results also suggest that 

approximately 40% of patients with aggressive well-differentiated tumors lack these previously 

identified high-risk mutations. Looking at our gene expression data, we use previously published 

thyroid cancer scores to estimate BRAF-RAS gene expression, thyroid differentiation, PIK3 

signaling, ERK signaling across our cohort. We observe associations between a BRAF-like gene 

expression signature, reduced thyroid differentiation marker expression, and increased PI3K and 

ERK signaling in our ATCs. Overall, our RNA sequencing data confirms known patterns in thyroid 

cancer gene expression but does not enable us to predict thyroid cancer aggression. 
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CHAPTER 3 

 

Title of Chapter: A Score for Aggressive Thyroid Cancer Risk Prediction 

 

This chapter includes adaptation of contents from the following manuscript: 
 
Xu, G., Loberg, M., et al. Molecular Assessment of Tumor Mutations and Microenvironment 
Enhances Prediction of Thyroid Cancer Outcome. Cell Genomics. 2023. 
 
Contributions: Matt Loberg and I contributed equally to this paper. I performed cohort collection 
and curation, sequencing, omics analysis and computational deconvolution methods. Matt 
performed RNA sequencing analysis, tissue staining, microscopic imaging, and spatial 
transcriptomics methods. 
 
 
 

3.1 Introduction 

 The tumor microenvironment is a crucial player in the development and progression of 

many cancers and has great potential to inform new tools for prognostication and therapy.85 Our 

previous sequencing findings suggest that known mutations and published gene expression 

scoring systems fall short of providing robust and comprehensive aggressive disease prediction. 

Our next goal was to investigate the thyroid tumor microenvironment, determine the key immune 

and stromal cells present, and investigate any potential for microenvironmental biomarkers to 

inform aggressive disease prediction. To this end, we present a gene-expression based score 

which we name the Molecular Aggression and Prediction (MAP) score. Our MAP score highlights 

markers of the tumor microenvironment and significantly predicts the development of future 

aggressive disease. 
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3.2 Methods 

 3.2.1 MAP Score Calculation and Gene Ontology Enrichment Analysis 

Using gene expression data from our thyroid lesion patient cohort, we grouped patients 

by either positive BRS (RAS-like) or negative BRS (BRAF-like), and either aggressive or indolent 

disease. Using differential gene expression analysis, we identified 549 genes that were 

upregulated >4-fold in aggressive patient samples and >2-fold in BRAF-like (relative to RAS-like) 

patient samples (adjusted p value of < 0.05). For all samples in our cohort except benign subtypes 

MNG, FA, OA, and HT, gene expression data for each of the 549 genes was log2 transformed 

and Z-scores were calculated to generate our MAP scores. Enrichment analysis of the 549 MAP 

score genes was performed using a Panther overrepresentation test (https://pantherdb.org/).86  

 

3.2.2 MAP Score Prediction Analysis 

 To evaluate the association between aggressive disease and predictive scores, we used 

logistic regression models. Penalized maximum likelihood with Jeffreys-prior penalty was used to 

allow for less biased and more stable estimation to account for the low number of events in some 

strata (R package brglm2)87 , and area under the receiver operating characteristic curve (AUC) 

with corresponding 95% confidence interval (CI) were computed to evaluate the discrimination 

ability of a fitted model. All statistical analyses were performed using R version 4.1.2 (R 

Foundation, Vienna, Austria). 

 

3.3 Results 

3.3.1 MAP Score is Enriched for Extracellular Matrix, Immune, Cell Cycle, and 

Epithelial Differentiation Processes 

As BRAF-like status in thyroid tumors is only slightly associated with aggressive disease, 

we next sought to identify genes that were upregulated in both BRAF-like tumors and aggressive 

disease. We identified 549 genes upregulated in both BRAF-like tumors and aggressive disease 
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tumors, compared to just eight genes upregulated in both RAS-like tumors and aggressive 

disease tumors (Table 3-1). Using the 549 genes upregulated in both BRAF-like tumors and 

aggressive disease non-metastatic tumors, we created a gene expression signature called the 

Molecular Aggression and Prediction (MAP) score (Figure 3-1). Comparing this score across 

tumors from different histologic subtypes in our cohort, we found positive MAP scores in all ATCs, 

the majority of PDTCs, and a portion of well-differentiated thyroid cancers, mainly from patients 

with aggressive disease (Figure 3-2A). We further tested our MAP score in a large external cohort 

of well-differentiated PTCs from the Cancer Genome Atlas (TCGA) (Figure 3-2B). In this cohort, 

we saw that positive MAP score correlated with aggressive PTC histologic variants, such as tall 

cell and diffuse sclerosing, as well as adverse pathologic features, such as extrathyroidal 

extension and advanced disease stage.  

To better understand the biologic processes unique to aggressive MAP-positive tumors, 

we performed gene ontology analysis using our cohort. We found that tumors with positive MAP 

scores showed enrichment of biological processes including extracellular matrix, immune related 

processes, epithelial differentiation, and cell cycle processes. Epithelial de-differentiation and 

increased mitotic activity are known features associated with thyroid cancer progression and are 

already part of the current diagnostic criteria for many aggressive thyroid tumors.88-90 However, 

biologic processes involving tumor microenvironment remodeling are less well-studied in thyroid 

cancer and represent an important area for future research. 
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Figure 3-1: MAP score development 
Diagram summarizing creation of the MAP score. Samples were categorized as either BRAF-like 
or RAS-like based on the expression of a previously published list of 69 genes (see section 2.3.3), 
and samples were categorized as aggressive or indolent based on patient disease. Differential 
gene expression analysis was performed to determine genes upregulated in BRAF-like and 
aggressive non-metastatic samples, and genes present in the overlap of both groups were used 
for the MAP score. Components of this figure were generated using BioRender. 
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RAS-Aggression Overlap Genes 
BRS3 EEF1A2 ISL1 NRSN1 OR4D5 OR5H2 OR6T1 OR10S1 
BRAF-Aggression Overlap Genes 
ACOD1 ACP7 ACTA1 ACTC1 ACY3 ADAM19 ADAM2 ADAM29 
ADAM7 ADAMTS14 ADGRF4 AFP AGXT AICDA AIM2 ALDH3B2 
ALPK2 ANKRD1 ANLN ANPEP ANXA8 ANXA8L1 APCDD1L AQP9 
ARL14EPL ARL4C ARNTL2 ARPP21 ARSI ASB10 ASCL4 ASPM 
ATP12A ATP1A4 AURKA AURKB AVP AZGP1 B4GALNT4 BATF 
BCAS1 BEND4 BEST3 BIRC5 BPIFC BUB1 C10orf71 C12orf75 
C4orf17 C5orf46 C9 CA9 CALB2 CALHM6 CALML3 CBLN2 
CCBE1 CCDC185 CCDC197 CCKAR CCL1 CCL11 CCL13 CCL20 
CCL24 CCNA2 CD19 CD2 CD300E CD3E CD7 CD70 
CDC20 CDC25C CDCA2 CDCA5 CDCA8 CDHR1 CDK5R2 CDX2 
CEACAM3 CEACAM7 CENPA CENPE CENPF CENPI CEP55 CER1 
CHAT CHRNA1 CIB3 CKAP2L CKM CLC CLCA2 CLDN14 
CLEC4C CLEC4M CLVS2 CNGA2 COL11A1 COL1A1 COL7A1 CORO1A 
COX6A2 CPA4 CPB1 CPN2 CPNE7 CR1 CR2 CREG2 
CRYBA2 CSF2 CSF3 CSN1S1 CSRP3 CST8 CXCL1 CXCL13 
CXCL3 CXCL5 CXCL6 CXCL8 CYP11B1 CYP27C1 CYP4F2 CYP4F22 
DAZL DDN DEFB119 DEFB121 DEPDC1 DIAPH3 DKK1 DLGAP5 
DNAJC12 DNER DNMT3L DRD2 DRGX DSC3 DSCAM DSG1 
DSG3 DUSP9 DYNAP E2F7 E2F8 EREG ERICH3 ESPL1 
EXD1 EXO1 FAM216B FAM83A FAM83D FAM9A FAM9B FANCD2OS 
FCAMR FCRL3 FCRLA FGF5 FOXA3 FOXD1 FOXE3 FOXG1 
FOXI1 FOXR2 FPR2 FSD1 FST FXYD3 GABRA3 GADL1 
GALNTL5 GC GDNF GFRAL GJA8 GJB2 GOLGA6L1 GOLGA6L22 
GOLGA6L6 GOT1L1 GPR153 GPRIN1 GREM1 GSDMA GSDMC GTSE1 
GTSF1L H1-5 H2AC16 H2AC4 H2BC17 H3C12 H3C2 H3C3 
HAS2 HCAR2 HCAR3 HDGFL1 HES2 HJURP HMMR HMX3 
HNF4G HOXB9 HOXC10 HOXD10 HOXD11 HOXD12 HS3ST3A1 HTN3 
HTR3A HTR7 IBSP IFNA8 IFNL1 IGF2BP1 IL11 IL19 
IL1A IL1F10 IL2 IL21 IL24 IL2RA IL3 IL31RA 
IL36B IL36G IQCJ IQGAP3 IVL IZUMO3 KIAA1549L KIF14 
KIF15 KIF18B KIF20A KIF23 KIF4A KIFC1 KLF18 KLK5 
KLK6 KLK8 KRT1 KRT13 KRT14 KRT15 KRT16 KRT17 
KRT31 KRT33A KRT36 KRT4 KRT5 KRT6A KRT6C KRT74 
KRT75 KRT79 KRTAP2-3 KRTAP3-2 KRTAP4-7 KRTAP7-1 L1CAM LACTBL1 
LAIR2 LAMA3 LBP LCE1B LCE2A LCE5A LCE6A LGALS14 
LHX1 LIM2 LORICRIN LPAR3 LRRC30 LRRC38 LY6D LY6L 
LYPD3 LYPD6B LYPD8 MAGEA10 MAGEA11 MAGEA3 MAGEB2 MB 
MC5R MCHR1 MDFIC2 MELK MEPE MKI67 MME MMP1 
MMP10 MMP11 MMP12 MMP13 MMP27 MMP3 MMP7 MSLNL 
MUC7 MUCL1 MYBL2 MYBPC1 MYBPC2 MYEOV MYF6 MYH13 
MYH2 MYH7 MYH8 MYL1 MYL2 MYO18B MYO1G MYOD1 
MYOG MYPN NCAN NCAPG NCAPH NDC80 NEIL3 NEK2 
NGB NIPAL4 NLRP10 NLRP4 NLRP5 NPHS1 NPHS2 NRAP 
NT5DC4 NTNG1 NTRK1 NXPH2 NYX OBP2A OOSP1 OOSP2 
OPN1LW OPRPN OR10A3 OR10W1 OR12D2 OR14J1 OR1D2 OR4A5 
OR4C11 OR4D2 OR4D9 OR4F15 OR4F17 OR4K2 OR4N2 OR52A1 
OR52M1 OR52N5 OR52R1 OR5AK2 OR5BS1P OR5H1 OR5K4 OR5P2 
OR6C1 OR6K6 OR8B4 OR8G5 OR8U3 OTOP2 OTP OTX2 
P2RX5 PADI6 PAEP PAGE2 PAGE4 PAQR9 PAX5 PBK 
PDPN PGLYRP3 PI15 PI3 PITX1 PITX2 PKP1 PLA2G2F 
PLEKHS1 PLPP4 PMAIP1 POLQ POSTN POTEF POU4F2 PRAME 
PRAMEF1 PRAMEF14 PRAMEF18 PRAMEF2 PRAMEF20 PRAMEF9 PRDM13 PRDM8 
PRDM9 PRG3 PRL PRODH2 PRSS21 PRSS3 PRSS56 PTHLH 
PTPRN PTPRZ1 PTX3 RAB3B RDH8 REG3A RESP18 RFPL4AL1 
RGS21 RGS7 RHOV RNASE3 ROS1 RRM2 RTBDN RTL3 
S100A2 S100A7 S100A8 S100A9 SAA1 SAA2 SCGB3A2 SCRT2 
SEMA7A SERPINA4 SERPINA7 SERPINB13 SERPINB3 SERPINB4 SERPINB5 SERPINB7 
SFN SFTPA1 SFTPA2 SH2D1A SHCBP1 SIGLEC14 SKA1 SLC13A2 
SLC17A8 SLC1A6 SLC25A48 SLC35D3 SLCO1A2 SLITRK1 SLN SMCO1 
SMIM31 SMPX SMYD1 SOST SOX11 SP8 SPACA3 SPATA31D1 
SPC24 SPO11 SPOCD1 SPRR2A SPRR2D SRD5A2 STEAP1 STRA8 
STRIT1 SULT1E1 SVOP SYT8 TAAR2 TAC3 TAF11L11 TAFA4 
TARM1 TAS1R2 TBX20 TCN1 TEX13A TEX33 TFAP2A TFDP3 
TFPI2 TGM5 TMEM158 TMEM207 TMEM40 TNFAIP6 TNIP3 TNNI2 
TNNT1 TNR TOP2A TP63 TPX2 TRIM46 TRIML1 TRIML2 
TRIP13 TROAP TTK TTPA TUBA3C TWIST1 TXNDC8 UBE2C 
UCN2 UGT2B15 UGT3A1 UHRF1 UNC45B URAD VCAN VRTN 
WFDC9 WNT2 WNT7B WT1 XAGE5 XDH XIRP2 ZIC1 
ZIC2 ZIC4 ZNF365 ZP4 ZPBP2    

