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CHAPTER 1

Introduction

As we reason about the world around us, we have the ability to capture what we see, recall

what we have seen, synthesize new things to “see”, and most importantly, we are able to

mentally manipulate these various forms of “seen” images to solve some of the problems we

face (Tversky, 2005). This, in simple terms, is what visuospatial reasoning through mental

imagery allows us to do. Reasoning with visual imagery, seemingly makes it possible for

an engineer to correctly visualize the intricate functioning of a gearbox mechanism before

even building one (Hegarty, 2004), or a person to picture a purple elephant flying with white

fluffy wings across an orange sky—a sight almost impossible to observe in real life.

Figure 1.1 presents a visuospatial reasoning task. In this task, your goal is to find one

of the images from those labelled A through F that fit in the slots labelled 1 and 2. Without

any description of what the actual task requirements are, what choices will you make? And

after you make your choices, can you consider what informed the strategy in making your

decision?

Figure 1.1: A sample visual reasoning puzzle. This puzzle is variation of the Visual Coding

task from the Leiter International Performance Scale-Revised (Leiter-R) (Roid & Miller,

1997). To protect the secrecy of the Leiter-R, this sample is not a real Leiter-R problem.

Now, provided you managed to find a solution for the problem, do you think your

choices will be changed after you receive the information that the images in Figure 1.2 are

a set of rules for solving the problem in Figure 1.1? If both of your responses are the same,
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and you factored the rules in Figure 1.2 on your second attempt, then you most likely relied

on a different strategy in each of your attempts.

Figure 1.2: Rules for the visual reasoning puzzle found in Figure 1.1.

In case you could not find a convincing solution for the task, here are the two possible

strategies you could have used:

1. For the problem as presented in Figure 1.1, you can consider the three images that

point to an empty slot to be depicting the sequence of folding and ultimately punching

a hole in a shaped piece of paper. The best choice from the possible answers that fits

a slot will be the one that best shows the pattern made when this punched paper is

unfolded.

2. You can consider the series of images from Figure 1.2 as rules by which pairs of

images can be combined into new ones. By recursively reducing pairs of images in

each problem (from left to right) until a single image remains, a valid solution for a

problem can be obtained.

The example above was specifically designed to elicit multiple strategies. However,

although this multi-strategy problem was intentional by design, it reflects the reality of

situations where different people may exhibit completely different strategies on the same

problem based on how they perceive it. Factors that influence such strategy differences are

interesting to study, and it is even more interesting when you consider how such an ability

to dynamically form strategies can be implemented in artificial agents.

For my dissertation work, I focused on how cognitive differences in intelligent agents af-

fect strategy choices when agents are faced with visuospatial reasoning tasks. I investigated
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this in two ways:

1. Through computational models of reasoning that were designed to form strategies

dynamically using program synthesis techniques.

2. By working on tools for measuring and analysing factors that may influence strategy

choices humans make.

1.1 Defining Visuospatial Reasoning

Visuospatial reasoning in several ways involves reasoning about the world around us.

We are surrounded by different visuospatial properties that help us function in our daily

lives. From the shape and texture of objects, to colours, distances and reference points; a

significant part of living involves reasoning about visuospatial entities. The visuospatial

entities we reason about could be real or imagined, and they could also be static or dynamic.

Visuospatial reasoning can be considered as critical for several human endeavours.

From computer programming (Petre & Blackwell, 1999), mathematics (Giaquinto, 2007),

physics (West, 2009) and medicine (Birchall, 2015; Lufler et al., 2012; Wanzel et al., 2002), to

visual arts (Goldsmith et al., 2016) and language comprehension (Marschark et al., 2015), all

sorts of activities people perform are known to directly benefit from visuospatial reasoning.

It is also especially known that success in Science, Technology, Engineering and Mathe-

matics (STEM) fields (both in practice and education) is also tied to visuospatial reasoning

abilities (National Research Council, 2009; Wai et al., 2009). Several prominent scientists

like Albert Einstein, Nicola Tesla, and Temple Grandin have been reported to rely on excep-

tional visuospatial abilities in developing some of their inventions and theories (Grandin,

1995; West, 2009).

Like other skills humans posses, visuospatial reasoning in people can be improved

through training (Uttal et al., 2013). With better understanding of how the brain works

during visuospatial reasoning, we can produce effective training and evaluation tools that

take advantage of the true underlying mechanisms of the brain. But the brain is very

complicated to study, and as it currently stands, we do not have a good “under-the-hood”

understanding of how reasoning in the brain works. To fill this gap, some researchers have
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adopted computational models as a means of studying human reasoning.

1.2 Reasoning with Computer Models

Computers have the ability to exhibit behaviours that can be considered as intelligent, and

such intelligent actions in computers are performed in ways that can mostly be inspected

(Newell & Simon, 1976). This openness to scrutiny makes computer modelling of intel-

ligence a viable tool for studying human reasoning. A researcher can propose a theory

on how a particular reasoning process is carried out, build a computational model that

simulates this theory, and evaluate the model (Thagard, 2005). Evaluation can be carried

out with experiments on specific tasks that can be performed by both human subjects and

instances of the computer models. Because the computational models and human subjects

can be evaluated on the same task, there is a possibility of validating model behaviours

against that of humans.

This technique of using computational models to study human reasoning has been

shown to be successful in some cases. There are accounts of studies in which computational

models have been used in modelling situations, like the process by which children learn

the rules of subtraction in mathematics (Young & O’Shea, 1981), how people learn to read

(Just & Carpenter, 1987), and even the decision-making processes of combat flight pilots

(R. M. Jones et al., 1999), all with some similarity to how humans perform such tasks.

Regardless of these accomplishments, computational models still have some serious

limitations. Most of the time, to reduce complexity, models are built to evaluate only

specific, narrow, mostly stripped down versions of tasks. Additionally, in most cases,

designers have to provide a significant amount of the knowledge needed by the model

to function. Without a clear boundary on what a model is intended to evaluate, it may

be difficult to delineate where a designer’s knowledge ends and where the model’s starts

(Chollet, 2019). Another potential setback designers may introduce to their models could

be found in cases where models are designed around a set of “friendly” inputs that yield

desired results, or cases where models are evaluated through experiments that cannot be

repeated due to some special circumstances the designers found themselves in.
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Figure 1.3: Two ways of representing the concept of an apple: on the left there is a propo-

sition representation spelling out the English word “apple”, on the right an illustration of

an apple.

1.2.1 Representations and Computational Models

In designing and implementing computational models for reasoning, one important factor

to consider is the underlying knowledge representation used by the system. The choice of

representation determines the kinds of knowledge a system can express, and this in turn

determines the kinds of operations a system can ultimately reason with (Thagard, 2005).

Larkin and Simon (1987) illustrate this point with a real-world example that considers

an architect who has to communicate the detailed design of a floor plan in a natural

language. For all the floor plan’s details to be correctly covered, a large amount of text will

be needed. If a drawing is used instead, a single page of lines will always suffice. Not only

will a drawing be good medium for communicating said design, it would also be easier to

modify, and could also be used as an actual basis for construction.

1.2.2 Representations for Visual Reasoning

Models of visuospatial reasoning, can be built on representations that fall into two main

categories: propositional and iconic (Kunda, 2018). Propositional representations are

symbolic, language-like, and descriptive in nature. You can consider them to be similar to

reasoning with words and symbols. Conversely, iconic representations are image based and

structured to look like whatever they are representing. They can be considered analogous

to mental imagery in humans.
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1.3 Computational Cognitive Models and Strategies

Computer systems that take inputs and merely produce meaningful outputs for tasks

cannot necessarily be considered as computational models of cognition. To properly fit the

description of a computational cognitive model, the system must exhibit similar problem-

solving patterns to those used by humans, including exhibiting the effects that cognitive

deficiencies in humans bring, such as limited memory and attention (Chown, 2014). To put

it simply, a good computational cognitive model will strive to employ strategies similar to

what a human would.

When humans reason about problems, a first step they are most likely to take before

making an attempt at a solution will be to form a strategy. For problems involving complex

sub-tasks, this strategy forming phase may be obvious, and it may even involve detailed

planning and rehearsal of some sub-tasks (Land & Tatler, 2009). But for simpler, more

repetitive tasks, strategies can be selected sub-consciously without much effort from a

person.

Strategy choices in humans are influenced by several factors that include a person’s

skill level, age, cognitive abilities (like working memory capacity), and the like (Schunn &

Reder, 1998). Generally, humans have the ability to remember strategy choices made in

previous task instances, and as people get more experience with a task they are also able to

modify and evolve their strategies. In some cases, people may even adapt earlier strategies

to form newer ones when they encounter tasks that seem related (Ackerman, 1988). When

considered on a broad spectrum, people have the ability to easily form strategies that end

up being successful when faced with completely novel tasks (Mumford et al., 1993).

Cognitive computational models, on the other hand, may either have a fixed strategy

(usually supplied by the system’s designer), or they may approximate the human approach

of selecting a strategy based on the task at hand. Production rule based cognitive archi-

tectures like SOAR (Rosenbloom et al., 1993) and ACT-R (Anderson, 1993), which evaluate

rules through inference engines as a primary means of reasoning, tend to exhibit the later

more flexible approach. In these systems, core knowledge is typically represented through

a complex network of if-then rules, and reasoning involves reducing these rules and inputs

to the model by executing them through an algorithm, such as forward chaining (Doumas
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& Hummel, 2012; Young, 2001).

Another approach for generating reasoning strategies, which is worth considering,

could be program synthesis. A system that generates strategies through program synthe-

sis will always generate a new program—essentially generating a new strategy—for any

particular instance of a task it faces. Program synthesis itself is a widely used technique

in computer science that involves systems that automatically generate programs to meet

some user defined criteria (Gulwani et al., 2017). Although it is primarily found in the

programming languages community, applications of program synthesis can be found in

machine learning and artificial intelligence (Gulwani et al., 2015).

Unlike production systems, synthesized programs can be used in systems built on top

of a wide variety of representations. For example, instead of writing elaborate if-then rules,

systems can be made aware of their task environments through input-output examples (as

done with the Abstract Reasoning Corpus in Chapter 4), task demonstrations (Lázaro-

Gredilla et al., 2018), sample programs, or in some extreme cases brute-force search of

some representation of the problem’s task space.

1.4 Motivation for this Dissertation

Human reasoning is both complex and fluid. As exhibited in the example from Figures 1.1

and 1.2, we can form strategies for certain novel tasks, often without much effort, depending

on the information available to us. And even when the strategies we form are unsuccessful,

we are able to make reasonable attempts at correcting our mistakes and working towards

valid solutions. Current artificial intelligent systems cannot exhibit this level of fluidity.

This fact is still true when current advances in machine learning techniques (for example,

the use of Large Language Models) are considered. Currently, the best performing machine

learning algorithms are extremely resource intensive; they require a tremendous amount

of training data, they have long training times, and they consume immense computational

power, not to mention the energy required to operate these systems (Kasneci et al., 2023).

A primary motivator for me in pursuing this line of work was an interest to investigate

how intelligent systems could be given the potential to exhibit this human-like level of

fluidity in forming strategies. This motivation unfolds in two ways:
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1. In pursuing this line of work, I would have to explore possible cognitive mechanisms

people may be employing to reason when faced with certain tasks. This means

I would be working on studies and experiments that involve understanding how

aspects of human cognition may be working.

2. Through the application of some of the knowledge obtained from understanding

strategy forming in humans, newer artificial intelligence techniques could potentially

be unearthed.

Having a good understanding of human reasoning and its associated cognitive pro-

cesses, including a good grasp of how people form strategies, provides the opportunity

for us to improve human life. With good knowledge about how human cognition works

we can have the right resources to build better educational tools that are more effective at

promoting learning, we can have accurate ways of evaluating and classifying the cognitive

capabilities of individuals, and we can have better ways of providing care to people who

are experiencing mental health issues.

Even more importantly, in a world where we are increasingly becoming aware of our

neurological diversity, such knowledge can help in building an environment in which

people of different neurodiverse leanings can comfortably live meaningful lives and work

together to achieve both our personal and common goals.

1.5 Overview of this Dissertation

My primary focus through this dissertation was to investigate strategy differences between

intelligent systems on specific tasks. I paid particular attention to exploring three different

ways in which strategies were implemented in intelligent systems. Specifically, I looked at

how strategies could be specified through hand-coding by an AI system’s designer, how

machines could generate strategies through algorithms (like program synthesis), and to

complete the loop, I studied ways in which we can analyse human strategies on certain

tasks.

8



1.5.1 Problem Statement

Work on this dissertation was meant to address the following problem statement:

Humans have the ability to form strategies when faced with novel tasks, and

different people often form different strategies for the same task. Most AI

systems, on the other hand, do not exhibit this level of fluidity. Currently,

there is limited research on how to formally represent a space of strategies such

that individual strategies can be systematically synthesized, scrutinized, and

transferred. This limitation acts as a barrier to building AI systems that

reason fluidly.

1.5.2 Research Questions

In addressing this problem statement, I pursued the following research questions:

1. To what extent can we define information processing strategies using imagery based

representations that are sufficient for solving tasks from the paper folding, block

design, and Leiter-R intelligence tests?

2. To what extent can we establish a search space defined by an imagery-based domain

specific language along with search algorithms based on heuristic and probabilistic

graph search in order to synthesize strategies that successfully solve problems from

the abstract reasoning corpus and the block design test?

3. To what extent can we identify and categorize patterns in human strategy choices

from rich multi-modal behavioural trace data collected during performance of the

block design task?

In answering these questions, I focused on 4 different visual reasoning tasks that can

be considered as intelligence tests. These were the VZ-2 Punched-hole paper folding

task (Ekstrom & Harman, 1976), the Block Design Task (BDT) (Kohs, 1920), the Leiter

International Intelligence Scale-Revised (Leiter-R) (Roid & Miller, 1997), and the Abstract

Reasoning Corpus (Chollet, 2019). VZ-2 Punched-hole Paper folding, Leiter-R, and BDT
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were used for the work in answering the first research question, BDT and ARC were used

in answering the second research question, and the final question was focused only on the

BDT. All these tasks are components of intelligence tests, with ARC specifically designed

with machines in consideration.

The VZ-2 punched-hole paper folding task comes as part of a battery of intelligence

tests, and it requires subjects to predict the pattern on a piece of paper after it has been

folded, punched, and unfolded. Similarly, the Leiter-R is a complete battery of twenty

non-verbal intelligence tests that are split into two categories for evaluating attention and

memory, and visuospatial reasoning respectively. The BDT, is a non-verbal intelligence test

that requires participants to reproduce patterns with specially designed blocks. Although

the block design task was originally produced to be administered by itself, it is currently

typically issued as part of standardized intelligence tests. Finally, ARC is also an intelligence

test for humans and AI systems, designed specifically to be challenging for AI systems to

solve.

1.5.3 Summary of Work Done

Work towards answering my research questions was focused on validating ideas about

imagery representations through experiments on hand-coded, designer supplied strategies

on the VZ-2 punched-hole paper folding task, the BDT, and the Leiter-R (see Chapter

3); building a program synthesis toolkit for generating reasoning strategies in intelligent

agents through imagery based representations for the ARC and the BDT (see Chapters 4

and 5); and contributing significant work towards a system for recording and analysing the

performance of humans on the block design task (see Chapter 6).

Here is a summary of all the work I did in answering the first research question:

• I built a computational model for reasoning about the punched hole paper folding

task. With this model, I was able to show how a representation entirely based on

imagery knowledge representations is sufficient for solving the paper folding task

through a recursive reasoning strategy. The strategy used was not human inspired,

used a lot more memory than what a typical human is likely to use, and was successful

at completely solving all items on the VZ-2 paper folding task.
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• In a bid to switch towards more human inspired architectures, I worked on a Visual

Reasoning Experimentation Environment(VREE), through which I was able to deploy

virtual agents to interact with virtual objects while reasoning about them visually.

• I used VREE to perform experiments on the Leiter-R and the BDT. In the experiment

on Leiter-R, I investigated how two different strategies, which were influenced by the

structure of most multi-choice Leiter-R tasks, perform. By taking advantage of the

simulated environment of VREE, I was also able to evaluate the effects of forgetfulness

on performance of the task.

• In addition to the work on Leiter-R, I performed experiments on the BDT. For these

experiments, I investigated how a general template strategy into which other sub

strategies can be plugged performed on the BDT. By evaluating different combinations

of these sub-strategies, I was able to find which strategy works best, and I was able to

lay foundations for future work on synthesizing strategies for the BDT.

On the second research question, I worked on the following:

• I developed a domain specific language for representing visual reasoning strategies.

This language, named the Visual Imagery Reasoning Language (VIMRL), formed the

basis of on which I ran all my experiments in exploring machine generated strategies.

Programs in VIMRL have instructions which could either be represented as straight

line instructions, or they could be represented as state machines when branching logic

is needed. One interesting feature of VIMRL is the ability of operations to determine

their own arguments by performing local searches on the problems they were meant

to solve.

• With the VIMRL I built a solver for reasoning about tasks from the ARC. This solver

was capable of solving a wide variety of tasks, and it tied for fourth place on a recently

held competition for ARC solvers, the 2022 International ARCATHON challenge.

• Additionally, I experimented on building solvers for the BDT using agents whose rea-

soning is synthesized in state machines whose logic was driven by VIMRL programs.
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Finally, on the third research question, I did significant work on building and evaluating

systems for measuring human performance on the block design task. I worked on the

following:

• I developed a scheme for annotating data collected from cameras that recorded a

participant’s actions when they took the block design task.

• I additionally developed tools for visualising the data collected and for extracting

information about possible strategy patterns people may be exhibiting.

• Due to an interruption in in-person activities, much of the data collection work was

moved to an online task evaluation platform that was developed in-house, named

WOMBAT. For this effort, I contributed some guidance on development and I ported

over all the tools used in analysing data from the in-person data collection systems.

1.5.4 Organization of this Document

The rest of this dissertation is organized as follows: In the second chapter, I review literature

that provides background for this work. Then in the third chapter, I go ahead to provide

details on work done in investigating hand coded strategies to answer the first research

question. Work on the second research question is captured in the third and fourth chapters.

The fourth chapter specifically focuses on work around the development of VIMRL and the

experiments on the ARC, while the fifth chapter focuses on the work done in synthesizing

strategies for the Block Design Task. The sixth chapter details work I contributed to an

effort in building systems for automatically quantifying human performance on the BDT.

And I conclude the work with thoughts on possible future directions in the seventh chapter.
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CHAPTER 2

Background

Pioneers of artificial intelligence were not only inspired by the prospects of reproducing

human-like intelligence, they also identified the potential for artificial intelligence as a

tool for understanding the mind and human reasoning (McCarthy et al., 1955). This is

probably the reason why thinkers like Turing (1950) had already made predictions about

the viability of digital computers for reproducing human-like reasoning, even before the

first digital computers were built.

Although this dream of reproducing true human-like reasoning—as optimistically en-

visioned by the pioneers—has not yet been achieved, inspiration drawn from human-

reasoning has led to the development of several AI systems that perform well, even doing

better than humans in some cases, in their specific task domains. Currently, there are AI

systems that dominate humans in tasks like playing the game of chess (Campbell et al.,

2002) or Go (Silver et al., 2016); and there are other systems that exhibit exceptional per-

formance in tasks like recognizing objects in pictures (Zhai et al., 2021), translating text

between natural languages (Zhang & Zong, 2020), generating text with human-like prose

(Brown et al., 2020), and producing visual art in convincing human-like style (Ramesh

et al., 2021). Interestingly, regardless of how these systems improve in their performance

on various task domains, human performance still remains the benchmark against which

they are evaluated (Winnerman, 2018).

While artificial intelligence systems are getting better at performing human-like tasks,

the other goal of understanding the human mind through artificial intelligence has also

seen a lot of progress. Researchers in this area, typically work in multidisciplinary teams to

build models of human reasoning with the goal of better understanding the ways in which

people may be thinking (Young, 2001). Generally, such work may rely on models that are

built around elaborate architectures that simulate human cognitive processes like memory,

learning, and planning (Kotseruba & Tsotsos, 2018). These architectures allow models to

be built for tackling a wide array of tasks, with some systems even having the capability of
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introspection through meta-cognition (Sun et al., 2006).

For the rest of this chapter, I will be providing some background and reviewing literature

on how computational models have been used for studying visuospatial reasoning. Then,

I will briefly discuss program synthesis and how it has been used in the field of artificial

intelligence, while providing a brief literature review. Finally, I will introduce the tasks

that were studied in this dissertation, and I will discuss some of the prior work that has

been done regarding computational models for reasoning about the tasks.

2.1 Computation, Cognition and Visuospatial Reasoning

All computational cognitive systems for studying human reasoning, regardless of how

complex they may be, are underpinned by a simple fact: human reasoning can, in some

ways, be considered as computational in nature (Newell & Simon, 1976; Thagard, 2005).

Thus, unlike the brain whose underlying cognitive processes may be difficult to study—even

when modern neuroimaging is considered—computer programs that implement reasoning

models can be inspected in much more thorough detail. The underlying instructions

and associated data structures used in a program can be studied, and the factors that

influence the choice of a particular strategy over another (provided these strategies are

interchangeable in the program) can also be identified.

At a fundamental level, cognitive scientists (an interdisciplinary group of researchers

consisting of computer scientists, psychologists, neuroscientists, philosophers, anthropolo-

gists, linguists and education experts) study reasoning, the mind and intelligence through

the theoretical framework of mental representations (Thagard, 2005). Marr (1982) defines

representations as a formal system through which knowledge or information is expressed.

In even simpler terms, Winston (1992) defines representations as how things are described.

2.1.1 Theories of Representation

The choice of representation in a system determines what the system can express. This

choice also has a direct effect on the kinds of operations that can be performed in the

system. For example, when we consider the quantity represented as a tally in Figure

2.1, it is possible to tell what the remainder of this quantity is when divided by 5, even
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without knowing the actual value represented. However, when asked about the remainder

when this same quantity is divided by 7, a complete count and conversion to a different

representation (probably Arabic numerals) may be necessary for a correct response. It is

easier to tell the remainder of a division by 5 with just a look at Figure 2.1, because the tally

representation of grouping items into fives naturally lends itself to such problems.

Figure 2.1: A tally diagram that represents a number. Even without knowing the exact

value of the number, it is easy to know what the remainder is when it is divided by 5.

Different forms of representations have been proposed for studying visuospatial rea-

soning. But before exploring the different ways in which knowledge is represented for

visuospatial reasoning, it is worth understanding the possible ways in which all forms of

knowledge representations, in general, can be evaluated. Given that the potential oper-

ations of a system are constrained by its internal representations, being able to compare

different forms of representations is worthwhile.

Thagard (2005) proposes a framework with five evaluation criteria under which different

forms of representations can be evaluated and compared. According to this framework,

representations can be evaluated under the following properties:

• Representational Power

• Computational Power

• Psychological Plausibility

• Neurological Plausibility

• Practical Applicability.

Representational power describes how efficiently a representation expresses knowledge

of a particular kind. Through the concept of representational power we are able to know
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things such as the kinds of operations the representation lends itself to, how efficiently these

operations (or computations) can be performed, and in some ways, how explicable problem-

solving with the representation is. Since representations are directly tied to operations, the

computational power of a representation additionally describes a representation’s problem-

solving capabilities.

Further, if we intend to study human reasoning, then the choices of representations must

produce outcomes that are close, if not exactly equal, to what humans will generate. This

measure of similarity to human ability is the psychological plausibility of a representation.

Representations with good psychological plausibility give us the opportunity to indirectly

study how the mind operates through high level cognitive processes. If our interest,

however, is to understand the mind in terms of its actual biological composition, then a

measure of a representation’s neurological plausibility becomes important.

Ultimately, any knowledge gained from studying reasoning through computational

models may be useful if (such knowledge is) transferable to practical areas of application

like education, healthcare, intelligent systems, etc.

2.2 Visuospatial Reasoning in Humans

The exact form in which humans performed visuospatial reasoning with imagery based

representations had been under debate for several decades (Pearson & Kosslyn, 2015). It

was not disputed that humans could experience imagery; what was in contention was

how depictive imagery was represented in the mind. The theory in one camp was that all

reasoning occurred through propositional representations, and imagery was only “experi-

enced” as a side effect when people processed these representations (Marr, 1982; Pylyshyn,

1973). The other side argued for mixed representations, which may be depictive and struc-

turally represented when reasoning with imagery, and symbolic when reasoning verbally

(Kosslyn, 1980; Paivio, 1990). This debate has since been resolved through modern neu-

roimaging, after it was demonstrated that mental imagery and visual perception appear

to rely on the same mechanisms in the brain to operate (Albers et al., 2013; Kosslyn et al.,

1995; Slotnick et al., 2005; Stokes et al., 2009).

However, before direct evidence for imagery in humans was provided through neu-
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roimaging, research into understand mental representations in humans had already yielded

compelling results about the possible use of imagery. Early experiments by Shepard and

Metzler (1971) showed that when participants were presented with two-dimensional im-

ages of two three-dimensional objects the response time in determining whether the two

items were the same, was linearly proportional to the angle of rotation between the two

objects. This indicated that participants were probably mentally rotating these objects.

Figure 2.2: Sample stimuli from Shepard and Metzler (1971)’s mental rotation experiment.

For each of these test pairs, the participant was supposed to determine if the image on the

right is a three-dimensional rotation of the one on the left.

Proponents of propositional representations argued that the linear correlation Shepard

and Metzler (1971) showed could be the result of a piece-wise comparison between stimulus

pairs, and not necessarily the effect of a complete mental rotation of the three-dimensional

object. Indeed, through eye tracking, Just and Carpenter (1976) were able to show that the

number of fixations between the images of the objects also increased proportionally to the

angular rotation.

These arguments led to other mental rotation experiments, such as L. A. Cooper and

Shepard (1973) where subjects were presented a single familiar stimulus, like the upper

case letter “R”, instead of two three-dimensional objects. They were still required to tell if

the letters were mirrored or not. The results still showed response times proportional to the

angle by which the stimulus had been rotated, and extra time was even required in cases

where the letter was actually mirrored, since people may have to additionally perform the

flipping operation.

Mental rotations have not been the only means of studying imagery representations in

humans. Kosslyn (1973) demonstrated that when people are shown an image and later
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made to recall features from the image, the amount of time it takes to shift their mental

focus from one part of the image to another was directly proportional to the actual distance

between the items. Hegarty (2004) also presents a review of the potential ways in which

people may be using a mix of imagery and propositional rules to reason through mechanical

problems by simulation.

2.3 Visuospatial Reasoning in AI

When it comes to mental representations, propositional representations are symbolic, more

language-like and descriptive. They are meant to represent content much in the same way

as language does. Imagery representations, on the other hand, are more depictive of the

content they describe, such that representations exhibit matching spatial properties. For

artificial intelligence research into visuospatial reasoning, both representation types are

actively used.

Classes of visual reasoning systems that do not use imagery operations are those that

take images as inputs, but process them through other internal representations. An example

of this could be an image classifier built with support vector machines. Although such a

classifier can easily reason about an image and make some inferences about its content,

such as correctly identifying what is depicted in the image, much of the internal knowledge

of this classifier is represented as a complex system of linear equations.

Visual reasoning systems that are imagery based must meet the following criteria

(Kunda, 2018): First, such systems must use internal representations that are visual, image-

like, and iconic. This means the representations must have some visual or, at least, structural

likeness to the content they are representing. Second, the content of the representation must

not be exactly the same as whatever inputs the system receives through its perception. For

systems to meet this second criteria, they must have ways of internally modifying their

inputs into other visual forms, or even generating newer visual images for reasoning

internally. Finally, the image representations must play an active role in the system’s

reasoning processes; they must not just be passively stored to be simply reproduced later.
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2.3.1 A Brief Survey of Visual Imagery Based AI Systems

One of the earliest demonstrations of imagery as a representation for reasoning was pre-

sented by Kosslyn and Shwartz (1977). Kosslyn and Shwartz’s work was meant as an

exploration of how humans may be using imagery as a medium for solving problems.

Specifically, their interest was in how imagery, as experienced by humans, was possibly

rooted in propositional descriptions that are themselves built on prior perceptual inputs.

Although the system did not reason about any particular tasks, it exhibited image gen-

eration abilities that could yield images to be manipulated through the system’s “mind’s

eye”. It could perform operations like mental scanning and rotation on these generated

images—operations that Kosslyn (1973) also investigated in human subjects.

An early use of imagery in problem-solving can be seen in WHISPER (Funt, 1980), a

system for physical reasoning about block worlds using naive physics. WHISPER had the

ability to take an input image of a blocks world structure, and when the structure was

depicted in an unstable state, WHISPER could predict how the structure was going to

collapse. By taking inspiration from how humans were possibly paying selective attention,

WHISPER included a simulated radial retina that could be fixated on different parts of the

input. This retina was also foveated, giving it a resolution that decreased as you moved

away from its centre, much like it is in a human retina. Additionally, the radial nature

of the retina allowed for its “receptors” to be connected in a concentric grid, yielding the

additional benefit of directly performing rotation and scaling operations right on the retina

in a bottom up manner.

(a) (b)

Figure 2.3: Figures from WHISPER (Funt, 1980). (a) An input image for whisper in its

unstable state. (b) The final state of the blocks after the naive physics simulation.
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Gardin and Meltzer (1989) demonstrated a system for physical common sense reason-

ing, that dealt with the properties of objects like strings and liquids through analogical

models. Much like WHISPER, this system reasoned about physical objects through sim-

ulations, and much like WHISPER’s retina, Gardin and Meltzer’s system was based on

the interaction of connected particles that communicated with each other. Essentially, all

objects in this system were designed to be made of particles that interacted with each other

according to a few simple rules. For strings, particles in the system could rotate around

each other, have external forces acting on them, and could collide with other objects in

the environment. For liquids, the particles were acted upon by gravity, could collide with

other particles and objects in the environment, and always moved to fill spaces. With just

these particle systems and a few rules, Gardin and Meltzer’s system was able to naively

reason about strings, rigid rods, and fluids flowing into spaces, without solving any actual

physical modelling equations.

(a) (b) (c)

Figure 2.4: Results from Gardin and Meltzer (1989) showing how particles were used to

simulate flexible strings, bars of different flexibility, and liquids.

In the same vein as Kosslyn and Shwartz (1977) on representations, Glasgow and

Papadias (1992) also presented a model on how imagery can be used in computational

systems. The representation, aptly named “Computational Imagery”, was not necessarily

meant to be a cognitive model of human reasoning, nor was it meant to solve any specific

tasks. It was meant to be a demonstration of how imagery can be used in computational

systems in ways that are human inspired. Based on this inspiration, the system had a long

term memory which stored symbolic information about the relationships between objects,

and this information from long term memory could further be used to invoke image based
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visual representations or array based spatial representations. As far as Glasgow and

Papadias’s “Computational Imagery” representation was concerned, visual thinking—and

in effect imagery—dealt with what an object looked like, and spatial reasoning dealt with

where an object was located in space with respect to others.

There are some classes of systems that are built to reason using mixed representations.

As examples consider the following: Tabachneck-Schĳf et al. (1997) present a computational

model of an expert that explains economic concepts with the help of graphs, Roy et al. (2004)

demonstrate a conversational robot that exhibits spatial awareness in language through

images of what it sees in its world, (Bertel et al., 2006) a system for reasoning about things

through sketches, and (Lathrop et al., 2011) present a model of a fighter pilot’s reasoning

in combat situations.

