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Abstract 
Cosmic microwave background (CMB) observations suggest the possibility of an extra dark 

radiation component, while the current evidence from big bang nucleosynthesis (BBN) is more 

ambiguous. Dark radiation from a decaying particle can affect these two processes differently. 

Early decays add an additional radiation component to both the CMB and BBN, while late 

decays can alter the radiation content seen in the CMB while having a negligible effect on BBN. 

Here we quantify this difference and explore the intermediate regime by examining particles 

decaying during BBN, i.e., particle lifetimes �� satisfying 0.1 sec <��< 1000 sec. We calculate the 

change in the effective number of neutrino species, Neff, as measured by the CMB, ∆����, and 

the change in the effective number of neutrino species as measured by BBN, ∆����, as a 

function of the decaying particle initial energy density and lifetime, where DNBBN is defined in 

terms of the number of additional two-component neutrinos needed to produce the same 

change in the primordial 4He abundance as our decaying particle. As expected, for short 

lifetimes (�� < 0.1 sec), the particles decay before the onset of BBN, and DNCMB = DNBBN, 

while for long lifetimes (�� >1000 sec), ∆���� is dominated by the energy density of the 

nonrelativistic particles before they decay, so that ∆���� remains nonzero and becomes 

independent of the particle lifetime. By varying both the particle energy density and lifetime, 

one can obtain any desired combination of����and ∆����, subject to the constraint that 

DNCMB ����. We present limits on the decaying particle parameters derived from 

observational constraints on ∆����,  and ����. 
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Introduction 

In the standard cosmological model, the density of the Universe is at present dominated by a 

cosmological constant, called dark energy, and cold dark matter which make up 70% and 25% 

of the universe respectively, with the remaining 5% in baryons. While the present day radiation 

content of the universe is negligible, it was the dominant component at early times. This model 

has emerged in the past decade based largely upon precision measurements of cosmic 

microwave background radiation (CMB) fluctuations [1] [2]observations of type Ia supernovae 

[3] [4]and big bang nucleosynthesis (BBN) [5]. 

While the cosmological observations are generally consistent with this standard model, there 

remain a few unresolved problems. The effective number of light neutrinos predicted by the 

standard model is	���� = 3.046. However, precision measurements from WMAP7, combined 

with baryon acoustic oscillations (BAO) are fit by a higher value of	���� = 4.34 !.""#!."$[8]. 

Observations by the Atacama Cosmology Telescope, combined with BAO, gives ���� = 4.56 ±0.75	[6]+ . In both cases, the standard model value ���� differs by two sigma from observation. 

This discrepancy hints to new physics beyond the standard model and the extra radiation has 

been dubbed “dark radiation”. 

Big Bang Nucleosynthesis (BBN) is also sensitive to the total radiation content of the Universe 

but the evidence is more ambiguous. Calculations of the relic helium abundance by Izotov and 

Thuan [7] and by Aver, Olive, and Skillman [8] have reached opposite conclusions with the 

former arguing for the additional dark radiations while the latter concluding the standard 

number of neutrinos suffices with a measurement of 	���� = 3.14 !.$-#!..! . While not conclusive, 

observations resulting in the case of ���� 	≠ ���� offer a significant challenge to the standard 

model because for ���� = 3.046,	both BBN and the CMB should “see” the same ����. 
Thus, our motivation is two-fold. We seek to address both the discrepancy between the 

standard model’s predicted value of ����	 and the observed value of ����	while offering a 

mechanism for	���� 	≠ ����. Several models have been proposed to account for these 

discrepancies. The simplest way is to add an additional relativistic relic particle. [9]  In this case, 

we always have	���� = ����. Another model which has been studied is the addition of a 
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massive particle decaying after BBN, resulting in an unchanged ����	but a higher value of ���� 

[10]. 