 
Table 3-1: RAS- and BRAF-Aggression Overlap Genes 
This table lists the eight genes that are upregulated in both RAS-like and aggressive non-
metastatic samples, as well as the 549 genes that are upregulated in both BRAF-like 
and aggressive non-metastatic samples. 
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Figure 3-2: MAP scores across our cohort and an external thyroid cancer cohort 
A) Box plots showing MAP score, calculated using the 549 genes that overlap between BRAF-
like and aggressive lesions, and diagnosis. Pink dots label lesions from patients with aggressive 
disease.  
B) Box plots using MAP scores in an external cohort of well-differentiated thyroid tumor samples 
from TCGA. TCGA samples are plotted by histology, extrathyroidal extension, and disease stage. 
Three outliers for MAP score were omitted for improved plot visualization. P values were 
calculated using the Kruskal-Wallis test with pairwise Wilcoxon rank-sum test and Bonferroni’s 
correction. 
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Figure 3-3: Gene ontology analysis of our thyroid cancer cohort 
Gene ontology results for the 549 genes comprising the MAP score. Results show enrichment of 
extracellular matrix, immune, cell cycle, and epithelial differentiation processes. Statistical 
analysis of fold enrichment was performed using the Fisher’s exact with false discovery rate 
correction. 
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3.3.2 MAP Score is Associated with Shorter Survival and Predicts Higher Risk of 

Aggressive Disease 

 We next tested whether MAP score could be used to predict aggressive disease. Survival 

analysis using our cohort with both well-differentiated and transformed tumors, as well as with 

well-differentiated tumors alone, showed that patients with positive MAP scores had significantly 

shorter progression-free survival and overall survival (Figure 3-4A,4B). We also performed 

survival analysis using the external TCGA cohort (Figure 3-4B). Despite only containing well-

differentiated PTCs and not enriched in aggressive disease like our own cohort, our results for 

TCGA also showed significantly worse survival for positive MAP score samples.  

To assess the ability of our MAP score to predict aggressive disease, we also used 

generalized linear models with penalized maximum likelihood estimation. In our testing, we 

assessed score performance using three different groups of local disease malignant samples: all 

malignant samples, well-differentiated malignancies, and well-differentiated malignancies that 

were resected prior to any evidence of disease progression, with the final group allowing for 

testing of future aggressive disease prediction. In our receiver-operator curves (ROCs), we 

compare the predictive ability of our MAP scores against and in combination with three common 

high-risk mutations: TP53, TERTp, and/or PIK3CA (Figure 3-5). Our results suggest that both our 

MAP score and mutation score performed similarly and were significant predictors of aggressive 

disease, and combining both scores provided the greatest predictive power as measured by area 

under the curve (AUC). We also found that MAP score provided aggressive disease prediction in 

samples lacking these known high-risk mutations. 
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Figure 3-4: MAP score and survival 
A) PFS results for patients with well-differentiated and transformed thyroid cancer (left), as well 
as patients with only well-differentiated thyroid cancer (right). Patients are grouped as either 
having positive MAP score (pink) or negative (purple) MAP score, and P values were calculated 
by log-rank test. 
B) OS results for patients with well-differentiated and transformed thyroid cancer (left), as well as 
patients with only well-differentiated thyroid cancer (right). Patients are grouped as either having 
positive MAP score (pink) or negative (purple) MAP score, and P values were calculated by log-
rank test. 
C) Table with percentage of distant metastatic samples in the internal cohort from VUMC and 
UWMC and the external cohort from TCGA. 
D) Disease-free survival in TCGA patients with well-differentiated thyroid cancer. Patients are 
grouped as either having positive MAP score (pink) or negative (purple) MAP score, and P values 
were calculated by log-rank test. 
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Figure 3-5: MAP score and aggression prediction 
A) Receiver operating characteristic (ROC) curves showing association between aggression and 
TERTp/TP53/PIK3CA mutation (blue), MAP score (red), and TERTp/TP53/PIK3CA mutation + 
MAP score (green). ROC results include patients with both well-differentiated and transformed 
thyroid cancer (left), patients with only well-differentiated thyroid cancer (center), and patients with 
only well-differentiated thyroid cancer sampled prior to aggression (right). Metastatic tumors were 
excluded from analysis. Area under the curve values with 95% confidence intervals are shown.  
B) Receiver operating characteristic (ROC) curve showing association between aggression and 
MAP score (red), for just patients with only well-differentiated thyroid cancer sampled prior to 
aggression excluding any samples with a mutation in TERTp, TP53, and PIK3CA. Metastatic 
tumors were excluded from analysis, and area under the curve values with 95% confidence 
intervals are shown.  
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3.4 Discussion 

In summary, our MAP score highlights the tumor microenvironment as a potentially 

important factor in thyroid cancer aggression. Genes enriched in this score included those 

important for ECM processes, including matrix assembly and collagen metabolic/catabolic 

processes, as well as immune related processes, such as cytokine signaling, inflammatory 

response, and immune cell migration. Our MAP score is novel compared to current thyroid 

molecular tests for aggression, as most are either primarily mutation-based or have not focused 

on markers of the tumor microenvironment.44,48,84 We show that this score is associated with 

patient survival in both our cohort and in an external cohort of well-differentiated thyroid cancer 

patients (TCGA). We additionally show that this score, in combination with known high-risk 

mutations, improves prediction of thyroid cancer aggression. The MAP score may also provide 

outcome prediction for patients lacking known high-risk mutations; however, due to limitations in 

sample number, we were unable obtain statistically significant results for this test. In addition, we 

acknowledge that our findings used sequencing data from cells collected by surgical resection, 

so additional research is needed to show that such tests retain the ability to predict aggressive 

disease using samples taken by less invasive biopsy techniques such as FNA. However, if these 

limitations can be addressed, we propose that this score or a similar score evaluating markers 

from the tumor microenvironment could someday be applied clinically to profile tumors, predict 

future aggressive disease, and inform potential avenues for therapy. In summary, our findings 

highlight the importance of non-mutational biomarkers for revealing thyroid cancer behavior and 

suggest a need for more tumor microenvironment research in order to advance classification and 

aggression prediction for thyroid tumors.   
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CHAPTER 4:  

Title of Chapter: Characterization of the Thyroid Tumor Microenvironment 

 

This chapter includes adaptation of contents from the following manuscript: 
 
Xu, G., Loberg, M., et al. Molecular Assessment of Tumor Mutations and Microenvironment 
Enhances Prediction of Thyroid Cancer Outcome. Cell Genomics. 2023. 
 
Contributions: Matt Loberg and I contributed equally to this paper. I performed cohort collection 
and curation, sequencing, omics analysis and computational deconvolution methods. Matt 
performed RNA sequencing analysis, tissue staining, microscopic imaging, and spatial 
transcriptomics methods. 
 

