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Abstract:

Density functional theory is utilized in real-time, real-space simulations of LEED

measurements and attosecond electron scattering. For LEED measurements, we find

that our simulation results agree well with experimental data and other theoretical

approaches. For attosecond electron scattering, we find that the wavefunction of

the scattered electron is not signficantly changed by the scattering process, and the

measured electron density seems to be related to the initial form of the wave-packet.

However, further investigation is needed to confirm these results for different choices

of initial form.
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CHAPTER I

Introduction

1.1 Context and Motivation for Work

Electrons have become indispensable tools for imaging atomic, molecular, and

crystal geometries. In particular, low-energy electron diffraction (LEED) is a ubiq-

uitious and exceptionally useful method for analyzing the atomic structures of vari-

ous materials [1]. In LEED, a collimated electron beam with an electron energy of

E = 20 − 200 eV is fired at the surface of a crystalline material. The electrons are

either reflected or transmitted through the material and impact on a phosphor screen.

Due to their interaction with the crystal lattice, the electrons will form a diffraction

pattern on the detector, which can then be analyzed to determine key properties of

the atomic surface. Proper interpretation of LEED measurements requires accurate

computational simulation of the surface under investigation [2]. Since an individual

electron will almost certainly encounter multiple atoms in the crystalline material, a

LEED measurement must presume that the electron undergoes a complex multiple
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scattering process. As such, the relationship between the observed diffraction pattern

and the atomic structure of the material may be very complex, and accurate computer

simulations can do much to clarify this relationship for experimentalists and theorists.

Current computational approaches to electron diffraction (primarily the Bloch wave

method [3] and multislice theory [4]) leave much to be desired for LEED applica-

tions. The Bloch wave method is typically used for transmission electron microscopy

(TEM) measurements [3], and therefore deals with electrons of much higher kinetic

energy (E = 100 − 300 keV). It yields accurate results in this regime, but is limited

to very small simulation volumes, making it impractical for studying larger systems.

The multislice approximation, also primarily developed for TEM applications, fares

reasonably well for larger simulation volumes, but it assumes that the kinetic en-

ergy of the incident electron is much greater than the potentials experienced inside

the sample, and this is highly questionable for electrons in the LEED energy range

[5]. Moreover, the multislice approach must repeat its computation for each desired

electron energy, making it less computationally efficient.

In the present work, we present a unified theoretical and computational framework

to investigate electron diffraction in solids. This approach has several advantages.

First, it treats high- and low-energy electrons on an equal footing, and is therefore

equally applicable to LEED and TEM measurements, although here we focus on

LEED applications. Second, unlike multislice theory, our approach can extract data

for the entire range of desired electron energies in a single computation; no repetition

is required. Third, our approach propagates electrons in real time (unlike multislice

approaches, which typically work in the energy domain) and real space (unlike Bloch
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approaches, which typically work in reciprocal space). This intuitive approach, if not

a computational advantage, is certainly an intellectual and pedagogical benefit; if

the purpose of computational physics is to provide new insight into physical systems,

then it is reasonable that approaches that mimic experiment as closely as possible

might prove particularly valuable in generating these insights.

Beyond conventional applications of electron imaging of atomic structures, the ad-

vent of attosecond electron technology promises new and exciting tools for the study

electron dynamics in materials. An attosecond electron pulse can be conveniently de-

fined by reference to the Heisenberg uncertainty principle [6]. That is, if ∆E∆t ≥ ~

2
,

then an attosecond electron pulse has a ∆t in the attosecond regime. ∆t can be

thought of as the time required for the electron wavefunction to pass by a point in

space, and is therefore a useful way to characterize the maximum possible temporal

resolution of electron imaging techniques. Thus attosecond electron pulses have ideal

temporal (<1 fs) and spatial (∼ Å) resolution for imaging electron dynamics in atoms

[6]. This has led to proposals to perform so-called “4D” diffraction and microscopy

measurements, e.g., high-resolution movies of electron dynamics, using attosecond

electron pulses [7]. Attosecond electron wave pulses have already found applications

in interferometry measurements [8], electron holography [9], measurements of nuclear

motion [10], and imaging of atomic and molecular orbitals [11], among others. How-

ever, as with LEED measurements, accurate computer simulations will be necessary

for a full understanding of attosecond electron diffraction, and at present there is a

lacuna of such simulations.