We fill the gap between these two regimes by examining a decaying particle scenario which 

decays during BBN. Such a model allows a range of ���� from ���� = ���� to ���� < ���� , 
which addresses both discrepancies between observed and predicted ����. 
Background and Theoretical Discussion 

The Friedmann Equation 

In a spatially homogenous and isotropic universe, the relation among the energy density	1(3), 
the pressure	5(3), and the scale factor 6(3) is given by the Friedmann equation (Λ is the 

cosmological constant and 8 is the curvature of space and the dot represents a time derivative), 

69 : =	8;<3 16: + 13Λ>:6: − >:8, 
and the fluid equation, 

1	9 + @1 + 5>:A 3696 = 0. 
We can rearrange the fluid equation to the useful form 

B(16C)B3 = −35696:>:  

and can use the relation 
DDE DEDF = DDE 69  to obtain the more useful relation 

B(16C)B6 = −356:>: . 
Finally, we note that the pressure and density of a fluid are related to each other using an 

equation of state. In cosmology, it is usual to assume that each component of the cosmological 

fluid has an equation of state given by 

5 = GH1>:, 
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where the equation-of-state parameter w is a constant depending on the depending on the 

type of matter in question. Particularly, w=0 for a pressure-less dust, w= 13 for radiation, and 

w=-1	for the vacuum. Using the equation of state, we can write 

B(16C)B6 = −3GH16: 

and thus the immediate solution is 

1H ∝ 6 C(L#MN). 
 

Components of the Cosmological Fluid 

In a general cosmological model, the universe is assumed to contain both matter and radiation, 

and in addition, the cosmological constant Λ is assumed to be non-zero. Thus, the cosmological 

fluid consists of three components each with a different density relation to the scale factor R 

which is determined by each component’s equation of state parameter as follows: 

OP33QR	 ↔ G = 0 ↔ 6 C	 
6PBTP3TUV	 ↔ G = 1/3 ↔ 6 X 

Λ	 ↔ G = −1 ↔ >UVY3PV3 
 

 

 The total equivalent energy density is simply of the sum of each individual contributor, 

1(3) = 	Z 1HH = 1[(3) + 1\(3) + 1](3). 
When we combine the above expressions, we find the total energy density of the universe as a 

function of time to be: 

1(3) = 	1[,! ^ 6!6(3)_
C + 1\,! ^ 6!6(3)_

X + 1],!	. 
From this expression, we see that the relative contributions of matter, radiation, and dark 

energy vary as the universe evolves. Thus, the universe goes through phases where specific 
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types of matter dominate the energy density. Once expects radiation to dominate the energy of 

the universe for small scale factors, or early times. As the universe expands, the radiation 

energy dies away most quickly and matter becomes the dominant component. Finally, as the 

universe continues to expand the matter also dies away and the universe ultimately becomes 

dominated by the vacuum energy.  

Cosmological Parameters 

Therefore, in the Friedman model, the entire history of the universe is determined by only a 

handful of cosmological parameters. As specified in the previous section, if we know the 

individual energy densities at the present time, we can determine the individual densities, and 

hence the total energy density, at all previous times t. Indeed, specifying these values and the 

Hubble parameter is sufficient to determine the scale factor R(t) for all time. Thus, the 

cosmological model is entirely fixed by specifying four quantities: 

`!	, 1[,!, 1\,!, 1],!.		 
It is common practice in cosmology to define the dimensionless quantities called the density 

parameters as follows: 

ΩH(3) = 	 8;<3`:(3) 1H(3), 
where `(3)is the Hubble parameter and the label denotes b, R,		or Λ. If we then plug this 

expression back into the Friedmann equation and divide the result by 6:, we can write the 

Friedmann equation in terms of the density parameters as follows 

1 = Ω[ + Ω\ + Ω] − >:8`:6:, 
where 8 is the curvature of space and can take on three values. From this we see that the three 

density parameters determine the spatial curvature of the universe. We have three cases: 

Ω[ + Ω\ + Ω] 	< 1	 ↔ VQcP3TdQ	YeP3TPf	>gRdP3gRQ	(8 = −1) ↔ UeQV	YeP>Q	 
Ω[ + Ω\ + Ω] = 1	 ↔ hQRU	YeP3TPf	>gRdP3gRQ	(8 = 0) ↔ ifP3	YeP>Q	 