 

4.1 Introduction 

The tumor microenvironment, including the extracellular matrix (ECM), signaling 

molecules, and non-tumor cells such as immune cells and stromal cells, is thought to play a critical 

role in disease progression. While there has been limited research on the microenvironment of 

thyroid cancer, a recent study reported a subgroup of BRAF-like lesions enriched in cancer-

associated fibroblasts (CAFs) that may have more aggressive behavior.91 Another study 

investigating thyroid tumors driven by BRAF V600E mutation and PTEN loss found that fibroblasts 

may remodel collagen in the tumor microenvironment to promote progression.92 Macrophages 

and other infiltrating immune cells have also been implicated in supporting the aggressive 

behavior of thyroid cancer.38,39 Given new and expanding research on the tumor 

microenvironment, it is not surprising that clinical trials are now evaluating checkpoint inhibitor 

therapy for the most aggressive thyroid cancer subtype, anaplastic thyroid cancer.93-98 To further 

examine the immune and stromal microenvironment of thyroid cancer, we next evaluate the 

immune composition of thyroid tumors in our cohort, as well as the potential for response to 

immunotherapy.  
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4.2 Methods 

4.2.1 TIMER 2.0 

 To estimate levels of infiltrating immune and stromal cells, we applied bulk RNA 

sequencing data to the online computational deconvolution tool TIMER2.0 

(http://timer.cistrome.org/) (Figure 4-1), using THCA (Thyroid Carcinoma) as the cancer type gene 

signature. TIMER 2.0 immune deconvolution scores used in our study include those from 

CIBERSORT-Abs73, EPIC99, and MCPCOUNTER74, and descriptive results were plotted using the 

R package ggplot2.75 TIMER scores were plotted in heatmaps using R package 

ComplexHeatmap.61 

 

 

 

http://timer.cistrome.org/
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Figure 4-1: Overview of computational deconvolution process 
This diagram summarizes the steps taken to generate our computation deconvolution data. First, 
heterologous tumor samples are processed to undergo bulk RNA sequencing. Differential gene 
expression data from bulk RNA sequencing is used as the input by computational deconvolution 
programs. These programs use known gene expression profiles to predict levels of each immune 
cell type in the tumor. This figure was generated using BioRender. 
 



   56 

 4.2.2 TIDE 

To estimate immune checkpoint response using gene expression data, we used the 

computational tool TIDE (http://tide.dfci.harvard.edu/),76 with the following settings: Cancer type 

= Other, Previous Immunotherapy = No. TIMER scores were plotted in heatmaps using R 

package ComplexHeatmap.77 

 

 4.2.3 Tissue Staining  

 To collect multiplex immunofluorescence (IF) data, five µm ATC tissue sections were cut 

from 33 formalin-fixed paraffin-embedded (FFPE) tissue blocks and stored at -20°C. Tissue 

sections were thawed at room temperature overnight and heated at 60°C for 1 hour. Tissue 

sections were deparaffinized with xylene (2x15 minutes), ethanol (100% 2x5 minutes, 95% 1x5 

minutes), and water (5 minutes), and then washed with PBS. Antigen retrieval was performed by 

heating slides for 45 minutes in sodium citrate buffer (pH 6.0) in a rice cooker, and then cooling 

at room temperature for 30 minutes. Tissues were washed with PBS before blocking for 2 hours 

with 10% goat serum in PBS (blocking buffer). Primary antibodies (Abcam ab207178 recombinant 

rabbit monoclonal anti-fibroblast activation protein alpha (FAP) IgG, clone EPR20021, 1:100; 

Invitrogen MA5-16868 rat monoclonal anti-MRC1 IgG2a, clone MR5D3, 1:25) were diluted in 

blocking buffer before incubating on tissue sections at 4°C for 16 h (Abcam, Cambridge, UK; 

Thermo Fisher, Waltham, MA). Tissue sections were washed using 0.05% Tween 20 in PBS. 

Secondary antibodies (Invitrogen A-21245 polyclonal goat anti-rabbit IgG alexa fluor 647 1:150; 

Abcam ab6953 polyclonal goat anti-rat IgG Cy3 1:150) as well as conjugated primary antibodies 

(eBioscience 53-9003-82 mouse monoclonal anti-pan cytokeratin IgG1 AF488, clone AE1/AE3, 

1:100) were diluted in blocking buffer containing Hoechst 33342 nuclear stain (1:1000) and 

incubated on tissue sections at 37°C for 1 h (Abcam, Cambridge, UK; Thermo Fisher, Waltham, 

MA). 12 representative 20X and 12 representative 60X images were captured for each tissue 

section using a Nikon Spinning Disc confocal microscope. 

http://tide.dfci.harvard.edu/
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 To analyze multiplex immunofluorescence (IF) data, representative images were blindly 

scored by a practicing pathologist (Dr. Vivian Weiss, VW). Each ATC tissue section was scored 

for intensity (0-3) and frequency (0-3) of FAP staining of non-malignant cells, and an overall FAP 

staining score was calculated as the product of the intensity and frequency scores (0-9). FAP 

staining scores of 0-1 were categorized as low, and FAP staining scores of greater than 1 were 

categorized as high. Non-malignant MRC1 stained cells were counted on 12 20X images for each 

tissue section. An average of less than 1 MRC1+ cell per 20X field was categorized as low, and 

an average greater than 1 MRC1+ cell per 20X field was categorized as high. 

 

4.2.4 Spatial Transcriptomics 

To perform spatial transcriptomics, the Visium FFPE platform was used to generate spatial 

transcriptomics data (10x Genomics, Pleasonton, CA). 8 FFPE block thyroid carcinomas with ATC 

histology were selected for analysis. Following pathologist review (VW), 5 µm sections up to 6 

mm x 6 mm in size were cut onto a Visium Gene Expression Slide (Visium Spatial Gene 

Expression Slide Kit, PN-1000188) to capture the transition zone between PTC and ATC. After 

sectioning, the slide was incubated at 42°C and then stored in a desiccator. 

Using manufacturer’s protocols (Visium FFPE 10X Genomics), samples were 

deparaffinized, stained (hematoxylin and eosin), and scanned at 20X. Due to a supply chain 

shortage of eosin, 3 of 8 ATCs were stained with hematoxylin only. The Visium Human 

Transcriptome Probe Set v1.0 was hybridized to samples overnight at 50°C, and following RNA 

digestion and tissue permeabilization, sequencing libraries were prepared according to 

manufacturer’s protocols. Using the NovaSeq 6000 platform (Illumina, San Diego, CA), 

sequencing was performed at a depth of >40,000 reads per spot and >150 million reads per 

sample. 

To analyze spatial transcriptomics data, Visium sequencing data was pre-processed with 

Space Ranger 2.0.0 (10X Genomics), and analysis of Space Ranger outputs was performed with 
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Seurat 4.0.100 Seurat 4.0 was used to perform normalization, dimensionality reduction, and 

clustering. Dimensionality was determined by elbow plot, and for clustering, resolution was set to 

0.2. PTC and ATC histology designation was conducted by pathologist review (VW). 

Deconvolution of immune cell frequencies within individual capture areas was performed using 

the R package SpaCET,101 and to determine capture area malignant cell fraction, the SpaCET 

PANCAN setting was used. ATC classification was based on current standard-of-care clinical 

practice as defined by the WHO and ATA guidelines and was reviewed by a practicing pathologist 

(VW). Individual Visium samples were classified as high MAP score or moderate MAP score 

based on the MAP score of the associated bulk RNA sequencing sample. 

 

 

4.3 Results 

 4.3.1 Computational Deconvolution of the Tumor Microenvironment 

Using our cohort’s bulk RNA sequencing data, we performed differential gene expression 

comparing samples with positive vs negative MAP scores (to separate samples based on 

predicted outcome) and found that MAP-positive samples were enriched in inflammatory genes 

(Figure 4-2A). These genes included markers of immune cell infiltrates such as CAFs, M2 

macrophages, and neutrophils (Figure 4-2B).  

To further investigate the thyroid tumor microenvironment, we used the computational 

deconvolution tool TIMER, which uses bulk RNA sequencing data to make estimations of 

infiltrating immune cells as well as a few other non-tumor cells.72 Using TIMER, we confirmed that 

CAFs, M2 macrophages, and neutrophils are significantly higher in MAP-positive tumors (Figure 

4-3A). Looking at a wider range of TIMER scores in a heatmap (Figure 4-3B), we observe overall 

higher infiltration of immune cells in our PTC and ATC samples compared to our FTC and PDTC 

samples.  
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In addition, we applied TIMER to a large external cohort of well-differentiated PTC 

samples in the TCGA (Figure 4-4). While the TCGA cohort only contains PTCs, and no ATCs, we 

observed trends comparable to those we saw in our own cohort, with enrichment of CAFs, 

neutrophils, and M2-macrophages in MAP-positive tumors, and enrichment of CD8+ T cells in 