Another class of tasks that have been of interest in AI research are psychometric intelli-

gence tests (Hernández-Orallo et al., 2016). Because most of these tests are meant to be tools

for measuring human intelligence, there is a lot of value to be gained when AI Systems

are built to solve these tests. One of the earliest AI systems for solving a psychometric

test was ANALOGY (Evans, 1964). ANALOGY was built to solve geometric analogies, a

class of problems that are inherently visuospatial in nature. At the time of its introduction,

ANALOGY was believed to be the largest LISP program ever written. Although geometric

reasoning tasks are spatial in nature, ANALOGY was based on symbolic representations,

which were direct descriptions of the visual problem items. Inputs to the system were man-

ually converted from their original depictive geometric forms into descriptive LISP lists.

An assumption the authors made was that future improvements will include programs

that will automatically convert the geometric images into the symbolic format. At the core

of ANALOGY’s reasoning were pattern recognition routines and geometric operations like

rotations, translation and scaling. ANALOGY’s success led to several similar systems for

solving matrix based analogy problems through propositional representations.

In exploring other representations, Kunda et al. (2013) built the Affine-and-Set Trans-

formation Induction (ASTI) AI system that reasoned through matrix geometric analogy

problems from the Ravens Progressive Matrices (Raven & Raven, 2003), using only image

representations and operations. ASTI worked by trying out different operations across
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the matrix until it figured out a series of operations that created a change in a row or a

column. Once these operations were found, an image was synthesized with this operation

and compared with the possible answers to find a match. When tested on the standard

Ravens Matrices, ASTI was able to score 50 out of the 60 problems without extracting any

form of verbal or propositional information. An extension of ASTI (Yang et al., 2020),

which considered multiple other ways of slicing and combining the matrices, while still

relying on imagery representations with improved similarity matching, was able to extend

the score to 57 out of 60 problems.

It is important to note that an intelligent system that reasons through visual imagery

representations, must have its image inputs play a significant role in the overall reasoning

process (Bertel et al., 2006; Kunda, 2018). Imagery should not only be captured and stored,

but must be an active component in of the system’s decision-making process. Thus, when

used for reasoning, images must be transformed in some way and inferences about the task

at hand must be drawn from these transformations.

2.4 A Brief Survey of Program Synthesis

Program synthesis is the automatic generation of computer programs to meet certain user

defined requirements. These requirements for synthesized programs can be presented

in various forms, such as formal logical constraints, input-output examples, task demon-

strations, and natural language descriptions (Gulwani et al., 2017). Program synthesizers

typically work by searching a hypothesis space of possible programs for one that meets the

specified requirements. A bulk of the work on any program synthesis system comes from

defining the underlying language and its associated search algorithm.

Techniques from program synthesis have been applied across different research commu-

nities in computer science such as programming languages, machine learning and artificial

intelligence. Typical applications include code optimization, suggestion, and repair; data

processing and modelling; robotics etc.

Program synthesis is fundamentally a search problem, and the combinatorial nature

of this problem, coupled with the complexity of the languages in which programs are

expressed, creates significantly large hypothesis search spaces—even when the simplest of
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problems are considered. This makes program synthesis a difficult problem.

At a high level, program synthesizers search for programs by systematically generating

possible programs according to the grammar of the language, and verifying these programs

with the supplied specifications. What varies among synthesizers is how this space is

explored. Some synthesizers enumerate possible programs from the language’s grammar

by growing programs through the addition of operations. There are other synthesizers

that take a deductive approach of generalizing the solution by breaking problems down

into simpler sub-problems whose solutions can later be combined. Another group of

synthesizers work by solving constraints that exist between the program’s specifications

and the language. And, as a final example, there are synthesizers that rely on large language

models built into neural networks to generate code, or others that explore their program

spaces with genetic algorithms.

2.4.1 Grammar Enumeration

The simplicity of this search approach makes it one of the most used program synthesis

techniques. But, like many other combinatorial search processes, this technique is prone

to explosions in the search space. For enumeration to be successful, optimizations such as

the use of domain specific languages to ensure efficient search, type checking to exclude

erroneous programs, stochastic exploration of selected relevant nodes, and the application

of logical rules to prune branches that are expected to yield invalid programs must be

employed.

Enumeration has been in used in synthesizers like DeepCoder (Balog et al., 2017),

MagicHaskeller (Katayama, 2010), and in work from Lázaro-Gredilla et al. (2018). Explo-

ration in these systems are based on top-down tree search algorithms, that generate partial

programs which are evaluated and extended as search progresses. Additionally, each of

these systems incorporate unique ways of limiting explosions in the search space.

DeepCoder solves coding competition-like problems, and relies on an optimized depth

first search traversal to synthesize programs from input-output examples. There are a

couple of optimizations in DeepCoder’s search, but one technique that stands out is the

use of a neural network to predict the possible functions a program could have when given
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an input-output example. The neural network was trained with input-output pairs and

functions from a corpus of ground-truth programs. By limiting the search to just these

predicted functions, DeepCoder searches a significantly reduced space around a functional

programming DSL.

Lázaro-Gredilla et al. (2018) also demonstrates a system that learns to synthesize pro-

grams from input-output image examples. The ultimate goal of their work was to use the

system to train pick-and-place robots on concepts of how objects can be arranged. Using a

DSL and a system called “Visual Cognitive Computer”, inputs from images can be parsed

to identify objects (with the help of a Convolutional Neural Network), and output programs

can manipulate a robotic arm to arrange items on a stage according to concepts elicited

from the input-output image pairs. Just like DeepCoder, synthesis was driven by a depth

first search, but here the search was guided by a probabilistic Markov chain model that

predicted how instructions in the DSL are sequenced.

2.4.2 Deductive Search

Systems that take a deductive approach tend to rely on the peculiar nature of their task do-

mains and implementation languages to carry out their unique search techniques. THESYS

(Summers, 1977) was an early program synthesizer that generated programs from input-

output examples through a deductive process. In line with work from Shaw et al. (1975) and

Biermann (1978), program requirements were presented as part of a LISP program that took

advantage of the structural nature of s-expressions in the LISP language. Search in THESYS

started off with a program fragment that was consistent with one of its input-output exam-

ples, and this program fragment was recursively extended to make it consistent with other

examples as needed.

A similar approach to THESYS can be seen in IGOR2 (Schmid & Kitzelmann, 2011).

However, instead of plainly synthesizing programs from input-output examples, IGOR2

solves the kinds of number series problems found in intelligence tests. IGOR2 also uses

data from its input problems to synthesize programs in functional languages—MAUDE

and later HASKELL. Much like THESYS, IGOR2 takes advantage of the nature of the task

and language to implement a search strategy that is more deductive.
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Perhaps the most widely deployed program synthesizer, FlashFill (Gulwani, 2016) is a

system for learning complex string transformations from input-output examples that has

been shipping with Microsoft Excel since version 2013. FlashFill learns string transforma-

tions from a few input output examples. Because if its unique use-case, FlashFill’s DSL

consists of regular expression based string manipulation operations that facilitate breaking

down the main program into smaller sub goals for a search that efficiently works backward

from output to inputs in a bottom up manner.

2.4.3 Constraint Solving

Systems that rely on constraint solving typically express the relationship between a DSL

and input-output examples as constraints that must be solved, in most cases, through

Satisfiability Modulo Theories (SMT). Unlike enumeration which involves the churn of

trying out as many values as possible for variables while searching for programs, SMT

solvers work like SAT solvers with the added benefit of having built-in specializations,

through theories, for solving special kinds of constraints.

Sketch (Solar-Lezama, 2008) is a synthesizer that takes an input template program with

holes and replaces these holes with synthesized expressions that meet the specifications.

Search in Sketch proceeds through a counter-example guided search, and an SMT solver

is used to solve SAT expressions that are derived from the template program and its

associated specification. Sketch uses a C-like language, which makes it easy to incorporate

its results into programs from most languages with that style. Another synthesizer that

takes a similar approach is Rossette (Torlak & Bodík, 2013), which is built for the Racket

programming language.

2.5 An Overview of Tasks Studied in this Dissertation

A wide range of visuospatial reasoning tasks exist, but for the purposes of my dissertation

I worked with specific standardized visual reasoning tests. This choice was motivated

by three main factors. First, using standardized tests provides a set of well-defined tasks

whose goals and scoring methods have been standardized and properly documented. Sec-

ond, because some of these tasks have been in existence for a while, there is a wealth of data
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available on human performance, which provides the opportunity to compare the perfor-

mance of any models with that of humans. Third—and probably most importantly—using

standardized tests, which can be tested on humans, provides a great medium to transfer

knowledge about any strategies or possible underlying mechanisms that are obtained from

experiments on models to humans.

Work on this dissertation covered four different visuospatial reasoning tasks. These

were the Block Design Test (BDT) (Kohs, 1920), the Leiter International Performance Scale-

Revised (Leiter-R) (Roid & Miller, 1997), the Abstract Reasoning Corpus (ARC) (Chollet,

2019), and the VZ-2 Punched-hole Paper Folding Task from the Kit of Factor-Referenced

Cognitive Tests (Ekstrom & Harman, 1976). The block design is a test of visuospatial

reasoning that requires test takers to manipulate coloured blocks to replicate a given

design. The Leiter-R is a battery of twenty different visuospatial reasoning tests that test

visualization, attention, and memory. The ARC, although not necessarily standardized (as

a means of measuring human intelligence) is an abstract reasoning benchmark specifically

designed to evaluate how well AI systems can learn to generalize concepts from very few

examples.

2.5.1 The VZ-2 Punched-hole Paper Folding Task

Paper folding tasks are a family of tasks that require people to reason about fold patterns

in physical objects and their effects on the shapes of such objects. Generally, in these tasks

a person must either predict the outcome of a given fold pattern, or they must forecast the

sequence of folds that could result in some given final shape. Other variants of the paper

folding task—like the punched-hole version discussed throughout this section—require

participants to determine the patterns that will be made when a folded piece of paper is

punctured and unfolded. Because these tasks must be performed mentally, people may

have to rely on some imagined model of whatever they may be folding in order to be

successful on such tasks.

Although the exact cognitive mechanisms used for paper folding remains unknown, it

is believed that mental rotations (Shepard & Metzler, 1971) and mental folding (Shepard &

Feng, 1972) play a major role in how people reason through the paper folding tasks (Wright
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et al., 2008). Additionally, for the punched hole variants, people may need the working

memory capacity to deal with the additional complexity introduced by keeping track of

folds and punch patterns.

Paper folding tasks are usually components of intelligence test batteries, like the Leiter-R

(Roid & Miller, 1997) and the Kit of Factor-Referenced Cognitive Tests (Ekstrom & Harman,

1976), and they are also widely used as stand-alone tests for measuring spatial reasoning

skills. The following is a small sample of studies in which the paper folding task was used

as a means of assessing the spatial reasoning skills of subjects.

• In a study of the relationship between a soldier’s cognitive abilities and their marks-

manship, researchers from the Warfighter Health Division of the United States Army

Aeromedical Research Laboratory used paper folding as one of the tools to measure

a subject’s spatial ability (Kelley et al., 2011).

• Mayer and Massa (2003) and Kozhevnikov et al. (2002), in separate studies on

the verbalizer-visualizer hypothesis of learning styles in individuals (Jonassen &

Grabowski, 1993), used the paper folding test as a measure of spatial ability in their

subjects.

• Keehner et al. (2004) were able to show that for inexperienced surgeons, skill level in

laparoscopic surgery was higher in subjects who scored better on a battery of tests

that included paper folding tests. For experienced surgeons, however, there was no

significant difference in performance.

• Silvia (2008) used paper folding as a tool for measuring fluid intelligence, while

investigating the relationship between creativity and intelligence.

With so many variants of the paper folding test in existence, I chose the form that

appears as the second visualization task (VZ-2) in the “Kit of Factor-Referenced Cognitive

Tests” battery (Ekstrom & Harman, 1976) for my work. The VZ-2’s paper folding task was

ideal because its multi-choice, pen and paper administration made it a good candidate for

modelling in a computer system. Each item in the VZ-2 punched hole test presents a series

of images that depict the steps of folding a piece of paper that is later punched. The subject
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must pick from a list of given options, the pattern generated when this folded paper is

unfolded. A sample item from the VZ-2 paper folding test is shown in Figure 2.5.

Figure 2.5: A sample item from the VZ-2 paper folding task. The two images to the left of

the vertical bar depict the sequence of folds and the eventual punch. The other four images

labelled A through E are possible answers from which the test taker is to make a choice.

The VZ-2 contains 20 test items that are split into two parts of 10. Subjects are required

to complete the first part within the first three minutes, take a break, then proceed to take

the second part, which must also be completed within three minutes. In terms of difficulty

and structure, there are no significant differences between the test items in both parts. As

far as difficulty is concerned, harder items seem to be randomly mixed up with easier ones

across the test. In fact, the test’s instructions encourages subjects not to waste time, but

rather skip items they may find difficult.

2.5.1.1 Computational Modelling of Paper Folding Task

Although Paper Folding tests have been extensively used in research, mainly for measuring

people’s visuospatial reasoning skills (for examples see Keehner et al., 2004; Kelley et al.,

2011; Kozhevnikov et al., 2002; Mayer and Massa, 2003; Silvia, 2008), not much work has

been done in computationally modelling how people reason about it. Lovett and Forbus

(2013) while studying the information processing load required for mental rotation and

paper folding, implemented a model that reasons through paper folding problems using

CogSketch, a visual sketch understanding system for cognitive science research. In their

work, they showed that one possible strategy for reasoning through folding and rotation

problems involves simplifying stimuli by reducing complexity, a capability they proposed

may be a skill people with high spatial ability may possess.
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2.5.2 The Block Design Test

The Block Design Test (BDT) was introduced by Kohs (1920) as a non-verbal test for mea-

suring human intelligence. It is normally administered as part of other intelligence test

batteries like the Wechslers Adult Intelligence Scale (WAIS) (Wechsler, 2008). The goal of

Block Design is to have subjects reconstruct designs using specially coloured blocks. Each

block is a two colour cube, configured such that four faces have a single colour, and two

faces have both colours painted on the opposite sides of a diagonal. The final distribution

of colours makes each block look as if two differently coloured triangular prisms were

fused together. Originally, the test had two different colouring schemes: some blocks were

coloured red and white, while others were blue and yellow. Currently, in most use cases,

such as in the Wechslers Intelligence Scale for Children-revised (WISC-R) (Wechsler, 1974),

only the red and white blocks are used.

Figure 2.6: A closeup shot of a person taking the block design task

The non-verbal nature of the BDT makes it a good test of visual reasoning. Accord-

ing to Kohs (1920), instructions for the test can be given with simple demonstrations or

pantomimes, if necessary. In a typical test, easier designs will be presented first, with the

difficulty increasing as the test proceeds. Elements such as the use of diagonals, symmetry,

boundaries and even the number of blocks are introduced to alter the difficulty of items.
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Given the active use of the BDT for intelligence testing, there is a wide range of human

performance data available. For example, it has been observed that performance on the BDT

increases gradually with age, for children and then plateaus for adults, with a later decline

in the senior years (Rozencwajg & Corroyer, 2002). It has also been shown that autistic

children perform better on the block design than their typically developing counterparts

(Shah & Frith, 1993).

2.5.2.1 Computational Modelling of the Block Design Task

Block Design Tests have been used in lots of studies aimed at understanding human cogni-

tion, but most of these have been human studies. Very little work has been done on the task

as far as studies through computational models are concerned. In an early demonstration

of robotic capabilities, Bringsjord and Schimanski (2003) solved the block design task using

actual physical blocks and a robot named PERI. PERI was able to receive visual information

about the state of the blocks, and with image matching operations, it was able to solve the

task by moving the actual blocks into place. Kunda et al. (2016) used a similar approach

for the block design solver, except everything was solved in a simulated environment, with

an agent that could simulate visual attention and had a volatile short-term memory.

2.5.3 Leiter International Performance Scale-Revised

The Leiter International Performance Scale Revised (Leiter-R) (Roid & Miller, 1997), is a

cognitive test for evaluating visuospatial reasoning in children and young-adults between

the ages of 2 and 21. One significant feature of the Leiter-R is how the test is administered

in a pure non-verbal format, whereby instructions for tests are given to test-takers through

gestures and pantomimes. This property makes the test widely accessible to people of

diverse cognitive and verbal abilities.

The entire Leiter-R test is made up of twenty subtests, split in two categories. Ten of

these subtests are grouped into a Visualisation and Reasoning (VR) battery, which contains

tests intended for measuring reasoning, problem-solving, and visualization, while the

other ten are grouped into an Attention and Memory (AM) battery, which contains tests

for measuring attention and memory. Table 2.1 provides a summary of all items on the
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Leiter-R test.

Subtests on the Leiter-R are designed to test human abilities such as visual scanning

(through tests like the Figure Ground), rule forming from visual inputs (through tests like

the Sequential order and Repeated patterns test), mental rotation (through tests like the

Figure Rotation) and other related visuospatial reasoning skills.

Table 2.1: All 20 items in the Leiter-R, listed with brief descriptions of what the test requires.

Subtest Task for the test-taker Battery

Associated Pairs Match an item with its corresponding item with a rule

that is learned after a training period.

AM

Attention Divided Identify items from one set of images while sorting

another set of images.

AM

Attention Sustained Find and mark as many instances of a given image as

possible from a collage of similar images.

AM

Classification Match images with others that are semantically related.

Example, socks and shoes.

VR

Delayed Pairs Remember images from the Associated Pairs task with-

out looking at the original images.

AM

Delayed Recognition Recognize items from the Immediate Recognition task

without looking at the original items

AM

Design Analogies A collection of geometric matrix analogy problems. VR

Form Completion Reconstruct an image from broken parts. VR

Figure Ground Search an image for specific, exactly matching frag-

ments.

VR

Forward Memory Remember the sequence in which a series of images are

presented.

AM

Figure Rotation Match an image with its rotated counterpart. VR

Immediate Recognition Recognize items that have been removed from a collage

that was displayed briefly.

AM

Matching Match items to their exact copies. VR

Picture Context Select items that are semantically related to others in a

given image.

VR

Paper Folding Select images that are either folded or unfolded repre-

sentations of materials.

VR

Reverse Memory Recollect items that were seen in the earlier Forward

Memory task.

AM

Repeated Patterns Determine a pattern in a sequence of images and com-

plete it.

VR

Spatial Memory Remember where items were placed in an image. AM

Sequential Order Determine the sequence in a series of images and com-

plete the sequence.

VR

Visual Coding Perform simple logic operations with rules that are de-

fined through images.

AM
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2.5.3.1 Structure of the Leiter-R

Most subtests on the Leiter-R are presented as multiple-choice style problems. Typically,

problems are displayed on the pages of flip-book easels, and subjects are given cards with

the possible answers from which to make a choice. Answer choices are made by placing

cards into special slots provided under the easel. This particular tactile design—of placing

cards in slots—gives subtests on the Leiter-R an intuitive interface that eases the test-

administrator’s responsibility of describing task requirements to subjects without words.

In all, there can be as many as seven answer slots on an easel page. For some classes of

problems, all required easel slots must be filled, and for others they must be partially filled.

This response mechanism of having to supply a varied number of choices makes it hard

for someone to guess their way through the test.

Not all problems on the Leiter-R are in a multiple-choice format. Some subtests require

subjects to provide pencil and paper style responses by either drawing or writing on paper,

while other subtests may require subjects to point out responses on the easel with their

fingers, or sometimes with a special task-specific card.

The difficulty of subtests on the Leiter-R tend to increase as the test progresses. In most

cases, a subtest will begin with simple training items whose correct answers are supplied.

Through mimes and other non-verbal gestures, test-administrators use these training items

to explain a subtest’s requirements to subjects. After the training phase, tests progress with

items increasing in difficulty, in a manner that makes initial test items very easy and later

ones significantly difficult. Due to how difficult some items later in a test can be, some

difficult items on the Leite-R are age limited. Test administrators are advised to stop giving

out a particular test after a subject consistently makes errors in a row, or appears to find

the items too difficult.

2.5.4 Abstract Reasoning Corpus

The Abstract Reasoning Corpus (ARC) was introduced by Chollet (2019) as a general

intelligence test for both humans and artificial intelligence systems. As a test, ARC is

particularly difficult for most traditional machine learning algorithms (especially when

trained from scratch) because it requires the generalization of concepts over limited training
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sets that have an average of about 3 training items.

Figure 2.7 shows sample tasks from the Abstract Reasoning Corpus. These tasks demon-

strate the major characteristic of tasks from the ARC: tasks are presented on grids, where

some unknown rule transforms one input grid into an output grid. An ARC solver’s goal

is to find this rule and supply the output grid for a given challenge input grid.

Figure 2.7: Sample tasks from the ARC’s training set. (a) A task that requires solvers to

isolate the object depicted in the grid. (b) A task that requires solvers to complete the patter

by replacing the pixels in cyan coloured patch. (c) A task that requires solvers to split the

input into four same sized quadrants and overlay the output into a single image output.

Tasks in Figure 2.7 also show how the underlying concepts of task items on the ARC

tend to vary. For example, the first task on the top requires solvers to isolate objects, while

the second task in the middle requires solvers to complete a pattern. For the third task on

the bottom, solvers are expected to split the grid into four quadrants along the blue cells

and output a grid in which the isolated quadrants are combined into one grid by another

unknown rule that the solver must additionally determine.

According to Chollet (2019), the ARC tasks were designed with the consideration of

program synthesis as a more probable solution strategy. This is even more evident in its

structure of having only a few training and test items for each task.

2.5.4.1 Structure of the Abstract Reasoning Corpus

All tasks on the ARC are presented as input-output grids (as shown in Figure 2.7) with

grid sizes ranging anywhere from 1×1 through 30×30 that are not necessarily squared. A

distribution of sizes of all images in the dataset is shown in Figure 2.8 Each cell in the grid

holds one of 10 symbols, 0 through 9, which are typically represented by unique colours
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Figure 2.8: A plot of task image sizes from the ARC dataset. The circle’s centre represents

the width and height of a given image size and the size signifies the number images with

that size.

when tasks are visualized. It is also worth noting that tasks on the ARC are uniquely tagged

with eight character hexadecimal codes. So, for example, the tasks displayed in Figure 2.7

have the codes: 1cf80156, 0934a4d8, and a68b268e respectively.

As originally released by Chollet (2019), ARC contains a total of 1,000 different tasks.

Of these, 800 are publicly available to researchers, while the other 200 are kept private for

evaluation. Developers building solvers have access to the complete solutions (containing

both the input and output grid pairs) for all the test and train sections in the 800 publicly

available task items. Access to the private tasks are, however, limited. Researches hoping

to test their solvers on this private test items can either run their solvers through online an

evaluator on Kaggle1, or through the occasional ARCATHON2 competition.

When a solver is evaluated by any of the private dataset providers—either Kaggle or

ARCATHON—the only feedback provided is the total number of tasks correctly solved.

For a solution to be considered correct, all cells in the output must be predicted exactly,

and the output’s grid size must also be correctly determined. This requirement—for an

all-or-nothing prediction both in the grid’s size and cell contents—certainly increases the

difficulty of solving ARC tasks. To compensate for some of this inherent complexity, solvers

1https://www.kaggle.com/competitions/abstraction-and-reasoning-challenge

2https://lab42.global/arcathon
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are given the opportunity to make three predictions on tasks during private challenges.

This multi-response provision allows solvers to account for any ambiguities that may be

encountered in learning a task’s underlying rules. Certainly, having multiple outputs

also means solvers can attempt diverse strategies even if there are no specific ambiguities

observed.

2.5.4.2 Prior Knowledge for ARC Tasks

Chollet (2019) provides brief descriptions of some core knowledge priors that solvers must

possess to be successful on ARC tasks. Note that while the ARC is labelled as an “abstract”

reasoning test, it presents problems in a visual format, and thus requires some degree of

visual processing. In addition, core knowledge priors are about object properties expressed

visually and spatially. Thus, visual reasoning abilities representing functions of both

perception and inference are key for solving ARC items.

The objectness prior requires solvers to deal with the segmentation, permanence and

interaction of objects. Goal-directedness requires solvers to deal with processes. Tasks

that require goal-directedness may exhibit input-output grids that can be considered as the

start and end states of some abstract process, such as an object moving from one point in

the grid to another.

Numbers and counting priors are required in situations where quantities, like frequen-

cies of object occurrences and sizes of objects, are considered as numbers for operations

like comparison and sorting. The geometry and topology prior requires an agent to have

knowledge about shapes, lines, symmetry, relative positioning of objects, and the ability to

replicate objects in different ways.

2.5.4.3 Related Work

The Abstract Reasoning Corpus is a relatively new test, and with its development still in

progress, not much work has gone into its verification. Currently, the only known human

tests on the ARC are trials performed by the ARC’s authors on human subjects during

development (Chollet, 2019), and work by (Johnson et al., 2021) to measure how well

humans were able to infer the underlying concepts of 40 randomly selected items on the
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task.

Although the scope of tasks for the study by (Johnson et al., 2021) were quite limited,

it showed that humans had the ability to quickly generalize the concepts behind tasks on

the ARC to effectively solve them. To show how well this generalization occurred, each

participant was made to provide a natural language description of their strategy, which

was later compared to the sequence of actions they performed while actually solving the

task.

Of more interest to our work are AI solvers that attempt the ARC. Through a recent

Kaggle competition, several submissions for ARC solvers were made, and the best perform-

ing solver was able to successfully solve 27 items on the restricted ARC set. This solver

was a heavily optimized, handcrafted system that efficiently searched a space of graphical

operations to find a sequence in which operations can be applied to yield solutions on the

ARC.

Kolev et al. (2020) also present Neural Abstract Reasoner (NAR), a solver that relies on

neural networks, specifically Differential Neural Computers to reason through items on the

ARC. Although according to the published results, the NAR scores an accuracy of 78.8%

on items of size 10×10 or lower, it is not clear which section of the ARC was evaluated.

There is yet to be a program synthesis system that performs reasonably well on the

ARC. The potential for these however can be seen in works like the puzzle solver from

Butler et al. (2017), which synthesizes programs to reason through puzzles like sudoku

and nanograms, and the teachable robot from Lázaro-Gredilla et al. (2018), which learns to

generalize concepts about the placement of objects from input-output image pairs.

‘
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CHAPTER 3

Hand Coding Strategies for Visual Reasoning Tasks

A researcher interested in whether a given knowledge representation is suitable for a task,

or whether a proposed theory for how some reasoning process works through a particular

task, may perform a series of sufficiency experiments to test out their ideas. The goal of

such experiments may vary among researchers. Some may just be interested in the ability

of their system to make reasonable choices, while others may be interested in accuracy, etc.

Regardless of the researcher’s goal, models of reasoning built for such experiments are not

expected to exhibit exact similarities to human cognitive mechanisms; they are meant to

be a means for answering whether a given task can be reasoned about in some particular

manner, and if it can, what operations and processes are necessary.

These types of experiments are interesting to me, because they represent a good example

of hand-coded, designer supplied strategies. AI systems are typically built to solve specific

tasks, and the designers who put these systems together already have a good idea of some

of the steps the system may take in solving problems. Thus, these steps are built into the

system.

The first research question I addressed for this dissertation dealt with investigating the

extent to which information processing based strategies can be used to reason through given

visual reasoning tasks. The experiments I performed in answering these questions were,

thus, sufficiency experiments. For the rest of this chapter, I will be describing experiments

that formed the basis of my larger strategy learning work by allowing me to test my ideas

and investigate which sets of operations were sufficient for reasoning in the tasks I studied.

My experiments were performed in the task domains of the Punched Hole Paper folding

task (Ekstrom & Harman, 1976) (see Section 2.5.1), the Block Design Test (Kohs, 1920) (see

Section 2.5.2), and the Leiter Intelligence Scale-Revised (Leiter-R) (Roid & Miller, 1997)

(see Section 2.5.3). Although my goal for these experiments were mainly to explore how

hand coded generated strategies can be implemented and analyzed, I was also able to

demonstrate the sufficiency of imagery as a representation for these tasks.
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In summary, the following outcomes were obtained from the work described in this

chapter:

• Work on the punched hole paper folding task showed how certain tasks are more

amenable to being reasoned about with imagery representations (Ainooson & Kunda,

2017) when compared to purely symbolic approaches. The model for this task

was built around a reasoning strategy that involved recursively folding a three-

dimensional model of a paper.

• Work on the Leiter-R showed that a small set of imagery operations were sufficient for

reasoning through problems from a battery of related visual tasks (Ainooson et al.,

2020).

• On the Block Design Task, I developed an imagery based reasoning model that worked

by combining different sub strategies for various parts of the task (Ainooson et al.,

2020).

3.1 A Computational Model for the VZ-2 Paper Folding Task

One possible strategy for reasoning through the VZ-2 Paper Folding Task may be to have

a mental model of the paper that can be manipulated according to the problem being

solved. I implemented a computational model which relied on a similar strategy by ma-

nipulating a three-dimensional representation of a piece of paper, as required by a given

paper folding problem, to make predictions. This three-dimensional paper representation

was implemented as a stack of same-sized two-dimensional bitmap images. Four different

operations were then used to manipulate this stack to generate solutions for items in the

VZ-2 paper folding task. The model for reasoning about the task was implemented in

the Python 3 programming language (Van Rossum & Drake, 2009), with image operations

provided by the OpenCV library (Bradski, 2000).

3.1.1 Inputs and Pre-processing

Inputs to the model were taken from carefully re-drawn versions of the VZ-2’s original test

images. Instead of scanning the originals, I chose to redraw all inputs because this model’s
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goal was not for studying perception—a problem that is significantly complex in its own

right—but to try and understand how images can play an active role in the reasoning

process.

Sticking to the format of the original VZ-2 items, the input images used by the model

were also line drawings. However, unlike the original items, in the redrawn versions,

sections of the image meant to represent solid pieces of paper were filled out in a different

colour. Also, all image inputs to the system were converted into a binary format through

a thresholding operation. In the thresholded binary image, pixels meant to represent

space occupied by paper were assigned a value of 1 (True), and those for empty spaces

were assigned a value of 0 (False). The use of binary images made it simpler to use boolean

operations for low level image manipulation and also to perform some other computations.

Figure 3.1(a) shows the redrawn version of the inputs from Figure 2.5, and Figure 3.1(b)

shows the final binary images.

Whenever the system was solving a test item, the pre-processed inputs were presented

to the model in three stages. The first stage consisted of images for the fold sequence,

the second stage contained the punched image, and the final stage was a series of images

representing possible answer choices.

(a) (b)

Figure 3.1: Image inputs at different stages of processing for the paper folding task. (a)

The redrawn inputs as they were presented to the model. The top row shows the sequence

of input folds, and the bottom row shows the possible answers. (b) The results of a

thresholding operation on the input images, a final step before they were fed to the model.
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3.1.2 Core Operations

A paper folding problem, x, can be considered as a tuple of fold inputs fi... fn, a punch input

p, and five possible answer options a1...a5, all of which are images. Formally, a full problem

can be represented as x = ⟨ f1, ..., fn, p,a1, ...,a5⟩, where n is the number of fold steps in the

problem.