Ω[ + Ω\ + Ω] 	> 1	 ↔ eUYT3TdQ	YeP3TPf	>gRdP3gRQ	(8 = 1) ↔ >fUYQB	YeP>Q 

Therefore, the goal of cosmological observations is to measure these quantities because if we 

know their full time expressions, we can reconstruct the entire history of the universe.  
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Big-Bang Nucleosynthesis (BBN) 

Equilibrium Thermodynamics 

The early universe, to good approximation, can be modeled as a hot bath of particles in thermal 

equilibrium. Because radiation scales as	6(3) X, the early universe was dominated by the 

radiation energy density allowing the matter and vacuum energy density to be ignored. From 

thermal physics, the energy density 1	can be written as 

1 = c2;:l (m: −b:)L/:
Qn op ± 1

q
[ m:Bm 

where g is the number of internal degrees of freedom and T is the temperature. Thus, the total 

energy density of all species in thermal equilibrium can be expressed in terms of the photon 

temperature as 

1\ = rX Z @rrHA
X cH2;:l (g: − sH:)L/:Qt ± 1

q
uN g:Bm

Hvwxx	yz�{H�y
 

where sH ≡ [No 	PVB	g ≡ no. Since the energy density of a non-relativistic species is exponentially 

smaller than that of a relativistic one, it is a good approximation to only include the relativistic 

species. In that limit,  

1\ = ;:30c∗rX 

 

where c∗ represents the total number of effective degrees of freedom: 

c∗ = Z cH @rHrA
X

Hv~�y��y
+ 78 Z cH @rHrA

X .
Hv��\[H��y

 

Note that c∗ is a function of photon temperature and thus its value changes during different 

eras of the universe as different particles decouple and become non-relativistic.  
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During the early radiation dominated era,1\ ≅ 1. If we assume what current observations 

suggest, that Ωo�Fwx = 1,	and that all the energy in the early universe was in the form or 

radiation, it follows from 

`:(3) = 	8;<3 1H(3) 
 that the expansion rate (the Hubble constant H) is related to c∗ by 

` = 1.66�c∗ r:bzx, 
in Planck units.  

 

Initial Conditions (� ≫ �	���, 	 ≪ �	���) 

The basic building blocks for nucleosynthesis are the neutrons and protons and thus the 

abundance of elements depends heavily upon the ratio between neutrons and protons. It is 

important to note that the neutron is unstable according to the reaction  

V ↔ e + Q + � 

with a lifetime �� = 885	seconds. Thus, if neutrons are left free, they would decay as exp	(− F��). Thus, neutrons are still around today because of BBN as neutrons bound up in nuclei 

are stable against decay.  

Consider the era when the universe has r ≫ 1	OQ�. In this era the neutrons and protons are in 

equilibrium via the following weak interactions: 

V + d ↔ e + Q  

Q# + V ↔ e + � 

V ↔ e + Q + � 

As long as they are kept in equilibrium by the reactions above, their number densities are 

related by Boltzmann statistics: 

Ve = exp @−�rA. 
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where � = b� −bz = 1.293	OQ�. If the neutrons and protons were to remain in equilibrium, 

then the number of protons would begin to rapidly outnumber neutrons and no nuclei could be 

formed. However, equilibrium does not last long enough for the number of neutrons to become 

negligible. The interactions that mediate between neutrons and protons involve the interaction 

of a baryon with a neutrino. Thus, when the reaction rate of the neutrino reactions is on rate 

with the expansion rate (i.e. Γ� = `), the neutrinos decouple from the neutrons and protons 

and the ratio of neutrons and protons is “frozen.”  

By comparing the reaction rate to the expansion rate of the universe, ` = 1.66�c∗ o�[��, we find  

Γ̀ = @ r0.8	OQ�A
C. 

Thus the freeze-out temperature turns out to be T = 0.8 Mev. The universe reaches this 

temperature when the age is 3�\���� ≈ 1	YQ>UVB. The neutron-to-proton ratio at this freeze-

out value is thus 

Ve = exp�− �r�\����� ≈ exp @−1.29OQd0.8OQd A ≈ 0.2. 
 