The present work aims to fill this gap by extending the real-time, real-space com-
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putational strategy used for LEED measurements to describe attosecond electron

pulse scattering from atoms and molecules. The ultimate goal of these simulations

is 4D imaging of electron diffraction. These movies can be used both as an aid for

experimental efforts to perform 4D electron diffraction experiments and a way to test

the validity of our theoretical assumptions as they are applied to different systems.

1.2 Outline of the Work

The organization of this thesis is as follows: first, we present our real-time, real-

space computational approach with specific reference to our LEED simulations. We

then describe our main theoretical tool, density functional theory (DFT). Next, we

discuss the results of our LEED simulations and assess the utility of our approach.

We then present our approach to attosecond electron scattering; since our method is

somewhat similar to our approach to LEED, we mainly take note of the differences

between the two approaches. We then present the results of our scattering simulations,

followed by some concluding remarks.

5



CHAPTER II

Real-Time, Real-Space

Calculations

Our theoretical approach begins by describing electrons as wave-packets. This

description has many advantages over alternative models, such as the plane wave

description. Gaussian wave-packet parameters allow us to fine-tune the width of

our wave-packets in all three spatial dimensions, which facilitates the simulation of

finite-size effects of an electron source. This description also allows us to extract

information about the phases and amplitudes of the component eigenfunctions of

the wave-packet. Furthermore, propagation of wave-packets in the time domain can

yield eigenfunctions of arbitrary nanostructures, making the wave-packet description

particularly valuable to computational nanoscience [12].

Our approach propagates electrons in real time and real space. However, since a

computer can only hold a discrete number of values, we cannot sample the electron

wavefunction across a continuum. Instead, we measure our electron on a discretized

6



grid, where neighboring points in space are separated by a distance d, and the wave-

packet’s time evolution is sampled at some regular interval ∆t. There is a tradeoff

between computational efficiency and accuracy; smaller choices of d and ∆t yield

more accurate results, but calculations become more costly. Our choices for these

parameters are discussed below.

In our LEED simulations, we need only consider the scattering of single electrons,

as the time between electron pulses (∼10−9 s) is much greater than the characteristic

time of the scattering interaction (∼10−15 s). We begin with the usual time-dependent

Schrödinger equation for an electron wavefunction Φ(r, t):

i~
∂Φ(r, t)

∂t
= HΦ(r, t) =

[

− ~
2

2m
∇2 + V (r)

]

Φ(r, t). (2.1)

V (r) is the effective potential of the crystal film, which is considered to be frozen

for the duration of the scattering process. In the case of an electron with initial

(average) kinetic energy E0=~
2k2

0/2m and momentum p0 = ~k0, we may write the

initial wave-function as

Φ(r, t = 0) = eik0zφg(r, 0), (2.2)

where φg(r, 0) the initial Gaussian distribution of the wave-packet. This constrains

φg(r, 0) to a form that is easy to implement in real space, easing our computational

task. Although this is not explored in the present work, expressing the wavefunction in

this manner also allows for the successful simulation of high-energy electrons (E > 100

keV) [13].
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Figure 2.1: Schematic illustration of wave packet propagation. The electron wave-
packet is propagated in time through the grid until it is absorbed the CAPs at either
end of the grid. The time evolution of the wave-packet is then known, and we fit it
to known asymptotic forms in the regions to the left and right of the sample. This
figure is reproduced from Ref. [13]

Our computational setup is schematically illustrated in Fig. 2.1. We begin with a

wave-packet far away (e.g., sufficiently far that the wavefunctions of the electron and

sample to do not interact appreciably with one another) from the target crystal, and

propagate the electron in time using the normal exponential term:

Φ(r, t+∆t) = e−iH∆t/~Φ(r, t). (2.3)

This allows us to propagate the Gaussian wave-packet throughout the entire sim-

ulation box. However, the exponential term cannot be handled directly due to the

Hamiltonian operator, so we must approximate it in order to carry out our calculation.

Here, we choose to expand the exponential using a Taylor series:

e−iH∆t/~ ≈
N
∑

n=0

(−i∆tH
~

)n

n!
. (2.4)

8



This is a simple and popular method for approximating the exponential operator. Its

only disadvantage is that it is unstable for large time steps, which forces us to use

relatively small values of ∆t in our computation. For the present approach, however,

this requirement is not problematic, and we can find appropriate values of ∆t that

allow for both reasonable computation times and successful time development of the

wavepacket.