MAP-negative tumors. 
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Figure 4-2: MAP score is associated with cancer associated fibroblast (CAF) and immune 
infiltrate gene expression 
A) Volcano plot showing differentially expressed genes between malignant localized thyroid 
lesions with either positive (pink) or negative (blue) MAP score. Dotted lines indicate fold-change 
> 2 and adjusted p value < 0.05. Samples with Hashimoto Thyroiditis were excluded from this 
analysis. Markers of extracellular matrix, CAFs, and key immune cell populations are labeled.  
B) Box plots showing log-transformed gene expression of select cell markers in malignant thyroid 
lesions with either negative MAP score (light blue) or positive MAP score (dark pink). Hashimoto 
Thyroiditis samples were excluded from this analysis. Results include CAF markers FAP and 
LRRC15, M2 macrophage polarization markers MRC1 and CD163, and neutrophil markers 
ELANE and FCGR3B. P values were calculated using the Wilcoxon rank-sum test. 
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Figure 4-3: TIMER scores in our internal thyroid cancer cohort 
A) Box plots showing log-transformed EPIC CAF score, CIBERSORT absolute value M2 
macrophage score, and TIMER neutrophils score, for malignant thyroid lesions categorized as 
either negative MAP score (light blue) or positive MAP score (dark pink). Hashimoto Thyroiditis 
samples were excluded. P values were calculated with Wilcoxon rank-sum test. 
B) Heatmap of TIMER deconvolution results. Diagnosis, tissue location, aggressive disease, MAP 
score category, and MAP score annotations are displayed on the top of the heatmap, followed by 
sample location, TIMER and absolute value CIBERSORT (CIBERSORT-Abs) immune 
deconvolution scores, and CAF scores estimated by EPIC and MCPCOUNTER. Samples are 
sorted by increasing MAP score from left to right within each diagnosis. PTC samples from 
patients with Hashimoto Thyroiditis (HT) were excluded. 
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Figure 4-4: TIMER scores in the TCGA thyroid cancer cohort 
Heatmap of select deconvolution results calculated using external cohort of well-differentiated 
thyroid cancers from TCGA. Histology, BRAF mutation, RAS mutation, BRS, MAP score category, 
and MAP score annotations are displayed on the top of the heatmap, followed by, TIMER and 
absolute value CIBERSORT (CIBERSORT-Abs) immune deconvolution scores, and CAF scores 
estimated by EPIC and MCPCOUNTER. Samples are sorted by increasing MAP score from left 
to right. 
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As transformed tumors such as PDTC and ATC have recently been tested in 

immunotherapy clinical trials, we focused our investigation of our TIMER findings in these specific 

subtypes. In a heatmap of TIMER results for just PDTC and ATC, we find three striking patterns 

of immune cell infiltrate: immune dessert, lymphocyte-rich, and CAF-rich (Figure 4-4A). We find 

that PDTCs generally show low scores for immune infiltration, regardless of MAP score. These 

results suggest “immune desert” microenvironments and agree with prior research in 

PDTCs.102,103 ATCs, in contrast, are predicted to contain abundant stomal and immune cells, 

displaying either a lymphocyte/M1 macrophage-rich or CAF/M2 macrophage-rich infiltrate that 

appears to correlate with MAP score. CAF-rich microenvironments were more common in, but not 

limited to, ATCs sampled from a location in the thyroid and surrounding soft tissues. We also 

collected representative H&E staining images for these groups using samples from our cohort 

(Figure 4-4B). While our representative PDTC appears immune cold, our representative 

lymphocyte-rich ATC shows lymphocytes as dark purple dots, while our representative CAF-rich 

ATC shows light pink areas indicating abundant stoma with CAFs and macrophages scattered 

throughout. To test the association between MAP score and TIMER scores in ATCs, we 

categorized ATCs as either having a moderate MAP score or a high MAP score using a 50th 

percentile cutoff (Figure 4-4C) and found a significant association with lymphocyte-rich versus 

CAF-rich microenvironments, respectively (Figure 4-4D).  
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Figure 4-5: TIMER scores in transformed tumors 
A) Heatmap of select deconvolution scores for transformed subtypes PDTC and ATC. Diagnosis, 
tissue location, aggressive disease, MAP score category, and MAP score annotations are shown 
at the top of the heatmap, followed by TIMER scores, M1/M2 absolute value CIBERSORT 
immune deconvolution scores, and EPIC CAF scores. Samples are sorted by increasing MAP 
score from left to right within each diagnosis.  
B) Representative H&E histology of PDTC, lymphocyte-rich ATC, and CAF-rich ATC. 
C) Diagram showing division of ATC tumors into moderate and high MAP score groups using a 
50th percentile MAP score cutoff. 
D) Box plots of EPIC CAF score, CIBERSORT absolute M2 macrophage score, CIBERSORT 
absolute M1 macrophage score, and TIMER CD8+ T cell score, comparing moderate and high 
MAP score ATCs. All scores are shown on a log2 scale, and p values were calculated using 
Wilcoxon rank-sum test. 
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4.3.2 MAP Score is Associated with Predicted Immunotherapy Response in ATCs 

 We used the prediction algorithm TIDE to estimate response to immune checkpoint 

blockade (ICB) immunotherapy and T cell inclusion in our ATCs. Based on our TIDE score results, 

our ATCs with moderate MAP score are predicted to respond to immunotherapy, while our ATCs 

with high MAP score are predicted to be less responsive (Figure 4-6A). Our TIDE exclusion results 

show an association between moderate MAP score ATCs with predicted T cell inclusion and high 

MAP score ATCs with predicted T cell exclusion (Figure 4-6B). To validate our T cell exclusion 

score results, we additionally performed immunohistochemical staining of CD3 in ATC whole 

tumor sections (Figure 4-6C), followed by blinded scoring of ATCs with either CD3 exclusion or 

CD3 inclusion, and found a strong correlation of CD3 score with our TIDE exclusion score (Figure 

4-6D). 
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Figure 4-6: TIDE results and validation by CD3 staining 
A) TIDE score in moderate and high MAP score ATCs. P value was calculated with Wilcoxon 
rank-sum test. 
B) TIDE exclusion score in moderate and high MAP score ATCs. P value was calculated with 
Wilcoxon rank-sum test. 
C) CD3 staining in representative ATC that is histologically excluded (left) and representative ATC 
that is histologically included (right). 
D) TIDE exclusion score and CD3 staining score (included vs excluded) in ATCs. P value was 
calculated with Wilcoxon rank-sum test. 
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4.3.3 Additional Validation of Computational Deconvolution Results 

 

In collaboration with Matthew Loberg, we used a number of additional approaches to 

confirm our bulk sequencing infiltrate findings in our ATCs. We performed spatial transcriptomics 

on eight ATC samples from our cohort, using the algorithm, SpaCET, to spatially deconvolute the 

immune cell populations present within individual spatial capture areas. We found robust CAF 

and macrophage infiltrate in all eight ATC specimens (Figure 4-7A). We further confirmed our 

findings through blinded pathologist review, with scoring of H&E and immunofluorescence 

staining for FAP (CAF marker) and MRC1 (M2 macrophage marker) in all ATCs of our cohort 

(Figure 4-7B). We found that ATCs with higher levels of CAFs, neutrophils, and M2 macrophages 

also had higher MAP scores.  

To further investigate the association of CAFs and M2 macrophages in ATC, we also 

performed multiplex immunofluorescence for the CAF marker FAP and the M2 macrophage 

marker MRC1 in our ATC samples. We found a strong correlation between the abundance of 

MRC1-positive (MRC1+) macrophages and FAP-positive (FAP+) CAFs, and in our imaging, we 

see that FAP+ CAFs abutted tumor cells, while MRC1+ macrophages predominantly localized 

within the tumor stroma adjacent to fibroblasts (Figure 4-8A). We next quantitatively analyze co-

localization of CAFs and M2 macrophages by looking at the correlation between predicted CAF 

and M2 macrophage frequency for individual capture areas in our spatial transcriptomics data 

(Figure 4-8B). We found that ATC samples had significant spatial correlation between CAFs and 

M2 macrophages. However, we also found that the magnitude of the correlation was more 

pronounced in tumors with higher MAP scores, suggesting greater CAF/M2 macrophage co-

localization within high MAP tumors. We also used spatial transcriptomics and 

immunohistochemical staining to confirm our findings of infiltrating lymphocytes in moderate-MAP 

ATCs (Figure 4-8C). Spatial transcriptomics of ATC samples identified increased abundance of 

lymphoid populations in samples with moderate versus high MAP scores. 
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Figure 4-7: Validation of CAF and macrophage infiltrate in ATCs 
A) SpaCET spatial deconvolution results for 8 ATC samples, showing estimated spatial capture 
area cell fractions for CAF and macrophage. 
B) Box plots of MAP scores in ATCs, split into groups with either low or high histologic 
quantification of CAFs, FAP+ CAFs, neutrophils, and MRC1+ macrophages. Representative 
histology of each specific cell type is shown to the left of each box plot. P values were calculated 
using the Wilcoxon rank-sum test. 
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Figure 4-8: Validation of macrophage and CAF co-localization  
A) Representative multiplex IF image of ATC with MRC1+ macrophages (indicated by white 
arrows) and adjacent FAP+ fibroblasts. Green = pan-cytokeratin, white = MRC1, red = FAP, blue 
= nuclear. Quantification of staining on the right shows the relationship between FAP staining and 
MRC1 staining. R2 and p values are generated from a linear model with FAP staining score as 
the independent variable. 
B) Linear model showing M2 macrophage and fibroblast co-localization from SpaCET 
deconvolution of eight ATCs as a dependent variable of MAP score (left), with representative 
spatial capture area M2 macrophage and fibroblast non-parametric rho correlation plots of 
moderate and high MAP score ATCs (right). 
C) Representative images of lymphocyte deconvolution from spatial transcriptomics data of 
moderate and high MAP score tumors (left), and comparison of average lymphoid spatial capture 
fraction between moderate and high MAP score tumors for eight ATC samples (right). P value 
was calculated with Wilcoxon rank-sum test. 
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4.4 Discussion 

Previous literature has suggested that CAFs, neutrophils, and macrophages may interact 

closely with tumor cells and support anti-tumor immunity.104 Our finding of robust infiltration of 

CAFs, neutrophils, and M2 macrophages in high MAP score ATC suggests that these cells may 

play important roles in thyroid cancer progression. We speculate that these interactions may 

inform the development of novel immunotherapies targeting aggressive CAF-rich thyroid tumors. 

Furthermore, we found that our MAP score is associated with predicted immunotherapy response 

in ATCs. Recent clinical trials have showed some moderate response of ATC to ICB therapy.93-98 

Immune profiling using a molecular signature like our MAP score could someday help identify 

ICB-responsive ATC patients and direct non-ICB-responsive ATC patients to other more effective 

therapies.  
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CHAPTER 5 

 

Title of Chapter: Papillary Thyroid Microcarcinoma with Distant Metastasis 

 

This chapter includes adaptation of contents from the following manuscript: 
 
Hu, R., et al. Incidental pulmonary metastases revealing subcentimeter papillary thyroid 
carcinoma. AACE Clinical Case Reports. 2020. 
 
Contributions: I performed DNA sequencing analysis and methods writing. 
 

 

5.1 Introduction 

Papillary thyroid microcarcinomas (PMCs) are papillary thyroid cancers that are under 10 

mm across their largest measurable diameter. PMCs are mostly indolent and have excellent 

prognosis; for example, autopsy data shows that 5% of the population has an undiagnosed PMC. 