In the reasoning model, a stack of images, Sp, was used to represent the paper, and to

keep track of all operations performed, a second stack, Sl , was kept. The reasoning strategy

for the model worked to solve items with the help of four main operations, named Initialize,

Fold, Punch, and Unfold. These operations are described as follows:

3.1.2.1 The Initialize Operation

For every test item, the Initialize operation was first performed to create both the image and

operation stacks, Sp and Sl . When executed, it placed a square image filled with each pixel

set to a value of 1, l0, which represents a blank sheet of paper, on the image stack such that:

Sp← l0. Additionally, it reset the operations stack by emptying it out, So← /0.

3.1.2.2 The Fold Operation

This operation was executed once for every fold input, fi, to simulate a fold in the paper.

Because the size of the stack, Sp, represented the third dimension of the paper, every image

on the stack was a layer of folded paper. For each layer, l, of folded paper, the fold operation

proceeded in the following steps:

1. The folded flap was detected.

2. The layer’s image was replaced with one that depicted the fold input’s effects.

3. A fold line around which folds would occur was estimated.

4. The folded flap was mirrored across the estimated fold line.

5. The mirrored fold flap was added to the image stack as a new fold layer.

In detecting the folded flap, an image, bi, which contained a filled rectangle obtained

from the smallest bounding box of the contents in the fold input, fi, was first generated.
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Then, for each image, li, on the stack, Sp, the corresponding folded flap was found by

computing the fold input’s inverse, fi, masked by bi, such that a new list of fold flaps, A,

was generated by A←{l f old : ∀l ∈ Sp l f old ←¬l∩bi}.

The effects of the fold input on each layer on the stack, Sp, could then be computed as

the intersection between the fold input, fi, and the corresponding layer on the stack, l, such

that Si←{l′ : ∀l ∈ Si l′← fi∩ l}.

With the list of fold flaps and the fold inputs’ effects computed, the actual fold operation

could be finally performed by mirroring each fold flap image from A across a fold line.

Because a single fold line was going to be sufficient for all layers, one image from A and

another from the stack Sp could be combined to find the fold line.

To actually find the fold line, the selected layer from the stack was morphologically

dilated with, a 3×3 structural element, d. The dilated layer was then intersected with the

selected fold flap image to yield the image of a line. The two extreme pixels of the resulting

line image could then be used as the coordinates of the fold line. These coordinates were

placed on the second operations stack, Sl , to be used later during unfolding. Formally,

this procedure for obtaining the fold line’s image can be expressed as: ∃l ∈ Si∃k ∈ A [ f ←

(l⊕d)∩ k].

For the final step of the fold operation, each flap image in A was mirrored across the

fold line, and the resulting image was put back on the image stack, Sp ,to represent the next

set of layers that could be possibly manipulated by subsequent fold inputs.

3.1.2.3 The Punch Operation

This operation took the punch input, p, and intersected it with each of the images on stack,

Sp, to simulate the punch going through all layers of the paper.

3.1.2.4 The Unfold Operation

Unfolding worked by recursively reducing images from the image stack, Sp, while simulta-

neously simulating unfolds by reversing the mirror operations using coordinate informa-

tion from the operations stack, Sl . During calls of the unfold operation, a temporary image

stack, S′p, was created to hold the layers as they were unfolded. First, coordinates of the
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most recent fold line was popped off the operations stack to help guide reversals. Then

the two items at the top and bottom of the image stack, Sp, were extracted, after which the

bottom image was mirrored across the fold line to simulate unfolding. The reversed flap

could then be combined with the top image to create an unfolded layer, which was then

added to the temporary image stack, S′p. This process of popping the first and last images,

and unfolding through mirroring continued until the image stack, Sp, was empty. Once

Sp was empty, the unfold operation terminated and either returned a completely unfolded

paper if there was just a single item on the stack, or recursively called itself (the Unfold

operation) with the temporary stack, S′p, as the new image stack, Sp.

3.1.3 Walk-through of a Sample Problem

For a walk-through of the model’s strategy, consider the problem presented in Figure 2.5.

To solve this problem, the first step would be to convert the images, as displayed in 2.5, into

binary images through the process shown in Figure 3.1. Afterwards, the problem would

be presented to the model, formatted as such:

x = ⟨ f1 = , f2 = , p = ,a1 = ,a2 = ,a3 = ,a4 = ,a5 = ⟩

Solving would start with an execution of the Initialize operation to set up the stacks, Sp

and Si, after which there would be two calls to the Fold operation. As explained in Section

3.1.2, Figure 3.2 shows the various stages of the fold operation for the second fold input, f2.

Once all fold inputs were complete, the punch operation would be performed with the

punch input, p. Figure 3.3(a) shows how the various operations affect the image stack. It

is obvious from the figure how the stack started with a single image (to represent a blank

piece of paper), and how its size doubled each time a new fold input was added. When

time to unfold and predict an answer came, this stack would be recursively recombined

into a predicted unfold pattern, y, by the Unfold operation as shown in Figure 3.3(b).

Finally, with a predicted unfold image, an answer choice would be made by picking

from the possible options, a1 through a5, the image that was most similar to the one

predicted. Similarity, D, in this case will be measured by the total number of pixels that
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-1  → ∩   = ∩   =

(a) (b)

∩   =   =

(c) (d)

Figure 3.2: The sequence of operations that lead to a fold detection and the ultimate appli-

cation of a fold. (a) A bounded version of the input image is inverted and its intersection

with each of the images on the stack is computed to generate the corresponding fold flaps.

(b) The same input image is further intersected with the images on the stack and the results

are morphologically dilated by a single pixel. (c) The dilated image from (b) is intersected

with the fold flap to determine the fold line. (d) The image from the fold flap is mirrored

along the fold line to simulate a fold.

were exactly the same in both the output, y, and the possible answers, a1, ...,a5. Formally,

the choice, k, would be chosen by:

k = argmax
i∈{1,..,5}

D(y,ai) (3.1)

3.1.4 Results and Discussion

When evaluated on the VZ-2 (Ekstrom & Harman, 1976), this paper folding model correctly

solved all 20 items, and it did so with just the single hand-coded strategy described above.

This was not surprising, considering that the model had advantages, like access to pristine

redrawn inputs, enough information to help segment test problems, and an almost infinite

amount of memory to keep track of all folds.

Redrawing inputs allowed the model to clearly identify which sections of the images

represented solid paper and which ones were for empty space. The knowledge required

to make this differentiation is one that humans may obtain from experiencing numerous

illustrations that are presented as simple line drawings, and physical interactions with

paper that occur through other activities.

The complexity of the knowledge required to understand these images is even more

obvious when you consider just the positions of the punched holes. Because the model

internally simulated a model of a paper being folded, the fold positions were exact, having

43



StackInput

(a) (b)

Figure 3.3: (a) The sequence of inputs and the effect they have on the image stack three-

dimensional representation of the folded paper. (b) From top to bottom, this image shows

how the images on the stack are combined to represent unfolding the paper.

all the punched holes aligned in the right places. When the original test items from the

“Kit of Factor-Referenced Cognitive Tests” are observed, however, these punched holes

were approximated and not in the exact locations. In order for the model to perform well

on the task with its current strategy, the punched holes had to be realigned when the inputs

were redrawn for the system. In fact, still on the issue with punch hole alignment, when

the original scanned items were evaluated on the current model, it failed to solve any of

the test items.

Due to its use of imagery as a representation for reasoning, this model could work

through any arbitrary paper folding task. For example, consider the snowflake simulation

performed by the model shown in Figure 3.4. It can be observed that the model generated

an output that corresponded exactly with the fold inputs it received.

Although this system was mainly built to evaluate the sufficiency of an imagery based

strategy for solving the paper folding task, one important question is still worth asking:

could the strategy, as described in the sections above, be used by a human for reasoning

through the VZ-2? That definitely cannot be guaranteed. One interesting factor to consider

is how the model uses memory when reasoning through items on the task. For every

single fold, the number of layers the system has to keep track of doubles. If a human had

to use this exact strategy, and the stack is considered to be analogous to a person’s working
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Fold Sequence Cut / Punch

Unfold Sequence

Figure 3.4: The solution to an arbitrary punched-hole paper task, which simulates a paper

snowflake. The top row of images show the input to the model, with the blue sections

representing solid sections of the paper. The bottom row shows the unfolding sequence as

generated by the model.

memory, they may have to be keeping track of an exponential amount of items for every

fold.

Short-term memory in humans is believed to be very limited. Miller (1956) places

it at seven items plus or minus two, but more recent work from Cowan (2001) shows it

could simply be just about 4 items. And these limits come about from considering short-

term memory as a single store for all kinds of information regardless of modality. When

Baddeley and Hitch (1974)’s model of working memory, which uses different types of

stores for different modalities is considered, an analysis by Luck and Vogel (1997) shows

that people may be integrating the features of individual objects (like colour, shape, size,

etc.) when storing them. Essentially, people can remember a few objects at a time, but can

remember a lot about each of those items through these integrations.

Items on the VZ-2 have anywhere from 1 to 3 folds per problem. In sticking with the

assumption that the model’s stack is stored in a person’s working memory, people may

have to keep track of anywhere from 2 to 8 items. This figure is still within the reasonable

range of working-memory in humans. It could also be considered that people may be

integrating folds as features of the various input images, as described by Luck and Vogel
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(1997), and as a result may not be using as much space in their working memory.

3.2 Building Models for Leiter-R Tasks

The Leiter International Performance Scale-Revised (Leiter-R) is a battery of non-verbal

intelligence tests for children and young adults Roid and Miller (1997). Being a test of

visual reasoning in humans, the Leiter-R is well positioned as a task domain for testing

computational models that reason visually. Additionally, with most problems in the Leiter-

R presented through diagrams and pictures, opportunities to evaluate reasoning strategies

based around imagery representations can also be realized. This also means it should be

possible, just as it was with the punched-hole paper folding task, to formulate reason-

ing models based on fixed hand-coded strategies for the Leiter-R that do a bulk of their

reasoning through image representations.

As a test of this hypothesis, I conducted a series of experiments to find out the extent to

which imagery representations and their associated operations were sufficient for reasoning

through items on the Leiter-R (Ainooson et al., 2020). The primary goal of this work

was to build models that reasoned through problems using any possible strategy that

can be implemented through computer code, without an attempt to mimic any human-

like cognitive capabilities. The choice of using a common framework of image processing

operations also meant I could later analyse the strategies to determine the common patterns

in which operations were used throughout the model.

3.2.1 Implementation Details

The reasoning strategy for an item on the Leiter-R was expressed as a sequence of vi-

sual reasoning operations (v0,v1,v2, ...) interspersed with control operations (c0,c1,c2, ..)1.

Visual operations took images as input, and output either a derived image or a number

(representing some property of the image). Control operations, on the other hand, deter-

mined the sequence in which visual operations were executed—they worked similarly to

control statements like loops and conditions typically found in high level programming

1Although the use of control operations remains in this description, in the actual implementation I found

out that it was much easier to use the native control flow structures supplied by the Python programming

language.
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languages. The operations used for this study are described in the sections below.

3.2.1.1 Similarity

The similarity operator, similarity(a,b)→ r[0,1], took as input two images, a and b, and

outputs a real number between 0 and 1. This output number represented how similar the

images were, according to a metric in which higher values indicated a higher similarity.

To allow experimentation with different similarity metrics, the operator provided in the

framework acted as a front end to different internal metrics. There were two such metrics

on the back-end: Jaccard similarity and Euclidean similarity.

Jaccard similarity, similarity j(A,B), was computed directly with pixels from two images,

A and B, as a ratio of their number of intersecting pixels to the number of union pixels.

similarity j(A,B) =
|A∩B|
|A∪B|

Euclidean similarity, similaritye(A,B) was based on the euclidean distance, E(A,B) be-

tween both images. It was computed as:

similaritye(A,B) =
1

1+E(A,B)

3.2.1.2 Containment

Through the containment operator, a measure of the relative size difference between two

objects in separate images could be obtained. Containment took two images, a and b, and

a colour, g, as input. It then returned a real number between 0 and 1, which could be

considered as an estimate of the size of the object in the image a relative to that in b, when

the colour, g, was considered as the background of both images.

Another way of looking at the containment operator, is to consider it as a measure of

how much an object displayed in one image could be contained by another displayed in the

other image. Because this operator measured sizes of objects, and not sizes of images, each

image to be compared had to contain a picture of a single item over a plain background

with colour g. Interestingly, in this formulation, computing containment could also be

47



thought of as finding the ratio of the number of non-background pixels in both images

(which was how this operator was implemented).

3.2.1.3 Rotation and Scaling

Unlike the other operations, the rotation and scaling operations transformed the input

images instead of computing a metric based on them. The scaling operation, scale(a, f )→ b,

took an image, a, and a real number, f , as inputs and returned a scaled version of the input.

Similarly, the rotation operation, rotation(a,θ)→ a, took an image, a, and a real number, θ ,

and returned an image containing a rotated by θ degrees. Because both operations could

alter the image’s bounding box size, these operations returned an image that was larger

than the input in most cases. For example, rotation will always increase the bounding box

size of the image.

3.2.2 Inputs and Pre-processing

When it came to implementing the reasoning models, all image inputs for the experiments

were scanned from the original Leiter-R items (easels, answer cards and other booklets).

These scanned images were further annotated with rectangles to highlight the areas of

interest that any solvers may need to pay attention to. For the multiple-choice easels,

annotations were made on the locations of the slots where cards would be placed, and for

the answer cards, annotations were placed on the single central image contained on the

card. Other test items, which did not follow the easel and card format, were annotated

subjectively according to what I felt may need attention.

3.2.3 Results of Sufficiency Experiments

Using a framework of operations and inputs described previously, I was able to obtain

programs for solving 17 of the 20 subtests on the Leiter-R2. The three subtests for which I

failed to obtain any programs were Paper Folding, Picture Context, and Attention Divided.

See Figure 3.5 for a breakdown of the results.

2Sixteen of these programs were written over a weekend hackathon session, involving myself and two

other PhD students, Deepayan Sanyal and Joel Michaelson, while the program for the Figure Ground task was

adapted from an earlier study on the Leiter-R by Palmer and Kunda (2018).
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Figure 3.5: Results of the Leiter-R sufficiency experiment.

3.2.4 Discussion of Sufficiency Experiments

From the results, it can be seen that every subtest from the Attention and Memory battery

was completely solved, while little progress was made on most items from the Visualization

and Reasoning battery. Solving all items on the Attention and Memory battery appears to be

a trivial task for computers, especially since these tasks mainly require people to remember

facts for later recollection. Unlike the limited, volatile working memory of humans (Cowan,

2001; Luck & Vogel, 1997; Miller, 1956), computers can indefinitely hold on to whatever

is stored in their memories. Although it may seem “pointless to apply memory tests to a

computer model” as Hernández-Orallo et al. (2016) puts it, and rightfully so, in the context

of visuospatial reasoning, valuable observations can be made when these tests are applied

in environments where human-like attention and memory are simulated.

It was particularly difficult to develop reasoning strategies for subtests in the Visual-

ization and Reasoning battery due to the particular way in which the Leiter-R deals with

task difficulty. Although all items in a subtest fall within a particular task theme, changes

in difficulty tend to be introduced through subtle, and sometimes drastic modifications

to task requirements. For example, the paper folding task in the VR battery starts with

simple two-dimensional items that have single folds, then progresses to multiple-folds in

two-dimensions, then folds become three-dimensional cuboid cut-outs, which are then

modified to require test takers account for differently coloured faces, before finally ending

with irregular geometric shapes in three dimensions.
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The most interesting observation from these experiments was how the few operations

described in Section 3.2.1 were able to provide strategies for working through some items

across most of the Leiter-R’s subtests. Of all these operations, Similarity was the most

important in terms of implementation. Because every test item required some form of

visual comparison to be made, variations in results were observed for the different similarity

metric implementations. Of the two metrics available for these experiments, Jaccard was

the most accurate.

For both underlying similarity metrics to exhibit a decent performance, some pre-

processing of the scanned input images had to be performed. Especially for the Jaccard

metric, images needed to be properly aligned and had to be of the same size; any incon-

sistencies in image orientation introduced through the initial scanning process had to be

manually corrected before any images were able to produce useful results. Additionally,

before every comparison was made with any of the metrics, images had to be cropped and

resized to match each other in size, and the colours had to be flattened. See Figure 3.6 for

a visual description of the image pipeline.

In applying the Jaccard similarity, cropping was applied by finding the smallest bound-

ing box, and colour flattening involved converting all colours from 8 bits per channel in the

input RGB image to a single bit per channel RGB. With a single bit per channel, all possible

colours were reduced from a potential 16 million to just 8, effectively reducing the margin

by which errors could occur during comparisons.

Inverse 
Grayscale

Binary
Threshold

Find and Apply
Bounding Box

Flatten
Colors

Figure 3.6: The sequence of steps an image goes through before every comparison is made

with either metric.
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3.3 Visuospatial Reasoning Environment for Experimentation

The experiments I have descried so far were performed with systems built on fixed, hard-

coded strategies. One of the primary goals of this work was to study strategy differences,

and to that effect, I worked on an integrated environment for conducting visuospatial

reasoning experiments (Ainooson et al., 2020). This environment, named the Visuospatial

Reasoning Environment for Experiments (VREE), was organized as a virtual environment

in which agents interacted with objects, and was based around ideas expressed in Kunda

(2017).

Structurally, VREE contained an Environment, Agents, Affordances and Objects. Figure

3.7 presents a simplified block diagram of VREE that shows its internal components and

how they interacted.

Objects

State

Raster Image
Representation

AffordancesAffordances

Agent

State 
Machines &
Reasoning
Rules

Puppeteer
Code

Operations

Visibility AffordanceVisibility Affordance

Vision / Attention / Gaze

Affordance Operations

Other Operations
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n
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LTMSTM

Memory
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Figure 3.7: A diagram of the VREE system showing how the different components existed

within the environment, and how they interacted with each other.

3.3.1 The Environment

VREE’s environment was the world in which all experiments took place. The environment

contained objects, agents, affordances, and a TimeKeeper. Agents performed the intelligent

actions in VREE, objects passively existed to be manipulated by agents, affordances con-

strained agent-object relationships, and the TimeKeeper coordinated the entire environment

by defining the sequence in which agents executed their reasoning logic. Formally, the en-

vironment can be defined as: Environment→ ⟨Objects,Agents,Affordances,TimeKeeper⟩
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Being a framework for visual reasoning experiments, VREE’s environment could be

rendered as an image. This image was produced as a two-dimensional top-down view.

The choice of a top-down view was made for two primary reasons:

1. A two-dimensional space reduced the complexity of code required to handle percep-

tion and other vision related computational workloads.

2. The tasks to be studied in VREE were mostly table-top tasks that people most likely

performed while hunched over a table—essentially giving them a top-down view.

The TimeKeeper, a simple routine that advanced agents in fixed time-steps, tied the

environment and its components together. Within a time-step, all qualifying affordances—

those whose conditions for execution were met—were activated, and agents were given the

opportunity to make their decisions about the current state of the environment. Algorithm

3.1 shows the pseudo-code for the TimeKeeper routine. Note that in the implementation

of VREE described in this chapter, there was only a single agent in the environment at any

time.

Algorithm 3.1: TimeKeeper routine from the Environment that coordinates the

activities of agents, affordances and objects

do
foreach ob ject ∈ Environment.Objects do

foreach a f f ordance ∈ Environment.Affordances do
if a f f ordance.AgentType =
a f f ordance.Type(agent)∧a f f ordance.Ob jectType = Type(ob ject) then

add a f f ordance.Actions to agent.Operations

execute Agent’s next step

forever

3.3.2 Objects

When agents were performing any tasks, they had the ability to manipulate objects in the

environment. Objects were the primary interface through which agents performed their

tasks. Through objects, agents received all information needed for tasks, and agents could

equally communicate the results of their reasoning actions by manipulating same objects.
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All objects in VREE were assigned specifically defined object-types. An object’s type

characterized the structure of its internal state, which always included a raster image

representation for visualizing the object. Additionally, because objects had to be visible in

the environment, a two-dimensional world coordinate that specified an object’s position

was also be present in the object’s state. The state’s raster image was what agents perceived

when they attended to the object. An object in VREE can formally be defined as: Ob ject→

⟨Type,State,Location, Image⟩

3.3.3 Affordances

Generally, affordances can be thought of as the relationships existing between objects and

agents that allow agents to “use” objects (Norman, 2013). In VREE, I adapted this definition

to make affordances represent the knowledge agents had about objects of a particular object-

type. Within VREE, for any defined object-type, affordances could be used to specify the

actions agents could perform when interacting with objects of the type. Additionally, a

physical variant of affordances existed in the environment which allowed objects to interract

with each other. This type of affordance allowed for the definition of passive interactions

between two objects (such as physical collisions or overlaps). Thus, in VREE, affordances

could be defined between agents and object-types as agent-object affordances, or between

any two object-types as object-object affordances.

Every affordance contained a condition and a set of actions. The condition governed

when the affordance’s actions could be performed, and were usually defined over the in-

ternal states of the related components (agents or object-types). Whenever an affordance’s

conditions were met, the related operation executed the affordance’s actions, which further

altered the internal states of any related components. For object-object affordances, opera-

tions were executed immediately conditions were met. On the other hand, operations for

agent-object affordances are optionally executed at the agents discretion.

An affordance can formally be defined as: A f f ordance→ ⟨Conditions,Actions⟩
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3.3.4 Agents

Agents performed the intelligent actions in the VREE system, and in some ways, they

could be considered as mini cognitive architectures. Each agent contained a collection of

operations, different forms of memory for storing information, and various mechanisms

for executing reasoning rules. Also, due to the visual nature of the tasks that were intended

to be performed in VREE, every agent had a perception system.

3.3.4.1 Operations and Affordances

Operations in VREE’s agents were analogous to function calls in computer programs.

Whenever an operation was executed, some pre-defined actions of the agent were per-

formed. Multiple operations could be put together to implement reasoning rules. Because

every agent had a built-in perception system, agents were additionally equipped with

operations for controlling gaze and attention. Whenever an agent was being defined (or

implemented), additional operations for other agent specific abilities could be added.

To simplify the construction of agents, affordances were transparently applied as though

they were operations. Whenever an affordance’s conditions were met, the agent had the

opportunity to execute the affordance’s actions just as it would any of its operations. This

transparency was meant to reduce the complexity required to build agents, since agents

only needed to know about operations they could perform in a time step and nothing about

affordances.

3.3.4.2 Memory

When reasoning through tasks, agents had access to different forms of memory for storing

information: There was a short-term memory for storing temporary facts, a long-term

memory containing built-in knowledge, and a spatial memory for keeping track of the

locations of interesting items. Although the long-term memory of the agent was typically

hand-populated while designing an agent, there was an option for agents to persistently

store facts from short term memory into long term memory during execution.
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3.3.4.3 Reasoning Rules

An agent’s reasoning rules represented its model of reasoning about any tasks in the

environment. There were primarily two ways in which reasoning rules could be specified:

They could either be through state machines or through scripts written in general purpose

computer programming languages (like python). Regardless of how reasoning rules were

specified, agents always worked by taking visual input from the environment, making

deductions through its internal rules, and communicating their results through affordances

that may manipulate objects in the environment.

3.3.4.4 Vision Attention and Gaze

Since the tasks to be reasoned about were all visual in nature, agents had a gaze window

through which they could visually attend to objects. The gaze window’s size is variable,

and it can be moved to any location of the environment. Gaze movements are controlled by

the agent, and the decisions about where to pay attention are influenced by a salience map.

Much like peripheral vision in humans, the salience map told the agent where interesting

things in the environment may be, without providing any fine details.

Two visibility affordances in the environment were responsible for managing the gaze

and vision system. There was a salience map affordance that updated the agent’s salience

maps with the coordinates of objects after every timestep, and a collection of gaze affor-

dances that allowed an agent use to move its gaze to the different locations highlighted on

the salience map. The salience map affordance was always active, and the gaze affordances

only became active when the object to which a particular gaze affordance was linked to, was

not obscured in an agent’s view. As far as implementation went, a hash, which mapped an

object’s unique identifier to the coordinates of its location, was used for the salience map.

Gaze affordances were not always mapped one-to-one between objects and agents.

Some objects, such as a simulated piece of paper displaying a puzzle, could have multiple

areas of interest. In such cases, an object could supply an additional salience map of its

local areas of interest. Any object supplied salience maps were merged with the main map

to present a transparent distribution of gaze targets.
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3.4 Exploring Strategy Differences on the Leiter-R with VREE

As an initial experiment to test out studying strategy differences through VREE, I inves-

tigated how different constraints placed on agents affected their performance on selected

Leiter-R subtests. For this experiment, I evaluated two different high level reasoning

strategies that were executed as slight modifications to the original strategies defined in

Section 3.2.3. These high level strategies altered the original strategies by standardizing

how answer choices were provided for some tasks in the Leiter-R.

In the first of these strategies, the agent starts with an option from a card and applies

a task specific strategy to find a compatible easel slot. I called this the card-to-slot strategy,

and it is akin to how people may attempt multiple choice problems by working from their

answer choices to the question.

Conversely, for the second strategy, the agent starts from an easel slot and works towards

finding a matching card, similar to how people may also attempt multiple choice problems

by working from the problem to the answer choices. This second strategy was called the

slot-to-card strategy.

3.4.1 Selected Sub-tasks and their Specific Strategies

To test out these ideas on strategy differences, I focused on six subtests from the Leiter-R.

These were Associated Pairs, Figure Rotation, Matching, Repeated Patterns, Sequential

Order and Visual Coding tasks. All the tasks, except for the Associated Pairs, come

from the visualization and reasoning battery of the Leiter-R. As already stated, these

subtasks each had their own task specific strategy (which were earlier developed through

the work described in Section 3.2.3). Each of these subtests and their associated strategies

are explained in the following sections.

3.4.1.1 The Associated Pairs Subtest

Associated Pairs is a memory test in which a subject is required to memorize the relationship

between arbitrary pairs of images. When this test is administered, the subject is exposed

to an easel page containing a number of image pairs for up to 5 or 10 seconds (depending

on the difficulty of the task). After this exposure, the subject is presented with one or
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two easel pages that contain some (or all) of the image pairs from the previous easel page

with their counterparts removed. The subject’s task is to supply the other missing halves.

There could be anywhere from 2 to 12 pairs displayed, and the subject may be required to

recollect up to 8 of these. See Figure 3.8 for a sample of this task.

A B

Figure 3.8: A sample item from the Associated Pairs task from the Leiter-R (Roid & Miller,

1997). In this illustration, the section labelled A will be briefly exposed to the subject, then

the section labelled B will be exposed while the A section will be hidden. To protect the

secrecy of the Leiter-R, this sample is not a real Leiter-R problem.

The reasoning strategy used for the associated pairs task simply recorded all pairs in

the agent’s short term memory. When the page was turned for testing, the stored pairs

were looked up, and matches were made with the similarity operation to find which card

best fit each of the slots.

3.4.1.2 The Figure Rotation Subtest

The figure rotation subtest requires subjects to match easel slots with cards, such that

images on both card and easel slots are rotated counterparts of each other. An example of

the Figure Rotation is displayed in Figure 3.9.

The original figure rotation strategy (as defined in Section 2.5.3) compared pre-rotated

versions of a test’s image with their unmodified counterparts to find a match. This com-
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Figure 3.9: A sample item from the figure rotation task of the Leiter-R (Roid & Miller,

1997). In this instance, the subject will be required to select one of the four slots in which

the card at the bottom best fits. To protect the secrecy of the Leiter-R, this sample is not a

real Leiter-R problem.

parison was executed iteratively, such that if a match was not found after any iteration, the

test image was further rotated by a fixed angle before it was tested again. A set of iterations

were run until the test image had been rotated over a complete 360 degree cycle. If a match

was still not found after the complete cycle, the angle by which test images was rotated

after each trial was halved, and the whole process was repeated until a match was found

or the angle of increment became less than 1°, by which time a match should have been

found.

3.4.1.3 The Matching Subtest

The matching subtest requires subjects to find images from their cards that best match with

others on the easel. The original reasoning strategy for this subtest relied on the similarity

operator to perform a simple matching with a similarity value that exceeds a threshold.

See Figure 3.10 for a sample of this task.
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Figure 3.10: An instance of the matching task from the Leiter-R (Roid & Miller, 1997), with

4 slots and 4 answer cards. To protect the secrecy of the Leiter-R, this sample is not a real

Leiter-R problem.

3.4.1.4 The Repeated Pattern Subtest

In the Repeated Patterns test, subjects are presented with a sequence of images that are

arranged on the easel page in a given pattern. The subject’s task is to figure out the pattern

and complete the blank sections presented on the easel with responses from their cards.

See Figure 3.11 for a sample of this task.

The strategy for the repeated pattern subtest involved generating identifiers for all the

distinct images on both the cards and the easel slots. These identifiers were generated

through a simple clustering technique, where all images having Jaccard similarities within

a threshold were given a common identifier. Once the identifiers were generated, the

sequence of identifiers were used to find which items best completed the pattern.

3.4.1.5 The Sequential Order Subtest

Much like the repeated pattern subtest, the sequential order requires subjects to complete

a sequence of images presented on the easel. The difference here, however, is that the

sequence of images change by some property in every step. Changes could be in the size,

or orientation of the image, and in extreme cases the frames of an animation sequence.
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Figure 3.11: An instance of the repeated pattern task from the Leiter-R (Roid & Miller,

1997), which requires the subject to fill in the missing parts of the given sequence. To

protect the secrecy of the Leiter-R, this sample is not a real Leiter-R problem.

A metric based on an equally weighted combination of the similarity score (returned

by the similarity operation), containment score (which is the value returned by the size

comparison operator), and approximate RGB values (converted from 24 bits per channel

to 1 bit per channel) between any two images was used as a sorting key to determine the

position an item had in the sequence. This strategy only worked for items which had size

changes, and not those that featured animations.

3.4.1.6 The Visual Coding Subtest

The visual coding task requires subjects to learn arbitrary rules about how images relate

to each other, with which they could solve given problems. In some ways, the Associated

Pairs and the Visual Coding subtests are similar; both require associations to be identified

and later mapped.

Because of its similarity to the associated pairs task, both Visual Coding and Associated

Pairs shared a similar strategy. The only difference between the two strategies was from

the storage of image associations. For the associated pairs, because the associations were

not going to be available during testing, they were stored in short term memory. For visual
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Figure 3.12: An instance of the sequential order task from the Leiter-R (Roid & Miller,

1997), in which the subject must complete the sequence by placing easel cards. To protect

the secrecy of the Leiter-R, this sample is not a real Leiter-R problem.

coding, however, the associations were always going to be visible during testing, so the

agent could simply attend to it. The associations used in visual coding were never stored

by the agent.

3.4.2 Setting up the Environment

Before running experiments in VREE, a few things had to be in place: the environment

had to be setup with the task’s objects, the necessary affordances required by the agents

and objects needed to be established, and the reasoning logic for the agent needed to be

configured. For these series of experiments, I created two object-types to represent easel

pages and cards, and I established two affordances to allow agents to place cards into easel

slots or pick them out.

The reasoning agent was equipped with the operations that were used in the earlier

Leiter-R attempt (see Section 3.2.1.) These operations—similarity, containment, rotation
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Figure 3.13: An instance of the visual coding task from the Leiter-R (Roid & Miller, 1997),

in which subjects are required to provide the cards that best fill the slots labelled 1 and 2.

To protect the secrecy of the Leiter-R, this sample is not a real Leiter-R problem.

and scaling—allowed the agent to also use the reasoning strategies developed from the

earlier attempt.