The time propagation of the wavepacket, however, raises a concern common to

numerical grid approaches. Since we require that the electron wavefunction approach

zero at the boundaries of the simulation box, we will encounter unphysical reflection

effects as the electron approaches the boundary. In order to avoid these effects, we

implement a complex absorbing potential (CAP)[14, 15] of the form V = V0(r) +

iW (r), where V0 is the original (real-valued) potential of our system, and W is an

arbitrary function that is chosen to be non-zero only near the boundaries of the

simulation box. The CAP is usually designed to go to infinity at the simulation

box in order to totally eliminate undesirable reflections. It can easily be shown that

this complex absorbing potential forces the electron wavefunction to vanish in the

asymptotic regions of the box [16], but does not affect the wavefunction near the

scattering region, where our measurements are made.

With these two difficulties solved, only one more problem confronts our computa-

tional approach: computation of the second derivative of the electron wavefunction.

This is necessary to calculate the Hamiltonian of our system, yet it is not immedi-

ately obvious how a second derivative should be approximated for a series of discrete

points, rather than for a continuous function. We solve this dilemma via the approach
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of Ref. [17]: a finite difference approach that approximates d2Φ
dx2 using the values of

the wavefunction at neighboring points. For our five-point finite difference approxi-

mation, we can expand any function φ(x± 2d), where d is the spacing between grid

points in the x-direction, as:

φ(x± 2d) = φ(x)± φ′(x)2d+
1

2
φ′′(x)(2d)2 ± 1

6
φ′′′(x)(2d)3 +

1

1
24φ′′′′(x)(2d)4, (2.5)

where φ′ is the first derivative, φ′′ is the second derivative, etc. We can write down a

similar equation for φ(x± h). This, coupled with the identity φ(x) = φ(x), creates a

linear system of equations that can be solved for φ′′:

φ′′(x) = − 1

12
[φ(x+ 2d) + φ(x− 2d)] +

4

3
[φ(x+ d) + φ(x− d)]− 5

2
φ(x). (2.6)

This centered method, so called due to its symmetry about x, produces a well-defined

second derivative for all points in the grid except for those within 2d of the grid bound-

ary. For these points, we use a forward approach, which results in a similar formula

that incorporates φ(x+3d) and φ(x+4d), but not φ(x− d) or φ(x− 2d). With these

formulae in hand, we are well-positioned to compute the second derivative, and hence

to solve the scattering problem using our numerical grid approach. All that remains

is to extract the transmission and reflection coefficients from the information con-

tained in the time-developed wavefunctions. Once the time evolution of the Gaussian

wave-packet is completed, we use a Fourier transform to move from the time domain
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to the energy domain:

Φ(x,E) =
1

2π

∫

Φ(x, t)eiEt/~dt. (2.7)

For the case of a thin film, where transmission and reflection are both possible, the

wavefunction in the asymptotic regions (e.g., those to the far left and far right of the

sample) can be expressed as:

Φ(r, E) =



















eik0‖·ρeik0⊥x +
∑

g Rk0⊥ge
i(k0‖+g)·ρe−ik−

g⊥x) x → −∞

∑

g Tk0⊥ge
i(k0‖+g)·ρeik

+

g⊥x x → +∞,

(2.8)where ρ =

(x, y), and g is the reciprocal lattice vector of the crystal. In the case of a bulk film,

however, the transmission probability is zero, and the asymptotic form is reduced to:

Φ(r, E) = eik0‖·ρeik0⊥x +
∑

g

Rk0⊥ge
i(k0‖+g)·ρe−ik−

g⊥x), x → −∞ (2.9)

We then fit our time-propagated wavefunction Φ(r, E) to these asymptotic forms,

and use this information to extract the transmission and reflection coefficients for a

given energy. The details of this extraction process are presented in Appendix A. All

calculations are implemented using our own computer code.