Deuterium Synthesis 

Moving forward, when universe is about two seconds old, the neutron-proton ratio is V� Vz = 0.2⁄ . The neutrinos have decoupled from the rest of the universe but photons are still 

strongly coupled to neutrons and protons through the fusion reaction for deuterium. BBN takes 

place through a series of two body reactions and builds up nuclei up step by step. The first step 

in BBN is the formation of deuterium by the reaction 
e + V ⇄ � + �. 

Following from the Saha equation, we find the ratio of deuterium to neutrons as a function of 

temperature is 
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Figure 1: The time-

temperature evolution of 

the n/p ratio. The solid 

red curve indicates true 

variation. The steep 

decline after a few 100 s 

indicates the onset of 

BBN. The dashed blue 

curve indicates the 

equilibrium ratio and the 

dotted grey curve 

represents free-neutron 

decay. [5] 

 

V�
V�

� 6.5� @ rb�
A
:
Qse @��	r A. 

If we define r�t{	as the temperature when 
��
�� � 1, then r�t{ � 7.6 � 10"�	and 3�t{ � 200	Y. 

Even with the rough approximation, we see that the time of the “beginning” of nucleosynthesis 

is not negligible compared to that of the neutron’s half-life and thus means that once 

deuterium production comes into full swing the ratio of neutrons to protons is less than the 

freeze-out value due to neutron decay.  

 It is important to note that the freeze-out ratio has significant consequences on the deuterium 

synthesis, and thus the formation of other light elements. The formation of deuterium is 

dominated by the proton-neutron fusion reaction and thus heavily depends on the ratio of 

protons to neutrons. Once neutrons run out, there can be no more deuterium formation. 

Therefore, higher freeze-out numbers will result in a higher neutron number when deuterium 

synthesis starts.  
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Figure 2: Helium-4 and hydrogen dominate the nuclei created during BBN with heaver elements created 

in small but non-zero abundances. [19] 

Beyond Deuterium 

Once a significant amount of deuterium forms, many possible nuclear reactions can occur. For 

instance, a deuterium nucleus can fuse with a proton to from Helium-3 or a neutron to form 

tritium: 

� + e ⇌ 	 `Q + �C  

� + V ⇌	 ` + �C  

Deuterium can also fuse with itself in two ways to form tritium and helium 3: 

� + � ⇌	 `Q + VC  

� + � ⇌	 ` + eC . 
However, a large amount of helium 3 and tritium are never present during nucleosynthesis 

because both are efficiently converted into helium 4 by the following process: 

	 `Q = V	 ⇌ `Q = �X 	C  

`Q = �	 ⇌ `Q = eX 	C  

	 ` = eC ⇌ `Q = �X  

` = �C 	⇌ 	 `Q = eX  

It is important to note that none of the preceding reactions involve neutrinos. Therefore all 

these reactions have large cross-sections and fast reaction rates. Thus, once nucleosynthesis 
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begins, deuterium, tritium, and Helium-3 are all effectively converted into Helium-4. 

 

Higher atomic number nuclei are much less in relative abundance. Atoms with atomic number 

A=5 are unstable, thus helium-4 will not fuse with either a proton or neutron. Small amounts of 

stable lithium and beryllium are created but in very small quantities due to the time taken to 

reach this stage. Once such atoms can begin to occur, the universe has cooled so that the 

coulomb barrier becomes a significant and BBN effectively ends. Therefore, once deuterium 

forms, the reactions up to helium-4 happen very rapidly and by the time BBN ends, nearly all 

the baryons are in the form of helium-4 or free protons.  

Primordial Nucleosynthesis as a Cosmological Probe  

In light of our research, it is important to look at the effects of additional species of neutrinos. If 

we look back to our definition of  c∗, 
c∗ � Z cH @rH

r A
X

Hv~�y��y
+ 7

8 Z cH @rH
r A

X
,

Hv��\[H��y
 

any addition of a new particle species outside of those contained in the standard model would 

result in a higher value of  c∗. In the case of extra neutrinos, we have additional relativistic 

fermions to take into account. Since  ` ∝ �c∗r:, an increase in the value of c∗ leads to a faster 

expansion rate which in turn leads to an earlier freeze out of the neutron-proton ratio. With 

more neutrons, we obtain more deuterium and as a result more Helium-4.  