In previous decades, PMCs were treated with a fairly aggressive approach where all tumors were 

recommended for removal. However, current practices are much more conservative. According 

to both the 2015 American Thyroid Association (ATA) guidelines and the 2017 Thyroid Imaging 

Reporting and Data System (TI-RADS), PMCs are not typically recommended for biopsy 

unless there is extrathyroidal extension or nodal metastasis.3,105 However, in rare cases, some 

PMC patients may develop distant metastases. In this project, we perform molecular testing on 

PMC samples from two patients who also developed distant metastatic disease. In doing so, we 

highlight the need for improved markers for distinguishing low-risk and high-risk PMCs.  
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5.2 Methods 

 5.2.1 Patients 

 Patient 1 was a 70-year-old female with a history of partial thyroidectomy for benign 

disease who presented with incidental lung metastasis on computed tomography (CT) scan. 

Wedge biopsy of the left lung revealed PTC, and thyroid ultrasound revealed two subcentimeter 

nodules. Pathology following completion thyroidectomy revealed follicular variant PTC. Only the 

lung wedge resection was sequenced for this patient due to the small size of the intrathyroidal 

tumor. Patient 2 was a 29-year-old female who presented with incidental lung metastasis on CT 

scan; a core needle biopsy later confirmed metastatic cancer by thyroid transcription factor-1 and 

thyroglobulin expression. Neck ultrasound revealed two subcentimeter nodules, and total 

thyroidectomy revealed a follicular variant PTC. 

 

 5.2.2 DNA Isolation and Whole Exome Sequencing 

 DNA was isolated from formalin-fixed paraffin embedded (FFPE) tissue using the Covaris 

DNA FFPE isolation kit. Library building was performed using the NEB DNA Ultra II kit, and 

sequencing was performed on a NovaSeq 6000 system using the IDT research exome panel. 

FastQC was used to check raw sequencing data quality,53 and DNA reads were then aligned to 

the hg19 reference human genome using Burrows-Wheeler alignment before sorting and indexing 

by SAMtools.106 GATK tools including Picard and HaplotypeCaller were used for variant 

calling.55,107 Variants were filtered by strand, base quality, mapping quality, and end distance 

biases or adjacent gaps before annotation by ANNOtate VARiation.108 Variants were then filtered 

on 119 known cancer genes (Table 5-1). We additional filtered for variants with an exome allele 

frequency <0.001 to exclude variants common in the population.57 Variants were categorized 

according to published standards.59 
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Table 5-1: List of 119 known cancer genes used for mutation filtering 
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5.3 Results 

 Sequencing of patient 1’s lung metastasis revealed a missense mutation TSHR, 

c.1721C>G, which codes for the protein alteration p.Thr574Ser. This mutation is a variant of 

unknown clinical significance. Additional mutations in genes including GNAS, ALK, NCOA4, and 

CHGA were identified, and are not predicted to be damaging, potentially representing passenger 

or germline alterations.  

Sequencing of patient 2’s primary intrathyroid tumor revealed a NRAS mutation, 

c.182A>G, coding for the protein alteration p.Gln61Arg. This alteration is a well-described 

pathogenic mutation. Sequencing also identified a novel GNAS missense mutation, c.46C>T 

(p.Arg16Cys), representing a potential passenger mutation, as well as alterations in MACF1 and 

RNF213, which may represent germline alterations.  

In addition, we applied our MAP score (described in Chapter 3) to the sequencing data 

from both patients. We found that patient 1 had a MAP score of 0.38, while patient 2 had a MAP 

score of -0.328958. While only patient 1 had a positive MAP score which predicts aggressive 

disease, this patient’s sample also lacked any detectable pathogenic mutations during our study. 

This suggests the potential utility of our score for predicting aggressive disease in patients without 

aggression-associated mutations. 

A complete table of mutation findings in shown in Table 5-2. Mutations in TERT promoter, 

TP53, and PIK3CA, typically associated with aggressive thyroid cancer, were not identified in 

samples from either patient. 
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Table 5-2: Mutations identified in patient samples 
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5.4 Discussion 

 In this project, we analyzed two patients with PMC who also developed metastatic disease 

in the lungs. These patients would not have met current biopsy criteria, which would have 

potentially led these patients to have missed or delayed diagnosis of distant metastasis. In 

addition, even if the patients had undergone biopsy and sequencing, the mutations detected in 

the patient samples did not include any previously described mutations associated with 

aggressive thyroid cancer, such as BRAF, TP53, or TERT promoter mutations. These two 

patients highlight a need for improved methods to distinguish truly low-risk PMCs from PMCs at 

risk for metastasis. Our findings utilizing our MAP score for aggression disease prediction further 

revealed a potential utility of our score for predicting aggressive disease in patients without 

aggression-associated mutations; however, our ability to assess risk prediction power in PMCs is 

limited by the number of samples in this study. Additional research to expand our understanding 

of the molecular drivers and tumor microenvironment of thyroid cancer will be critical for improving 

our ability to anticipate aggressive tumor behavior.  
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CHAPTER 6 

 

Title of Chapter: Thyroid Cancer and the Canonical Wnt Pathway 

 

6.1 Introduction 

Increased Wnt signaling is classically associated with aggressive behavior across 

cancers, including thyroid cancer. For example, anaplastic thyroid cancer (ATC), the most 

aggressive form of thyroid cancer, has consistently been shown to have Wnt/β-catenin (canonical) 

signaling activation in previous studies.29-31 Treatment options are extremely limited for patients 

with ATC; there are currently no targeted therapies available for BRAF-wildtype ATCs, and 

combination dabrafenib-trametinib therapy (approved for ~25% of BRAF V600E mutant ATCs) 

has shown limited efficacy to date.109 The Wnt signaling pathway may offer new potential targets 

for therapy for such aggressive thyroid cancers. In our study, we use our large cohort of patient 

thyroid lesions to study upregulation and potential drivers of Wnt signaling in ATCs. We analyze 

DNA and RNA sequencing data and show that Wnt ligands rather than Wnt pathway mutations 

appear to drive most Wnt signaling upregulation in ATCs. In addition, we find an association 

between Wnt signaling activation and cancer-associated fibroblasts (CAFs), as well as reduced 

progression-free survival (PFS) time with increased Wnt signaling. We additionally investigate the 

expression of factors that might function downstream by Wnt signaling to influence cancer cell 

adhesion, differentiation, and aggression.  

 

 

6.2 Methods 

6.2.1 Patient Cohort Sequencing and Data Analysis 

Patient cohort, sequencing methods, mutation analysis, gene expression analysis, and 

survival analysis methods used for this project were the same as those described in section 2.2.  
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6.2.2 Transcription Factor Binding Prediction  

To perform transcription factor binding prediction, we used JASPAR 

(https://jaspar.genereg.net/), an open-access database containing manually curated, non-

redundant transcription factor (TF) binding profiles.110 To perform our analysis in JASPAR, we 

first located and loaded the transcription factor matrix profile of interest, TCF7. Next, for each 

gene we tested, the 1500 base pairs upstream of the gene’s promoter were copied from the UCSC 

Genome Browser (Human Assembly: GRCh38/hg38) (https://genome.ucsc.edu/index. html)111 

and input into the JASPAR scan function. After running the scan, the sequence with the top 

JASPAR relative score was selected for each gene. For controls, known Wnt target genes 

CCND1, MYC, LGR5, AXIN2, LEF1, JUN, VEGFA, and non-Wnt target genes TG, LIME1, ARIH2, 

COPS7B, and GALNT18 were also tested. 

 

6.2.3 qPCR Timecourse 

ATC cell line THJ-21T was passaged and counted before plating ~374,000 cells in 2 mL 

of RPMI + 10% FBS media per well in a 6-well plate, before placing in an incubator to allow cells 

to attach overnight. The next day, three aliquots of RPMI + 10% FBS media were warmed to 37°C 

and used to prepare the following treatments: 1 µM Chiron, 50 ng/mL Wnt3a, and no treatment 

control. Old media was removed from the cells by aspiration and treatments were added slowly 

down the side of each well. At timepoints 4, 8, and 12 hours after starting the treatment, RNA was 

isolated using the Qiagen RNeasy Mini Kit (Product #: 74106) with the Qiagen RNase-free DNase 

Set (Product #: 79254), and the ThermoFisher Qubit RNA High Sensitivity (HS) Kit (Product #: 

Q32852) was used to quantify RNA concentration before storage at -80°C. After RNA had been 

isolated from each timepoint, cDNA was made using the BioRad iScript cDNA Synthesis Kit 

(catalog #: 1708891) according to manufacturer’s instructions. qPCR was performed in a clear-

bottomed 96-well plate with Itaq™ Universal SYBR (catalog #: 1725125), diluted cDNA, and the 
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appropriate forward and revere primers. Primers used included those for control housekeeping 

genes PGK1, with forward primer 5’-GAACAAGGTTAAAGCCGAGCC-3’ and reverse primer 5’-

GTGGCAGATTGACTCCTACCA-3, as well as GAPDH, with forward primer 5’-

AGCCACATCGCTCAGACAC-3’ and reverse primer 5’-GCCCAATACGACCAAATCC-3’. To 

measure AXIN2 as a proxy for Wnt signaling, we used forward primer 5’-

TGGCCTCGTCTTTGAATCCC-3’ and reverse primer 5’-TGAACGGCTTTCATGTCGGA-3’. For 

VIM, we used forward primer 5’-GAGAACTTTGCCGTTGAAGC-3’ and reverse primer 5’-

GCTTCCTGTAGGTGGCAATC-3’. For CD44, we used forward primer 5’-

TCTGCAAGGCCTTTAATAGCACG and reverse primer 5’-GTTCGCAGCACAGATGGAATTG-3’.  

 

 

6.3 Results 

 6.3.1 Wnt Pathway Upregulation is Ligand Driven in Aggressive Thyroid Cancer 

Wnt signaling is a well-known driver of aggressive thyroid carcinoma. To begin identifying 

Wnt pathway mutations and gene expression changes in thyroid cancer, we performed whole-

exome and bulk RNA sequencing on 312 formalin-fixed paraffin-embedded (FFPE) resection 

samples from 251 patients with a diverse range of thyroid nodules from two tertiary care centers. 