11



CHAPTER III

Density Functional Theory

With the problem of propagating the electron wave-packet solved, we now turn

to the other challenge of our computational task: the interaction of this wave-packet

with our target. Whether this target is the surface of a crystalline material (as in

LEED) or an atom or molecule (as in our attosecond electron simulations), we are

confronted with a multi-electron system. The behavior of such systems is often noto-

riously difficult to describe. In this work, we use density functional theory (DFT) in

order to study these complex systems. DFT is one of the most popular computational

approaches to solving such systems due to its moderate computational cost and appli-

cability to relatively large quantum systems. We begin with the Schrödinger equation

for a system of N electrons (assuming, as per the Born-Oppenheimer Approximation,

that the nuclei can be treated as stationary):

[

−
N
∑

i=1

~
2

2m
∇2

i +
N
∑

i=1

V (ri) +
N
∑

i<j

U(ri, rj)

]

Ψ = EΨ. (3.1)
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Here, Ψ = Ψ(r1, r2, ..., rN ) is the many-particle wavefunction. V (ri) =
∑N

A=1
ZAe2

|ri−RA|

is the potential felt by each electron due to the atomic nuclei of the system, where N

is the number of atoms in the system, and ZA and RA are the charge and coordinate

vector, respectively, of the Ath nucleus. U(ri, rj) = e2

|rj−ri|
is the potential due to

electron-electron interactions. The main idea of DFT is to replace the many-particle

wavefunction with the electron density:

ρ(r) =

∫

Ψ∗(r1, r2, ..., rN )Ψ(r1, r2, ..., rN )dr2, dr3...drN . (3.2)

This substitution is made possible by two consequences of the Hohenberg-Kohn theo-

rems that underly DFT [18]. First, it can be shown that the electron density uniquely

determines the potential of a system, and hence all its physical properties. Second,

the energy functional, defined as E(n) = F [n] +
∫

V (r)n(r), where n = Nρ(r), and

F [n] is some universal functional (e.g., it does not have an explicit dependence on

V (r)), is minimized by the true electron density of the system. Taken together, these

two consequences ensure that the mapping from Ψ(r1, r2, ..., rN ) to ρ(r) is one-to-

one, and therefore we can analyze any system in terms of the density, rather than

the many-particle wavefunction. This reduces a generally intractable problem of N

interacting particles with 3N spatial variables to the tractable problem of fictitious,

noninteracting particles under the influence of some effective external potential. Be-

fore proceeding, we divide the energy functional into several component functionals:

E[n] = TKS[n] + EH [n] + Eext[n] + Exc[n], (3.3)
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where TKS is the kinetic energy operator, EH =
∫ ∫ n(r)n(r′)

|r−r′|
drdr′ is known as the

Hartree energy, and represents the (classical) electrostatic interaction energy, Eext[n] =

∫

ǫext(r)n(r)dr is the external energy due to fixed ions or external electric fields, and

Exc is the exchange correlation energy, which accounts for electron-electron interac-

tions. This division leads to a new form of the Schrödinger equation, usually referred

to as the Kohn-Sham equation:

(

− ~
2

2m
∇2

i + VH [n(r)] + Vext[n(r)] + Vxc[n(r)]

)

φk(r) = Ekφk. (3.4)

Here φk is a Kohn-Sham orbital, and we can construct n(r) using combinations

of these orbitals. Unfortunately, the Kohn-Sham equations must be solved self-

consistently, as there is no way to calculate n(r) directly. Our method, then, is

as follows: we begin with an initial guess for n(r) based on the system under ob-

servation. For example, we might approximate the electron density of an atom by

a Gaussian distribution. This allows us to compute V [n], which in turn allows us

to define the Hamiltonian. Since we have already replaced the real electrons of the

system with ficitious, noninteracting electrons, the Hamiltonian matrix of the system

is relatively easy to diagonalize; the lack of electron-electron interactions ensures that

most of the off-diagonal elements will be zero. This approximation is justified by the

fact that the potential of the system is uniquely determined by the electron density;

as long as we demand that n(r) of our system of noninteracting electrons matches

n(r) for the system of real electrons, we are guaranteed to reproduce the Hamilto-

nian. Once the Hamiltonian is diagonalized, we can easily find the eigenvectors of
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this Hamiltonian, which are the Kohn-Sham orbitals φk. Of course, at this point we

have only a guess for n(r), and therefore the Hamiltonian and its eigenvectors are

at best rough approximations. However, we find that when we sum the norm of the

Kohn-Sham orbitals, we obtain a new value for the electron density:

nnew(r) =
N
∑

k=1

|φk|2. (3.5)

We use this new electron density to generate a new Hamiltonian, and the Kohn-Sham

equation is solved again for a new electron density. This procedure is iterated until

the electron density converges. Once convergence is attained, we can claim that the

Kohn-Sham equations have been solved, and we obtain a good approximation of the

ground-state electron density of the system under study. We also use this approach

to calculate the excited states of a system, as it is simply a matter of calculating

additional Kohn-Sham orbitals via Eq. (3.4) and then placing electrons into the

appropriate orbitals. Since these states are not stable, we use time-dependent density

functional theory (TDDFT) to describe their evolution over time. While TDDFT

is more computationally difficult than DFT, the basic motivation and theoretical

strategy is similar to what has already been described. The additional complications

are due only to the time-dependence of the electron density functional.

