
Simulating the universe with GPU-accelerated supercomputers:

N -body methods, tests, and examples

Benjamin D. Wibking

Adviser: Andreas A. Berlind

Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37231

ben@wibking.com

Submitted to fulfill, in part, the requirements for honors in physics, B.A.

– 2 –

ABSTRACT

We demonstrate the acceleration obtained from using GPU/CPU hybrid clus-

ters and supercomputers for N-body simulations of gravity based in part on the

author’s new code development. Validation tests are shown for cosmological sim-

ulations and for galaxy simulations, along with their respective speedups com-

pared to traditional simulations. Potential new applications for science enabled

by this advance are highlighted.

Subject headings: n-body: general — n-body: gravitation – computational methods –

large-scale structure and cosmology

– 3 –

1. Introduction

N -body simulations are the tool of choice for theoretical predictions of galaxy

clustering, large-scale structure, and galaxy formation (Springel et al. 2005; Navarro et al.

1997). They are important for the interpretation of extragalactic observational surveys,

such as the simulations and analysis surrounding Sloan Digital Sky Survey (e.g. Abazajian

et al. 2005), the Dark Energy Survey (e.g. Busha et al. 2013), and the upcoming efforts

for the Large Synoptic Survey Telescope (Ivezic et al. 2008). These simulations also play

an important role in understanding galaxy dynamics (Holmberg 1941; Binney & Tremaine

1987), star clusters (Aarseth et al. 1974), and planetary systems.

In particular, the Large Synoptic Survey Telescope (LSST) science goals will require

significantly more accurate theoretical predictions about the universe in order for the

observations beginning in this decade to be interpreted and used for constraining, for

example, cosmological parameters of dark energy. Recent work has suggested that the

theoretically-predicted nonlinear power spectrum of the density distribution of the universe

will need to be accurate to less than 1% relative error down to scales of 1 h Mpc−1

(Heitmann et al. 2010; Reed et al. 2013). For these predictions, N -body simulations will

be needed for unprecedented physical scales and numbers of particles and in many distinct

realizations (such as the simulations for interpretations of galaxy clustering data from

the Sloan Digital Sky Survey, e.g. McBride et al. 2013). All of these factors increase the

computational requirements of such a set of simulations by orders of magnitude compared

to individual state-of-the-art simulations from just a few years ago.

Recent work on N -body codes has involved scaling to larger simulations (≈ 1012

particles) (e.g. Habib et al. 2012; Ishiyama et al. 2012) and taking advantage of newer

computer architectures. As noted in Yokota & Barba (2011), the computer architectures

of the late 1990s and early 2000s have been abnormal in the history of high-performance

– 4 –

computing, as they required only coarse-grained parallelism. In contrast, the fine-grained

parallelism required for high-performance vector supercomputers of the late 1980s and early

1990s (e.g. Makino & Hut 1989) is much closer to the programming model required by

the fastest supercomputers in the world today, which use highly thread-parallel graphics

processing units as computational accelerators.1

Graphics processors have been used for science applications prior to the advent of

official APIs, but only in 2007 was an official programming interface released by NVIDIA for

its graphics processing (GPU) cards. Previous work with GPU-based N -body simulations

has involved direct forces (‘all-pairs’) calculations (Hamada & Iitaka 2007; Nyland et al.

2007), Barnes-Hut codes for non-cosmological integrations (Burtscher & Pingali 2011;

N-Body Shop 2011; Bédorf et al. 2012), and one report of a cosmological CUDA and

Gadget-2–based code with Barnes-Hut forces and Ewald periodic image forces (T 2012).

(There is one cosmological mesh-based gravity code, described in Schive et al. (2010), but

this is not, strictly-speaking, an N -body code.)

In this work, we run simulations that are an order of magnitude larger than T (2012)

and provide the first published GPU N-body code with a hybrid short-range Barnes-Hut

force calculation (running fully on the GPU) and a long-range particle-mesh calculation

(running on the CPU) that can run in parallel (using MPI) on distributed-memory clusters.

Additionally, unlike some previous codes, this code is made publicly available.2

Our code, CUDA-Gadget, can in principle simulate all of the above astrophysical

systems of interest. It is based on Gadget-2 (Springel 2005) and runs on individual

desktop computers with graphics processors (GPUs) as well as GPU-based hybrid clusters

1“Oak Ridge Claims No. 1 Position on Latest TOP500 List with Titan.”

http://www.top500.org/blog/lists/2012/11/press-release/

2http://code.google.com/p/cuda-gadget/

– 5 –

and supercomputers, including the development version of the NSF flagship GPU-based

computing resource ‘Keeneland’ (Vetter et al. 2011). The design and initial development

of this version of the code is due to the G2X project (Frigaard 2009). The final code

development, with extensions and modifications for the current version of NVIDIA’s CUDA

programming interface for GPUs (nvi 2007), modifications to work with the latest (and

significantly faster) FFTW library (FFTW3.3 with MPI support, instead of the older,

API-incompatible FFTW2, Frigo & Johnson 1998), extension to full double-precision

arithmetic on the GPU, extension to non periodic boundary conditions and unequal

gravitational softening lengths (present in Gadget-2 but not in G2X), and numerical

correctness fixes are due to the author.