During the execution of a task, an instance of the easel page object type was always

available to display the problem currently being solved, and as many instances of the card

object were also created for all the possible answers of a given problem. Just as it was with

the earlier Leiter-R experiments (see Section 3.2.3), pictures for the task items were taken

from scans of the original easels and cards. These scans were further annotated to highlight

salient regions for driving the agent’s attention.

Finally, to simulate the effects of memory on the different tasks, agents were given the

ability to forget items they had in short-term memory. This forgetfulness was implemented

such that any image in the short-term memory was gradually corrupted with random noise

after every time step, to ensure the entire image was covered with noise after seven time

steps.
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3.4.3 Walk-through of Agent’s Reasoning Strategies

Let us consider how both strategies (card-to-slot and slot-to-card) can be applied by working

through an example of the Leiter-R’s Matching Task shown in Figure 3.10. As already

stated (see Section 3.4.1.3), the strategy for solving the Matching task finds an image on the

easel that is most similar to one from a given card through the agent’s similarity operation.

When applying these high level strategies, the original strategy—as described in Section

3.4.1.3—is actually the card-to-slot strategy. To transform this to the slot-to-card strategy, the

similarity of images from the slot will be maximized against those from the card instead.

When solving with the card-to-slot strategy, the agent picks one card (images labelled

A through D) and compares them with those on the easel (images labelled 1 through 4).

Assuming the similarity threshold was chosen to be 99, and the agent selected the card

labelled A, the largest similarity over the threshold would be at the third easel slot with an

exact match. The agent will then move unto the next card labelled B which will fail to meet

the threshold for all its similarity values. This process repeats until all cards are exhausted.

Similarly, for the slot-to-card strategy, the agent could start with slot 1 and test it against

cards A to D, with D maximizing similarity over the threshold after all the slots have been

exhaustively tested.
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Figure 3.14: Results from running the two different strategies on the six selected Leiter-R

subtests, while alternating forgetfulness.
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3.4.4 Results and Discussion

Although both strategies—card-to-slot and slot-to-card—appeared to be similar, and even had

the same performance on most of the tasks, there were still differences when performance

on the Associated Pairs task was considered. This discrepancy was caused by how the

strategy’s choice of goal images placed a bias on search progression. For example, if an

image from a card was wrongly matched through the card-to-slot strategy, the answer option

provided by this card was no longer available to other slots later in the search. In a similar

vein, when a wrong problem slot match was made in the slot-to-card strategy, the slot was

locked up for the remainder of the search. It is worth noting that both strategies could be

altered to ensure that choices made could be changed after some reconsideration.

It could also be seen from the results how forgetfulness always reduced performance.

Some tasks, like the visual coding and repeated patterns, could not be solved at all when

forgetfulness was in place. Although the robustness of similarity metrics could be blamed

to an extent, this proof-of-concept implementation showed there was a lot that could be

learnt from experiments in VREE when the right questions are asked.

3.5 Exploring Strategy Differences on the Block Design Task with VREE

After the initial work with VREE on the Leiter-R, I performed another set of experiments

on the Block Design Task (BDT). The tactile, non-verbal nature of the BDT made it a good

candidate for experiments in VREE. In the BDT, there are blocks that can be modelled as

objects for agents to manipulate through affordances and there are gaze targets to which

agents can attend for the necessary information to perform their tasks.

To accommodate all the block design’s physical properties, I defined two object types in

VREE. The first type, Block, was used to represent the blocks, and the second type, Design,

was used to represent a space for displaying the design to be replicated.

The environment for BDT experiments in VREE was set up as follows:

1. Each block had the name of the upward face as its internal state. See Figure 3.15 for

a description of this naming convention.

2. The agent’s hand was simulated by an internal state variable, HandContents, that
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FU FR FD FL CW CCW

W1 R3 NE W3 NW W2 W4

W2 NE R4 SE W4 W3 W1

W3 W1 SE R1 SW W4 W2

W4 NW W2 SW R2 W1 W3

R1 W3 SW R3 SE R2 R4

R2 SW W4 NW R4 R3 R1

R3 R1 NW W1 NE R4 R2

R4 SE R2 NE W2 R1 R3

NE R4 R3 W2 W1 SE NW

SE W2 R1 R4 W3 SW NE

SW W4 W3 R2 R1 NW SE

NW R2 W1 W4 R3 NE SW

NE NW

SE SW

W1-W4 R1-R4

FU Flip Up

FR Flip Right

FD Flip Down

FL Flip Left

CW Clockwise

CCW Conter Clockwise

Figure 3.15: The internal representation used to store block states and transitions for the

block design task.

could either be empty or contain a reference to the block currently being held by the

agent.

3. The design was represented in the environment with a Design object whose internal

state held the size and an image of the design. To make perception easier, the design

image was pre-segmented into blocks (through the salience affordance) and the image

on each block’s face was also stored in the internal state.

4. The agent’s long term memory contained information about the location in the en-

vironment from which blocks could be picked, also known as the block bank, and

also the location where blocks could be placed for construction. To further help with

properly aligning the blocks during assembly, the location of the construction area

was broken up into cells.

5. A symbolic model of a block was also stored in long term memory. This model

provided a description of each of the block faces and the transitions between them. See

Appendix B for a visual representation of this model and associated state transitions.

6. There were ten affordances in the environment to allow the agent to manipulate and

move blocks around. See Table 3.1 for a full listing of all these affordances.
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Table 3.1: All 10 affordances used in the block design environment for VREE

Affordance Description conditions

Pick Block

from block

bank

Picks a block from the block bank and puts it

in the “hand” of the agent. This affordance is

only active when the agent’s “hand” is

empty. There are sixteen instances of this

affordance, with one for each block.

¬Agent.BlockInHand

Drop block

to block

bank

Drops a block that was earlier picked back to

its original position in the black bank. This

affordance is only active when the agent has

a block in hand, which was possibly picked

through the “Pick block from block bank”

affordance. There are sixteen instances of

this affordance, with one for each block.

Agent.BlockInHand

Drop block

to

construction

area

Drops a block into the grid representing the

solution for a given design. There are sixteen

instances of this affordance, with one for

each grid cell.

∀xBlock(x)⇒
x.Location ̸=ConstructionSlot

Flip block

up

A single instance of this affordance flips the

current block in hand up.

Agent.BlockInHand

Flip block

down

A single instance of this affordance flips the

current block in hand up.

Agent.BlockInHand

Flip block

right

A single instance of this affordance flips the

current block in hand up.

Agent.BlockInHand

Flip block

left

A single instance of this affordance flips the

current block in hand up.

Agent.BlockInHand

Spin block

clockwise

A single instance of this affordance flips the

current block in hand up.

Agent.BlockInHand

Spin block

counter-

clockwise

A single instance of this affordance flips the

current block in hand up.

Agent.BlockInHand

3.5.1 Reasoning Model for Solving the BDT

A general template strategy was used in the block design model for reasoning in VREE.

This template strategy worked by laying out a main flow of reasoning, but left out two key

steps—one for selecting a block from the bank and another for finding the right face of the

block—that were later implemented as sub-strategies. When solving a block design puzzle,

reasoning proceeded by considering each cell in the design as an intermediate goal to be

solved. Thus, the model had agents working through any designs block by block.

Reasoning through a given puzzle with this model proceeded as follows:
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• The design, as presented in decomposed cells, is considered cell-by-cell from the

top-left to bottom-right.

• In each iteration, the agent fixes its attention on the current cell under consideration

as the intermediate goal and memorizes it in short-term memory.

• With the block in memory, the first sub-strategy is used to find the best block to pick

from the block bank, and the second sub-strategy, which runs after the first, is used

to find the right face for the block.

• Once the right face is found, the block is placed in the construction area to end the

intermediate goal.

This process is repeated for all cells of the design, row-by-row, from the top-left to the

right-bottom. A state machine representation of this general reasoning strategy is displayed

in Figure 3.16

Look at block in top 
left cell of design 
and remember it

Run block search
strategy

Run face search
strategy

Look at first block
from left on

next row

Look at next block
on the right of 
current block If all cells have

Been looked at

Finish

Start

if there is no cell
to the right of 
current cell

If there is a cell to the right of the current cell

Figure 3.16: A flow diagram constructed around the state machine representation of the

template strategy. Note the slots into which the two sub-strategies for block search and

face search are executed.

For the block search strategy, there were two different choices: the agent could pick

the next block from the bank, regardless of its face, or the agent could scan the block bank

for the block whose face best matches with the design’s cell under consideration. The first

choice was known as the sequential strategy, since the agent picked blocks according to the

sequence in which they were presented, and the second choice was known as the closest

looking strategy.

When it came to the strategy for finding the right face for the block, there were three

different choices for the sub-strategy. The first, which also happened to be the simplest,
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had the agent randomly flipping the block until the right face was found. The second took

advantage of imagery to speed up random flips by deciding the direction of the next flip

based on the colours of the current face. The final strategy, which did not use any imagery

at all, performed a breadth first search on the symbolic representation of the block in the

agent’s long term memory to find the optimal sequence of flips that reached right face from

the initial starting point.

Algorithm 3.2: Imagery search algorithm for finding the matching face to the cell

in memory.

ActionQueue←{Nothing,FlipU p,FlipRight}
BlockSpun← False
while ActionQueue is not empty do

pop nextAction from ActionQueue
perform nextAction
if face on block matches with cell in memory then

end loop

if current face has red and white ∧¬BlockSpun then
ActionQueue←{SpinClockwise,SpinkClockwise,SpinClockwise,
FlipU p,FlipRight,FlipRight,FlipRight}
BlockSpin← True

3.5.2 Walk-through of the Block Design Task Strategy

Here is a walk through of the steps taken by the agent to solve a given instance of the block

design task. For this walk-through, the agent is working with the sequential sub-strategy

for picking blocks and the imagery sub-strategy for selecting the right block face. The agent

works as follows:

1. The agent first places its gaze window on the top left cell of the design.

2. According to the sequential strategy, the agent picks the next available block from the

top left corner of the block bank. In the case of this particular run, the block happens

to have a white face.

3. The agent compares this face to what it has in short-term memory. This comparison,

however, fails.
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Figure 3.17: A view of the VREE environment for a few initial steps while solving a block

design item. The design to be replicated is on the left, the block bank is on the right, and

the final construction is in the centre. The blue square indicates the current gaze position

of the VREE agent.

4. The agent then flips the block up as required by the imagery strategy to reveal a red

and white face with the SE orientation which matches with the cell in short term

memory.

5. This process continues until all the cells are solved.

See Figure 3.17 for a visualization of the first few steps of this process.

3.5.3 Results

By combining the different sub-strategy stages, a total of six main strategies for reasoning

through the block design task were obtained—two for the first sub-strategy and three for

the second. These six strategies were further evaluated with the agent’s short-term memory

forgetfulness turned either on or off, leading to a total of 12 different experimental trials.

In each trial, eight different designs were evaluated and the results for these are shown in

Figures 3.18 and 3.19. Figure 3.19 shows all the trials in which forgetfulness was enabled,

placing emphasis on the variability in response times, whiles Figure 3.18 shows the trials
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without forgetfulness.
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Figure 3.18: The results of evaluating all six main strategies on eight BDT puzzles.

Figure 3.19: The results of evaluating all six main strategies on eight BDT puzzles with

forgetfulness. Notice the variability in response times for the best and worst performing

strategies.

3.5.4 Discussion

When considered in their composite form, the best performing sub-strategy pair in both

experimental setups was the sequential block search and depth first face search combi-

nation. On the other hand, the consistent worst performing pair was the closest looking

block search and random face search combination. This observation was due to how the

different strategies spent their time. The sequential block search always spent a single
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time step, whereas the closest looking search strategy required extra steps to search for the

right blocks. This search ultimately led to the closest looking strategy being slower than

sequential.

On the face search strategies, the best performing was the depth first search. This

strategy being purely symbolic was guaranteed to be optimal every time, meaning the

fewest block flips will always be taken to reach the correct face. Conversely, the worst

performing strategy was the random search which was uninformed and flipped the block

until the correct face was found. The inefficiency of the random face search was even more

apparent when the experiments involving forgetfulness were analysed. With forgetful

random search in place, the variance in the number of steps taken was wide, making the

random search strategy’s performance significantly worse when compared to the other

forgetful random search strategies.

Overall, the imagery based strategies (those consisting closest looking and imagery

search) did not perform as well as their symbolic counterparts (those consisting sequential

and depth search). But, given that imagery search operations were more informed, they

performed better than random search.

Given that VREE was human inspired, it is worth asking if these strategies exhibited

could be used by humans. We may not know how humans may be reasoning through the

block design task, but from analyses of human performance, it can be seen that people

exhibit diverse strategies which could be influenced by several factors. Some people may

be influenced by the gestalt figures that the design exposes, others may work through the

task by breaking them into segments (like going row-wise or column-wise). Also, some

people may take in the design as a holistic piece while working through the test. With

VREE on the BDT, the strategies employed always split the design out into its individual

block components and solved the problems in a block-by-block fashion (according to the

selected sub-strategies).

Some similarities already exist in certain human strategy patterns and those exhibited

in VREE’s BDT solver. For example, concerning block segmentation, it has already been

studied that people generally perform better on the BDT when designs are pre segmented

(Stewart et al., 2009). And also, how people distribute their attention and their preference
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to spatial placements affects their performance (see Cha et al., 2020; Rudolf Burggraaf and

van der Geest, 2016; and Chapter 6 of this Dissertation).

The takeaway here is that, regardless of the differences between how VREE agents

solve the BDT (in rigid a fixed manner) and how humans do (in a fluid and adaptive

manner), systems like VREE still form a solid base on which experiments that involve

human performances on tasks like the BDT, where attention and motor actions play an

active role in reasoning, can be studied.
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CHAPTER 4

Synthesizing Strategies for the Abstract Reasoning Corpus

Some cognitive scientists have been studying the idea that, as humans, we build a repertoire

of strategies from which we select the best candidates for solving problems we face (see

Marewski and Link, 2014). This, however, brings up another question: How exactly are these

strategies represented?. Simon and Newell (1971) discuss extensively how human problem-

solving and strategies can be expressed in information processing terms as computer

programs.

In this chapter, I discuss work performed towards building visual reasoning systems

that form their own strategies when faced with novel tasks. These strategies are represented

as programs in a domain specific language built for reasoning about visual tasks. I relied

on the Abstract Reasoning Corpus (ARC) as a task domain because of its amenability to

program synthesis techniques.

This work was in direct continuation to the experiments discussed in Chapter 3. With

the sufficiency work in the previous chapter exploring hand-coded strategies, here I will

delve into machine generated strategies for ARC tasks.

4.1 The Abstract Reasoning Task

Formally, an ARC task, T , that has n training items and m tests items can be defined as:

T =
{
⟨It

1,O
t
1⟩, . . . ,⟨It

n,O
t
n⟩; Ie

1, . . . , I
e
m

}
where It

and Ot
are input and output training grids, and Ie

represents a test input

grid for which the solver must provide an output. In the case of publicly available ARC

tasks, the solutions, Oe
i , for all test inputs, Ie

i , are provided to help developers test solving

techniques. Thus, in the case of items in the public set, a task, T , can in turn be defined as:

T =
{
⟨It

1,O
t
1⟩, . . . ,⟨It

n,O
t
n⟩;⟨Ie

1,O
e
1⟩, . . . ,⟨Ie

m,O
e
m⟩
}
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4.2 Visual Imagery Reasoning Language

My approach to solving items on the ARC was based on the tried and tested approach of

performing program synthesis in a domain specific language (DSL) designed to only solve

problems in a given task domain.For the work described in this dissertation—modelling

studying visual reasoning in selected standardized intelligence tests—I developed a domain

specific language, named Visual Imagery Reasoning Language (VIMRL) to form the basis

of all my program synthesis experiments.

As an imperative style language, VIMRL was designed around imagery operations, and

built specifically for reasoning about visual tasks. Instead of relying on control instructions,

VIMRL placed emphasis on the sequence of instructions to control the state of a program

during execution. Values in VIMRL programs could be variable or literal, and they always

had a fixed data type. VIMRL operations consumed these values as arguments for their

internal computation, and in turn returned values that could be assigned to variables. Vari-

ables were only created when they are assigned to. The grammar for VIMRL is displayed

in Table 4.1.

4.2.1 Generating ARC Strategies with VIMRL

For solving ARC tasks, a VIMRL based solver searched a space of potential programs for

ones that were capable of solving items from a task’s training items. A program that

performed well on these training items was most likely to solve the test items from the task.

When given an ARC task, T =
{
⟨It

1,O
t
1⟩, . . . ,⟨It

n,O
t
n⟩; Ie

1, . . . , I
e
m

}
, the solver searched a

space of VIMRL programs for a candidate program, y = ϕ(x), where x was the input grid

and y was the predicted output grid. For a program to be considered as a viable candidate

solution, it had to satisfy:

(
∑

n
i=1 λ (ϕ(It

i ),O
t
i)

n > α

)
, where λ (x,y) =


1 x = y

0
and, α , was a

threshold value within which the agent had to be accurate. Thus, a candidate program

would only be selected if it solved enough items in a task’s training items with an accuracy

higher than the value of α .

In solving ARC tasks, values in VIMRL could assume one of 6 types. They could either

be typed as image, object, color, number, list or grid values. The actual nature and
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Table 4.1: Grammar for the Visual Imagery Reasoning Language-I (VIMRL). These also

double as production rules for generating code during program synthesis.

⟨instruction⟩ ::= ⟨assignment⟩
| ⟨operation⟩

⟨assignment⟩ ::= ⟨identifier⟩ ‘=’ ⟨operation⟩

⟨operation⟩ ::= ⟨identifier⟩ ‘(’ ⟨arguments⟩ ‘)’

⟨arguments⟩ ::= ⟨argument⟩
| ⟨arguments⟩ ‘,’ ⟨argument⟩

⟨argument⟩ ::= ⟨identifier⟩
| ⟨number⟩
| ⟨operation⟩

⟨number⟩ ::= (‘-’)?[0−9]+

⟨identifier⟩ ::= [a− zA−Z][a− zA−Z0−9]∗

the data structures backing these data types were determined by the interpreter of the

underlying Python language in which VIMRL programs were executed.

Values typed as imagewere used to represent grids from the ARC task. An image typed

value had a fixed number of rows and columns, and each cell of the grid (also considerable

as a pixel of the image) held a symbol valued between -1 and 9. The symbols 0 through 9

corresponded with symbols from ARC tasks, while the -1 symbol was used by VIMRL to

represent transparent sections in images.

Symbols stored in grid cells had the color type. Internally, the color type was repre-

sented as an integer, and its values were passed as arguments to operations that required

colour information. For operations that returned or consumed actual numerical values,

like when counting, the number type was more appropriate since that could represent a

wider range of values.

The object type was for sections of grids that were isolated to represent individual

“objects”. Any object value internally contained an image typed value representing the
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object’s grid, and two number typed values for the top-left row and column coordinates of

the original image from which the object was isolated. Segmentation operations used this

type to represent any objects that were extracted. Typically, values of object type were

dealt with in groups represented by the list type. Objects could be arbitrarily shaped,

and in such cases a colour value of -1 was used for cells meant to be transparent.

Some tasks in the ARC had grids whose images also depicted grids (for example, see

Figure 2.7(c)). I referred to these as “grid of grids” 1. Cells of these “grid of grids” could

either contain a single solid colour, or they could also contain an entire image. To effectively

deal with tasks that had such grids, I incorporated VIMRL values that were typed as grid.

Every grid typed value contained information about the number of rows and columns in

a grid, the image stored in each cell, as well as, the grid’s outline colour.

4.2.2 Execution of VIMRL Programs

A VIMRL program under execution had the following state:

1. The set of all variables that had been defined throughout the program’s lifetime.

2. A related set of all the values associated with the defined variables.

3. The current line of instruction being executed.

4. An error state flag, which was set to true whenever an operation resulted in an error.

Whenever a program was running, two main levels of instructions could be executed.

I named these low-level and high-level instructions. Low level instructions in VIMRL

performed simple operations, and any arguments (operands) required by the operation had

to be explicitly specified. Conversely, operations performed through high-level instructions

had the opportunity to analyse all the training items from the task being solved to determine

any desired characteristics that could be exploited to solve a task item through a local search.

High level operations could take a single explicit argument, which was typically the image

being processed or a derivative of it (such as a list of objects extracted from the image).

1From this point onward, the terminology around grids in this dissertation may appear a bit confusing

when referring to ARC task items. To keep things simple, unless explicitly specified, the term image will refer

to any of the input and outputs of ARC tasks items, or any segments of those inputs and outputs that are

extracted as objects, while the term grid will refer to the concept of “grid of grids” introduced here.
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Local searches executed by high level operations could fail. Failure typically occurred

because certain characteristics required by the operation were not available in the images.

Whenever a local search failed, the program was put into an error state and the execution of

any subsequent instructions was aborted. In the context of a broader program search (when

the solver is trying to solve a given task) failures can be to taken advantage of to prune

out programs that were not going to yield valid solutions. Because the error flag was used

as a signal in most of the search algorithms, high level operations performed preliminary

checks, which caused instructions to fail fast if they had to, preventing precious time from

being spent on invalid inputs.

In addition to the two main categories of operations, I added the ability to derive

mapped operations. These operations were created from existing low level operations that

had a single image input and a single image output. As their name suggests, these mapped

operations were built around a mapping function—akin to the high-order map procedure

found in most parallel and functional programming environments—to compose low level

operations to operate on multiple items at a time. Inputs to mapped operations were of the

list type, and they equally always returned list typed outputs. Any low level operation

that took a single image typed value as argument and equally returned a single image typed

value could produce a derived mapped function. Such operations were thus considered

mappable.

4.2.3 Details on VIMRL Instruction Types

Consider the tasks displayed in Figure 4.1 and the programs listed in Table 4.2. Each

program in Table 4.2 was produced as a possible VIMRL solution to a corresponding task

in Figure 4.1. Programs (a) through (c) each had a single instruction, and program (d) had

multiple lines of instructions.

Program (a) provided an example of a simple low level operation. Here, trim removed

any extra surrounding cells in the input image to create a bounding box around the depicted

object. The image section enclosed by the bounding box was returned as the final output.

Program (b) showed an example of a high level operation, attract. When executed,

attract used simple naive physics rules and simulations to solve the problem of objects
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(a) output = trim(input) (b) output = attract(input)

(c) output = recolor(input) (d)
enclosed = find_enclosed_patches(input)
recolored = recolor_objects(enclosed)
output = draw(input, recolored)

Table 4.2: VIMRL program listings for possible solutions to the ARC tasks displayed in

Figure 4.1

being attracted to each other. This internal search tried to find objects that remained stable,

those that moved, as well as the directions in which objects moved, when input and output

images were considered.

Just as with program (b), program (c) also employs a high level function. This time,

however, the internal search observed how colours were transformed between input and

output images to help solve tasks that involved colour changes.

Figure 4.1: Tasks for the programs displayed in Table 4.2.

Program (d) demonstrated how programs could be crafted with multiple instructions,

including mixing both high level and low level ones. With multiple instructions, com-

plications arose when a high level instruction was executed right after a low level one.

This was due to the fact that executing a high level instruction required an instance of the
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task’s training items to be analysed. And in the case where other instructions had already

executed, there was a possibility that the input images, Ie
, from the input-output pairs of

the tasks training items,

{
⟨It

1,O
t
1⟩, . . . ,⟨It

n,O
t
n⟩
}

, no longer corresponded with the current

execution state, considering the modifications prior operations may have already made.

To solve this problem, before any high level instruction was executed, all prior instruc-

tions issued were re-applied to the input-output training pairs to create a modified version

of the task.

This worked as follows: Consider the sequence of all instructions performed before a

high-level operation is executed as a partial program, ϕ ′(x), then generate a modified task,

T ′, with training items,

{
⟨I′t1 ,O′t1⟩, . . . ,⟨I′tn ,O′tn⟩

}
, such that ∀i∈{1,...,n}⟨I′ti ,O′ti ⟩→ ⟨ϕ ′(It

i ),ϕ
′(Ot

i)⟩.

This modified task, T ′, can be passed to the high level operation as an intermediate version

of the task that is representative of all prior operations.

4.2.4 A Walk-through of High Level Function Execution

To further illustrate how partial programs modified a task’s training items before they were

analysed by high level instructions, consider the programs from cells (c) and (d) of Table

4.2 (which were solutions for their respective tasks in Figure 4.1). As shown earlier, the

program in cell (c) used a single call to a high level function, recolor, which learned the

rules by which colours in an image were transformed, to solve the task in Figure 4.1 (c).

A similar colour changing operation, recolor_objects was used in Program (d). But

before this operation was ever executed, find_enclosed_patches operation would have

already been executed. At this point, the input being passed for recolouring was no longer

be representative of the input image. Instead of a full image, it was instead be a list

of objects extracted by the find_enclosed_patches. To make it possible for the call to

recolor_objects to access the correctly typed training items, a modified task would be

generated, as demonstrated in Figure 4.2.

From the walk-through illustration (Figure 4.2) we observe that the initial state had

a single variable, input, with the input image of the test item as its value. The first

instruction, enclosed = find_enclosed_patches(input), analysed the input image and

extracted all patches of the grid’s image that were enclosed within the green lines. In the
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input enclosed=find_enclosed_patches(input)

input enclosed

recolored=recolor_objects(enclosed)

input enclosed recolored

output=draw(input, recolored)

enclosed recolored outputinput

1

2

3

0

Initial State

Modified task for recoloring.

Figure 4.2: A walkthrough of the execution of Program (d) from Table 4.2 on the task from

Figure 4.1 (d). On the left side of the image, each box shows a time step in the execution

of the program. The instruction executed is on the top of each box, and the bottom of each

box shows the state of all variables available in the runtime environment. The left section

shows the modified task passed to the recolor_objects operation. For each task item, the

top section shows the original task, and the bottom section shows the list of objects passed

on to the recolor_objects operation.

case of this particular example, the call to find_enclosed_patches returned a list value

with 8 objects and their locations.

The next instruction, recolor_objects, which was a high-level function, took this list

of objects as its only explicit argument. In addition to this list, the recolor_objects

function also received a copy of the task, a copy that had already been modified to reflect

any changes the earlier call to find_enclosed_patchesmay have made to the input image.

To build this modified task, the partial program, which contained only a single call to

find_enclosed_patches, was executed on all the inputs and output images of the task.

In the case of this example, when the partial program was executed on the inputs and

outputs of the training set, the corresponding image (input or output) in the task was

replaced with the value associated with the value of the enclosed variable (see Figure 4.2).
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Table 4.3: A list of selected ARC operations and their assumed core knowledge priors.

The enclosed variable was chosen as the replacement value because the recolor_objects

operation receives it as an argument during execution.

It is also worth noting that in this case, enclosed was of a list type, which led to a

situation in which all the training images (input and output) were replaced with lists. This

did not cause any problems because the recolor_object operation required a list typed

value. In its operation for this particular task, it compared the lists of objects in the input

and outputs of the modified task’s items to detect that everything coloured black (0) was

switched to yellow (4).

After the execution of the recolor_objects operation, the draw operation was finally

used to paint all the recoloured objects back to the input grid, and the results were assigned

to the output variable as a solution to the task.

4.3 Operations for Reasoning about the ARC

In all, there were 20 high level, 56 low-level, and 29 mappable operations available to

VIMRL for solving ARC problems. This gave a total of 105 operations. The internal

implementation of all these operations were inspired by the core knowledge priors (as

discussed in Section 2.5.4.2) suggested for the ARC. Moreover, most of these operations

were also chosen because of similarities and common themes that were observed in tasks

from the public ARC dataset. A sampling of operations and the core priors by which they

may likely be operating are listed in Table 4.3, with details in Appendix A.

All operations designed for solving ARC tasks with VIMRL were put together only after
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observing the 400 training tasks from the public ARC dataset. I decided not to consider

any tasks from the evaluation section in order to give me a better basis for evaluating how

well concepts between tasks in the evaluation and training sections were separated.

4.4 Overview of Selected Operations

Before explaining how the different search experiments were performed, I intend to use

this section of the dissertation to provide some details on how a few selected operations

worked internally. Although this section explains only four operations out of possibly 76

(if we choose to ignore the derived mappable operations) the ideas around their implemen-

tation could easily be transferred to other operations. In this section, I will be providing

details on the solve and connect_pixels operations, which were high level ones; and the

find_eclosed_patches and self_scale operations, which were low level ones. For brief

summaries on how these and all the operations work, see Appendix A.

4.4.1 The self_scale Low Level Operation

The self_scale operation was one of the simplest operations implemented for VIMRL.

It took two input images a and b, with which it produced an output whose size was

determined by scaling a’s dimensions (in both axes) by factors of b’s dimensions (in corre-

sponding axes to a’s) and every corresponding scaled pixel from the original input image,

a, was replaced by the entire image in b.

Figure 4.3: Two tasks from the ARC that make use of the self_scale function. (a):
007bbfb7; (b): cce03e0d.

Considering the tasks in Figure 4.3. Task (a) represents a straight forward use of the

self_scale operation. Here, the task’s input image was passed as both parameters to the

operation, essentially causing the image to scale itself2, while replacing the pixels scaled in

2This operation was named self_scale because its original use case was for situations in which images

scaled themselves, like in Figure 4.3 (a). However, through search, the situation in Figure 4.3 (b) was discovered.
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the output pixels with its unscaled self. When Figure 4.3(b) is considered, however, a much

more complex case, where the input pixels were initially filtered to remove some colours,

before scaling was applied, to ensure the final image had the original unfiltered image tiled

in the pattern of the filtered image. VIMRL programs that solved both cases are listed in

Table 4.4.

Table 4.4: Listings for VIMRL programs that solve tasks in Figure 4.3

(a) output = self_scale(input, input) (b) var1 = filter_color_pass(input, 2)
var2 = self_scale(var1, input)

4.4.2 The find_enclosed_patches Low Level Operation

Some tasks in ARC required solvers to reason about arbitrarily shaped patches. For ex-

ample, the task in Figure 4.1 (d) required a solver to extract rectangular shaped patches

bordered by “green” cells. To find enclosed patches, the operation cycled through all

colours available in the input image, and in each cycle assumed the active colour to be the

border colour. A depth first search in which individual cells were treated as search nodes

extracted all patches that were enclosed by the active border colour for the cycle. At the

end of all cycles, all enclosed patches isolated were returned. For patches that were not

perfect rectangles, the areas that either formed the borders of the patch or were outside the

enclosed regions were given a cell value of -1 to indicate their transparency.

4.4.3 The solve High Level Operation

The solve operation took as input, a list of same sized images and found the rules by

which these inputs could be combined into a single same sized image. Inputs to solve

came in the form of list typed values that were intended for storing lists of objects. To

find the relationship between input images and the output, solve used a simple multi-layer

perceptron to learn the spatial relationships between the image pixels. Because the solve

operation was a high level one, it had the opportunity to use the task’s training images as

a basis to train this internal neural network.

As a demonstration of how the solve function worked, consider the task in Figure 4.4.
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Figure 4.4: Task e999362f0 from the Abstract Reasoning Corpus.

This task was solved with the VIMRL program listed in Table 4.5. In this program, the

get_grid operation extracted a grid typed value containing the “grid of grid” observed in

the input. Then, the individual cells of this grid value were further extracted as a list of

objects to be passed on to the solve function.