The most difficult aspect of our procedure is the calculation of the exchange

correlation energy, Exc, which cannot be known precisely except for the case of a

uniform electron gas. Here, we make the local density approximation (LDA), which

is as follows: first, we determine n(r) at some given point on the simulation grid.
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We can then define a uniform electron gas with the same density, which will have an

associated energy ǫxc[n]. We then assign this energy to the grid point in question and

repeat the procedure for all points in the simulation box. The electron density at

neighboring points is not taken into consideration. While this approximation might

seem crude, the requirement that the electron density of the gas match that of the

point is normally enough to assure acceptable answers [18]. To obtain the total

exchange-correlation energy, we integrate over the entire box:

Exc[n] =

∫

ǫxc(n)n(r)dr (3.6)

This integral is calculated using the 3D trapezoidal rule.

One further approximation is worthy of mention. It is usually prohibitively ex-

pensive to perform computational simulations that incorporate both the inner shell

and valence electrons of an atom, since valence orbitals tend to be far more spatially

extended than inner shell orbitals. As such, we replace the inner-shell electrons with

an appropriate pseudopotential. Specific choices of pseudopotentials are discussed in

the results.

16



CHAPTER IV

LEED: Results and Discussion

Armed with these theoretical tools, we are now prepared to discuss the results

of our computational approach to LEED measurements. In Fig. 4.1, we present

our calculated transmission and reflection coefficients of graphene for typical LEED

energies. It is particularly noteworthy that we find very high transmission rates from

40-200 eV, suggesting the utility of graphene for low-electron point source (LEEPS)

microscopy [19] applications. Our result is in good agreement with a recent LEEPS

measurement [20].

Next, we present our calculations of the LEED beam intensity through a dia-

mond(111) 1 × 1 surface. In our code, we approximate this surface as a few layers

of a crystal slab. We then increase the number of layers in the crystal slab until our

results converge; for the present system, convergence occurred for about 15 layers.

A screened Thomas-Fermi potential [21] is used to approximate the carbon atomic

potentials, and we then use DFT calculations to generate an effective potential for the

whole slab. The usual choice of pseudopotential for similar systems is the muffin-tin
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Figure 4.1: Transmission and reflection coefficients of graphene for a typical LEED
energy range. This figure is reproduced from Ref. [13].

potential [22, 23] coupled with a uniform imaginary potential to account for inelastic

processes. The Thomas-Fermi potential treats the interstitial regions between atoms

more accurately than the muffin-tin (which assumes the potential to be constant in

these regions). A comparison of our approach and a muffin-tin calculation is pre-

sented in Fig. 4.2. The muffin-tin calculation is taken from Ref. [24]. In general, the

two methods agree quite well, and the different choices for carbon pseudopotentials

seems to account for the small discrepancies.

Finally, we report on simulated electron diffraction patterns generated by a graphene

lattice. The graphene lattice and grid schematic are shown in Fig. 4.3. Figures 4.4 and
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Figure 4.2: Intensity curves for diamond (111), the 1× 1 surface. The solid lines are
the results calculated by the present method, and the dashed lines show the results
of the multislice finite difference approach [24]. This figure is reproduced from Ref.
[13].

4.5 give the diffraction patterns for reflected and transmitted electrons, respectively,

for several electron energies. These patterns are greatly influenced by the electron

energy. This is to be expected, given the strong energy-dependence of the wavelength

at low energies (λ =
√

150/E Å) [13].