 

Methods 

Addition of a decaying particle 

We assume an expansion rate given by 

` � 69
6 � 	 @8;<3 1A. 

To the standard cosmological model we add a nonrelativistic particle X which is unstable with a 

lifetime �� which decays into an invisible (“dark”) radiation component. The equations 

governing the evolution of 1� and the decay component	1D�{  are 
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B1�B3 = −3`1� − 1���  

B1D�{B3 = −4`1D�{ + 1��� . 
In each equation, the first term represents the dilution of the energy density as the universe 

expands with the matter particle diluting like 6 C and the radiation component like	6 X, while 

the second term represents the decay itself. The density of the particle can be integrated 

analytically to give 

1� = 1�! @ 66!A
 C exp @	− 3�uA 

while the energy density of the decay radiation must be integrated numerically. 

Parameterization in terms of Entropy 

We first follow Scherrer and Turner [4] and parameterize the energy density in terms of  

R ≡ V� V¡p . 

To use a constant value for r, we take the ratio at a temperature r! to be immediately prior to 

nucleosynthesis, chosen to be r!~	10L:�, 	
 

R ≡ V� V¡p |o¤vL!¥�¦. 
However, in addition we follow [11]and parameterize the density of the decaying particle in 

terms of its number density relative to the entropy density, s, prior to decay 

§� = V�Y  

where s is given by 

Y = 2;:45 c∗¨r¡C. 
and c∗¨ = c∗∑ cH ªoNo«CHv~�y��y + ."∑ cH ªoNo«C .Hv��\[H��y  
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This approximation is useful because	§�	remains constant through the epoch of	Q#Q  

annihilation.  

To change between   §�b� and Rb� , we must find the constant that relates 
V� V¡p = P§�. 

Dividing through by V¡ we get 	 §�V¡ = V�V¡Y → §�YV¡ = V�V¡ . 
 

Setting the constants 8� = ℏ = > = 1, we get V¡ = 60.42 ªo®:¯«C. Thus  

YV¡ =
2;:45 c∗¨r¡C
60.42 @r¡2;A

C 

During BBN, c∗¨ = 43/4 and we get the relation 
V� V¡p = 19.36§�. 

 

Deriving ∆���� 

We look at the limit where neither the decaying particle nor its radiation ever dominates the 

energy density of the universe. In this limit, we may use Scherrer and Turner’s [12] relation 

between 1D�{ and 1° , 
1D�{
1°

� 0.43 ªRb�
OQd« ª��

Y «
L/:

, 

where the proportionality constant is determined from numerical fit.  Using our 

parameterization, we get the relation 

∆���� � 8.3 @§�b�
OQd A ª��

Y «
L/:

 

This relation is true for the limit where all the particles have decayed and thus the ratio 
±²³´

±µ
 has 

become constant. Because 1D�{ varies during BBN when the particles are decaying, we 

determine this ratio by looking at limits when	3 ≫ ��. In our program, this entails measuring 

the ratio near the end of time program long after BBN ends. Since the program measures the 
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Figure 3: Fit to determine the relationship between the changes in Helium-4 to the change in 

the effective neutrino number. 

age of the universe in temperature, we set a threshold temperature inequality which says that 

when T is less than this threshold, the program saves our ratio 
±²³´±µ .	The specific value of this 

threshold is not important as long as it is in the limit of		3 ≫ ��, or in our case r	 ≪ 0.1	OQ�. In 

our program we choose the threshold temperature to be 10$ Kelvin, or 8.6 KeV.   