This cohort included 34 ATC tumors. Despite the known role of Wnt signaling, DNA sequencing 

analyses identified very few Wnt pathway associated mutations in our thyroid cohort, with just 6% 

of ATCs having mutations in the Wnt pathway genes tested (Figure 6-1A,1B). Despite the lack of 

mutations, IHC staining of β-catenin in ATC patient samples confirmed upregulated Wnt signaling. 

Intriguingly, nuclear β-catenin staining was identified in both the tumor cells and stroma, 

suggesting that Wnt signaling may be ligand-driven rather than mutation-driven (Figure 6-1C). To 

further investigate the role of Wnt signaling in ATC and other thyroid cancers, we performed 

differential gene expression analyses using our cohort. We found that gene expression of 11 Wnt 
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ligands was significantly higher in ATCs compared to either benign thyroid lesions or well-

differentiated thyroid cancer (WDTC) subtypes (Figure 6-2). We conclude from our findings that 

increased Wnt signaling in ATCs is commonly ligand-driven rather than mutation-driven. 
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Figure 6-1: Wnt pathway upregulation in ATCs is not commonly mutation driven 
A) Wnt pathway mutations in WDTC and ATC samples. 
B) Table of Wnt pathway mutations organized by diagnosis 
C) β-catenin IHC of representative ATC patient sample. 
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Figure 6-2: Wnt ligand drives Wnt pathway upregulation in ATCs 
Wnt ligand expression in benign, WDTC, and ATC samples. 
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6.3.2 Wnt Pathway Signaling is Associated with High CAF and Macrophage Score 

We next explored the tumor microenvironment of Wnt-driven thyroid cancers in our patient 

cohort. Our previous work identified unique tumor microenvironments in MAP high and MAP 

moderate ATCs, CAF-rich and lymphocyte-rich, respectively. We now utilized gene ontology (GO) 

analysis to look at enrichment of Wnt pathway gene sets between ATCs with either high or low 

CAF score (Figure 6-3A). Our results showed that CAF-high ATCs were enriched in six different 

Wnt pathway gene sets, suggesting that ATCs with high CAF scores also have increased Wnt 

pathway signaling. Our previous work also found that CAF-rich ATCs were associated with higher 

macrophage scores. Therefore, we also used GO analysis to look at enrichment of Wnt pathway 

gene sets between ATCs with either high or low macrophage score (Figure 6-3B). Our results 

showed that ATCs with high macrophage scores were also enriched in these Wnt pathway gene 

sets. 
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Figure 6-3: Wnt pathway upregulation is associated with increased CAF and macrophage 
score in ATCs 
A) Gene ontology (GO) analysis of ATCs with high or low CAF (EPIC) score. 
B) Gene ontology (GO) analysis of ATCs with high or low macrophage (TIMER) score. 
 

 

 

 



   86 

6.3.3 Wnt Pathway Signaling is Associated with Worse Progression-free Survival 

Next, we tested the association between increased Wnt signaling and thyroid cancer 

patient survival. Using the “Hallmark Wnt Beta Catenin Signaling” score, we divided patients into 

two groups with either positive or negative scores based on the patient’s local malignant lesion 

(Figure 6-4A). We found that patients with positive Wnt scores had significantly shorter 

progression-free survival (PFS) compared to patients with negative Wnt scores, suggesting that 

Wnt signaling is associated with more aggressive thyroid cancer. We also compared PFS 

between ATCs with high vs low expression of the gene WNT2, using a 50th percentile cutoff. 

WNT2 is a Wnt ligand known to be involved in canonical Wnt signaling and also reported to be 

produced by CAFs to promote increased aggression in colorectal cancer.112 We found that high 

expression of WNT2 was significantly associated with shorter PFS (Figure 6-4B). To further study 

the clinical relevance of WNT2, we looked at thyroid differentiation in our ATCs using a thyroid 

differentiation score (TDS), based on the expression of 16 thyroid function genes (Figure 6-4C). 

We found that ATC samples with lower TDS, and therefore less differentiation, had higher WNT2 

gene expression. In addition, we looked at local thyroid samples from patients with either 

associated metastasis or no associated metastases (Figure 6-4D). We found that patients with 

associated metastasis had significantly higher WNT2 expression. In a gene expression heatmap 

containing only our ATC samples (Figure 6-5), we see that ATCs with high expression of WNT2 

appear to be correlated with high cancer-associated fibroblast (CAF) score. These findings 

support the idea that CAFs could be producing Wnt2 ligand in tumors with upregulated canonical 

Wnt signaling.  
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Figure 6-4: Wnt pathway upregulation and WNT2 expression are associated with 
decreased progression-free survival (PFS), lower TDS, and metastasis in ATC patients 
A) PFS curve for thyroid cancer patients with positive vs negative Wnt scores, using “Hallmark 
Wnt Beta Catenin Signaling” score calculated from each patient’s local malignant lesion. 
B) PFS curve for thyroid cancer patients with high vs low WNT2 gene expression, using “Hallmark 
Wnt Beta Catenin Signaling” score calculated from each patient’s local malignant lesion. 
C) Gene expression for WNT2 in ATCs with either low or high TDS score. P values were 
calculated with Wilcoxon rank-sum test. 
D) Gene expression for WNT2 for all local thyroid tumors with either no associated metastatic 
disease (0) or associated metastatic disease (1). P values were calculated with Wilcoxon rank-
sum test. 
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Figure 6-5: WNT2 gene expression heatmap 
Normalized gene expression heatmap of ATC samples showing WNT2 expression. Annotations 
include sample location, BRAF mutation status, RAS mutation status, canonical Wnt signaling 
score, and cancer-associated fibroblast (CAF) score (EPIC). 
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6.3.4 Wnt Pathway Signaling is Associated with Cadherin and Laminin Gene 

Expression 

While we have showed that Wnt signaling may be associated with survival of patients with 

thyroid cancer, the exact mechanistic role that Wnt plays in thyroid cancer behavior is unknown. 

In previous literature, researchers have suggested that canonical Wnt signaling may interact with 

laminin and cadherin to control cancer cell adhesion and migration.113 Laminin is the main non-

collagenous glycoprotein found in the basement membrane and has been shown to play important 

roles in tumor invasion and metastasis.114 Cadherins are well-known epithelial cell-cell adhesion 

molecules that can stabilize cellular β-catenin levels and potentiate β-catenin signaling.115 

Additionally, expression of CDH3, which codes for P-cadherin, has been associated with 

metastasis and poor prognosis.116,117 Therefore, we investigated cadherin and laminin gene 

expression in our thyroid cancer cohort. We use the online tool JASPAR to make predictions of 

TCF7 transcription factor binding sites. Using Jaspar, we generate relative scores for the 

sequences up to 1500 base pairs (1.5kb) upstream of the CDH3, LAMA3, LAMB3, and LAMC2 

promoter and compare them to those of other known Wnt target genes (Figure 6-6A). We find 

that JASPAR scores for the sequences up to 1.5kb upstream of these genes are comparable to 

those of some known Wnt target genes, in particular LAMA3, which suggests the possibility of 

these genes being Wnt pathway targets. In addition, in a gene expression heatmap containing 

local thyroid lesion samples (Figure 6-6B), we find that higher expression of CDH3, LAMA3, 

LAMB3, and LAMC2 may trend with increased Wnt signaling score, particularly in our PTCs and 

ATCs. In a volcano plot comparing lesions with negative and positive Wnt signaling score (Figure 

6-6C), we see that samples with higher Wnt signaling score appear to be enriched in CDH3, 

LAMA3, LAMB3, and LAMC2 gene expression. Overall, these findings show that these cadherin 

and laminin genes are potential targets of the Wnt pathway and appear to be upregulated in 

thyroid tumors with increased Wnt signaling,  
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Figure 6-6: Wnt signaling may target expression of CDH3, LAMA3, LAMB3, and LAMC2 in 
ATCs 
A) JASPAR results showing top match by JASPAR score for the TCF7 binding sequence in DNA 
within 1.5kb upstream of the promoter of CDH3, LAMA3, LAMB3, and LAMC2, compared to 
known Wnt target and non-Wnt target genes. 
B) Normalized gene expression heatmap of local thyroid lesion samples showing CDH3, LAMA3, 
LAMB3, and LAMC2 expression. Annotations include diagnosis and canonical Wnt signaling 
score. 
C) Volcano plot showing differential gene expression of CDH3, LAMA3, LAMB3, and LAMC2 
expression between thyroid lesion samples with either negative or positive Wnt score. 
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6.3.5 Wnt Pathway Signaling is Associated with VIM and CD44 Gene Expression 

Previous research has also shown the genes VIM and CD44 may be upregulated in 

cancers with increased Wnt signaling.118-120 VIM codes for vimentin, a widely expressed 

intermediate filament (IF) protein that is important for maintaining cell integrity in the cytoskeleton, 

and is also associated with EMT and cancer progression.119,121 CD44 is a cell-surface glycoprotein 

involved in cell–cell interactions, cell adhesion, and migration, and is also a known cancer stem 

cell marker for many solid tumors including colorectal cancer.118 We proposed that Wnt signaling 

upregulates expression of the genes VIM and CD44 in thyroid cancer to cancer cell de-

differentiation and invasion. Again, we use the online tool JASPAR to make predictions of TCF7 

transcription factor binding sites. We used JASPAR to generate relative scores for the sequences 

(up to 1000bp) upstream of the VIM and CD44 promoter and compare them to those of other 

known Wnt target genes (Figure 6-7A). We find that JASPAR scores for the 1.5kb region upstream 

of VIM and CD44 are comparable to those of some known Wnt target genes. In a gene expression 

heatmap containing only our ATC samples (Figure 7B), we see that ATCs with high VIM and 

CD44 gene appears correlated with high canonical Wnt signaling score, further supporting our 

prediction that these genes are Wnt pathway targets.  