Taken together, these measurements provide strong evidence for the validity of our

method; it is an intuitive computational approach that produces results in good agree-

ment with experiment and alternative theoretical approaches. Crucially, our method

can extract transmission and reflection coefficients for multiple energy points in a

single calculation, greatly increasing computational efficiency. Moreover, the present
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(a) (b)

Lx

Ly

Lx

Ly

Lz

Figure 4.3: Periodic unit of a graphene lattice and a schematic of our simulation
box. Measurement slices are placed on both sides of the simulation box to sample the
transmitted and reflected electron densities. Lx=60 Å, Ly=2.46 Å, and Lz=

√
3Ly.

The graphene lattice is placed at Lx=0. This figure is reproduced from Ref. [13].

approach allows for greater flexibility in the choice of potential. It is fully compatible

with the muffin-tin potential, but can also accommodate all-electron potentials and

pseudopotentials. However, our method must be repeated for each desired scattering

direction, unlike other methods for LEED calculations. This tradeoff means that the

utility of our method depends upon both the desired number of scattering angles and

the desired energy range.

20



(a) E = 41 eV (c) E =116 eV(b) E = 75 eV

Figure 4.4: Density distribution for the reflected electron beam on the measurement
slice plane, at a distance of 12.0 Å from the graphene lattice. (a) E=41 eV, (b)
E=75 eV, and (c) E=116 eV. This figure is reproduced from Ref. [13].

(a) E = 49 eV (c) E = 173 eV(b) E = 105 eV

Figure 4.5: Density distribution for the transmitted electron beam on the measure-
ment slice plane, at a distance of 12.0 Å from the graphene lattice. (a) E=49 eV,
(b) E=105 eV, and (c) E=173 eV. This figure is reproduced from Ref. [13]
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CHAPTER V

Attosecond Electron Pulses

5.1 Computational Setup

The fundamental idea of our attosecond 4D imaging simulations is shown in

Fig. 5.1. The computational approach is very similar to the one used for LEED:

an attosecond electron pulse is propagated in time, scatters from the target atom or

molecule, and the electron density is recorded at the measurement plane for informa-

tion about the scattering. However, several differences are worthy of mention. The

most important difference is that we use DFT to calculate the electron density of our

entire system, not just to model the interaction of the electron with a crystal lat-

tice. Furthermore, since we are not interested in extracting transmission or reflection

coefficients, we do not need to propagate the electron through the entire box. We

need only propagate the electron until it has passed beyond the measurement plane.

Moreover, since we work with the electron density for the entire calculation, there is

no need to Fourier transform the wave-packet or match the electron to asymptotic
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forms. We also use a single atom or molecule as the target system, rather than a

crystal film, and we are interested in measuring the electron density, rather than in-

tensity or a diffraction pattern. Our simulations use time steps of ∆t = 0.1 as and

grid spacings of d = 0.125 Å.

Our reliance on DFT is much more thorough than in our approach to LEED. We

have found that this does limit the applicability of our approach to certain systems.

For example, attosecond pulses are an ideal choice to image the excited states of atoms

and molecules due to their short timescale relative to the oscillations of many excited

systems [11]. DFT can be used to calculate the excited states of a system, but its

accuracy varies greatly between systems. For example, our approach overestimates

the energy of the hydrogen 2p state, resulting in an atomic orbital that is far too

spatially extended to be of any use in a simulation. However, DFT does produce

reasonable results for the excited states of many molecules and atoms. Nor is the

DFT calculation of excited states without benefits. When we solve Eq. ( 3.4), we can

compute the atomic orbitals of the target system. This means that our simulations

work with the atomic/molecular orbitals, rather than the instantaneous (and rapidly

changing) position of electrons occupying those orbitals. Therefore, when our incident

attosecond electron scatters from the target system, it records information about the

entire atomic orbital, rather than the instantaneous position of the bound electrons.

This approach can measure the time-dependence of the orbitals without knowing

the position of the individual electron at any given point in time. In this way our

simulation more closely resembles an experimental scattering measurement, in which

a beam of electrons is fired at the target to gain information about the orbitals, rather
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than the instanteous positions of the electrons.

Before continuing to the results, some discussion of the significance of our sim-

ulations is in order. 4D imaging of electron dynamics has the potential to shed

substantial light on our understanding of atomic and molecular phenomena. As de-

scribed in Ref. [11], attosecond electron pulses can be used to create 4D images of

charge density oscillations in excited states of atomic and molecular systems. Since

the charge density is essentially constant during the scattering interaction, multiple

attosecond pulses must be scattered off the target at different times during the period

of charge oscillation in order to create the 4D image. We take a somewhat different

approach: we wish to create 4D images of the scattering of a single electron from

our target system. This allows us to better understand the dynamics of attosecond

electron scattering. In particular, we can investigate how a Gaussian wave-packet is

changed during the scattering process by measuring the electron density of the wave-

packet before and after scattering. If the change in the wave-packet due to scattering

can be characterized, then information about the target system can be gleaned from

an analysis of scattered attosecond pulses.