Table 4.5: Listing for a possible VIMRL solution to the task described in Figure 4.4

var1 = get_grid(input)
var2 = get_grid_cells(var1)
output = solve(var2)

Once passed to the solve operation, an internal local search to find how pixels were

transformed was executed. Because the solve operation expects a list value, the ARC

task’s training items were all converted to lists through the partial program of already

executed instructions (see Section 4.2.3). Pixels from the ARC item’s training were then

used to construct a new data set for training the neural network. This new data set was

constructed as follows:

• For each object in the input list, iterate over each pixel in the object’s image grid.

• Given that each grid is of the same size as the output grid, construct a single training

record for the neural network by considering each pixel on the output as the neural

network’s output and the corresponding pixels on each cell of the grid’s images as

the neural network’s input vector.
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With the dataset constructed, a simple feed forward neural network with three layers

and 5 hidden nodes on each layer was prepared for the number of inputs and a single

output. This neural network was trained till convergence, after which the network could

be used to predict the individual pixels of the output image (see Figure 4.5.) If the network

failed to converge, the error flag was set and the operation failed.

Figure 4.5: A visual demonstration of how data items from tasks are converted into the

dataset for the neural network.

4.4.4 Title connect_pixels High Level Operation

The connect_pixels operation connected pixels in an image with simple line segments.

As a high level operation, it worked by analysing the training items to determine the

underlying rules by which connections were made in the training items. Connections

could either be horizontal, vertical, or diagonal (always with a gradient of 1). See Figure

4.6 for an example of a task whose solution involves the connect_pixels operation.

Figure 4.6: A sample task for demonstrating the connect_pixels operation

When presented with an input, the connect_pixels operation first attempted to find
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isolated pixels in the input images, then it checked for connections between these isolated

pixels in the output images. If any connected pixels were found, the directions of the

connections (diagonal, vertical, or horizontal), the colours of the connecting and connected

pixels, and also the order of connections were then checked. If no connected pixels were

found, then the error flag was set and the operation terminated.

Even when connected pixels were found, the final behaviour of the operation was

decided only if the connection rule was consistent for all the task’s training items.

For a walk-through of this operation, consider the program listed in Table 4.6. This

program offered a straight forward call to the connect pixels operation to solve the task

presented in Figure 4.6. The task had two training items and a single test item.

Table 4.6: Listing for a possible VIMRL solution to the task described in Figure 4.4

output = connect_pixels(input)

When presented with the test item, the connect_pixels operation performed a search

on the training items. From the search, it was detected that isolated pixels on these items

could be connected such that pixels sharing a common row or column that were also of the

same colour were linked. When it came to ordering the connections, the rule for this task

was that horizontal connections were established before vertical ones.

4.5 Synthesizing VIMRL Strategies for ARC Tasks

ARC strategies were synthesized through a search process that had the goal of finding

programs that solved a given number of items from the training section of any given ARC

task. I broke the search algorithm’s design down into the following three main components:

1. Exploration: Successor generation and node pruning.

2. Optimization: Selecting the least number of operations that provide the best results

possible.
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3. Selection: Deciding on what the final three programs will be for any search.

The final search algorithm could be described as follows:

Given an instance of the ARC task, T =
{
⟨It

1,O
t
1⟩, . . . ,⟨It

n,O
t
n⟩; Ie

0, . . . , I
e
m

}
, generate and col-

lect candidate programs, ϕi(x), which satisfy

(
∑

n
i=1 λ (ϕ(It

i ),O
t
i)

n > α

)
, where λ (x,y)=


1 x = y

0
,

for some threshold α > 0.

This general search algorithm was executed in an enumerative generate-execute-test cycle

until a given number of programs were found, or a pre-determined time-out was reached.

Whenever the search ended, regardless of the terminating conditions, the best perform-

ing programs were selected from the set of candidate programs whose score exceeded the

threshold, α . Because external ARC evaluators expected three predictions from a solver, a

selection algorithm was used to filter all but three of the candidate programs, to obtain the

three final proposals.

In my experiments, I investigated searching the space of VIMRL programs with either

classical tree search algorithms (where I looked at some informed and uninformed ap-

proaches involving with breadth-first and depth first traversal), and the Monte-Carlo Tree

Search algorithm. I implemented a couple of rules for pruning nodes that appeared likely

to fail. And I implemented two different selection algorithms, one that selects the three

smallest best performing programs, and another that selects the three best performing

programs with unique outputs.

4.5.1 Tree Traversal with Classic Search Algorithms

Exploration with the classical search algorithms always started from an empty program,

and with successor generators adding on one instruction at a time, potential programs were

built up for evaluation. There were two main approaches for generating successors: there

was a brute-force approach, which attempted to exhaustively find all possible programs,

and there was a stochastic approach that tried to probabilistically generate the next best

program.

When successors were generated through brute-force exploration, programs were gen-
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erated as if a production system was used to extensively evaluate VIMRL’s grammar to

produce all possible subsequent instructions when given the last instruction in a program.

But with the potential to add over 100 operations at each step, the branching factor grew

rapidly at every step of the search, which led to a quick exponential explosion in the search

space. Regardless of the space’s size, a full brute force search served as a good starting

point to help in understanding the dynamics of program generation in VIMRL.

When successors were stochastically generated, the probabilities of possible successor

nodes were computed from a corpus of hand-coded ground truth programs that were

generated for a subset of the 400 training tasks on the ARC. This corpus of hand coded pro-

grams was used to build models that had potential intrinsic knowledge on how operations

in VIMRL interacted with each other. During search, a fixed number of new instructions

were sampled from a set of all possible instructions, according to probability estimates

computed from the ground truth programs. Sampling a fixed number led to a constant

branching factor that could easily be managed during search.

4.5.2 General Structure of ARC Search

The classical search techniques used in this solver could be described by a standard frame-

work. Search always started with an initial node that contained an empty program, then

proceeded to build up the program one instruction at a time. The choice for subsequent

instructions were determined by the current successor generator algorithm (brute-force or

stochastic) and the direction of exploration was determined by the data type of the frontier

from which the next nodes to be expanded are selected. In accordance with standard tree

exploration, a queued frontier produced a breadth-first-search, where all successors of a

node were evaluated before progressing, and a stacked frontier produced a depth first

search, where the first successor of every node was evaluated until a terminal node was

reached before node evaluation backed up the search tree.

While exploring the search tree, programs at each node were evaluated on the training

items of any task being considered, and programs that had accuracy values greater than

the α threshold were kept as potential candidate programs. Search was terminated only

when a set number of candidate programs were produced or a pre-determined timeout
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period elapsed. Once the search ended, the best three programs were selected with one of

two selection algorithms.

The first of these algorithms selected the three smallest programs that had the highest

α score. Here, the size of a program was determined by the number of instructions it

contained, and the α score was determined by the number of test items the program

solved. This selection algorithm, inspired by Occam’s Razor, favoured simplicity. During

evaluation, however, it turned out that most of the programs that were selected produced

the same outputs.

In an attempt to increase the solver’s odds of performing better, I implemented a second

selection algorithm, which placed emphasis on producing outputs that were unique. This

algorithm first grouped all candidate programs by their outputs, and for each group

the smallest program was selected to form a new collection of candidate programs that

produced unique outputs. Of these new candidates, the top three smallest programs with

the highest scores were then selected as final outputs.

4.5.3 Estimating Probabilities for Stochastic Successor Generation

With VIMRL programs lacking branching instructions, it was possible to capture the com-

plete logical structure of any program in just the plain sequence of instructions. This

simplicity allowed me to apply a Markov Model, where the probability of an instruction

occurring at any point in the sequence was determined by its predecessor. To properly

account for the beginning and end of programs, I introduced special marker instructions,

which marked the beginning and end of programs, to be used only when computing

probabilities.

Instructions required arguments for which values had to be provided during successor

generation. Instead of directly sampling these arguments together with their instructions—

such as predicted through a joint probability distribution of instructions and arguments—

they were sampled separately after each instruction was selected. Thus, for any instruction,

the probability of an argument being assigned was based entirely on the instruction and

nothing else. During execution of search, after an instruction was selected, a fixed number

of random samples were taken for arguments according to distributions estimated from
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the corpus of ground truth programs.

Probability distributions for both the transitions of instructions and the relationships

between instructions and their arguments were estimated using either a Maximum A

Posteriori (MAP) estimation or a Maximum Likelihood Estimation (MLE) based on counts

from the ground truth program corpus. Details on how sampling worked follows.

4.5.3.1 Details on Sampling Instructions

Let A be a VIMRL program that contained N instructions. If each instruction was repre-

sented by a random variable Xi, then the set of A’s instructions could be represented by

the set {X1, . . . ,XN} and the set of values for Xi was the set of all instructions available to

the VIMRL system. The probability of each instruction Xi is conditioned on its predecessor

such that Xi = P(Xi|Xi−1), and the probabilities of X1 and XN are predicated on Xbegin and Xend

such that X1 = P(X1|Xbegin) and Xend = P(Xend |XN), where Xbegin and Xend were special marker

instructions marking the beginning and end of programs respectively.

4.5.3.2 Details on Sampling Arguments for Instructions

Values used as arguments in the VIMRL programs could either be literal or variable. When

it came to solving ARC tasks, literal were always color typed, and they were extracted from

grid cells. Because the choice of colours varied among tasks, any probabilities estimated

from literal colour values in the ground truth corpus were not expected to be reliable at

sampling time. As such, whenever an argument required a literal value, one of the colours

from the unique set of all colours in the current task was picked at random according to a

uniform distribution.

When it came to variable values, I considered them in two categories: the input variable

and other defined ones. The input variable was treated as a special case because it was the

entry point for most programs (almost always the first to be used).

The second category of variables I considered were those defined within a program.

Because the probabilities of these were not estimated at runtime, the actual values of

these variables could not be factored into probability estimates. Instead, the function that

yielded the value for the variable—a property that could be observed from just the list
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of instructions—was used. This concept can be referred to as sampling on the variable’s

provenance, since the originating function provided a concrete value on which variables

could be classified when determining proportions for probability estimates.

With three categories of arguments (literals, the special input variable, and other defined

variables) each with their own set of rules and limitations, I implemented a two-step

sampling system for arguments. In this system, the first step sampled whether the argument

was going to be one of either category (input, literal, or variable) before performing a

second category specific sampling. Probability distributions for sampling were separately

estimated for both tiers.

In the first tier, selecting the variable categorywas based on the distribution:

S = {∀category∈{input,literal,variable}P(V
c
i = category|X)}

Here, V c
i represented the category of the ith value in the operation’s arguments.

In the second tier, if the choice was for the input variable, there were no options to

sample because there was always a single input variable. In the case of a literal variable,

however, values were sampled from the set of all unique colours in the task according to

a uniform distribution. Finally, for variable values, sampling selected a candidate from

already defined variables according to a distribution constructed around the function

responsible for defining the variable. Details on how this variable sampling works is as

follows:

Let X be a random variable representing the current instruction, and let Vi represent

a random variable for the variable value required as the ith argument to the instruction.

Given that the ultimate value for Vi was expected to be of a given type, let the set U =

{u1, . . . ,uM} represent all values already defined in the program with the required type. If

we have a function originator(u), which takes a variable and returns the instruction that

originated it, then a value for Vi can be selected from the set, U , according the probability

Vi = P(originator(Vi)|X ∧ i). Figure 4.7 provides a flow diagram of the entire two-step

sampling flow.
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Figure 4.7: A flow diagram of how instructions and their arguments were sampled in a

multi-tier sequence.

4.5.4 Ground Truth Programs for Stochastic Search Methods

To build the probability models for stochastic successor generation, a total of 363 ground

truth VIMRL programs were produced for tasks in the ARC’s public training set. Some of

these programs were coded by hand, with a significant number of them obtained through

the brute-force search methods described in Section 4.5.1.

In all, there were a total of 363 ground truth programs, covering 177 unique ARC tasks.

Of these programs, 231 were found through search and the other 132 were produced by

hand. Search-found programs covered 115 unique tasks (corresponding with the solver’s

best performance) while hand coded programs covered 129 unique tasks, with 67 tasks

having shared solutions from both search and hand coding. On average, there were 2.1

ground truth programs per task, with a maximum case involving 4 programs per task,

and as far as program sizes went, there were between 1 and 7 instructions per program in

the ground truth. Programs were also well represented when the grid sizes of task items

were concerned. Figure 4.8 shows charts that demonstrate some key characteristics of the

ground truth dataset.

4.5.5 Applying Monte-Carlo Search Techniques

Apart from the traditional tree traversal algorithms, I also worked on searching the program

space with the Monte Carlo Tree Search (MCTS) algorithm (Browne et al., 2012). As its
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Figure 4.8: Characteristics of the ground truth dataset. The chart on the left shows the

distribution of operation occurrences across all programs in the ground truth dataset. The

upper-middle chart shows the distribution of the number of ground truth programs per

task. The upper-left chart shows the distribution of program sizes across the entire ground-

truth dataset. And the lower left chart shows the distribution of task sizes in the full dataset

versus those that have been solved in the ground truth dataset.
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name suggests, MCTS takes inspiration from Monte Carlo methods that are typically used

for the approximation of complex mathematical functions (Robert & Casella, 2005). MCTS

explores search spaces by sampling search nodes to build a tree that potentially leads to

an optimal decision. One advantage MCTS brings is its non-heuristic nature, which allows

it to work provided the problem’s rules are properly defined. The random exploration,

which is directed by a mathematical model that directs a balance between exploration and

exploitation, leads to a search that can be both efficient in nodes explored and in covering

nodes that are most likely to be successful.

The basic structure of the MCTS algorithm is defined as a cycle over four different

stages. These stages—selection, expansion, simulation and back propagation—can be

implemented differently to create flavours of the MCTS algorithm (Świechowski et al.,

2021). Selection is concerned with selecting the next best node to expand, expansion

expands any selected nodes, simulation evaluates the selected node to yield a reward, and

back propagation backs up the reward from the selected node to the root. The selection

and expansion sections together are known as the tree policy of an MCTS implementation,

and the simulation part is known as the default policy.

For the work in synthesizing state machines, I tried out the most widely implemented

tree policy for MCTS, the Upper Confidence Bounds applied for Trees (UCT) (Browne et al.,

2012; Kocsis et al., 2006; Kocsis & Szepesvári, 2006). When using UCT, the successor of

each explored node is evaluated through the default policy, at least once. UCT’s tree policy

selects nodes to be expanded according to the following formula:

argmax
ϕ ′∈G(ϕ)

Q(ϕ ′)

N(ϕ ′)
+ c

√
2lnN(ϕ)

N(ϕ ′)

Here, G() is a successor generator function, which takes a VIMRL programs and returns

a list of its successors using the same techniques as used in standard tree search (see Section

4.5.1). Q() returns the reward value for a given node, N() represents the number of times

a node has been visited, and ϕ represents a state machine. On the successor generator, G,

because MCTS inherently builds a tree as it explores the environment, in cases where a

stochastic successor generator was implemented, the children of a given node were sampled
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once and fixed throughout the rest of the search.

The default policy phase is where the selected search node is simulated to compute

a reward value. In game play scenarios, for which MCTS is mostly used, this phase of

the algorithm will have the entire game played out to the end, with rewards computed

accordingly.

For the purposes of synthesizing VIMRL programs, I tried out two different default

policies. The first policy simply evaluated the program at the current selected node and

returned the α value as the score, and my second policy went further by randomly adding

successors to a node, and evaluating it at each stage until a leaf node is reached (in the case

of the stochastic successor generator) or a pre-defined depth is reached (in the case of the

default successor generator). Once a terminal node was reached, the best α score observed

was backed up. It is also worth noting that, any program that had an α score greater than

the search threshold was saved as a potential goal from which the best three would be

selected according to the selection algorithm in use.

4.5.6 Search Space Pruning and Optimization

Even when potential successors were stochastically sampled, the search was still expected

to grow. Although this inevitable explosion in the search could not be entirely prevented,

steps could be taken to ensure only meaningful programs were explored and expanded,

leading to a diminished search space.

For the work described in this dissertation, I considered three primary forms of node

pruning to control search space expansion. These techniques were: depth limiting, ref-

erence gaps, input repetition, pruning of logically equivalent programs, early program

evaluation.

4.5.6.1 Depth Limiting

My first attempt at search space management was to limit the maximum depth of search to a

fixed number of instructions per program. This step placed a hard limit on the entire search

space, making it finite. For a fewer number of instructions (up to about 2 instructions per

program), the entire search space of all programs could be covered without any changes to
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the search algorithm, given the number of operations currently in use.

4.5.6.2 Reference Gaps

Reference gaps were strict requirements enforced on programs to ensure that any variables

declared were used within a given number of instructions. For example, if search was re-

stricted to a reference gap of 2, then a variable defined must be used within two instructions

or the program violated the restriction. During search, any nodes representing programs

that failed to conform with the reference gap were pruned.

4.5.6.3 Logically Equivalent Programs

There were also cases where two programs had the same instructions, but were presented

in different sequences. These programs could be considered logically equivalent because

they produced the same final execution state and output. During search, because these

programs had instructions that were sequenced differently, they were treated as separated

distinct nodes. Executing these logically equivalent programs introduced inefficiencies in

search, especially when you consider that every logically equivalent program was further

expanded.

To prevent duplicated, logically equivalent programs from being executed multiple

times, I implemented a sorting algorithm that ensured all logically equivalent programs

were sequenced the same. This sorting algorithm involved a dependency tree in which

the locations of instructions that consumed variables were child nodes to the locations

of instructions that created the variables. When this tree was topologically sorted, the

sequence of instructions were re-ordered such that an instruction was used almost as soon

as it was defined. After sorting, all the variables were renamed through an enumeration

scheme to ensure that variables had the same name across all sorted programs. During

search, every search node was preemptively sorted before it was entered into search.

4.5.6.4 Early Program Evaluation

When evaluating VIMRL programs on ARC tasks, the last variable written to was con-

sidered as the final output of the task. This meant that a program’s output was to be
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considered valid for evaluation only when it was written as an image typed value. In some

cases, however, to prevent searching for extra programs, values that were typed as a list of

objects were rendered unto an empty input-sized image for evaluation. Because some tasks

in the ARC required objects to be manipulated and rendered back to input, this approach

pre-emptively caught some correct programs before any extra instructions were added on.

4.6 Implementation Details of VIMRL ARC Experiments

All search algorithms and techniques discussed in this chapter were implemented in the

Python programming language (Version 3.11; Van Rossum and Drake, 2009). For parsing

the ground truth programs, the python client for ANTLR4—ANother Tool for Language

Recognition— by Parr (2013) was leveraged to build a language parser. And finally, for han-

dling image data and implementing most of the functions underlying VIMRL’s operations,

I used the NumPy numerical computation library (Harris et al., 2020).

As already evident from earlier discussions in this chapter about optimizations (see

Section 4.5.6), managing the size of the search space was a major challenge. Even with

all the optimizations in place, a single computer system failed to keep up. Fortunately,

program searches for tasks in the ARC were independent of others. It was, thus, possible

to run searches in parallel to improve throughput.

Parallel searches were performed in two domains: directly on a single computing

device through python’s multiprocessing API to leverage multiple cores on the CPU and,

even more effectively, through an ad-hoc cluster of computer systems, each running the

aforementioned multiprocessing enabled client.

The ad-hoc cluster was based on plain consumer grade workstations connected over

the Internet. To keep the system’s development simple, all systems were configured to run

on the same version of the Fedora Server Operating System (version 35).

The backbone of the cluster was a self-hosted WireGuard VPN, to which all computer

systems participating in the cluster were connected. For the roles played by connected

systems, there was a central Redis server that stored a job queue of tasks to be processed

and kept track of results, there were publisher machines that managed that pushed tasks

unto the queue, the bulk of machines acted as workers that performed the actual search
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operation, and finally there was a single machine that provided a web based user inter-

face for performing cluster operations. The web portal allowed jobs to be scheduled and

provided a centralized destination for viewing results (which included the programs gen-

erated, outputs of all programs regardless of accuracy, timing information, and the final

accuracy scores).

Whenever an experiment was to be performed, the publisher machine put together a

file that listed all the tasks to be evaluated (using their hexadecimal identifiers), as well as a

pointer to the dataset from which the tasks could be found. For convenience, and to reduce

network traffic, as well as to simplify the software implementation, a copy of all datasets

was made available on each worker system. Workers were constantly connected to the

publisher through a blocking Publisher-Subscriber (Pubsub) link. This meant that as soon

as a job was placed on the queue, a random worker could pick it up and start executing it

immediately. Once a worker’s search was complete, it pushed its results back to the Redis

server and whenever all tasks in a job were complete, the publisher collated results and

updated the web portal.

Through this ad-hoc cluster I was able to improve search times, which in turn increased

my experimentation turnaround time. But, although this cluster worked well, I had a

few blocking challenges to resolve along the way. The first major issue I faced came from

software synchronization. As the number of workers increased, there were times I forgot

to update some of the workers, and this led to jobs having different tasks solved by workers

with different implementations of the search algorithm. I resolved this issue by requiring

each worker to pre-emptively self-update before executing search for tasks in a new job.

Another issue I had to deal with came from clients getting disconnected (for various

other reasons) before they completed and had the opportunity to submit results for any

jobs they were solving. To fix this issue, each task sent to a worker was given a timeout

duration, and whenever this timeout expired, the task was pushed back to the head of the

queue. Resolving connection issues was a major routine maintenance task I had to perform

because connections occasionally went down.

A final major issue I had to deal with came from the mismatched performance provided

by the different computer systems used as the workers. In dealing with this issue, I explored
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assigning weights to different systems such that the amount of time the machine was

expected to spend was scaled by its weight. With this solution, slower machines had the

opportunity to spend a longer time searching when compared to their faster counterparts.

The weights for the machines were arbitrarily assigned according to my subjective judgment

of the relative performance differences between the machines.

4.7 Experiments

I performed two experiments to evaluate the ability to solve ARC tasks by searching a

space of strategies specified as VIMRL programs. After producing a suite of ground

truth programs to verify the sufficiency of VIMRL for representing ARC strategies, the

first group of experiments were meant to explore how well the different tree traversal

algorithms worked, while the second group were meant to investigate how effective the

different techniques adopted for pruning and managing the search space’s size were.

4.7.1 Experiment I: Tree Traversal

For the tree traversal experimental runs, I varied parameters that drove the search, including

the choice of a tree traversal algorithm, successor generation algorithm, branching factor

(where applicable) and maximum search depth. The goal was to find the combination of

parameters that worked best according to the number of tasks solved from the public ARC

tasks.

Tree-traversal was handled by either a Breadth First Search, a Depth First Search, or a

Monte Carlo Tree Search exploration. Successor generation was as choice between a full

brute-force search, or a probabilistic sampler that relied on either a uniform distribution,

MLE estimated distributions, or MAP estimated distributions (see Section 4.5.3). In all

experiments involving stochastic methods of successor generation, I fixed the branching

factor to either 5 or 10 and kept the maximum depth of search between 3 and 10. All

experiments were executed with a timeout of 800 seconds per task on an ad-hoc computer

cluster with 22 worker nodes. Experiments reported in this dissertation were performed

on the publicly available ARC dataset.

Other than removing logically equivalent programs and early evaluation of some pro-
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grams, none of the pruning rules were activated for the trials in this experiment.

4.7.1.1 Results

Results for the best performing search runs are shown in Table 4.7. For these results, an

experimental run was considered to be the best if it had the highest recorded evaluation

score for a particular tree traversal and successor generator combination, while having the

lowest branching factor and the lowest maximum depth setting.

Table 4.7: Best results observed for the different forms of search traversal. For stochastic

methods, these were results taken over several experimental runs.

# Tree
Traversal

Successor
Generator

Branching
Factor Max. Depth Train Score Evaluation

Score

1 BFS Brute-Force - 3 106/400 44/400
2 BFS Uniform 5 5 34/400 9/400

3 BFS MLE 5 5 70/400 17/400

4 BFS MAP 5 5 46/400 9/400

5 DFS Brute-Force 3 3 46/400 12/400

6 DFS Brute-Force 5 5 31/400 12/400

7 MCTS Brute-Force 10 10 40/400 6/400

8 MCTS Uniform 10 10 36/400 6/400

9 MCTS MLE 5 10 42/400 6/400

10 MCTS MAP 5 10 36/400 6/400

4.7.1.2 Discussion

The best performing tree traversal combination (#1) was the breadth-first search, coupled

with a brute-force successor generator. Due to the high branching factor obtained from

expanding all possible successors, this search could only progress to a depth of 3 nodes,

leading to programs with a maximum size of 3 instructions. Even with a depth limit of

3, the entire space was hardly ever completely searched, with all unsuccessful searches

timing out.

When BFS is coupled with any of the stochastic successor generators, it does not perform

as well. The selective nature of picking successors led to a limited search of the larger tree.

When uniformly sampling successors, which was an uninformed strategy, the stochastic

generators got the worst results.

The only DFS results reported has it coupled with a Brute-Force search. Compared to
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the BFS implementation, it performed significantly worse, and this was expected. Searching

with a DFS approach was not bound to explore a wider range of programs. It was however

able to search deeper, although it never found any meaningful programs beyond a depth of

3. Nonetheless, it appeared test scores from the DFS search runs were both the same, due

to the programs being closer to the root of the search tree with either 1 or 2 instructions.

On the trials that relied on coupling stochastic successor generation with BFS, MAP

and MLE based distributions performed better. After all they were influenced by patterns

in the ground truth dataset in making their predictions, unlike the uniform distribution.

Interestingly, performance on MCTS search was close regardless of the successor gener-

ation algorithm. This could probably be due to how the MCTS algorithm inherently selects

nodes to expand. Also, all the results obtained on the evaluation data for MCTS were on

the same set of tasks.

(a) (b)

Figure 4.9: A task and its MCTS generated solution. Instructions shown in bold were

actually responsible for solving the problem. The others greyed out instructions had no

effect on the final solution.

On the size of programs, it was interesting to note that having larger programs did not

necessarily lead to successful programs. All across the stochastic search algorithms, the

longer programs were typically filled with dummy instructions that had no effect on the

actual logic of the program. For example, the program in Figure 4.9 (b) was generated by

MCTS to solve 4.9 (a). Although this particular program was 10 instructions long, only

4 of the instructions actually worked towards solving the problem. Here is what these

instructions did:

1. The first instruction finds all objects in the input image.
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2. The second instruction counts the number of objects found in the list of objects

obtained in item 1.

3. The third instruction, which is a high-level one that determines how numbers affect

the size of an image, creates an output image whose size is a fixed factor of the number

of objects.

4. The final instruction repeats the input image to fill the newly created output image.
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Figure 4.10: Function distribution

4.7.2 Experiment II: Pruning and Selection

In my second experiment, I investigated the effects of pruning rules and final result selection

on had on the final accuracy for the solver. For these experiments I ran the search with tree

traversal fixed to BFS and a brute-force successor generator working to a maximum depth

of 3 (in line with the best performing configuration from Experiment I).

Along with the fixed parameters, I varied the pruning rules, alternating whether re-

peated inputs were either enabled or not, while varying the reference gap between 0 (not

being enforced) and 1 through 3, I altered the program selection algorithm, choosing be-

tween either the unique program and smallest three best-scoring programs algorithms.

Because of the large search spaces involved, the logically equivalent and early execution

pruning rules were necessary if any of these experiments had to achieve a decent score.
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Considering all the fixed and varied parameters, there were a total of 16 unique configura-

tions in this experiment.

4.7.3 Results

Scores on the public ARC dataset’s training and evaluation tasks, as well as the total number

of nodes executed through the search, are displayed in Figure 4.11 for the 16 configurations

tested. Performance on training ranged from 106 out of 400 to 115, and on the evaluation

side, it ranged from 42 to 49, corresponding with a peak performance of 28.75% on training

and 11.25% on evaluation respectively.
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4.7.4 Discussion

Across the board, there were three best performing configurations when considering the

training set. These results were all from searches where a unique result was picked and

the repeated inputs pruning rule was not active. For the best performing configurations on

the test set, there were 2. These best performing configurations still used the unique result

picker, but had the repeated inputs pruning rule activated.

Overall, whenever the repeated inputs pruning rule was active, significantly fewer

nodes were evaluated. In fact, the fewest nodes were expanded whenever repeated inputs

were combined with a reference gap of 1. This was because with a reference gap of 1, a
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variable had to be used immediately it was defined, and several potential programs would

not meet that requirement. This aggressive pruning may not have been as effective, since

most of the runs configured with a reference gap of 1 performed worst when compared to

runs with similar configurations.

When it came to the final selection of outputs, the results show that picking a set of

unique programs was a better choice for a picker algorithm. Across the board, config-

urations that chose unique programs scored above 113/400 on training and 46/400 on

evaluation, whereas the best-3 picker peaked at 108/400 on training and 44/400 on evalu-

ation.

Figure 4.12: A sample task from the training section of the ARC

For an illustration of the kinds of choices both pickers made, consider the task displayed

in Figure 4.12. In this task, it appears the solver was expected to vertically repeat the input

image with a 3 pixel overlap. All input images were 3x6 pixels and all outputs were

3x9. The operations available to my solver could not have produced a valid program—

when considering one that solves all train items, including the test. There were, however,

operations that could solve some of the train items. Table 4.8 shows the three final choices

made by the two different pickers for this problem.

From the table, it is obvious how the best-3 picker honed in on choices that that scored

highest on the training items, although they were not able to make the right prediction for

the test item. All the choices made were programs that produced the same output and were

merely simple copies of each other with minor modifications. Allowing for a diversity of

strategies through the unique picker, however, saw final choices that scored on just a single

training item being selected to ultimately make the right prediction.
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Table 4.8: The sets of three programs generated by both the Unique picker and the Best 3

picker.

Unique Best 3

4.8 2022 ARCATHON Run

In addition to the results shared here, the best performing algorithm from Table 4.7 (#1)

was entered into the 2022 International ARCATHON competition, where it tied for 4th

place after solving 2 tasks from the hidden private test set. This competition was organized

by LAB42, a Swiss based AI research organization.

Submissions for the ARCATHON were sent to the LAB42 team as docker images that

were executed on n1-standard-4 virtual machines from the Google’s cloud platform.

These machines had access to 4 CPU cores and up to 15 GB of random access memory.

During evaluation, each submission had up to 9 hours to solve 100 tasks from the private

ARC dataset. Submissions that required GPUs were given up to 3 hours and access to an

NVIDIA T4. My submission executed solely on the CPU. Table 4.9 shows the competition’s

final leader board.

4.9 Conclusion

Generally, the ARC is considered a significantly challenging problem for AI systems. Its

limited training items and lack of language use, reduces the effectiveness or even the ability

of most current AI systems to solve this task. Regardless of this difficulty, program synthesis

approaches seem to be one of the ways to make meaningful progress in solving tasks on
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Table 4.9: Final leader board for the 2022 International ARCATHON Competition showing

the best entries. The entry from this dissertation is shown in boldface.

Text Country % of Tasks Solved Score Entries

pablo Switzerland 6% 0.94 5

Mirus Switzerland/Slovakia 3% 0.97 4

notXORdinary Denmark 3% 0.97 1

AIVAS USA 2% 0.98 3
MADIL France 2% 0.98 3

Zeroone France 1% 0.99 2

ARGA Canada 0% 1 7

the ARC.