Deriving ∆���� 

The change in ���� from BBN is related to the difference in helium-4 production with and 

without the addition of extra decaying particles. Because the decaying particle is effectively 

extra energy, we can relate the change in neutrino numbers to a change in helium-4 using a 

basic fit. To determine this relation, we first use a version of the program [13] [14] without any 

additional particles to determine the unperturbed amount of helium-4 produced. Next, we run 

the same program but alter the number of neutrino flavors (by default, the value is set to the 

standard models prediction of N=3.0) in increments of 0.01 up to a final value of N=5.0. We 

subtract the unperturbed amount of helium-4 from the perturbed amount of Helium-4 

resulting for additional neutrinos and plot this against the matching change in N from its 
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baseline value of 3.0 (see figure above). Using a quadratic numerical fit, we gain the relation 

between the change in helium-4 and  ∆���� as 

∆���� � 435¶∆ `QX ·: + 75¶∆ `QX · + 0.00222. 
Thus, for each pair of values for §�b� and ��	(and hence a change in the Helium-4 abundances) 

we have a corresponding change ∆���� that procures the same effect on Helium-4 production.  

Simulation  

Using the above relations and limits for determining the change in both	∆���� and ����, we 

ran simulations using a modified version of Kawano’s [15] version of the Wagoner [14] [13] 

big-bang nucleosynthesis code with the addition of 1D�{ and 1�. We take the baryon-photon 

ratio to be � = 6.1 × 10 L! and the neutron lifetime to be 881.5 seconds.  

We separated the simulations into six 100x100 grids, 2 groups based on particle mass and 3 

groups based on particle lifetime. The two mass groups are split equally with §�b� ranging  ~1 × 10 CX to ~1 (or 0.01 to 60 MeV).The three lifetime groups are split into eras where the 

particle decays before BBN, during BBN, and after BBN with group one ranging from 0. 1 to 1 

seconds, group two from 1 to 100 seconds, and group three from 100 to 1000 seconds.   

At each grid point we calculated	∆���� and ∆����	according to the discussion above. 

For	∆����	, we took the appropriate ratio at the end of the program and generated a matrix 

corresponding to the correct values of §�b� and	��. For ∆���� , the simulations generated a 

matrix of Helium-4 abundances corresponding to the correct values of §�b� and �� from which 

we subtracted a baseline matrix of helium-4 = 0.2477 which was calculated using an unmodified 

version of the program. Then, using the appropriate relation we calculated	∆����.                                                    

Using these matrices, we generated contour plots for eight different values of ∆���� and ∆����	ranging from 0.1 to 2.0.  

The results of these simulations are plotted below.  
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Conclusion 

For �� ≤ 0.1	YQ>, ∆���� = ∆����	. In this short-lifetime limit, all of the decaying particle 

energy density is converted to dark radiation before BBN begins. In this case, the ���� seen by 

both BBN and the CMB is the “dark radiation” produced by the particle decay. Therefore, for 

this model, any future observations in which	∆���� = ∆���� would indicate a particle which 

decays before BBN occurs. 

In the opposite limit,�� ≥ 1000	YQ>, the contours for BBN become horizontal lines. In this long-

lifetime limit, all of the particles decay after BBN and then increase in the expansion rate during 

BBN that alters the helium-4 abundances is due solely to the energy density of the 

nonrelativistic particles before the decay. However, ∆����	would still vary as a function of both §�b� and ��	because decay would still take place after BBN and thus the relative abundance of 

particle and “radiation” would have different effects on the last scattering. Thus, in this limit, ∆����	becomes a function of only §�b� and is independent of �� while ∆����~√��. 
However, even in in this limit, ∆���� never goes to 0 precisely because of the continued 

contribution of the nonrelativistic particles to the expansion rate.  

The transitional regime we explored is where 0.1 ≤ �� ≤ 1000	YQ>.	This is the region of 

interest if more precise measurements of ���� from the CMB and BBN yield nonzero values for 

both ∆���� and ∆���� with ∆���� 	≠ 	∆����. Future observations, such as those expected 

from Planck, which yielded differing values ∆���� and ∆���� could be compared to our chart 

and a potential particle mass and lifetime could be directly read off allowing for an explanation 

for the discrepancy. Additionally, this model can be falsified by observations because we always 

have	∆���� ≥	∆����.     