However, due to the position of our measurement plane (x = 5 Å), we do not

record the electron density of only the wave-packet, but the tail of the target system

density as well. As such, when the electron pulse is far away from the measurement

plane, we see only the electron density associated with the target. When the electron

pulse is in the measurement plane, we see both its electron density and the density

of the target system. By comparing these measurements, we can attempt to sort out

the contributions of the electron pulse and target system to the total density. Such
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Figure 5.1: Simulation grid for attosecond electron scattering. An electron, traveling
right, scatters off the target atom or molecule. A measurement plane at x = 5
Å records the electron density. A CAP, beginning at x = 5 Å, prevents reflection
effects. The CAP function is very close to zero for 5x10 Å so the wave-packet does
not suffer a substantial loss of density in this region. This was confirmed through
analysis of the wave-packet using Visit 2.3.0 software.

an analysis could be useful for reconstructing atomic orbitals and image correction;

if the effect of the electron pulse is known, then it might be possible to remove

these effects from the image, leaving only the density associated with the target

system under study. This in turn should allow a more complete understanding of

4D images of atomic charge oscillations, for example, since they rely on multiple

scattering processes to generate the image.

5.2 Results and Discussion

Now, we report measurements for the scattering of a 287 eV, 20 as electron pulse

from the ground and first excited states of the Be atom and N2 molecule. 4D imaging

has been achieved for these systems, and are given in the Supplementary Movies.

These movies record the time evolution of the electron density in the measurement
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plane. The movies do not begin at the start of the time development, since the

electron is very far away and does not influence the measurement plane. Rather, the

movies begin when the electron is still reasonably far away from the measurement

plane (t = 80 as), and end when the electron has passed through the measurement

plane.

Here we present several representative images from the Supplementary Movies in

Fig. 5.2. It is interesting to note that the attosecond electron pulse seems to cause

much stronger distortions in the excited states of these systems than the ground state.

Fig. 5.2(a) shows no evidence of geometric deformation; while the electron pulse does

seem to concentrate the electron density in the center of the plane, resulting in a

significantly smaller image of the atom, its spherical symmetry is still preserved.

Fig. 5.2(c) shows some evidence of deformation, as the “hot” central core is no longer

exactly spherical. It also displays a local density maxima in the intermediate region of

the yz-plane, a feature not seen in any of the other simulations. Figs. 5.2(b) and (d)

show significant deformities. The attosecond pulse seems to concentrate the electron

density in the center of the measurement plane, giving the appearance that the atomic

wavefunctions have been “pulled” towards the center.

This result implies that the attosecond electron’s Gaussian form is not signifi-

cantly changed by the scattering process, since most of its electron density remains

concentrated in the center of the y-z plane. Given the attosecond time scale of the

scattering interaction, this is not an entirely unexpected result, and it is confirmed in

Fig. 5.3. The scattered wave-packet is somewhat more dispersed than its nonscatter-

ing counterpart, but both retain their Gaussian shape. This complicates applications
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Figure 5.2: Pseudocolor plots of the electron density in the yz-plane for attosecond
scattering from (a) the ground state of Be, (b) the first excited state of Be, (c) the
ground state of N2, and (d) the first excited state of N2. The slide on the left shows
the measured electron density without the influence of the attosecond electron pulse
(t = 79 as), while the slide on the right is taken when the electron pulse is in the
measurement plane (t = 145 as). Red represents the areas of highest electron density,
blue represents the lowest electron density, etc. A larger box size was used for the
excited state calculations in order to avoid reflection effects. The N2 bond lies along
the y-axis. All slides are rotated 90◦ from their orientation in the Supplementary
Movies.

to the precise reconstruction of atomic orbitals, since the changes to the electron

wave-packet due to scattering are rather subtle. On the other hand, this implies that

distortions in the imaged electron density are related to the initial form of the elec-

tron wave-packet. In general, of course, the initial wave-packet is difficult to know,

but some approaches to attosecond electron pulse generation can extract this infor-

mation [6]. Furthermore, even if the electron’s Gaussian form is largely unchanged,

the supplementary movies do show some substantial differences among the systems.