The techniques described in this chapter was successful at solving tasks from the ARC

mainly because, in the best case, a space of potential domain specific programs was exhaus-

tively searched till ones that solved the task was found. This exhaustive search property,

however, acts against when it comes to solving a larger variety of ARC tasks. With ARC

tasks having varying concepts, a solver that searches exhaustively will require a large set

of operations, which in-turn makes search more expensive.

To cut back on this search cost, informed approaches that selectively search the space

of programs may be necessary. But, as the results from this chapter show, those did not

work as well. And that is mainly because informed approaches require knowledge to

allow discernment of what a better potential program is. Building this knowledge will

nonetheless require a full corpus of ground truth programs and effective algorithms that

can learn to generalize knowledge from those ground truth programs to any potential

unseen ARC tasks.
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CHAPTER 5

Exploring Strategy Differences on the Block Design Task

In continuing with the theme of synthesizing programs to represent strategies, the work

described in this chapter was centered on applying the program synthesis techniques

explored in Chapter 4 to the Block Design Task. I extended the language with new ways

of expressing control structures to allow for the representation of more fluid reasoning

techniques.

5.1 Extending VIMRL with Control Structures

For the work discussed in this chapter, I will be describing a space of programs that were

represented as state machines. In these programs, operations were grouped into states,

and transitions between these states controlled the program’s flow. It is worth noting that

using state machines for control flow made the language extremely expressive. With this

expressiveness came the challenge of large search spaces that were expensive to search.

Regardless of the limitation in the cost of search, I still considered the choice of state

machines since it allowed the transformation of VIMRL into a representation sufficient for

human-like fluid decision-making. After all, as humans we do not always reason through

tasks in a fixed sequence of steps; we tend to take in information about the task, and we

make decisions about our potential next steps by choosing from a set of potential options.

Throughout the rest of this chapter, I will explain the state machine representation for

programs and its associated language, which is an extension of VIMRL. Then, I will go on

to describe the different experiments I performed on the Block Design Task (Kohs, 1920)

towards applying this representation to a real world task.

5.2 An Overview of State Machines

State machines are a model of computation built around the interaction of distinct states,

directed by a transition function and an input alphabet. Whenever a state machine is

operated, there is a single active state, and based on the inputs received by the machine, this
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active state is switched according to the transition function. State machines are widely used

to describe and model the behaviour of complex systems. A commonly used specialization

of the state machine, in which there are a fixed number of states, is the finite state machine.

For a practical example of a state machine model, consider a simplified version of a car’s

trunk door. In simple terms, the door could either be open or closed. These two properties

represent the distinct states in our door model. Our door can only be open or closed at any

time, but can never be in both (closed and open) states at the same time. The actions we

can perform to switch the active state will be to press a button that opens the trunk door or

push the trunk door shut. These two actions can be considered as inputs to the machine.

We can visualize this simplified model as the state machine displayed in Figure 5.1.

open close

press button
push shut

push shut

press button

Figure 5.1: A state machine model for a simplified trunk door with two states and two

inputs. The circles represent the states and the arrows represent the transitions that take

place on specific actions.

We can take this model a step further by adding a state to represent a locked trunk door.

In this case, we will need additional actions for locking and unlocking the door. With this

extension, the new model will become as described in Figure 5.2.

open close locked

press button

turn key

push shut
push shut

press button

turn key

turn key

push shut

press button

Figure 5.2: An extended version of the state machine described in Figure 5.1. This extension

adds an extra state to represent a locked door and an extra input for locking and unlocking

the door.
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5.2.1 Formal Representation of State Machines

Formally, a state machine can be defined as: ϕ = (Σ,S,s0,δ ,F). Where Σ is the input

alphabet, S is the set of states, s0 is the initial state, which is a member of the set of states S,

F is a set of final states and δ is the transition function. The transition function is defined

over states and inputs, such that δ : S×Σ→ S.

The nature of the transition function makes the state machine either deterministic or

non-deterministic. Deterministic state machines have transition functions that provide

a one-to-one mapping. As such, an input will always switch the machine between two

specific states. In non-deterministic machines, an input alphabet could potentially switch

the machine from one into multiple states, and a final decision must be made through a

tie-breaking procedure.

In our simple trunk door model, our finite state machine will have three states: open,

close and locked. And there will also be three inputs: press button, push shut, and turn key.

5.2.2 Prior-work in Synthesizing State Machines

State machines are heavily utilized in automata-theory, a research area that has been

active since the very early days of computer science (e.g. see Minsky, 1967; Shannon and

McCarthy, 1956). Automata-theory also has a direct relationship with formal languages,

and formal languages form the basis of how we communicate with computers (Hopcroft

et al., 2006).

Biermann (1978) presented early work on the synthesis of state machines from sets of

input-output pairs. With foundations laid by Nerode (1958), who discussed how state

machines could be represented as a system of linear equations, Biermann’s synthesizer

took as input of a finite set of input-output pairs and a parameter k to synthesize a state-

machine. As expected, the input-output pairs provided information on the behaviour of the

system, and the k parameter determined how precisely the final synthesized state machine

characterized the underlying function of the input-output pairs. With lower values of k, the

machines tended to be non-deterministic and had fewer states. As k increased, however, the

number of states also increased and the machine became more deterministic. In some ways,

the parameter k could be considered as the number of degrees of freedom the synthesizer
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had; higher values of k led the synthesizer to overfit its input.

Several practical applications of state machine synthesis can be found in the field of

microelectronics. In the design of semiconductor chips, state machines may be used to

communicate how some of the operational logic on the chips are represented. Because of

this key role state machines play, efforts to build synthesizers that convert logic represented

in more descriptive higher level languages to state machines have been of great interest in

the field of microelectronics. Estrel (Berry, 2000) and Lustre (Halbwachs et al., 1991) are

both examples of higher level programming languages that have the capability to synthesize

their outputs to state machines. Both languages are modelled around the idea that data

flows through a system in the form of signals that other components need to respond to.

Another area in which state-machines play a role—much similar to what happens in this

work—is in the implementation of Non Player Characters (NPCs) in video games (Hy et al.,

2004). The behaviours of these characters, their animation, as well as, how they interact

with other characters are generally implemented through state machines. Although most

of these state machines are hand designed by the builders of the video games, some of

these can be built to self modify and dynamically adapt to other in game elements.

5.3 Modelling Reasoning with State Machines

In several ways, the state machines used for the work in this chapter fit into the formal

description provided in Section 5.2.1. The behaviour being modelled by these machines

were that of an agent reasoning through tasks in a virtual environment. Each state had

a list of instructions, in the form of a VIMRL program called the state script, which was

executed whenever the state was active. Instructions in these state scripts could create and

assign variables (similar to the process described in Section 4.2), which become globally

accessible to all other scripts, and can call agent specific operations (like getting an agent to

pay attention to an object) through a mechanism similar to a function call in a conventional

computer program. Transitions between states are triggered by conditional statements that

are defined on the variables found in the state scripts.

Formally, the state machine structure used for this work was defined as: ϕ = (S,s0,V,δ ).

Here, S was a set of program states, s0 was the initial program state, V was the set of
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variables assigned within the state scripts, and δ was the transition function for program

states. The state script for a given program state, si could also be represented as an ordered

set of instructions, si = {x1,x2, . . . ,xn‘}.

Transitions in the state machines were non-deterministic. Thus, in cases where a

condition had multiple potential target states, the ultimate state was selected at random.

With this, the transition function could be defined over states and variables as: δ : S×V →

P(S). The choice to have non-deterministic transitions was made to eliminate the extra

overhead incurred from ensuring that all conditions from a given state were mutually

exclusive during search.

A bulk of my work described in this chapter went into exploring the structure of state-

machine based search spaces and dealing with its related issues. It is worth noting that

using state machines for control flow made programs extremely expressive. With this

expressiveness came the challenge of larger search spaces that were expensive to search.

5.4 Integrating VIMRL and State Machines

As explained in Section 5.3, each state of the machine had a list of instructions, which

was expressed as a VIMRL program, and states could have transitions to other states that

were conditioned on boolean expressions defined on variables declared in the state scripts.

Conditional expressions for transitions were specified in a VIMRL subset that allowed the

definition of single boolean expressions. (See Table 5.1 for the grammar of this subset).

The design choice to limit instructions in state scripts to VIMRL and transitions to single

boolean expressions was made to ensure that the flow of logic in a state machine was driven

solely by transitions between states. Constructs from traditional programming languages,

like if statements could be implemented through states transitioning to other states, and

loops could be implemented with states transitioning unto themselves. These limitations

in language features also meant searches for scripts in machines could be conducted over

a smaller grammar.

For the purposes of executing state scripts, the VIMRL language itself remained the

same as described in Section 4.2. Operations invoked special actions defined in the task’s

environment (for example, the agent in a VREE environment). Also, how variable values
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were stored depended on the environment in which programs were executed. For example,

machines that were executed in VREE had their variables stored in the agent’s short-term

memory, and the values stored there were subject to any limitations of the storage medium

(such as simulated forgetfulness in short-term memory).

Table 5.1: Grammar for language used in specifying state operations.

Grammar for the language used in state scripts

⟨instruction⟩ ::= ⟨assignment⟩
| ⟨operation⟩

⟨assignment⟩ ::= ⟨identifier⟩ ‘=’ ( ⟨number⟩ | ⟨operation⟩ )

⟨operation⟩ ::= ⟨identifier⟩ ‘(’ ⟨arguments⟩ ‘)’

⟨arguments⟩ ::= ⟨argument⟩
| ⟨arguments⟩ ‘,’ ⟨argument⟩

⟨argument⟩ ::= ⟨identifier⟩
| ⟨number⟩
| ⟨operation⟩

⟨number⟩ ::= (‘-’)?[0−9]+ ⟨identifier⟩ ::= [a− zA−Z][a− zA−Z0−9]∗

Grammar for the language used in transition conditions

⟨condition⟩ ::= ‘not’ ⟨operation⟩
| ⟨operation⟩
| ⟨identifier⟩ ‘==’ ⟨identifier⟩
| ⟨identifier⟩ ‘!=’ ⟨identifier⟩
| ⟨identifier⟩ ‘>’ ⟨identifier⟩
| ⟨identifier⟩ ‘<’ ⟨identifier⟩
| ⟨identifier⟩ ‘>=’ ⟨identifier⟩
| ⟨identifier⟩ ‘<=’ ⟨identifier⟩
| ⟨condition⟩ ‘and’ ⟨condition⟩
| ⟨condition⟩ ‘or’ ⟨condition⟩
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5.5 Synthesizing State Machines

In line with other forms of synthesized programs, state machines were generated through

search. I investigated a suite of search algorithms that mainly employed an enumerative

style of program search. These algorithms proceeded in a continuous generate-and-test cycle,

where a state machine was generated according to a set of rules and evaluated against the

specifications at hand. Exploration of the program space occurred through tree traversal,

allowing for the use of traditional tree search algorithms, like breadth-first or depth-first

search.

At the barest minimum, a search algorithm exploring the space of state machine pro-

grams needed as part of its inputs, the list of all operations supported by the agent and a list

of any literal values the agent needed to be made aware of (for use as a form of knowledge

in long term memory, or as inputs to the program).

5.5.1 Exploring the Space of State Machines

For the purpose of synthesis, I considered any state machine as a tree node. Then, I

considered any duplicate of the machine with a single extra element as a successor (or

child) of the node. Specific elements that could be added to generate successors included

a new program state, a new instruction appended to the state script of any program state,

or a new transition between states. Using these rules, it was possible to explore the space

of state machines with conventional search algorithms.

Formally, searching the space of state machines started with a machine, ϕO, which

contained a single state, s0, that was considered to be the initial state. When ϕ0 was

expanded, its successors built on the state, s0, by extending the machine with extra elements.

For example, a successor machine of ϕ0 could be generated by adding another state, or by

adding instances of possible instructions to the state script of s0.

When implemented, this tree traversal technique led to large exploding search spaces.

Whenever a new machine was added, the potential to extend it with extra elements in-

creased the branching factor of the tree. For example, when there was just a single state in

a machine, successors that added operations only had the single state as an option. When

extra states were available, however, potential instructions for these multiple states had to
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be considered. This scenario repeated when considering instructions: assignment opera-

tions created variables that any subsequently generated instructions could consume. As

the number of variables in a machine increased, the possible combinations of operations

that could consume these variables also increased. This whole processes led to a branching

factor that grew exponentially with increasing tree depth.

With this issue of space explosion in mind, I experimented with four different strategies

for generating the successors when given machine during search. These were:

1. An unrestricted exploration of all possible machines, which led to a complete brute-

force search when combined with traditional tree traversal algorithms.

2. A heuristic enhanced exploration in which potentially faulty machines were pruned

from consideration in search.

3. A stochastic exploration, which relied on a probabilistic model estimated from a set

of ground truth programs in a similar task.

4. A version of stochastic exploration that used heuristics to remove any potentially

faulty machines.

5.5.2 Unrestricted exploration

Unrestricted exploration was an attempt to exhaustively generate all possible state machines

for a given task. It was a direct implementation of the tree traversal process described in

Section 5.5.1, without any modifications. Although ineffective at yielding solutions for

anything but the smallest problems, the exhaustive nature of this exploration provided a

great way to obtain some insights about the search space’s nature.

When exploring without restrictions, successors for a given machine could be generated

by the three different actions described below:

1. A successor could be generated by adding a single empty state to the machine.

2. For each state in the machine, a successor could be generated for each valid instruction

that was added to any of its state scripts. A valid instruction in this case was one whose
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operation had all the required arguments available in the state machine (either as

variables, or literals). In cases where multiple candidates for an operation’s arguments

existed, successors were generated for every unique combination of arguments.

3. For any two program states in the machine, a successor could be generated for each

valid transition between the two states. A valid transition in this case was one whose

conditional expression had all the required arguments available in the state machine.

Because transitions could start and end on the same program state (in the case of a self

transition for a loop), the two program states under consideration for this action could

be the same. Just as it was with operations, when multiple candidates existed for

a condition’s operation, successors were generated with transitions for each unique

candidate condition.

5.5.3 Heuristics for Improving Search

Exploring every possible state machine made the unrestricted search strategy impractical

for most problems, except for the very simple ones. One way to work around this problem

was to employ heuristics that cut off search nodes which were likely to reach faulty state

machines or ones that may not meet the task’s requirements. In an attempt to provide some

of these heuristics, I defined a couple of pruning rules for removing search nodes whose

machines met certain given criteria.

During search, anytime a state machine was generated, pruning rules were applied,

and machines that matched any of the pruning rules were promptly eliminated from the

search process. Removing faulty machines saved time in the evaluation of successors and

also prevented non-compliant nodes from getting expanded through search.

Algorithms that used these heuristics to improve search took as input an ordered list of

pruning rules, which implicitly provided a hierarchy that gave some rules priority over the

others. In all, there were six rules (single blank state, reversed machine, unreachable states,

one-way true conditions, executable machines, and reference gaps) by which machines

could be pruned in my experiment. The following sections describe these pruning rules.
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5.5.3.1 Single Blank State

This pruning rule ensured that a machine always had a maximum of one blank state (a

state with an empty state script) at a time. By pruning any nodes with machines that had

two blank states, extra blank states that contributed nothing to reasoning were avoided.

Having just a single blank state, however, provided an opportunity to grow the state

machine, through instructions added to this blank state, as search progressed.

✓ ✗

Figure 5.3: A depiction of state machines that has a single state (left) and a state machine

that has multiple empty states (right).

5.5.3.2 Reversed Machine

A reversed machine is one in which there were no transitions originating from the initial

state. Because the search algorithm tried to create every possible transition between states,

machines with such configurations were sometimes generated as successors. Whenever

executed, such a machine obviously stayed in the initial state throughout its execution,

making the other connected states useless.

Figure 5.4: A reversed machine in which a state transitions into the initial state.

5.5.3.3 Unreachable States

Just as with reversed machines, sometimes machines had states that could not be reached

during execution. This heuristic removed such machines, unless there was an empty,

single unreachable state. This exception for single, unreachable states was made to ensure

machines could be extended during search whenever a successor was generated to connect
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the single unreachable state to the rest of the machine.

Because of its definition, the Unreachable States heuristic could also prune nodes that were

candidates for the Reversed Machine heuristic. However, because the search for unreachable

states tested all states, instead of just the initial state, the Reversed Machine heuristic was

more efficient to execute in the specific case where the initial state was the only reachable

state. Since pruning rules were applied according to a hierarchy, it was therefore more

efficient to execute the reversed machine rule before the unreachable state rule.

Figure 5.5: A state machine with an unreachable cluster (existing in the dotted line).

5.5.3.4 One-way True Conditions

With machines transitioning on boolean expressions, sometimes the triggering condition

was a literal True value, or an expression that always evaluated to True. In such cases, it

was not necessary for a return transition to exist from a destination state with a similar,

always true condition. This situation created a cycle of true values that led to an implicit

infinite loop. Because of how this rule was defined, it had the potential to affect machines

that had self looped always true transitions.

5.5.3.5 Executable Machine

During search, when a transition was established between any two states, the order in

which variables were defined (in the source state) and accessed (in the target state) was

not verified. This sometimes caused transitions to originate from states that consumed

variables and end in the states that defined the variables, effectively reversing the order in

which a variable was defined and accessed. In such a situation the machine would not be
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executable, since accessing an undefined variable was bound to produce an error.

5.5.3.6 Reference Gaps

Given that state scripts in the machines were written in VIMRL, it was possible to apply

the reference gap pruning technique (see Section 4.5.6.2). This pruning rule ensured that

variables in states were referenced within a given number of instructions after they were

defined. Considering that state machines had scripts spread out over different states, for

variables defined in the tail end of a state’s script, checks were made within transitions

originating from the state or the list of instructions in connecting states.

5.5.3.7 Logically Equivalent Machines

Similar to reference gaps described above, logically equivalent programs, as discussed in

Section 4.5.6, could also be applied. With state machines, however, each state script was

first individually sorted, before variables were renamed, then the individual states and

their associated transitions were compared one-to-one to ascertain a match.

5.5.4 Stochastic Successor Generation

Even when the heuristics discussed were applied, running a search exhaustively ultimately

led to an explosion in search states. This made it difficult to find machines that could

represent complex reasoning strategies. Another way of exploring search spaces that

could limit this exponential growth was through a stochastic search processes. Here, only

successors that were likely to yield successful state machines were generated.

Because stochastic search was an informed process, a set of ground truth state machines

were manually defined for instances of sample problems in the task. These instances

were then used to generate a model of how state machines were typically constructed.

From these ground truth programs, a probability distribution of the number of states in a

machine, how transitions occurred between states, and how instructions for state scripts

were sequenced was estimated. During search, these probability distributions were then

sampled to generate just a limited number of potential successor nodes.

Stochastic successor generation worked in three phases, just like the unrestricted ver-
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sion. The only difference here involved generating only a fixed sample of probable succes-

sors instead of all possible ones. This way, search proceeded with samples taken in the first

phase for whether a state should be added, in the second phase for the instructions to be

added, and in the third first for transitions that should be established.

5.5.4.1 Sampling Successors that Added States

In the first phase of search, states were added to the machine. The probability of adding a

new state, s′, to an existing machine, ϕ , to increase the number of states in the machine to a

value k was the probability that a machine taken from the set of ground truth programs had

k or more states in its machine, P(ns > k), where ns represents the number of state machines.

Because every single machine in the ground-truth had at least one state, the probability

of adding a state to a blank machine—which was the root node—was always one. This

probability dropped to zero after the number of states in the synthesized machine exceeded

the maximum number of states from machines found in the ground truth dataset.

5.5.4.2 Sampling Successors that Added Operations

In the second phase, instructions were added to states in the machine. Here, for successor

nodes in which operations were added to states, candidate operations were modelled

as a Markov chain, such that the probability of adding an instruction xi is conditioned

on its preceding instruction xi−1, represented as P(xi|xi−1) (as also described in Section

4.5.3). The chain was initiated by a special opening instruction xopen, which represented

the beginning of the instruction list, and was similarly terminated by another special xclose

instruction. Transition probabilities for the instructions were computed from the ground

truth programs through maximum a posteriori (MAP) estimation. It must be noted that the

operations sampled at this stage were incomplete, since they did not have any arguments.

Similar to the work described in Section 4.5.3.2, arguments were sampled separately in a

bid to simplify the computation of probability estimates.
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5.5.4.3 Sampling Arguments for Operations

Arguments were sampled separately as part of the third phase. The value, vi, for the

ith argument of an operation x j was sampled from the probability distribution, P(vi|x j, i).

This distribution was also computed from the ground truth programs using maximum

a posteriori estimation. Values for arguments could be variables or literals. In the case

of literals, the probabilities were computed from actual values within the ground truth

programs.

For variables, the probabilities were based on the variable’s provenance (see Section

4.5.3.2). A variable’s provenance kept track of the operation from which the value of

a variable was assigned. Since the intrinsic value of variables were only meaningful at

runtime, estimating the probability that a particular argument was a variable did not

provide any extra information when a machine was not in execution. Instead of just the

fact that a variable existed as an argument, estimating the probabilities of variables defined

by the operation from which the variable got its value allowed for the selection of candidate

variables that were likely to contain the right kind of value.

5.5.4.4 Sampling Transitions between States

The probability of adding a transition between states during synthesis was equal to the

probability at which a transition existed between any two states in machines from the

ground truth dataset. This probability, P(transition), was computed from the dataset as:

P(transition) =
∑

M
i Ti

∑
M
i C(Si,2)+Si

, where M was the number of items in the dataset, T represented the number of transitions

in a state machine, and S represented the number of states in a state machine.

Whenever it was predicted that a transition could exist between any two arbitrary

states during synthesis, the condition governing the transition was also sampled from a

probability conditioned on the last instruction from the transition’s originating state script.

Conditions for transitions were sampled from P(c|xlast) where c was the condition on the

transition, and xlast was the last instruction of the originating state’s script. Each condition
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sampled could be considered as an operation, which needed arguments, and the sampling

mechanism used for operation arguments was also applied to the process of sampling

arguments for conditions (see previous section).

5.6 Experiments on Synthesizing Strategies for the Block Design Task

The experiments described in this section were concerned with the synthesis of state

machines for studying strategy differences in the block design task. Unlike earlier work

described in this dissertation (in Section 2.5.2) I eschewed imagery based representations

in favour of symbolic ones for the work described in this chapter. This choice was made in

favour of speeding up initial experimentation and reducing the extra complexity imagery

representations brought.

Also, due to this use of symbolic representations, the VREE environment (as described

in Section 3.3) could not be used for the experiments in this chapter. Instead, a simplified

version that equally relied on symbolic representations to convey information about objects

was built. In this simplified VREE instance, the concept of agents and objects remained, and

affordances still allowed agents to interact with objects, but the selective visual attention

mechanism was replaced with simple symbolic assignments.

5.6.1 Simplifying the Block Design Task

In addition to the changes in representations used for reasoning, the block design task was

also simplified in various ways to increase the feasibility of initial experiments. Most of

these simplifications involved combinations of reducing the task’s scale, and reducing the

degrees of freedom agents had to manipulate blocks. For instance, tasks could require

fewer blocks or the manipulation of blocks could be restricted to specific actions. The plan

for this phase of simplified task experiments was to find strategies for simpler related tasks

and gradually build up complexity until the full block design could be solved by completely

synthesized programs.

The first simplified task, which was also intended as the first test for program search,

was set up such that there was a single block in the block bank and a single block in the

design. Additionally, the block’s face in the block bank was selected to be the same as that
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on the design. In this particular configuration, the agent’s job was to only pick the block

from the block bank and place it in the construction area. I called this the single block task.

The second simplified task took the same approach as the first—there was a single block

in the construction area and a single block on the design. The difference here, however, was

that the design on the block was chosen such that a rotation over a single axis was enough

to find the face required by the design. I called this second task the single block single axis

task.

The third simplified task extended the second task by allowing multiple (two or more)

degrees of freedom on the blocks. Of course, a few constraints were put in place to ensure

the degrees of freedom were not direct complements of each other, such that blocks were

inadvertently limited to a single axis. I called this variant the single block multi axis task.

5.6.2 The Single Block Task

For the single block task, the search algorithm was set up to use a heuristic search, with

an evaluation function that compared the face of the block in the construction area to

the design. Because the task’s setup was symbolic, these faces were represented by their

symbolic variants (as shown in Figure 3.15).

The experimental environment was set up with three objects that represented the de-

sign, the construction area and the single block to be manipulated. Additionally, two

affordances, one for picking blocks and another for dropping blocks, were added to the

environment. For task specific operations, since the agent was not expected to perform

any other form of block manipulation, a single operation to simulate visual attention,

get_item(id), was added. The get_item(id) operation took the unique ID of an object in the

environment as an argument, and returned an instance of that object.

To make the agent aware of the objects it could potentially access through the get_item(id)

operation, the literals "block_1", "design", and "construction", which were the unique

identifiers of objects in the environment, were added as seed values to be used in the

search. Just as with the imagery based implementation of VREE, the two affordances

were also converted into operations, a f f ordances.PickU p(x) and a f f ordances.Drop(x). This

conversion led to a total of three operations over which the agent could search (see Sections
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3.3.3 and 3.3.4 for details on how affordances were used internally as operations).

5.6.3 The Single Block Single Axis Experiment

After running the single block experiment, I performed a slightly more complex, “single

block, single axis” variant of the experiment. In this variant, the task was still limited to a

single block, but instead of just picking and placing the block into the construction area,

the agent was expected to flip the block over a single axis in order to find a matching face.

This experiment was conducted in an environment similar to that of the single block

experiment, with the following changes:

• An additional affordance to allow the block to be flipped in just a single axis (for

example, a f f ordances. f lipright(x)) was introduced. It did not matter the direction in

which the flip occurred; the only requirement was that the face on the design and

that on the construction block should exist on the same axis of rotation.

• An additional literal value, "design", which referred to the ID of the design area was

added.

• An additional operation state_o f (x), which returned the state of any object x, was

added.

The evaluation function used for this task checked all face combinations to guarantee

the machine could solve any problem in the single axis task space. Since there are 4 faces

on any given axis of the block, the problem space always contained 4 possible problems.

As such, during search, the evaluation function run 16 instances of the problem for all the

possible face combinations between the block and design. By limiting the axis of rotation,

some problems became inherently invalid because the target face did not share an axis with

the initial face of the block.

5.6.4 The Single Block, Multiple Axes Experiment

In continuing with the theme of increasing complexity with every experiment, I moved on

to a “single block, multiple axes” variant of the block search experiments. Theoretically,
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the agent could be given up to six degrees of freedom to manipulate the block. Thus, the

goal of this subsequent experiment was to investigate strategies that were possible as the

agent’s ability to manipulate the blocks increased. For this experiment, there was still a

single block available, and the agent’s ability to manipulate blocks was constantly increased

as the experiment progressed. The environment for this experiment remained unchanged

from the previous case, except for the extra affordances that were added to improve the

agent’s ability to manipulate the blocks.

Depending on the number of axes required for a given phase of the experiment, the

environment was configured accordingly to have the same number of block manipulation

affordances. In the case where an agent had two degrees of freedom to manipulate the

block, two affordances for the corresponding selected axes were placed in the environment,

and so on. Also, for the special case of having two affordances in the environment, a

constraint was put in place to ensure that the two affordances were not direct opposites

of each other (for example, flipping left and right caused the block to remain on the same

axis), essentially limiting the block to be manipulated on a single axis.

5.7 Results for Strategy Search Experiments

After running searches for all the different BDT sub-tasks, some of the strategies obtained

are shown in Table 5.2. Results shown in this table were obtained from heuristic searches

with environments setup as described in the respective sections above. For the Single Block

task, the optimal result obtained is shown. For the other experiments, however, variations

that use different interesting strategies are also shown. Due to the ever-growing search

space (with respect to number of operations added) the single block, multi axes experiment

was successful up to only two degrees of freedom (out of a possible six).

5.8 Discussions

Except for the single block task, all other experiments yielded multiple solution strategies.

In the following sections, I will be discussing each of these solutions. Since the single block

task was extremely simple to solve, I will use its results to provide a walk-through of how

searching for state machines worked for most experiments described in this chapter.

124



Table 5.2: A sampling of state machines obtained for all experiments.

Experiment Sample Machines Obtained

Single Block

var0 = get_item("block_1")
affordances.pickup(var0)
affordances.drop(var0)

Single Block, Single

Axis

(a) (b)

var0 = get_item("block_1")
affordances.pickup(var0)
var1 = get_item("design")

affordances.flip_right(var0)

true   

true   

affordances.drop(var0)

state_of(var0)==state_of(var1)   

var0 = get_item("design")
var1 = get_item("block_1")
affordances.pickup(var1)

affordances.flip_right(var1)

true   

state_of(var0)!=state_of(var1)   

affordances.drop(var1)

state_of(var0)==state_of(var1)   

(c) (d)

var0 = get_item("block_1")
affordances.pickup(var0)

affordances.flip_right(var0)
var1 = get_item("design")

true   

true   

affordances.drop(var0)

state_of(var0)==state_of(var1)   

var0 = get_item("design")
var1 = get_item("block_1")

affordances.pickup(var1)
affordances.flip_right(var1)
affordances.drop(var1)

true   

state_of(var0)!=state_of(var1)   

state_of(var0)==state_of(var1)   

(e) (f)

Single Block, Double

Axis

var0 = get_item("block_1")
affordances.pickup(var0)
var1 = get_item("design")

affordances.flip_left(var0)

true

true

affordances.flip_up(var0)

state_of(var0) != state_of(var1) state_of(var0) != state_of(var1)

affordances.drop(var0)

state_of(var0) == state_of(var1)

5.8.1 Exploring Single Block Search Tree

The single block task resulted in a strategy whereby the agent simply picked the block and

placed it in the construction. Whenever the block face and the design did not match, the

search operation never terminated as a correct program would not be found. Because of

how simple the single block search was, its entire search tree could be captured on a single

page. Figure 5.6 shows this search tree, along with a description of how search proceeded.
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var0 = get_item("block_1") true   

var0 = get_item("block_1")

var0 = get_item("block_1")
affordances.drop(var0)

var0 = get_item("block_1")
affordances.pickup(var0)

var0 = get_item("block_1") true   

var0 = get_item("block_1")

true    var0 = get_item("block_1")
affordances.pickup(var0)
affordances.drop(var0)

var0 = get_item("block_1")
affordances.pickup(var0)

var0 = get_item("block_1")
affordances.drop(var0) true   

a t

s

s

t

t

t

c
c

c

c

c

Figure 5.6: A partial rendering of the expanded search tree for the single block task. Each

node in the search tree represents a machine that was generated. The colour of the edges,

as well as the letter on the edge in the search tree, signify the type of action that was

taken to generate the new machine. Orange or the character ‘a’ signifies the addition of an

assignment, red or the character ‘c’ signifies the addition of a call to an operation, blue or

the character ‘t’ signifies the addition of a transition, and green or the character ‘s’ signifies

the addition of a state.

1. Search started with a blank machine that had no states or transitions.

2. When this initial empty machine was presented to the successor generator algorithm,

the only phase that executed generated a single successor with an empty state. This

successor was then put on the search list to be pulled up again for the next iteration

of search.

3. In the next iteration, the empty state previously generated, was passed through the

successor generator again. This time, since there was an empty state in the node, the

phase for adding instructions executed to add the only possible instruction candidate:

the get_item operation with the block name "block_1" as an argument. The phase

for adding a transition also adds a single transition that loops unto itself.