To further support our VIM and CD44 findings, we performed additional experiments 

measuring gene expression of VIM and CD44 in ATC cell lines with Wnt pathway activation. To 

test gene expression, we performed qPCR timecourse experiments in ATC cell line THJ-21T 

treated with Wnt3a or CHIR99021 (Chiron) to activate Wnt signaling. We confirmed Wnt pathway 

activation in Wnt3a or Chiron treated THJ-21T cells using qPCR of AXIN1 gene expression. We 

then measured expression of VIM and CD44 by qPCR at timepoints 4, 8, and 12 hours after 

Wnt3a or Chiron treatment (Figure 6-8A,8B). We found that Wnt3a and Chiron treatment showed 

increased expression of VIM and CD44, peaking at 8hrs with Chiron treatment, and peaking at 

12 hours with Wnt3a treatment. These findings further support our hypothesis that VIM and CD44 

are downstream targets upregulated by canonical Wnt signaling. 
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Figure 6-7: CD44 and VIM are potential Wnt signaling targets  
A) JASPAR results showing top match by JASPAR score for the TCF7 binding sequence in DNA 
within 1.5kb upstream of the promoter of CD44 and VIM, compared to known Wnt target and non-
Wnt target genes. 
B) Normalized gene expression heatmap of ATC samples showing CD44 and VIM expression. 
Annotations include sample location, BRAF mutation status, RAS mutation status, canonical Wnt 
signaling score, and cancer-associated fibroblast (CAF) score (EPIC). 
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Figure 6-8: Upregulation of CD44 and VIM with Wnt activation in vitro  
qPCR timecourse results showing normalized gene expression of (A) VIM and (B) CD44, with 
Wnt3a treatment, Chiron treatment, or no treatment control. Three biological replicates were 
performed. Error bars indicate standard error of the mean (SEM). 
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 6.3.6 VIM and CD44 Gene Expression are Associated with Aggressive Disease 

As previous research has suggested that VIM and CD44 have been associated with EMT, 

stemness, migration, and cancer progression,118,119,121 we next investigated whether increased 

VIM and CD44 are associated with increased dedifferentiation and aggression in ATCs. We 

compared thyroid differentiation in our ATCs as estimated by our previously described thyroid 

differentiation score (TDS) (Figure 6-9A), and found that ATC samples with lower TDS, and 

therefore less differentiation, had higher VIM gene expression. To further study to clinical 

relevance of VIM and CD44, we looked at local thyroid samples from patients with either 

associated metastasis or no associated metastases (Figure 6-9B). We found that patients with 

associated metastasis had significantly higher VIM and CD44 expression. Our findings suggest 

that VIM and CD44 expression is associated with increased thyroid cancer aggression. 
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Figure 6-9: Gene expression of VIM and CD44 are associated with aggressive thyroid 
cancer 
A) Gene expression for VIM in ATCs with either low or high TDS score. P values were calculated 
with Wilcoxon rank-sum test. 
B) Gene expression for CD44 and VIM for all local thyroid tumors with either no associated 
metastatic disease (0) or associated metastatic disease (1). P values were calculated with 
Wilcoxon rank-sum test. 
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6.4 Discussion 

Our findings suggest that Wnt signaling in ATCs may be primarily Wnt ligand-driven rather 

than mutation-driven, and that this signaling may play a role in ATC cell de-differentiation and 

invasion. CDH3, LAMA3, LAMB3, and LAMC2 are all potential candidates involved downstream 

of Wnt signaling that may affect cell invasion. Furthermore, we found evidence that CD44 and 

VIM may also be activated by Wnt signaling, and that increased CD44 and VIM gene expression 

are associated with metastasis and loss of thyroid differentiation markers. Additional experiments 

are needed to determine whether these genes are involved in Wnt-mediated cell adhesion or 

other changes related to aggressive cancer behavior. For example, experiments could test the 

effect of knocking down any of the previously mentioned genes in ATC cell lines in the presence 

of a Wnt signaling activator, and then looking at the effect of the knockdown on cell adhesion, 

migration, or gene expression.  
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CHAPTER 7 

 

Title of Chapter: Canonical Wnt Pathway and E3 ubiquitin ligases 

 

This chapter includes adaptation of contents from the following manuscript: 
 
Kassel, S., et al. USP47 deubiquitylates Groucho/TLE to Promote Wnt-b-catenin Signaling. 
Science Signaling. 2023. 
 
Contributions: I performed statistical analysis and methods writing. 
 

 

7.1 Introduction 

Canonical Wnt signaling is fundamental in normal development and adult cell 

homeostasis, while its dysregulation is a key factor in many cancers. E3 ubiquitin ligases are 

important regulators of activities such as homeostasis, the cell cycle, and DNA repair, making 

them key players across a range of cancer types.122,123 In addition, E3 ubiquitin ligases are 

involved in critical roles to the canonical Wnt pathway; for example, the E3 ubiquitin ligase β-Trcp 

is required for ubiquitinating β-catenin, marking it for proteasomal degradation.124 However, other 

Wnt signaling factors may also be targets of E3 ubiquitin ligase activity. For example, previous 

research by the Lee Lab identified the E3 ubiquitin ligase, X-linked inhibitor of apoptosis (XIAP), 

as a positive regulator of Wnt signaling by supporting Gro/TLE ubiquitylation. During Wnt 

signaling, XIAP is recruited to TCF/LEF to promote ubiquitylation of Gro/TLE that is bound to 

TCF/LEF, decreasing Gro/TLE affinity for TCF/LEF and allow β-catenin to effectively compete for 

TCF/LEF binding.125,126 In the paper published by Kassel et. al., we show both in cells and in vitro 

that the deubiquitylase ubiquitin-specific protease 47 (USP47) reverses the action of XIAP by 

deubiquitylating Gro/TLE, enhancing the ability of β-catenin to cycle off and on TCF.  

TRIP12 is another E3 ubiquitin ligase that may play an important role in several cancers. 

TRIP12 is classically considered a tumor repressor, with a number of studies reporting anti-tumor 
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roles.127,128 Mutations in the TRIP12 gene are relatively uncommon compared to other well-known 

cancer drivers; for example, data on 27,235 patients from the cBioPortal database shows that the 

TRIP12 gene is altered in just 1.84% of patients.129 Gene expression data from the Gepia2 

database shows that different types of cancer may be associated with either downregulation or 

upregulation of TRIP12 gene expression.129 Recent research has begun to look at the potential 

role TRIP12 may play in the Wnt pathway. In this chapter, I focus on analyses comparing patient 

survival and USP47 and TRIP12 gene expression in an external cohorts of pancreatic 

adenocarcinoma patients, as well as gene expression analysis using data from our internal thyroid 

lesion patient cohort. 

 

7.2 Methods 

 To perform survival analysis using cBioPortal, we used data from a publicly available 

pancreatic cancer cohort, Pancreatic Adenocarcinoma TCGA.130 Patients were grouped by 

USP47 mRNA expression into those with high expression and those with medium to low 

expression, before comparing probability of overall survival between each group. For survival 

analysis with TRIP12, we used Z-scores of TRIP12 mRNA expression (log 2 RSEM-UQ), and 

grouped patients by a median expression cutoff before comparing probability of overall survival 

between each group. 

For our thyroid lesion patient cohort, all sequencing and gene expression analysis used 

for this project were the same as those described in section 2.2.  

 

7.3 Results 

Studies have suggested that USP47 is increased in several types of cancer and may be 

associated with aggressive cancer behaviors, such as metastasis in breast cancer.131 To further 

investigate the role of USP47 in cancer aggression, we performed survival analysis using an 

external publicly available database from The Cancer Genome Atlas and the online tool 
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cBioPortal.132,133 We found that for patients with pancreatic cancer, high amounts of USP47 were 

significantly associated with shorter patient survival time (Figure 7-1).  

Our analysis for TRIP12 was performed similarly to our analysis of USP47, again using 

The Cancer Genome Atlas and the online tool cBioPortal. We categorized pancreatic cancer 

patients by high or low TRIP12 gene expression using a 50th percentile cutoff (Figure 7-2) and 

found that the group of patients with high TRIP12 gene expression had significantly shorter 

survival time. 

We next performed preliminary analysis to look at the relevance of USP47 and TRIP12 in 

thyroid cancer. Our cBioPortal analysis of the TCGA thyroid cancer cohort did not suggest an 

association between USP47 or TRIP12 and patient survival (data not shown), so we decided to 

perform preliminary analysis of these genes in our own thyroid lesion cohort. Our gene expression 

heatmap containing thyroid lesion samples local to the thyroid (Figure 7-3A) did not indicate a 

clear relationship between canonical Wnt signaling and USP47 or TRIP12 expression. We also 

show a volcano plot of differential expression of genes in either aggressive or indolent local thyroid 

lesions (Figure 7-3B). Our results suggest that USP47 or TRIP12 expression is not associated 

with aggressive thyroid lesions, unlike Wnt2 expression.  
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Figure 7-1: USP47 gene expression and survival in pancreatic adenocarcinoma patients  
Survival curve comparing TCGA pancreatic adenocarcinoma patients with high vs medium or low 
USP47 mRNA expression. Significance was calculated by the log-rank test (p-value = 0.039). 
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Figure 7-2: TRIP12 gene expression and survival in pancreatic adenocarcinoma patients  
Survival curve comparing TCGA pancreatic adenocarcinoma patients with top vs bottom 50th 
percentile TRIP12 mRNA expression. Table at the bottom summarizes counts of number of 
cases, events, and median months overall for each group. Significance was calculated by the log-
rank test. 
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Figure 7-3: XIAP and TRIP12 gene expression in local thyroid lesions 
A) Normalized gene expression heatmap of local thyroid lesions showing WNT2, XIAP, and 
TRIP12 gene expression. Annotations include diagnosis, BRAF mutation status, RAS mutation 
status, canonical Wnt signaling score, and cancer-associated fibroblast (CAF) score (EPIC). 
B) Volcano plot comparing differential expression of genes enriched in aggressive (right) vs 
indolent (left) local thyroid lesions. WNT2, XIAP, and TRIP12 are labeled. Dotted lines indicate 
fold-change > 2 and adjusted p value < 0.05. 
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7.4 Discussion 