For example, some distortion is evident in the N2 excited state from very close to

the beginning of the movie, whereas the Be excited state does not show significant

deformation until several tens of attoseconds later. More work is needed to under-
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Figure 5.3: Initial and final projections of the electron density onto the x-axis for
scattering (from the excited state of Be) and free-space propagation scenarios. n(r)
is identical for the initial cases, while the final scattering state shows evidence of
greater dispersion than its nonscattering counterpart.

stand why this is the case. This is especially interesting given the small differences

between the final states of the wavefunctions (see Fig. 5.4), which would seem to

indicate that the scattering interactions should also be quite similar. At present, we

are performing simulations with a measurement plane located farther away from the

atom (x = 9 Å), which should allow us to view the attosecond electron pulse’s density

without contributions from the target system density. Once a better understanding of

these phenomena is attained, our simulations could prove useful in correcting image

distortions.
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Figure 5.4: Initial and final projections of the electron density onto the x-axis for the
excited states of the Be atom and N2 molecule. The initial density distribution is
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CHAPTER VI

Conclusion

6.1 Summary

We have developed and applied real-time, real-space computational methods for

two problems: the simulation of LEED measurements and the scattering of attosec-

ond electron pulses from various atoms and molecules. We find that our method is

quite useful for LEED calculations, producing results in good agreement with both

experimental evidence and other theoretical approaches. Our approach to attosecond

electron has successfully created “4D” images of electron scattering. While initial re-

sults suggest that the imaged density might be influenced by the form of the electron

pulse, further work is needed to fully understand the scattering process. Future di-

rections for our research include sampling of the electron density at various distances

from the target system in order to further characterize the scattered wave-packet.
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APPENDIX A

Extraction of T and R in 3D

To complete the extraction of the transmission and reflection coefficients, we follow

the procedure given in Ref. [13]. In the asymptotic region, the wavefunction can be

decomposed into plane waves. One needs to calculate the transmission and reflection

probabilities of a plane wave with wavevector k0 incident on the surface of a slab of

crystal. We may decompose k0 into components parallel and perpendicular to the

direction of propagation:

k0 = k0‖ + k0⊥ (1.1)

When the incident wave reaches the crystal surface, part of the wavefunction will be

reflected. The reflected portion will travel with wavevectors that can similarly be

decomposed into parallel and perpendicular components:

k−
g = k−

g‖ + k−
g⊥ (1.2)
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The other part will be transmitted, with corresponding wavevectors:

k+
g = k+

g‖ + k+
g⊥. (1.3)

Above we have used + and - to indicate transmission and reflection, respectively.

From 2D momentum conservation, we obtain:

k+−
g‖ = k0‖ + g (1.4)

where g is the 2D reciprocal lattice vector of the crystal. To extract the transmission

and reflection coefficients, we proceed by placing matching planes close to the left

and right of the crystal slab (see Fig. 2.1). At points to the left of the first plane, we

may write the wavefunction using the incident and reflected plane waves:

Φ(r, E) = eik0‖·ρeik0⊥x +
∑

g

Rk0⊥ge
i(k0‖+g)·ρe−ik−

g⊥x) (1.5)

where

E =
~
2

2m
(k0‖

2 + k0⊥
2) (1.6)

is the electron energy. To the right of the second matching plane, we may write the

wavefunction in terms of the transmitted plane waves:

Φ(r, E) =
∑

g

Tk0⊥ge
i(k0‖+g)·ρeik

+

g⊥x (1.7)
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Once Φ(r, E) is known, one can use a Fourier transformation over the perpendicular

plane (y, z):

∑

y,z

Φ(E, r)e−i(k0‖+g′)·ρ = [eik0⊥xδg′,0 +Rk0⊥g′e
−ik−

g′⊥x]Ns, (1.8)

∑

y,z

Φ(E, r)e−i(k0‖+g′)·ρ = Tk0⊥g′e
ikg′⊥

+xNs, (1.9)

where Ns is the number of surface points on our grid. With this transformation,

the reflection and transmission coefficients can easily be calculated by fitting the

(calculated) wavefunctions to these assumed asymptotic forms.
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