4. Following the pattern described above, in the third iteration, successors are generated

which add extra instructions and new states, ultimately leading to a solution for the

task.
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5.8.2 Single Block, Single Axis

The main goal of this task was to have the agent pick up the block and flip it a single

direction until it found a face that matched the design. When the match was found, the

agent dropped the block into the construction area.

Six interesting strategies obtained through search for this task are displayed in Table

5.2. In strategy (a), the agent picks up the block and flips it around in a single direction,

while checking for matches after each flip, until a face whose design matches the target

design is found. When the match is found, the block is dropped in a construction area.

Several other strategies that followed a similar strategy were also found. From the

results, we can see how these strategies vary. Strategy (c) was almost identical to (a), except

that the condition on which the flip action occurs had a literal true value. This inherently

made the strategy inefficient, since it was forced to randomly choose between flipping again

or dropping the block whenever its face does not match that of the design. This is unlike

strategy (a) where no more flips occurred after the target face was found.

A strategy of putting an always-true condition on the transition that flips blocks can

be seen in strategy (c). This strategy increased the inefficiency by unnecessarily obtaining

the instance of the design after every flip of the block. This operation could be considered

analogous to looking at the design after every flip. Strategy (d) took this a step further by

moving the pickup and drop operations into the same state where the flipping took place.

As such this strategy continuously picked the block, flipped it, and put it back until a face

that matched the design was reached.

Strategy (d) represents a special case; it was logically equivalent with strategy (a), al-

though the order of instructions were different. Solutions of this type were generated

whenever the procedure for comparing logically equivalent programs was not applied. Be-

fore this procedure was applied to search, most searches were limited to three instructions

per state. This restriction was partially influenced by the initial “hand-coded” solution,

and the aim to find programs that spanned multiple states. However, with the improve-

ments gained from pruning logically equivalent programs, I attempted to search for larger

programs, and the number of instructions per state was increased to 4. With 4 instructions

per state, strategy (f), which was significantly more optimal when compared to both the
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original handwritten solution and all the other strategies obtained from searches limited

to 3 instructions per state, was generated.

5.8.3 Single Block Multiple Axis

Of all the different configurations that were considered for the experiment, only the case

of having two affordances led to successful strategies being formed. Beyond 2 degrees of

freedom, search became intractable. Although this limitation significantly impeded the

progress of my experiments, it provided a window to how complex the block design is:

even in such a simplified form, a brute-force search of strategies just fail after a significant

number of rules were added.

5.9 Conclusion

The goal of this chapter’s experiments was to progressively increase the block manipulation

operations while increasing the number of blocks, until the full version of the block design

task could be solved. Unfortunately, this goal was not entirely met: experiments proceeded

to the stage were there was a single block that could be manipulated with two degrees of

freedom (such that it only moved along two of its axes in a single direction per axis).

Regardless of this inability to reach a stage of solving the full block design task, the

strategies obtained for the stripped down versions of the test were interesting to study,

and showed early signs of how strategies represented as state machines could be insightful

in helping to explain how an intelligent system may be making its strategy choices.

Possibly, the most interesting observation from these sets of experiments was the op-

timal program generated for the single block, single axis task (See machine (b) on the

Single Block, Single Axis row of Table 5.2). With the search algorithm originally biased

toward a particular structure of programs, its ability to find such an optimal solution was

certainly hindered. But, when all the restrictions were removed, and the right conditions

were created, an optimal program was synthesized. Removing restrictions came at the cost

of limiting how far search could go, and this represents the balancing act between search

expressiveness and achieving the right solutions.
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CHAPTER 6

Analysing Human Strategies on the Block Design Task

Another approach to studying strategy differences in intelligent systems is to record the

performance of these systems and analyse. In this chapter, I describe work I contributed

toward various systems that allow for the measurement of human performance on the

block design task.

6.1 The Block Design Task

When first encountered, the block design task may appear simple. After all, the only

explicit requirement is to replicate a geometric design with a set of blocks that look similar

to items in the design. All information needed to work through a task comes from the

design and is made available to the subject and kept open throughout the test. Nothing is

hidden from the test subject. Also, the mode of reproducing the design with blocks evokes

a sense of childish playfulness which makes the test appear less intimidating. In fact, Kohs

(1920) discusses how children and adults alike were excited to take the test, when presented

with the colourful blocks.

Yet as simple as it may appear, puzzles from the block design can be challenging to

solve. To be successful, a person may have to fall on their visuospatial reasoning skills;

correctly coordinate the interaction between their perception, gaze and motor actions; and

also be able to form and execute strategies. These cognitive requirements of the block

design makes it an interesting and informative test for evaluating human intelligence.

Originally the block design was intended to be scored by factors including a subject’s

response time, accuracy and the total number of moves made (Kohs, 1920). However,

tallying moves appeared to complicate the work of clinicians and test administrators, and

its use was later dropped in clinical practice (Hutt, 1932). But from block design research

literature, it can be seen that factors other than response time and accuracy provide deeper

insights into a subject’s cognition.

For example, features of the block design performance such as the types of errors
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subjects make (Joy et al., 2001; Rozencwajg & Corroyer, 2002; Toraldo & Shallice, 2004), the

way subjects divide their attention between the target design and block construction area

(Rozencwajg et al., 2005; Rozencwajg & Corroyer, 2002; Rozencwajg & Fenouillet, 2012),

incorrect placements of blocks (Ben-Yishay et al., 1971; R. S. Jones & Torgesen, 1981; Joy

et al., 2001; Schatz et al., 2000) and other qualitative errors (Akshoomoff & Stiles, 1996; Joy

et al., 2001; J. Kramer et al., 1991; J. H. Kramer et al., 1999; Schatz et al., 2000; Zipf-Williams

et al., 2000) are all factors researchers have considered as indicators of a subject’s cognitive

state. But, although clinicians that administer the block design test may be well-trained

at evaluating their subjects, without the assistance of technology it may be impossible to

detect all the behaviours that may provide a rich stream of information about a subject’s

performance. In an attempt to make it easier for test administrators and clinicians who

administer the block design task to measure some of these features, my research group has

been focused on creating tools that automate the measurements of these difficult to observe

metrics in block design performance.

Our work in this area has primarily centred on automating the process of tracking block

placements and collecting information about a subject’s attention while solving the task.

Additionally, in response to restrictions imposed by the global pandemic, we had to look at

ways of virtually administering the block design task. In this chapter, I will be discussing

work done towards this project, including emphasizing my contributions, and elaborating

on how data collected from this work fit into the larger framework of this dissertation.

6.2 Automatically Scoring the Block Design Test

For our block design scoring system, when a subject took the test, we focused on collecting

two primary streams of data: block placements and attention through gaze. With the

block placement data we were able to get information about accuracy, the types of errors

people made, steps people took to correct their errors, and any strategy patterns a subject

exhibited. Through gaze data, we were able to study how attention was distributed, and

we could implicitly deduce how a person may have relied on their working memory while

reasoning about the puzzle.

So far, there have been three main iterations of our automated evaluation system. The
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first version relied on an overhead Microsoft Kinect RGB-D camera for tracking block

placements and hand movements, while gaze was tracked in two different ways with

a wearable eye tracker and an experimental corneal imaging system, which was being

evaluated at the time. In the second iteration, we traded the overhead Kinect RGB-D

camera for a GoPro Camera, and we introduced a subject facing Intel Realsense depth

camera, along with a Pupil Labs eye tracker for gaze and head tracking.

All the work described in this chapter was the result of a large, multi-year group effort

by members of my research team and other contributors. Throughout the rest of this

chapter, I will be highlighting the roles played by myself and that other team members as I

discuss the work.

6.2.1 Overview of the Three Iterations

The first version of the system was originally developed by a team of researchers at the

Georgia Institute of Technology, and it was used in a study involving 14 adult computer

science undergraduates who had to solve puzzles from the block design test (Cha et al.,

2020). Of these students, 7 had their gaze recorded through a head mounted gaze tracker

and the other 7 used an experimental corneal imaging tracker. I was not involved in either

the design or any of the data collection activities performed with this system, but I played

a key role in analysing the data from this study.

The second system was developed at the Vanderbilt University, and it was not used

in any major studies due to disruptions from the COVID-19 lock-downs and the general

concerns about the safety of in-person activities. It was, however, used in a number of

internal evaluation runs, and it was featured prominently in an appearance on CBS’s 60

Minutes news magazine program (A. Cooper, 2021). I was fully involved in the design and

testing of this system.

The third iteration, a virtual instance of the block design, built as one solution to address

the challenges of in-person use, departed from physical interaction by presenting the block

design task through a virtual web interface. Here, participants manipulated blocks on

screen and attention was gleaned from mouse movements and block interactions.

Most of the results discussed in this chapter come from the experiments performed
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on the first study. However, I will share some of the results from our CBS 60 Minutes

appearance, and later in the chapter I will provide some details about the online system

and some of the early data that has been collected through it.

6.2.2 Setup for Testing

For both in-person BDT evaluation systems, subjects took the test seated at a table. To help

with computer vision, the table’s surface was covered with a green material that provided

enough contrast against the colour of the blocks. Additionally, the blocks themselves were

about three times larger than those typically used in the real-world block design task to

make them more visible to the cameras.

Also, to provide a simple scheme for tracking attention, the test environment was broken

down into three zones. Two of these zones were on the table. The first of these table-top

zones, which was directly in front of the subject, was considered as the construction area

where the design was put together. The second zone, which was found to the subject’s

side, was considered as a block bank for holding unused blocks. Finally, seated across the

table, a research assistant (or clinician) administering the test held up the easel containing

the target design, which was considered as another attention zone.

Although this setup remained largely unchanged across both instances of the in-person

systems (as can be seen in Figure 6.1), there were a few subtle differences in how the

construction area was presented and how the eye tracking equipment was set up. In the

earlier design, a blue outline was drawn on the table’s surface to mark the spot where the

final design was to be placed. This blue outline was put in place to help with the computer

vision routines. In the second implementation, however, blocks could be constructed

anywhere on the table’s surface. When it came to segmenting the blocks for later analysis,

a suite of visual clustering algorithms and other computer vision techniques were used.

It is also worth noting that for subjects that were evaluated on the corneal imaging

system, a chin rest was provided since subjects were required to keep their head sturdy

to help their eyes stay in the focus of the corneal imaging camera while they solved their

puzzles (see Section 6.3.) In cases where the other forms of gaze measurements were

employed, the chin rest was not used.
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Figure 6.1: A setup of the block design task, showing the differences between sensor setup

in the different iterations, as well as, how attention zones were defined. (a) Shows an

overhead view of the setup in our first iteration, as captured by the overhead camera, and

(b) Shows the setup for our second iteration.

6.2.3 Measuring Block Placements

One of the main information streams of the evaluation system came from the placement

and movement of blocks. An overhead video camera, oriented to capture the tabletop,

acted as the sensor for block placement and movement. For the first iteration of the system,

a Microsoft Kinect camera was used, but we switched to a GoPro camera in the second

iteration. This switch was mainly due to the Microsoft Kinect being discontinued by its

manufacturer, and also the resolution of images captured through the depth camera was

found to be practically useless when it came to isolating individual blocks; relying on colour

information was simpler to implement and much more efficient.

Measuring block placements broadly involved detecting and isolating the individual
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blocks, and determining the design on the block’s face. Because the hands were constantly

interacting with blocks on the table, they obscured some of the blocks at times. This

situation introduced an additional step of detecting and filtering out hands to the block

detection pipeline. The following sections provide details on how block isolation was

performed in both iterations of our system.

6.2.3.1 Isolating Individual Blocks

In our initial implementation, we placed a blue outline on the table to make subjects

arrange their designs within the outline’s bounded space. Because these outlines had the

same size and orientation as the design to be solved, the outlines may have influenced

the choices subjects made about their block placements, especially when diagonal puzzles

were concerned. The outlines were, of course, intended to be temporarily used in the early

exploratory experiments.

With the outlines in place, isolating individual blocks was extremely simplified. We

mainly had to detect the blue outline from the input image using its distinct colour char-

acteristics, and cropped out the image sections enclosed by the outline. Because the space

bounded by the outline was the same as that occupied by the final design, subdividing the

cropped interior image into n×m parts, where n and m are the number of blocks required

for both sides of the design, helped split out the locations of individual blocks.

This process was not always smooth. Since the sizes of designs changed as subjects

worked through puzzles, the blue outlines on the table had to be swapped out as puzzles

progressed. The continual replacement of the outlines, led to the outlines getting rotated

differently from puzzle to puzzle, such that a pre-processing step of adjusting outlines into

their upright position was required as part of block detection.

In the second iteration, to improve over the first iteration’s block detection approach,

we instead used the YOLO (Redmon et al., 2016) off-the-shelf object detection algorithm to

detect blocks. Due to this change, subjects could place blocks anywhere on the table, and

without the blue outlines, subjects were not clued in on what the sizes or orientations of

the final designs were going to be. This made testing much closely aligned with the real

world version of the test.
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Although this improvement took us closer to a more realistic test administration process,

it also came with its own technical challenges. In this case, unlike the bounded nature of

the earlier approach where we had the outlines as guides for determining block locations,

detecting the exact locations of the blocks was not as straight forward. Except for the blocks

themselves, there was nothing to guide us in isolating the blocks. To solve this, we relied on

clustering algorithms which took as input the locations of all blocks detected by YOLO and

computed the coordinates of the area that bounded the design. From here, the rectangle

formed by the blocks could be aligned and segmented into blocks just as they were in the

first iteration. This process was performed in reverse, so the final state of the blocks were

used to isolate where the grid for detecting blocks went on the table, and the sequence in

which individual blocks were added was inferred.

6.2.3.2 Detecting the Face of the Blocks

After individual blocks were isolated, the actual design on the face of each block also had

to be identified. The approach for this did not change between the two iterations of our

in-person testing system. The same techniques used in the first iteration worked equally

well in our second implementation. The following paragraphs describe our block face

detection algorithm.

Faces of blocks could either have a single uniform colour, or they could have two colours

split in any way across the two diagonals on the block’s face. Since each block may already

be isolated into its own image, a quadrant based feature detector that took advantage of

the diagonal nature of the block’s faces, was used alongside different classifiers to detect

the designs. See Figure 6.2 for a visualization of this feature detector.

The feature detector worked by sampling pixels from each of the four quadrants that

form when diagonals are drawn across the face of a block. While analysing the data from

our block design study, we evaluated four different algorithms for classifying the block

faces according to data from the quadrant feature detector. These algorithms were as

follows:

• An RGB Averaging technique where the average RGB value of all pixels in a given

quadrant (which represents a crude way of computing the luminance of the quadrant)
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Figure 6.2: Feature detector for quadrant based block face detection. Samples taken from

the quadrants labelled Q1 through Q2 are each guaranteed to contain a uniform colour. By

combining these in multiple ways, the design on the face of the blocks can be found.

were computed and compared to a threshold value. From our experiments, when

RGB values were taken over a range of 0 to 255, a threshold value of 140 gave the best

results.

• A K Means clustering technique, where the individual RGB values of pixels were clus-

tered to obtain the dominant values across the three channels. A final classification

decision was made based on the dominant clusters.

• A KNN Classifier, trained on hand-picked ground truth colours from reasonable hue,

saturation, value (HSV) regions and evaluated on pixels collected from the quadrants

of the feature detector.

• A Multi Layer Perceptron (MLP), trained on a set of images captured during the study

from the different quadrants, and equally evaluated on other images from the study.

Results from evaluating these face detection algorithms are shown in Table 6.1. From

these results, it should not be surprising that the MLP classifier worked best. When

compared to the other techniques, which used either hand-picked thresholds or synthetic

colours as input, the MLP was trained on actual data from images captured by the overhead

cameras.

6.2.3.3 Filtering Out Hands

Another issue we had to deal with concerned hands occluding the camera’s view of the

blocks as subjects worked through puzzles. Since detection was performed on a frame-by-

frame basis, block placement data was lost on frames where this occlusion happened. We
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Table 6.1: Accuracy results for different approaches.

Method Accuracy

RGB Averaging 0.68

K-Means Clustering (k=1) 0.68

K-Means Clustering (k=4) 0.64

K-Nearest Neighbors 0.67

Multi-Layer Perceptrons 0.96

fixed this with a filtering mechanism that detected the hands (using the same YOLO object

detection algorithm) and used information from earlier frames to fill in missing information

from parts that a hand may have occluded. This technique was used in both the first and

second iterations of our in-person scoring systems.

6.2.4 Measuring Gaze and Attention

Generally speaking, our eyes play an important role when we interact with our environ-

ment. Through vision, we are able to acquire much of the information we need to perform

many everyday activities and also special tasks like the BDT. Studying visual attention—

how and where people look, and what they decide to focus on while performing a task—can

help us gain valuable information about cognitive processes (Land & Tatler, 2009). A per-

son’s gaze is one of the few externally observable components of the cognitive process.

For this reason, gaze tracking has been a very important technique when it comes to the

study and understanding of human cognition (Just & Carpenter, 1976). Gaze tracking tech-

nologies measures the eyes’ (and sometimes the head’s) position with respect to external

stimuli, thus providing a measure of overt visual attention. 1

6.2.4.1 A Brief Background on Gaze Tracking

When considered broadly, you can categorize gaze trackers as being either wearable or

remote. For real-world interaction and real-world activity tracking in three-dimensions,

like in the case of the block design task, head-mounted wearable trackers are considered

some of the best and most accessible options. Although wearable trackers work well in

1Visual attention, in general, also includes covert attention shifts, which are not externally observable, like

triggers in the peripheral vision.
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Figure 6.3: A visualization of the two main classes of gaze tracking technology widely

available today (wearable on the left and remote in the middle), and the corneal imaging

technique (right).

most settings, they present special challenges to certain populations, like children, people

with sensory sensitivities, or people with certain physical or cognitive disorders. Their

wearable nature may also make them distractions for some use cases.

Remote trackers, as their name suggests, track the gaze of subjects remotely, without

any contact with the subject. These trackers are more challenging to implement, since

systems must remotely infer gaze by “observing” the subject—much like a person would.

The most popular remote tracker implementation may be on screen gaze trackers that

measure a subject’s attention to content displayed on a screen. Screen based gaze trackers

are simpler to implement when remote gaze trackers are considered. Because the content

to be tracked is displayed over a fixed, relatively small two-dimensional plane instead of the

real-world three-dimensional space, computations to localize gaze fixations are simpler on

screen based gaze trackers. In recent times, the use of deep learning based computer vision

systems have also made it possible to produce effective remote gaze trackers for estimating

people’s gaze when the performance of certain real world tasks are considered (see Shehu

et al., 2021).

6.2.4.2 Our Approaches to Gaze Tracking

In our studies on the block design task, we considered two different types of eye tracking.

For some of the subjects in our earlier study, and for all our recent work, we relied on

head mounted gaze trackers. For certain subjects in our earlier study, however, we tried a

relatively recent form of eye tracking that relied on estimating gaze by capturing images

of the world as reflected on a person’s cornea, known as corneal imaging (Nishino &
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Table 6.2: A brief comparison chart of various forms of gaze tracking.

Gaze
Tracker

Head Movements Body Movement Invasive Tethered
to Body

Table-

Mounted

From totally re-

strained to the limits

of camera’s depth of

field

None No No

Corneal

Imaging

Restrained to the

limits of camera’s

depth of field

None No No

Head-

Mounted

Full Full, within limits of

tethered equipment

Yes Yes

Nayar, 2004). The specific corneal imaging system used in this work was implemented and

executed by Eunji Chong, who was a doctoral student at the Georgia Institute of Technology.

6.3 Measuring Gaze Through Corneal Imaging

In Figure 6.4 we see an image of how the world is reflected on a person’s cornea while

staring at a setup of the block design task. The goal of corneal imaging is to use this exact

image as a means of tracking a person’s gaze. Corneal imaging brings several advantages

when compared to other forms of gaze tracking.

Figure 6.4: A reflection of the world as seen on the cornea of a person solving a block design

task.

Most importantly, being a remote tracking approach means corneal imaging does away

with the issue of discomfort wearable trackers bring. Also, since the images are taken

directly off the cornea, corneal imaging allows for real world three-dimensional tracking,
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with need for little to no calibration. The corneal imaging approach, in fact, seemed well

suited to the table-top nature of the block design task.

A few downsides of the corneal imaging approach comes from the complexity involved

in setting it up, and the complicated processing required to extract the images and gaze

targets off the cornea. For a respectable corneal image, a high resolution camera combined

with a high quality zoom lens with autofocusing capability may be required. Apart from

the technical challenges, the colour of a person’s eyes also present another challenge for

corneal imaging: corneal images are much more visible on darker eyes than lighter ones.

6.3.1 Gaze Estimation with Corneal Images

The setup for corneal imaging had a high resolution camera pointed directly at one eye

of a subject, from which we recorded the corneal image. This camera was fitted with an

autofocusing telephoto lens that ensured the subject’s eye was fully in the frame, while being

far away enough from the camera to be distracted by it. Although corneal imaging was

meant to be used without any physical restraints, for our experimental setup, participants

were given a chin rest to help them stay in the image frame with their eyes always in focus.

Estimating the gaze in corneal imaging involved capturing the corneal image, unwarp-

ing the image to remove the eye’s spherical distortion, and computing the gaze point with

a three-dimensional eye model fitted to the corneal image. Effectively, anyone studying

the tracking data obtained through corneal imaging would be looking at images that were

captured directly off the subject’s cornea, overlaid with the estimated gaze point.

Computing the gaze point from the corneal images required fitting an ellipse around

the limbus of the eye in the image frame. An ellipse p was represented by 5 parameters,

such that p = (rmax,rmin,x,y,Θ). Where rmax and rmin represent the major and minor axes of

the ellipse, x and y represent the centre of the ellipse with respect to the entire image frame,

and Θ is the angle of tilt. Actual ellipse fitting was performed with Hough transforms

(Duda & Hart, 1972) using code provided by Eunji Chong.

Given that the distance from the camera to the eye was known—thanks to the chin

rest—the fitted ellipse could be projected unto a three-dimensional, spherical model of the

eye to represent the limbus. Through this projection, the orientation of the eye would be
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estimated, and the gaze point would be assumed to be the point where the axis that runs

through the centre of the eye model intersects with the surface through the pupil. When

this point of intersection is projected back to the two-dimensional image of the eye, the

exact gaze point can be estimated.

Unwarped Image from
Corneal Reflection with
gaze point projected

Frame with image of
the eye and cornea

3D-Model of Eye

Ellipse projected
as limbus on 3D
Eye model

Axis for estimating
gaze point.

Ellipse fitted to
the limbus in 
eye image

Figure 6.5: Fitting an eye model to the limbus for obtaining the exact gaze point with

respect to the corneal image.

6.3.2 Collecting and Analysing Corneal Imaging Data

The work on corneal imaging was merely a proof of concept implementation, with a

primary goal of evaluating how effective this form of gaze tracking would be in a clinical

setting. As such, we sought to understand the following:

1. Would the images recorded off the cornea be of a fidelity high enough that human
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raters would be able to reasonably recognize what the person was looking at?

2. If the ratings supplied by human raters (through the experiment in the point above)

were fed to machine learning algorithms, would they be able to determine the gaze

targets from other corneal imaging videos.

To answer these questions, I performed a couple of experiments.

6.3.3 Experiment 1: Evaluating Image Fidelity by Human Annotation

After participants in the first study had solved the block design puzzles, the corneal image

recordings (in video format) were annotated with the ELAN annotation tool (Wittenburg

et al., 2006) by myself and a team of undergraduate researchers. Annotations involved

marking video frames with the gaze target observed in the corneal image. As stated earlier,

in order to simplify annotation, gaze targets were broadly categorized according to the

experimental setup as follows: the block bank, the construction area, the target design,

and other (for any other gaze target). Additionally, the blink state of the eye (blink vs.

non-blink), and the type of gaze shift (saccade or smooth pursuit) was also annotated.

Making these annotations were quite time-consuming. On average, it took about an

hour of real time to annotate a minute of recorded corneal image video. And when solving

puzzles, subjects typically took anywhere from 1 to 3 minutes. Considering how the

physical space was set up for the experiments, there was some redundancy in the content

of corneal images and the position of a subject’s pupil in the overall frame. For views to

the construction area, the eye remained in the centre of the frame, whereas for views to

the target design the eye moved left, and for views to the block bank the eye moved right.

Although it may appear human raters relied on this information to identify gaze targets,

initial analyses suggested this information was not factored into selecting gaze targets for

annotation.

Since our goals were to measure how reliably human observers could distinguish images

off the cornea to detect gaze targets, we measured how closely annotators agreed with each

other when annotating the same video. Although it would have been ideal to have every

annotator rate each video, so we could have an across-board comparison between raters,
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the time-consuming nature of the annotation process made this unattainable. Instead, we

selected five particular videos, and had them annotated by various subsets of our primary

four annotators, to be used as a measure of reliability.

6.3.3.1 Results and Discussion of Experiment 1

I used the Cohen’s Kappa metric (Cohen, 1960) to compute the agreement between raters.

The results of this are shown in Table 6.3. From the inter-rater reliability measure, we could

conclude that images on the cornea were of a fidelity high enough that humans could

reasonably differentiate between the gaze targets. That said, the results in Table 6.3 are not

perfect, and this could have been due to the factors discussed below.

Table 6.3: Cohen’s Kappa scores for the inter-rater reliability among the four raters on our

research team.

Rater Pairing Puzzle κ Score

A1 - A2 Puzzle 1 0.77

A1 - A2 Puzzle 2 0.78

A1 - A3 Puzzle 1 0.79

A1 - A3 Puzzle 3 0.69

A1 - A3 Puzzle 4 0.72

A1 - A4 Puzzle 2 0.80

A1 - A4 Puzzle 5 0.66

A2 - A3 Puzzle 1 0.74

A2 - A4 Puzzle 2 0.75

First, while the reliability metric was computed on a frame by frame basis, the actual

annotations were performed over continuous video. Sampled at 15 frames per second,

the average puzzle contained almost 1000 individual frames. Annotators had to literally

drag a pointer along a timeline to select frames with a computer mouse through the ELAN

tool’s user interface. When annotations that rated around 0.70 for their Cohen’s metric

score are analyzed visually with bar graphs placed side by side, the similarities are much

more apparent than the differences, and at least some of the differences appear to be due

to discrepancies in the start/end times of various gaze events (see Figure 6.6). Using an

event-based reliability metric instead of a frame-based one may provide a more useful

estimate of overall reliability in the context of the desired quality of gaze annotations for
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our task.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time in seconds (s)

Block Bank Other Target Design Construction Area

Figure 6.6: A visual comparison of annotations produced by three different raters on the

same block design puzzle.

Second, our annotation process proceeded mostly in a feed-forward fashion, with little

revision of the annotation scheme once the process was underway. Revising the basic

scheme based on our observations from the initial attempt, and also providing more training

to annotators, could have gone a long way towards increasing reliability.

6.3.4 Experiment 2: Automating Corneal Image Analysis

After the human annotation experiment, I attempted to automate the analysis of our corneal

image data using machine learning. Ground truth classification for this experiment was

obtained from the human annotation process described above.

My first attempt involved running a pre-trained convolutional neural network on the

images obtained directly from the corneal imaging camera. The images fed to the classifier

still had the eye’s spherical distortion, and the other visible parts of the eye (like eyelids

and lashes) in the frame remained intact.

For the second set of classifiers, I directly considered the geometric information ex-

tracted when the ellipse model was fitted onto the frame. As stated earlier, and as shown in

Figure 6.5, the ellipse parameters consisted of five separate values that define the geometry

of an ellipse.

I evaluated both classifiers with two different training and testing approaches. First,

we employed a within-participant, across-puzzle leave-one-out strategy where we trained
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the classifier on all but one puzzle videos for a single participant and tested on the video

for the excluded puzzle from that same participant. This was done for all the different

puzzles, and the scores obtained were averaged.

Second, I employed an across-participant leave-one-out strategy where we trained the

classifier on all puzzles from all participants except one participant, for whom all puzzle

data was used for testing. Again, this was repeated across all participants and averaged.

While in general, evaluating within a single participant yielded better results (as de-

scribed below), the use case of testing across participants more closely matches likely

applications of this approach in clinical settings. It is unlikely that annotations for indi-

vidual clinical patients could be provided on a regular basis, but it is more plausible that a

large sample could be collected and annotated up front, and then algorithms trained with

these data applied to new patients.

6.3.4.1 Results of Experiment 2

Two different types of classifiers were trained on the images: for predicting gaze target

locations and for detecting when a person was blinking. All classifiers took in the raw

image pixels as captured from the corneal imaging camera without any modifications. A

pre-trained copy of the Inception v3 (Szegedy et al., 2016) convolutional neural network

running on Tensorflow v1.9 (Abadi et al., 2016) was used as the classifier.

The blink classifier obtained a final average accuracy of 81% when evaluated across

puzzles for individual participants, and an average accuracy of 61% when evaluated across

participants. For the gaze classifier, we obtained an average accuracy of 69% when eval-

uated on an individual’s puzzles and an average accuracy of 51% when evaluated across

participants. The results for the blink classifier are shown in Table 6.4, and for the gaze

classifier in Table 6.5.

Figure 6.7 shows a visualization of the gaze target classification accuracy using the

within participant testing approach.

Additionally, we trained classifiers using data from the ellipse model described in

Section 6.5. We were able to obtain ellipse fit data for 28 individual puzzle attempts that we

could use to test a classifier trained purely on geometric features from the ellipse model.
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Figure 6.7: A visual comparison between annotations generated by human raters and the

neural network algorithm for the same puzzles.

Table 6.4: Average accuracy and precision scores for the neural network blink classifier

Task Accuracy Precision

Evaluated by puzzles 0.81 0.59

Evaluated by participants 0.65 0.41

We used the same two train/test paradigms as described above.

For these analyses, we fed the ellipse parameters directly into the classifiers as feature

vectors. We evaluated two different classifiers: k-nearest neighbours and multi layer

perceptrons. Our kNN classifier had an n value of 5 and our MLP was configured with

three hidden layers having 50, 100 and 50 nodes respectively. The KNN implementation was

obtained from the scikit-learn toolkit (Pedregosa et al., 2011) and the MLP implementation

was from Tensorflow (Abadi et al., 2016). Results for the kNN classifier are shown in Table

6.6, and results for the MLP classifier are shown in Table 6.7.

6.3.4.2 Discussion of Experiment 2

Without any explicit calibration, the image based classification algorithms were able to

predict the gaze targets with some (though far from perfect) accuracy.

However, as described previously in the context of human generated annotations (see

Section 6.3.3), it is worth investigating to what extent the image classification algorithms

were working based directly on the image of the cornea versus on the position of the pupil
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Table 6.5: Average accuracy and precision scores for the neural network gaze target classifier

Task Accuracy Precision

Evaluated by puzzles 0.69 0.55

Evaluated by participants 0.51 0.45

Table 6.6: Average accuracy and precision scores for the kNN gaze target classifier

Task Accuracy Precision

Evaluated by puzzles 0.77 0.66

Evaluated by participants 0.61 0.54

within the frame. The consistency of the positioning of the gaze targets meant that the

pupil was in very distinct regions when fixations were on particular targets of interest, in

the context of our block design task setup. The performance of the classification based on

the ellipse model, which inherently used only the geometric position of the eyes, suggested

that geometric positioning may have been a strong predictor of gaze target in our study.