However, a deviation from the standard model’s value of 	����		in either BBN or CMB 

measurements is still inconclusive. Recent precision measurements of the CMB fluctuations are 

best fit by larger values of	����, with seven-year data from the Wilkinson Microwave 

Anisotropy Probe (WMAP), combined with observations of baryon acoustic oscillations (BAO) 

and measurements of the Hubble parameter, give	���� = 4.34 + 0.86 − 0.88	[16]+ ]. 

Observations by the Atacama Cosmology Telescope combined with BAO, gives ���� = 4.56 ±0.75	[6]+ .  Both differ from the standard model value of ����	by about 2.5 sigma. 

Measurements of primordial helium are tricky because helium-4 is produced in nuclear 

reactions inside stars and thus the source of measurements must be chosen to carefully avoid 

measuring stellar produced helium-4. In addition, theoretical calculations for primordial helium 

production depend on other variables, such as neutron lifetime, which are not precisely known 

and present problems when trying to generate an accurate theoretical calculation to compare 
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to observations.  Because of these uncertainties, we can use the upper and lower bounds on 

∆���� from Ref. [17]and the upper bound on ∆���� from ref. [18] to set limits on	§�b� and �� . Current bounds are not restrictive enough for major distinctions between ∆����	and ∆����. 

 

Despite the challenges and as of yet inconclusive measurements, the higher fit for ���� 	from 

more than one source strongly hints at new physics beyond the standard model. More accurate 

determinations of ∆����  will require more precision for variables going into theoretical 

calculations along with refined measurements methods. The future for ∆���� will come from 

Planck as its measurements are expected to reduce the error in ���� by an order of magnitude 

and thus completely resolve the controversy on whether ����	for the CMB is higher than the 

standard model’s value of 3.046.  

 

Figure 6: The solid lines give upper and lower bounds on ∆����	and the dotted line gives 

an upper bound on	∆����. Current limits give little distinction between the two. 



Menestrina 21 

 

 

 

Works Cited 

[1]  E. K. e. al., Astrophysical Journal Supplment Series 192, 18, 2011.  

[2]  N. J. e. al., Astrophysical Journal Supplment Series 192,14, 2011.  

[3]  M. Kowalski et al., Astrophys. J. 686, 749, 2008.  

[4]  M. Hicken et al., Astrophys. J. , vol. 700, p. 1097, 2009.  

[5]  G.Steigman, "Annu. Rev. Nucl. Part.," Science 57, p. 467, 2007.  

[6]  J. Dunkley and e. al, Astrophysical Journal, vol. 739, p. 52, 2011.  

[7]  Y. Izotov and T. Thuan, Astrophysical Joural Letters, vol. 710, p. L68, 2010.  

[8]  E. Aver, K. Olive and E. Skillman, Journal of Cosmology and Astroparticle Physics, vol. 2010, 2010.  

[9]  J. Hamann, S. Hannestad, G. Raffelt, I. Tamborra and Y. Wong, Physical Review Letters, vol. 105, 

2010.  

[10] K. I. e. al, Journal of Cosmology and Astroparticle Physics, vol. 5, 2007.  

[11] E. Kolb and M. Turner, The Early Universe, Addison-Wesley, 1990.  

[12] R. Scherrer and M. Turner, Astrophysical Journal, vol. 33, p. 331, 1988.  

[13] R. Wagoner, Astrophysical Journal, vol. 179, p. 343, 1973.  

[14] R. Wagoner, W. Fowler and F.Hoyle, Astrophysical Journal, vol. 3, p. 148, 1967.  

[15] L. Kawano, "Report No. Fermilab-pub-92/04-A," 1992.  

[16] E. K. e. al., Astrophysical Journal Supplement Series, vol. 18, p. 192, 2011.  

[17] M. Archidiacono, E. Calabrese and A. Melchiorri, Physical Review D, vol. 84, pp. 123-128, 2011.  

[18] G. Mangano and P. Serpico, Physical Letters B, vol. 701, p. 296, 2011.  

[19] K. M. N. M. T. Scott Burles. [Online]. Available: arXiv:astro-ph/9903300v1. 

 



Menestrina 22 

 

 

 

 