In summary, our findings suggest that both USP47 and TRIP12 are significantly 

associated with patient survival in pancreatic cancer but may not be involved to the same degree 

in thyroid cancer. We note that USP47, in addition to its role of deubiquitylating Gro/TLE to 

enhance β-catenin cycling off and on TCF, has previously been shown to support Wnt signaling 

through other interactions such as deubiquitylating β-catenin.134 In addition, USP46 has also been 

reported to participate in DNA damage repair, cell adhesion, and epithelial-mesenchymal 

transition.135 Therefore, our finding of reduced survival time with increased TRIP12 expression 

has several potential mechanisms that could support increased cancer aggression. We also note 

that previous studies have also shown that pancreatic cancer is associated with recurrent 

inactivating mutations in RNF43, a ubiquitin ligase that targets Wnt receptors.136 Future studies 

may include further investigation a potential role of increased USP47 expression in potentiating 

Wnt signaling in pancreatic cancers also containing RNF43 mutations. Regarding TRIP12, the 

relationship between TRIP12 gene expression and overall survival in pancreatic cancer patients 

is interesting, but its relationship with Wnt signaling is still unclear. While TRIP12 has known roles 

in regulating major biological processes and known alterations reported in cancers, there are 

currently few cancer studies in previous literature investigating its relationship with the Wnt 

pathway. Future research is needed to resolve any possible interactions between TRIP12 and 

Wnt signaling. 
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CHAPTER 8 

 

Title of Chapter: Discussion and Future Directions 

 

8.1 Implications 

Despite recent advances in cancer molecular profiling, thyroid cancer pathogenesis 

remains poorly understood compared to similarly prevalent cancers. My thesis research aims to 

improve our understanding of the molecular and microenvironmental markers of thyroid cancer, 

particularly aggressive thyroid cancers such as anaplastic thyroid cancer. Using DNA and RNA 

sequencing on a large patient cohort, we describe the genetic and transcriptional landscape of a 

wide range of thyroid lesion subtypes. We found that commonly described primary and secondary 

mutations known in thyroid cancer were present but were often insufficient to explain thyroid 

cancer aggression and increased Wnt signaling.  

Several molecular diagnostic scores for thyroid cancer have been developed for 

malignancy prediction,44,45 but tools for predicting aggressive thyroid cancer remain limited. With 

the need in mind, we created our molecular aggression and prediction (MAP) score, which 

demonstrates the potential to improve prognostication of aggressive thyroid cancer, even in 

patients lacking mutations commonly associated with aggressive disease. Our MAP score 

highlights the tumor microenvironment, including stromal cells as well as components of the 

immune infiltrate, providing new insight into potential drivers of aggression (Figure 8). In particular, 

our MAP score demonstrates the ability to classify the highly aggressive thyroid cancer subtype 

ATC, revealing two unique patterns of immune and stromal cell infiltration that are associated with 

differential response to checkpoint blockade immunotherapy. 

In addition, our findings on canonical Wnt signaling in thyroid cancer, particularly 

anaplastic thyroid cancer, may provide further opportunities for biomarker discovery and 

therapeutic strategies. One of our novel findings is that Wnt signaling is upregulated through 
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increased Wnt ligand expression without widespread mutations in Wnt pathway genes as reported 

in previous studies of ATC. We found that thyroid lesions with higher Wnt signaling score also 

had expression of select laminin and cadherin genes, suggesting a potential link between these 

adhesion molecules and Wnt signaling. In addition, we found that ATCs with higher predicted Wnt 

signaling score also had higher predicted CAF infiltrate, as well as increased expression of CD44 

and VIM, which could point towards a role for Wnt signaling in modifying cancer cell adhesion and 

invasion in ATC. While more research is needed to determine the mechanisms at play, our 

findings could help open the path towards new therapeutic strategies targeting upregulated Wnt 

signaling in aggressive thyroid cancers like ATC. 
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Figure 8: Diagram Summarizing MAP Score Findings 
Bulk RNA sequencing was used to generate a 549-gene expression score incorporating tumor 
microenvironment markers. Score differentiates between low and high risk of aggressive disease 
in thyroid lesions. Score also categorizes ATCs into two groups with unique tumor-infiltrating cell 
makeup and predicted checkpoint inhibitor therapy response.   
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8.2 Limitations  

 8.2.1 Sequencing and Computational Limitations 

 We note a number of limitations relating to our sequencing and computational methods. 

Our study was not oriented specifically for mutation discovery, so it is possible that some 

mutations that could be used predict aggressive disease remain undetected in our cohort. The 

depth of our targeted whole-exome sequencing could have limited our ability to detect subclonal 

mutations or mutations in samples with lower tumor purity. While we worked to sequence samples 

with a high percent tumor, some samples still contained a lower percentage of cancer cells, such 

as those that were stromal-rich. Detection of subclonal mutations in lower percent tumor samples 

would be inherently limited. In addition, our analysis did not include copy number alterations, 

which have been implicated in thyroid cancer aggression in recent studies.137,138 We also note 

that patient samples used for sequencing were formalin-fixed paraffin-embedded (FFPE) tissues 

samples, which may be subject to reduced DNA quality. In addition, bulk RNA sequencing and 

spatial transcriptomics are limited in their ability to subclassify small immune cell populations and 

CAF subsets.  

Furthermore, we note that all previously published gene expression-based scores, 

including computational deconvolution scores, may be limited in their ability to estimate true 

cellular content. While we provide non-computational methods to support our computational 

results, additional research using external cohorts can help further validate our findings. 

Additionally, we note that our study of papillary thyroid microcarcinomas (PTMs) with distant 

metastasis is limited by our small sample size of only two patients. This limitation is not 

unexpected given the relative rarity of PTMs with distant metastasis. However, future research 

involving more PTM samples with distant metastasis is needed to improve our understanding of 

these unusual cases. 
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8.2.2 Resection Sample Limitations  

Molecular tools for thyroid cancer prediction typically use a minimally-invasive technique 

called fine needle aspiration (FNA) to collect biopsy material. While our MAP score performed 

well using FFPE resection samples, the potential clinical utility of this gene score is unclear without 

additional research to determine whether our MAP score can also perform well using FNA 

samples. FNA may enrich for specific cell types, such as tumor cells or certain immune cell types, 

while other cell types such as CAFs may be less amenable to isolation by FNA. If not accounted 

for, such variations would negatively impact the accuracy of our current MAP score. To begin 

investigating these questions, our lab has performed flow cytometry of thyroid cancer aspirate 

biopsy material and confirmed the robust identification of neutrophils, macrophages, and T cells. 

 

8.2.3 Retrospective Study Limitations 

All patient data used for my thesis research was collected retrospectively. Therefore, we 

faced some limitations in our ability to complete collection of certain clinical data variables for 

some patients, such as those with incomplete records of disease earlier in life, or those lost to 

follow-up. In addition, the real-world clinical utility of our MAP score for predicting thyroid cancer 

aggression and response to immunotherapy could not be tested. Based on our available data, 

none of the patients in our cohort were recorded to have been treated with immunotherapy, so 

ICB response could only be estimated computationally. 

 

8.2.4 Cost Effectiveness in Healthcare 

Our findings of gene expression and stromal markers of aggressive disease in thyroid 

cancer may open up potential avenues for new predictive tools and therapies. However, 

implementation of new practices involving sequencing of large panels of genes may be both costly 

and impractical, at least in the near future. Additional research is needed to demonstrate the real-

world utility of these tests over existing methods; as the majority of thyroid cancer lesions are 
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indolent, the need for improved prediction of future thyroid cancer aggression may not be enough 

to outweigh the increased cost of adopting novel testing methods. Sudden application of such 

tests to the vast number of new indolent thyroid lesion cases every year could potentially 

overwhelm healthcare systems and is unlikely to be compatible with existing sequencing 

resources. However, as advancements in personalized medicine continue to appear and high-

throughput sequencing continues to fall in cost, we foresee a future where widespread use of 

such tests becomes more feasible.  

 

 

8.3 Future Directions  

8.3.1 Investigate the Relationship between Wnt Signaling and the Tumor 

Microenvironment 

Our research revealed distinct patterns of infiltrating immune cells and stromal cells in the 

microenvironment of thyroid cancers with differing levels of aggression. In addition, we found that 

Wnt signaling appeared to be associated with CAF levels, patient survival, and aggressive 

characteristics such as dedifferentiation and metastasis. Future research is needed to more 

closely investigate the mechanisms linking Wnt signaling to the tumor microenvironment and 

thyroid cancer aggression. Other research in our lab is currently investigating a possible role of 

CAFs secreting WNT2 ligand to recruit monocytes, drive polarization favoring M2 macrophages, 

and altering PD-L1 expression. As only adults were included in the studies in this paper, future 

studies may also investigate the role of tumor infiltrating cells in pediatric thyroid cancer cases, 

which have not been previously profiled for the tumor microenvironment. 

 

8.3.2 Fine-needle Aspiration (FNA) and Tumor Microenvironment Profiling 

As we explained previously, FNA may enrich for tumor cells and certain immune cell types, 

while other cell types such as CAFs may be harder to collect. Our MAP score depends on cells 
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in the tumor microenvironment, so large biopsy-based studies will be needed to assess the 

differential cell enrichment in aspirate biopsies and determine what modifications are required for 

the MAP score to continue providing prognostic information in FNA. 

 

8.3.3 Prospective Study of Immunotherapy Response and MAP Score  

To more thoroughly assess whether the tumor’s stromal infiltrate can be used as an 

accurate predictor of ICB response, future studies are needed with more thyroid cancer patients 

receiving ICB therapy. We anticipate such studies becoming more feasible as immunotherapy 

becomes more widely used to treat thyroid cancer. 

 

 

8.4 Concluding Remarks 

 In conclusion, our findings emphasize the importance of the thyroid tumor 

microenvironment as a source of biomarkers for informing improvements in therapy and prediction 

of aggressive disease. Our MAP score incorporating stromal genes demonstrates the potential to 

improve thyroid cancer risk-stratification and predict immunotherapy response, and we envision 

future testing platforms that take advantage of both mutational and stromal microenvironment 

data for better outcome and ICB response prediction. Continued research on the thyroid cancer 

microenvironment also has the potential to identify novel targets for therapy, especially for ATC, 

the most aggressive form of thyroid cancer which has virtually no cure. Future research of the 

stromal microenvironment has the potential to deepen our understanding of cancer biology and 

redefine tumor classification, and molecular tests incorporating stromal genes have the potential 

to inform treatment across a wide range of stromal-rich cancers.  
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