6.4 Analysing Block Placement Sequences

Automating the scoring of block design provides the opportunity to extract high level

strategy patterns that subjects may be using. For example, in our study, we observed that

various participants exhibited some specific block placement strategies. Some participants

preferred to complete puzzles systematically, placing blocks row by row, while others

worked in a disorderly fashion, placing blocks in a disjoint manner. We therefore sought to

classify the individual styles each subject used for block placement. Work on this section

was mainly performed by Seunghan Cha, with my help on some machine learning pipeline

design.

The first step we took was to define five general block placement strategies that we

observed across our participant data. These were as follows: row by row, column by

column, subsection, perimeter complete and vertices first. See Figure 6.8. These strategies

were defined over specific regions subjects may be working on when the grid along which
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Table 6.7: Average accuracy and precision scores for the MLP gaze target classifier

Task Accuracy Precision

Evaluated by puzzles 0.71 0.41

Evaluated by participants 0.64 0.37

Inner
Area

Side

Vertex 1

2 3

4

(a) (b) (c) (d) (e)

Figure 6.8: (a) Regions of the block construction area, labeled as vertices, sides, and the

inner area. (b-e) Examples of spatial block placement strategies, with arrows representing

the order of blocks placed: (b) row-by-row, (c) subsection, (d) perimeter-complete, and (e)
vertices-first.

the blocks are to be placed is concerned.

These generic strategies, as defined, were not “purely” adhered to by subjects in their

solutions. And even when the “pure” forms were considered, there was a significantly

large set of variations (too many to enumerate in most cases) in how the blocks could

be placed. As such, our strategy for classifying the styles of individuals was performed

empirically, through comparisons with a computationally generated sample set of concrete

sequences for

Generally, the similarity scores for a subject’s run was computed by comparing their

sequences on a puzzle with all the sequences in the sample set, and finding the maximum

similarity values that are computed for each strategy. We used Kendall’s tau coefficient,

which evaluates the similarity between two sets of ranked lists, as our similarity metric.

This similarity is computed as follows:

τ =
P−Q√

(P+Q+T )× (P+Q+U)

If we consider x and y to represent the two different lists being compared, then P is

the number of matching pairs in both lists, Q is the number of non-matching pairs in both
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lists, T is the number of ties only in x, and U is the number of ties only in y. Kendall’s tau

computes numbers between -1 and 1, with -1 showing strong disagreement.

Figure 6.9 shows some of the results obtained when these analyses are performed on four

block design puzzles by our seven subjects. In this chart, the green gridded area represents

the sequence in which a participant placed blocks, with darker greens representing later

placed blocks. Charts under the green grids show the similarity of the placement strategy

to those from our sample library, with the highest scoring strategy in red. Finally, the

leftmost column represents the puzzle under consideration.

Figure 6.9: A visualization of sequences in which subjects from our study responded to

puzzles from the block design task, and the predictions made by our system on strategy.

For the green patches, earlier blocks are represented by lighter greens and later blocks are

represented by darker greens. The following abbreviations are used on the charts: (r-r) for

row by row, (c-c) for column by column, (s-s) for subsections, (p-c) for perimeter complete,

and (v-f) for vertices first.

Just by looking at the charts, it is easy to appreciate the similarities and differences
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between the strategies exhibited by participants. For example, we can see how participants

C and G used very similar strategies on the 6
th

puzzle. The charts show cases in which

people strictly stuck to one of the five pre-defined strategies, such as participant G and D

using the row by row strategy on puzzle 5.

Given that our work on strategy classification was just a proof of concept, the sequences

we defined for this work were based on our intuition, and it was not in any way informed

by actual metrics clinicians use. In other words, these five strategies were not set in stone,

and new sequence strategies could always be defined.

But then, it is also worth noting that sequences of block placements are not the only

means by which strategy can be analysed on the block design test. Even from our system, it

is possible to extract several low level features that may be of interests to neuropsychologists

and other clinicians alike. For example, we can extract:

• The number and types of errors.

• Intermediate and final reaction times.

• Spatial distance between consecutive block placements.

• Progression tendencies, eg. left-to-right or right-to-left.

• Single versus multiple simultaneous block placements.

• Block pair swapping versus in-place block changes.

• Correlations among combinations of some, or even all the features above.

For example, see Figure 6.10 for a scatter plot of the reaction time against the number

of errors participants made per puzzle.

6.5 Combining Gaze and Block Placement Data

So far, we have looked at the types of information we could obtain when each individual

stream of data from one of our sensors was analyzed—attention from gaze, and strategies

and other low-level features from block placements. With both data streams recorded on
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Figure 6.10: A plot of reaction time against the number of errors made.

the performance of same task, it was possible to perform analyses that rely on the combined

data stream.

Before this data integration could be possible, however, the different streams of data

had to be integrated. The cameras used in our experiments were mainly consumer grade

cameras that lacked inputs for clock synchronization. This meant that the actual frames

of video collected from the different cameras, all run according to different clocks. We

manually set synchronization points using clapper boards, and to actually synchronize all

the video data, I wrote a couple of python scripts, which used audio cues and other external

signals, to synchronize all the videos recorded from the different cameras.

The chart in Figure 6.11 shows a visualization of the overall performance by three

different subjects on a single task from the block design task. In each chart, the topmost

horizontal bar represents the gaze fixations that subjects had on different areas of the

experimental setup, and the second bar shows the instances where the subject was moving

blocks. The bottom section of the charts show the time specific blocks were placed.

6.6 Introducing Novelty with Blue Blocks

Ideally, the block design task must be novel to any subject who takes it. However, given

how widely the BDT is used in intelligence and cognitive testing, this cannot be guaranteed

for all our potential subjects. To guard against this, and also to provide some form of
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Figure 6.11: A synchronized plot showing gaze data, along with block movement and

placement, on a single plot.

novelty for participants who have already experienced the BDT, we designed a new set of

blocks that follow in the traditional block design’s spirit, while being significantly different

in certain other aspects.

In our blocks, faces had curves instead of straight lines, and they featured a blue and

white colour scheme instead of the traditional red and white. From some preliminary data,

we had already observed that the curves on block faces made puzzles a little harder to solve

than usual. This may either be because the curves on the faces deviated from the straight

edge nature of the blocks, or because the blue blocks had more distinct individual states

when compared to the red ones. Technically, the red and white blocks have a total of 12

distinct states, when all the faces and their potential rotations are considered, and the blue

and white blocks have twice as many with 24 states under the same considerations. See

Figure 6.12 for a comparison of the block faces and Appendix B for a state diagram of both

blue and red block states in full.
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Figure 6.12: Net diagrams of the blocks showing the red blocks (left) and the blue blocks

(right).

6.7 Case Study: The Block Design Task as Featured on CBS’ 60 Minutes

Although the second iteration of the in-person BDT scoring system was not used in a fully

sanctioned study (due to disruptions caused by the 2020 global pandemic), it was featured

in a segment on CBS’ 60 Minutes news magazine program (A. Cooper, 2021; Kunda et

al., 2020). The episode, which was entirely focused on work being done by different

organizations to provide work opportunities for autistic individuals, shed light on work

that was being done by Vanderbilt University’s Frist Center for Autism and Innovation. As

part of that work, our group’s work on automating block design evaluation and its potential

for providing effective non-verbal assessments was featured.

One of the episode’s main highlights had the show’s host, Anderson Cooper, take tests

from the block design alongside Dan Burger, an autistic data scientist with a record of good

visual reasoning ability, evidenced by his work on the FilterGraph data visualization tool

(Burger et al., 2012). Both subjects worked through a total of 14 puzzles, 8 of them from

the red blocks and another 6 from the blue blocks. Tests from the red blocks were taken

in one sitting, after which participants had a brief break before proceeding to those on the

blue block.

6.7.1 Results and Analyses: Anderson Vs. Dan

When the block design test is administered in clinical settings, the metric typically used for

evaluation is the response time. Figure 6.13 shows a chart of the response times measured
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Figure 6.13: A chart of Anderson’s and Dan’s the response times on all the blue and red

block tasks.

between Anderson and Dan. From this chart, we can clearly see that both participants

started out with similar response times on the easier tasks, but Dan’s performance signifi-

cantly improved as the tasks became more difficult.

Although this chart tells us that Dan performed better than Anderson, it does not give

us information about why this is so. To get such insights into each participant’s strategy

choices, we may need to observe other performance metrics. One way we could infer a

participant’s strategy would be to use data from the overhead camera and gaze sensors.

From the overhead camera data we could analyse the sequence in which participants placed

blocks, and we could also use data from the gaze tracker to observe how participants paid

attention to different regions while reasoning through the task.

Figures 6.14, and 6.15 show two different charts that provide some insights into why

Dan may have performed better than Anderson. Data for these charts were recorded while

both participants attempted the 7th red block puzzle (see the x-axis of the chart in Figure

6.13 for a reference of the puzzle’s design).

The first chart, Figure 6.14, shows the gaze and attention patterns both participants
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(a) Dan (b) Anderson

Figure 6.14: A visualization of the gaze and attention patterns exhibited by Dan and

Anderson as they reasoned through a single instance of the block design task.

exhibited. Here, we see how Dan relied consistently on the strategy of looking at the

pattern briefly before picking up a block from the bank and ultimately making a decision

about block placements. Although he deviated from this strategy a few times, in most

cases the deviation was because he looked back to confirm the design after finally placing

the block. Anderson, on the other hand, spent much time shifting attention between the

construction and the pattern, probably because he kept forgetting the design and had to

remind himself.

The block placement charts, labeled (a) and (b) in Figure 6.15, additionally give us some

more information about the strategy choices of both participants. In (b) we have Dan’s

block placement, and from it, we see how he methodically placed blocks in a row-by-row

fashion. When compared to Anderson’s (in (a)), we see a much more segmented approach

where the figure is broken up into quadrants, and the quadrants with similar designs are
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(a)

(b)

Figure 6.15: Block placement charts that show how Anderson (a) and Dan (b) placed their

blocks respectively, while solving the 7th red puzzle from Figure 6.13

.

solved one after the other.

6.8 Taking the Block Design Test Online

Early in 2020, plans were quite advanced in our research group for a larger study based on

the improved second iteration of the block design evaluation system. However, due to the

global pandemic, all plans were shelved, and we instead took the opportunity to pivot to

an online evaluation system. The goal was to administer block design studies through a

web interface. This led to the development of the Web-based Online Measurement of Block

Arrangement Task (WOMBAT) system.

WOMBAT provided an experience of the BDT that was similar in most ways to the

physical one, sans the physical tactile blocks. Its design was heavily influenced by our

physical test environments, with a lot of the original task’s characteristics transferred over

and even reinforced in some cases.

As with in-person BDT instances, participants are presented with a work environment

that has a block bank, a designated area for displaying the design, and a construction area.

Blocks are manipulated with the mouse through traditional mouse gestures, like dragging
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Figure 6.16: A screenshot of the WOMBAT system showing a block design tesk session in

progress. In this view, the user is manipulating a block in the construction area with the

pattern and block bank obscured.

blocks across the screen or using on-screen arrow buttons to rotate the blocks.

A participant’s attention is gleaned through the mouse pointer, which also happens to

be the same tool with which blocks are manipulated. Just as with physical block design

instances, the task environment was split between the construction area, the block bank,

and the design. Further, to strictly ensure that participants were actually paying attention

to these specific regions, the respective gaze target was blanked out when the mouse was

not hovering over. When participants were taking tests, wombat recorded every mouse

movement, every block placement, and also every attention shift.

6.8.1 First Participant Study

So far we have conducted a single major study with WOMBAT. For this study, participants

were recruited through Prolific (Palan & Schitter, 2018), a platform for performing behav-

ioral research studies. The online nature of WOMBAT made it best suited to participant

sourcing platforms like Prolific. In all, a total of 80 participants, 40 female and 40 male,
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with 20 self-identifying as autistic individuals, took part in the study. In addition to Pro-

lific’s filtering, we deployed a demographic questionnaire that had a question to clarify the

clinical diagnosis of autistic participants. Specifically, the questionnaire asked “Have you

received a formal clinical diagnosis of Autism Spectrum Disorder?”, for which participants

could answer as any of the following: (a) Yes, as an adult; (b) Yes, as a child; (c) I am in the

process of receiving a diagnosis; (d) No, but I identify as being on the autism spectrum.

Apart from the demographic questionnaire, participants also worked through the Autism

Quotient, completed a Spacial Habits Survey, and a Paper folding Task.

Of the 80 participants who took part in the study, we were only able to use data from

39. Most participants’ data were excluded from analyses because they failed to properly

complete the block design task. Some participants simply submitted empty responses,

while others only completed the other questionnaires without touching the block design

task. Additionally, participants who declined to answer any questions about their clinical

autism diagnosis were also excluded. In our final population of 39 participants, 15 self-

identified as autistic individuals.

6.8.2 Assessing Strategy Differences on The study

Staying on the theme of exploring strategy differences between autistic and non-autistic

individuals, we performed analyses on the data to find out how well participants from

each population group (ASD and Non-ASD) performed. With response times being one of

the main metrics by which the block design is typically evaluated, we initially visualized

the response times of autistic and non-autistic participants on all items on the task. Figure

6.17 shows a box plot of all the response times of the different populations on all the items

on the task.

The results fall in line with observations from the literature, whereby autistic individuals

typically perform better than their non-autistic peers in the block design (Shah & Frith,

1993). In a bid to find out the specific strategy differences that autistic individuals may

have employed, we further analysed how attention was distributed by participants on

tasks. We performed these analyses on a task by task basis, and for the purpose of this

dissertation, I will be using the results from the 6th puzzle—the puzzle with the highest
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Figure 6.17: A box plot showing the response times of the autistic and non-autistic partici-

pants.

variation in response times when averages of the different populations were considered.

Figure 6.18 shows how the different participants distributed their attention when work-

ing through this 6th puzzle. Although there were no significantly discernable differences

in the attention patterns of both population groups, it can be seen that autistic participants

spent less time than their non-autistic participants switching attention between the de-

sign and construction area. This could be a signal that non-autistic participants may have

had the need to constantly refresh their memory about the design. Interestingly, the best

performing participant on this task was from the non-autistic population.

Also, when the attention charts in Figure 6.18 are analysed, two strategy trends are seen

to be played out in some of the best performing participants, most of whom were in the

autistic group. In the first of these strategies, participants quickly assembled all the blocks

into a grid and proceeded to perform all the rotations needed to complete the design. This

strategy limited switching of attention between the design and the construction area, and

significantly improved performance.

The second of these strategies, which was quite similar to the first one, involved the

participants moving blocks from the block bank into the construction area, without nec-

essarily putting them in a grid. Both strategies served the participant with one particular

advantage: removed the restrictions placed by panels that obscure the block bank when the

mouse is hovering over. This way, the block bank is continuously available, and participants
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Figure 6.18: Attention charts for all participants on the 6th task from the BDT. The graph on

the left shows the attention of all Non-ASD participants, and the graph on the right shows

the attention of all ASD participants.

can quickly attend to them when needed.

It is worth noting that both of these strategies only be advantageous when the block

design is administered in a virtual form like WOMBAT. In a real life block design task,

gaze shifts between the block bank, design, and construction area tend to be larger. In

WOMBAT, having blocks displayed on a relatively smaller screen means participants can

simultaneously attend to the unused block and the construction at the same time. Even if

participants had to make gaze shifts, these shifts would be so small it is safe to assume that

participants had a complete view of the entire problem at the same time.

Taking things a step further, some participants went ahead to combine both of these

strategies, by first moving all blocks into the construction area, before proceeding to con-

struct a grid, and ultimately rotate the blocks in place. Some of the blocks were placed

directly in the correct orientation without any rotation, and sometimes rotations were made

before blocks were placed in the grid.
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6.8.3 Future Work on WOMBAT

Although there was not enough time for us to perform numerous experiments on WOMBAT

before the completion of this dissertation work. The data from this initial pilot study was

enough to show how different environments could lead people to adopt specific strategies

when solving the same task. The two strategies of in-place rotation and moving blocks into

advantageous positions will not be practical in real world implementations of the block

design task. Blocks placed together will be too clumsy to move about when the in-place

rotation strategy is used in the physical block design, and moving blocks out of a designated

block bank will not reduce the costs of gaze shifts in any significant way.

After the first participant study, a lot was learned from how participants interacted with

the system, and several changes are being worked on for a second iteration. For example,

we are working on having blocks snap together to ease grid construction. In the current

WOMBAT system, with the blocks being free to move about, a number of participants spent

a significant portion of their response times ensuring that blocks are displayed in a well-

formed grid. In physical versions of the task, users do not have to perform this step, since

participants typically square up their grids by pressing them together. Other improvements

are with respect to how instructions are given to participants about the process of taking

the test, with interactive tutorials and a few task comprehension questions. These would

ensure that people will not just skip through the task, but actually make the effort to

complete the items. With more people completing items, we are guaranteed to have more

data for deeper analyses.
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CHAPTER 7

Conclusions and Future Work

Work on this dissertation was directed at studying and exploring different ways in which

strategies are implemented and used in intelligent systems. One primary goal was to

study how strategies could be formalized, so they could be systematically synthesized,

scrutinized and transferred. The thrust of this work was split three ways: There were

investigations into strategies that were hand-coded by the designers of a system, there was

an exploration of how program synthesis could be leveraged by AI systems to generate

their own strategies, and there was a study of ways in which human performance on tasks

can be recorded and analysed to identify and extract a person’s strategy.

The tasks I studied in this work were visuospatial in nature, and for most of my

experiments and studies, an emphasis was placed on using imagery as a knowledge repre-

sentation.

Broadly, the questions I pursued in this work led to a couple of interesting observations.

But there were other things I would have liked to explore further. For the rest of this chapter,

I will be discussing contributions made in each of the research directions, and I will be

sharing my thoughts on possible future directions the work described in this document

could take.

7.1 On Hand Coded Strategies

While investigating hand coded strategies, I studied the VZ-2 Paper Folding Task, the

Leiter-R tests, and the Block Design Test. One important contribution from this thrust of

the work was that imagery representations are sufficient for—and in some cases present a

more efficient way of–reasoning about all these task areas.

The strategies explored in this study fell in two categories: Those that were human

inspired and those that attempted to express strategies in computer code. In building

systems explored hand coded strategies, I took a “work at all cost” approach, whereby

as long as a strategy can be represented in computer code, it was acceptable. I used this
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approach of non-human inspired strategies to build models for the VZ-2 Paper Folding

Task and a solver that reasons on a number of tasks from the Leiter-R.

To solve items from the VZ-2, a recursive strategy that relied on a three-dimensional

model of the paper, and recursively folded the paper was implemented. And for the Leiter-

R, programs were written to solve a number of sub-items with a small set of 6 imagery

operations.

When it came to exploring human-inspired strategies, I put together a framework

within which experiments were conducted. This framework, which I called Visuospatial

Reasoning Environment for Experimentation (VREE) is a contribution of this dissertation

work. VREE simulates a virtual environment in which virtual agents can interact with

virtual objects. Agents have the ability to “look” at objects in the environment with a gaze

window, through which agents receive imagery inputs. I evaluated the block design task,

along with selected items from the Leiter-R on reasoning agents in VREE.

Work on generating hand coded strategies made it possible to identify operations that

were both sufficient and necessary for reasoning about the tasks of interest. The knowl-

edge gained from doing this work fed directly into the design of experiments on machine

synthesized strategies.

7.2 On Machine Generated Strategies

After establishing that tasks in the domain of this dissertation could be solved through

programs, the next question of whether strategies could be synthesized, given a set of

operations, was answered through program synthesis. Program synthesis allows us to

build systems that generate programs to meet given task specifications. The approach

taken in this work involved searching a space of potential programs, which were meant to

represent strategies, for those that are meaningful to the tasks at hand. The domain specific

language designed for defining strategies in this dissertation, was the Visual Imagery

Reasoning Language (VIMRL).

VIMRL programs can be presented as a straight listing of instructions, or they could

be composed into state machines where every state has an assigned program. Another

property of VIMRL execution is how instructions can infer their arguments at runtime
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through local searches on the tasks being solved.

In a first test for VIMRL, I built a solver for the Abstract Reasoning Corpus. The process

of building this solver served as a valuable testing ground for developing the language and

its associated search techniques. The solver performed well on the public ARC dataset, and

tied for 4th place in the 2022 International ARCATHON where the private hidden ARC

dataset was used.

With the language sufficiently developed, I leveraged it in a state-machine representa-

tion to define strategies for reasoning about the Block Design Task. In working towards

synthesizing strategies, this state machine structure was used as a state space within which

to search for BDT strategies. I made progress in building an agent that forms strategies for

stripped down versions of the BDT.

The stripped down BDT had a limited number of blocks and the agent’s freedom to

move were restricted. Although in all my experiments I was only able to work with a single

block, I was able to progressively increase the degrees of freedom until the agent could

move the block between the bank and the design, and also flip the block along two axes.

Adding any more blocks or degrees of freedom led to search spaces that were too large to

explore.

Regardless of the challenges in scaling strategy synthesis to the full block design task,

observations from the simplified BDT provided a concrete way of visualizing how the

sequencing of instructions affected an agent’s efficiency in completing the task.

7.3 On Investigating Human Strategies

Ultimately, a better view of how humans form strategies and how these strategies can be

analysed is a key step towards understanding human reasoning in general. To that effect,

a significant portion of my work on this dissertation was spent in helping build systems

for quantifying human performance on the block design task. This portion of the work

involved producing tools that allowed for the capture, visualization, and analysis of human

performance on the BDT.

For the work in this dissertation, I relied on two classes of human performance data:

those collected through in-person test sessions and those collected through online test
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sessions. Three different systems were used to obtain this data. There were two iterations

of in-person performance recording systems, and a third online system. All three systems

represented progressive improvements in evaluating human performance on the BDT.

Work performed on the first in-person BDT system helped lay foundations for effective

ways in setting up such designs. It showed the importance of collecting good gaze data,

and it provided a good proving ground for developing techniques for synchronizing data

streams. With some of the kinks in the first in-person system removed, the second one

allowed for more efficient data collection, and it improved the test taking experience for

participants. The final online system

Unfortunately, none of these systems were used in full-blown studies. They were,

however, used in effective pilot studies which yielded meaningful data that was worth

reporting on. Data from the first in-person system showed how some specific of participants

exhibited consistent strategies, like looking once at the design. Data from the second system

gave us a case study of why autistic individuals may be outperforming others. And data

from the first only pilot showed how people could adapt strategies to minimize the cost of

taking the test, such as evading gaze restrictions by repositioning blocks.

In the end, it is worth noting that work done with these systems provided a solid

foundation on which larger studies can be performed in future.

7.4 Summary of Contributions

Overall, the work on this dissertation led to four main contributions:

1. I was able to demonstrate sufficiency of imagery as a representation for reasoning

about four main tasks: The VZ-2 Paper Folding Task, the Leiter Intelligence Scale, the

Block Design Task, and the Abstract Reasoning Corpus. As part of this contribution,

I developed the Visuospatial Reasoning Environment for Experimentation, which

provided a framework for performing visual reasoning experiments on virtual agents

for evaluating human-like reasoning experiments.

2. I developed the Visual Imagery Reasoning Language (VIMRL), which was used

by the AI systems in this dissertation for representing reasoning strategies. While
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developing VIMRL, I tested its features on a solver for the Abstract Reasoning Corpus,

which tied for 4th in the 2022 ARCATHON.

3. I demonstrated the synthesis of strategies on modified versions of the Block Design

Task. The strategies synthesized were expressed in state machines driven by VIMRL

programs. This ability to synthesize strategies provides a foundation on which

strategy differences on visual reasoning tasks can be studied.

4. I contributed to the design of systems for collecting data about human performance

on the block design task, from both in-person and online evaluation sessions. I addi-

tionally worked on a slew of visualization and analytical tools to help in identifying

and extracting potential strategies people may be using on the Block Design Task.

7.5 Future Work

There were a few lines of work I would have preferred to pursue if I had more time.

Particularly, I would have favoured honing the search algorithms by working towards

increased performance on the ARC benchmark, pushing the work on synthesizing strategies

further into larger instances of the BDT, and exploring ways of interpreting human BDT

performance data with synthesized strategies.

7.5.1 The Abstract Reasoning Corpus and Search

The Abstract Reasoning Corpus is a difficult benchmark. Its lack of language use and

reliance on abstract concepts captured as few-shot image training pairs puts effective so-

lutions out of the range of most traditional machine learning algorithms. While working

on this dissertation, the ARC served as good proving ground for developing search algo-

rithms. The inherent difficulty led me to devise creative optimizations and workarounds

that ultimately led to better search performance in other tasks.

Although the current performance of the VIMRL solver on ARC is acceptable, there

are a few things that could bring some potential improvements. First, a complete corpus

of ground truth programs that cover most, if not all, of the publicly available tasks will

do a better job of capturing the knowledge required to solve ARC tasks. This way, the
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solver could rely more on a knowledge driven search that could explore more potential

programs, instead of the current best performing brute-force approaches described in this

dissertation. Just as large image datasets like ImageNet were instrumental to the computer

vision in driving innovation, the ARC benchmark has the potential to do the same for the

program synthesis and visual reasoning community.

7.5.2 Synthesizing and Understanding Strategies

As it currently stands in this dissertation, the work on synthesizing strategies demonstrates

the feasibility of the approach, along with showing the usefulness of representing strategies

as programs. This usefulness comes from programs having the ability to encapsulate

strategies in a way that allows them to be applied in multiple instances of problems from a

given class (such as different instances of a BDT puzzles being solved by a single strategy

represented as a program.)

Future work on synthesizing strategies could be focused on simpler visual reasoning

tasks, for which the space of strategies will be smaller. Although, such a task may also

exhibit a limited diversity of strategies, it will provide a good proving ground for the

techniques described in this dissertation. Additionally, when richer streams of human

performance data is collected on the block design task, strategies could be synthesized and

mapped to this human performance data to obtain better insights about people’s choices.

7.6 Final Thoughts

In this dissertation, I worked to explore different ways in which strategy differences can

be expressed and studied in intelligent systems. I hope the work described here provides

another small piece of the puzzle being worked on towards the grand quest of unearthing

the mechanisms behind human cognitive abilities. As valuable research in this area in-

creases, it will not only improve life for us as humans, but it can also better equip us to

build efficient AI systems that reason much like humans do.
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Appendix A

List of VIMR operations for ARC

The VIMRL based ARC solver had access to a total of 105 operations. The table below

provides an extensive list of all these operations along with their parameters.

Name Execution Parameters Type

add Low Level (’objects’,) image

align_objects High Level (’objects’,) objects

attract High Level (’objects’,) objects

change_color Low Level (’image’, ’color’) image

color_sorted High Level (’objects’,) objects

complete_pattern High Level (’image’,) image

connect_pixels High Level (’image’,) image

count Low Level (’objects’,) number

create Low Level (’image’,) image

create_image High Level (’number’,) image

draw Low Level (’image’, ’objects’) image

filter_color_block Low Level (’image’, ’color’) image

filter_color_pass Low Level (’image’, ’color’) image

filter_full_symmetric Low Level (’objects’,) objects

filter_horz_symmetric Low Level (’objects’,) objects

filter_vert_symmetric Low Level (’objects’,) objects

find_central_object Low Level (’image’,) image

find_enclosed_patches Low Level (’image’,) objects

find_missing_patch High Level (’image’,) image

find_objects Low Level (’image’,) objects

find_objects_in_context Low Level (’image’,) objects

find_objects_nd Low Level (’image’,) objects

find_odd_object Low Level (’objects’,) image

first_image Low Level (’objects’,) image

first_object Low Level (’objects’,) objects

flip_horz Low Level (’image’,) image

flip_vert Low Level (’image’,) image

get_color Low Level (’image’,) color

get_grid High Level (’image’,) grid

get_grid_cells Low Level (’grid’,) objects

get_grid_color Low Level (’grid’,) color

grid_as_image Low Level (’grid’,) image

grid_from_image Low Level (’grid’, ’image’) grid

grow_objects High Level (’objects’,) objects

grow_pixels High Level (’image’,) image

head Low Level (’objects’,) objects

invert Low Level (’image’,) image

last_image Low Level (’objects’,) image
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Name Execution Parameters Type

last_object Low Level (’objects’,) objects

make_color_patch High Level (’color’,) image

make_enclosed_patches Low Level (’image’,) image

make_unique Low Level (’objects’,) objects

map_change_color Low Level (’objects’, ’color’) objects

map_complete_pattern Low Level (’objects’,) objects

map_connect_pixels Low Level (’objects’,) objects

map_create Low Level (’objects’,) objects

map_filter_color_block Low Level (’objects’, ’color’) objects

map_filter_color_pass Low Level (’objects’, ’color’) objects

map_find_central_object Low Level (’objects’,) objects

map_find_missing_patch Low Level (’objects’,) objects

map_flip_horz Low Level (’objects’,) objects

map_flip_vert Low Level (’objects’,) objects

map_grow_pixels Low Level (’objects’,) objects

map_image High Level (’image’,) image

map_invert Low Level (’objects’,) objects

map_make_enclosed_patches Low Level (’objects’,) objects

map_map_image Low Level (’objects’,) objects

map_recolor_image Low Level (’objects’,) objects

map_remove_noise Low Level (’objects’,) objects

map_repeat Low Level (’objects’,) objects

map_rotate_180 Low Level (’objects’,) objects

map_rotate_270 Low Level (’objects’,) objects

map_rotate_90 Low Level (’objects’,) objects

map_scale_2x Low Level (’objects’,) objects

map_scale_3x Low Level (’objects’,) objects

map_scale_4x Low Level (’objects’,) objects

map_scale_5x Low Level (’objects’,) objects

map_scale_half Low Level (’objects’,) objects

map_scale_quart Low Level (’objects’,) objects

map_scale_third Low Level (’objects’,) objects

map_self_scale Low Level (’objects’, ’image’) objects

map_trim Low Level (’objects’,) objects

pixel_ratio Low Level image number

recolor_image High Level (’image’,) image

recolor_objects High Level (’objects’,) objects

remove_noise High Level (’image’,) image

render_color High Level (’color’,) image

render_color_sequence High Level (’objects’,) image

render_grid Low Level (’grid’,) image

render_number High Level (’number’,) image

repeat High Level (’image’,) image

reset_background Low Level () color

rotate_180 Low Level (’image’,) image

rotate_270 Low Level (’image’,) image
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Name Execution Parameters Type

rotate_90 Low Level (’image’,) image

scale_2x Low Level (’image’,) image

scale_3x Low Level (’image’,) image

scale_4x Low Level (’image’,) image

scale_5x Low Level (’image’,) image

scale_half Low Level (’image’,) image

scale_quart Low Level (’image’,) image

scale_third Low Level (’image’,) image

segment_objects Low Level (’image’,) objects

segment_objects_nd Low Level (’image’,) objects

self_scale Low Level (’image’, ’image’) image

set_background_color Low Level (’color’,) color

solve High Level (’objects’,) image

sort_by_area Low Level (’objects’,) objects

sort_by_color Low Level (’objects’,) objects

sort_by_color_frequency Low Level (’objects’,) objects

sort_by_contents Low Level (’objects’,) objects

sort_by_number_of_colors Low Level (’objects’,) objects

sort_by_size Low Level (’objects’,) objects

tail Low Level (’objects’,) objects

trim Low Level (’image’,) image
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Appendix B

State transitions of the two different Blocks for the BDT
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Figure B.1: All the states of the RED block design Chart
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Figure B.2: All the states of the BLUE block design Chart
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