2. Physics

N -body simulations predict the matter phase space distribution throughout large

volumes of the observable universe through the gravitational interactions of matter. For

many astrophysical systems, non-gravitational interactions can be neglected. Further,

the resolution of these simulations of large-scale systems is such that they are usually

collisionless, i.e. assuming a continuous ‘matter fluid’ that does not collide with itself.

In the N -body picture, this means that we attempt to neglect two-body interactions, as

two-body interactions of particles only physically happen at scales much smaller than those

we can resolve in the simulation (unless we are concerned with stellar dynamics, but this

is a different story). Two-body interactions can be reduced somewhat with an appropriate

choice of force softening (Dehnen 2001), but the only way to substantially reduce two-body

interactions is to increase the number of particles in a simulation, thus pushing the two-body

relaxation time further away from the simulated time scales (Diemand et al. 2004).

– 6 –

2.1. Vlasov-Poisson equation

Formally, the N -body method solves the Vlasov-Poisson equation by discretely

sampling the distribution function of the system (i.e. into the initial configuration of

particles used in the simulation). The differential equation to be solved for the action of

gravity on particles in the universe with no other forces is the Poisson equation (eq. 1 in

Springel 2005):

∇2φ = 4πG(ρ(~x)− ρ̄) (1)

ẍi,j = − 1

mi

∂φ

∂xi,j
(2)

with the density field ρ created by the particles, for all particles i (where ρ̄ is the

mean density of the universe and j are the spatial coordinates). The idealized problem to

solve is that where the number of particles i tends to infinity and the mass per particle mi

tends to an infinitesimal mass, creating a continuous density field. In any real simulation,

the number of particles is very large (≈ 1010 or higher for the largest simulations) but the

particles are nonetheless discrete. For particles that are very close to each other, spherical

shells of mass are assumed to exist about each particle, which softens the forces and prevents

unphysically-large scattering interactions (eq. 4 in Springel 2005). The discreteness of

simulations has been a concern regarding their numerical convergence to the continuum

solution of the Poisson equation/collisionless Boltzmann equation, but this issue has been

resolved to the satisfaction of simulators (Quinlan & Tremaine 1992).

3. Algorithms

The gravity force algorithms used in CUDA-Gadget are Barnes-Hut trees (Barnes &

Hut 1986) and the particle-mesh (PM) method (Hockney & Eastwood 1981), introduced

in combined fashion by Bode et al. (2000). The Barnes-Hut approximation algorithm and

– 7 –

the hybrid TreePM force approximation scheme have been extensively tested numerically

(Barnes 1990; Springel 2005; Heitmann et al. 2008).

The other numerical method to be concerned with here is the choice of ODE integration

methods (which solve eq. 2). Gadget-2 uses a modified Verlet algorithm, which is preferable

to lower-order Runge-Kutta methods (for details, see Springel 2005). CUDA-Gadget is

unmodified with respect to Gadget-2 in its integration code.

3.1. Barnes-Hut tree

As described in Barnes and Hut’s original paper, the basic idea of the tree-force

approximation algorithm is to approximate the gravitational forces between particles in

very large simulations by adaptively changing the resolution of forces between particles

based on the distance between them, i.e. particles farther away contribute much less to the

gravitational potential so their contribution to the potential can be less precise without

significant loss of integration accuracy. Particles are grouped into an oct-tree cell structure

prior to computing forces for any particles, thus providing hierarchical spatial groupings of

particles (or ‘trees’) which can then be ‘walked’ to the desired depth in order to approximate

the force on a given particle.

The oct-tree is a data structure that splits the simulation box into octants (splitting it

in half along each axis), and then recursively splits each octant into sub-octants, stopping

when there are only one or zero particles per octant (fig. 1). The tree structure is thus

adaptive to regions of higher particle density, an important feature of the approximation

scheme, as we will see.

The forces are computed on a given particle by ‘walking’ the tree from the top-down:

the eight cells of the highest-level subdivision is considered, ‘opening’ a subdivision cell if

– 8 –

that cell is sufficiently close to given particle (there are other, similar criteria considered

by Gadget-2, as detailed in the code paper). If the cell is opened, then its subdivided

constituents are considered. If the cell is not opened, then the force on given particle is

computed due to the monopole (or, in some versions of the Barnes-Hut algorithm, but

not considered here, mono- and quadrupole) moment of the mass in the cell (this can be

efficiently precomputed for all cells during the construction of the tree, which is the key

computation-saving feature of the approximation). This process is repeated for all particles.

In the Gadget-2 implementation, the tree is constructed in such a fashion consistently

across all MPI processes, using available distributed memory. However, each process only

‘knows’ about the sub-cells of the tree that have particles stored in the local process

memory, so the cells that happen to have sub-cells and their respective particles residing

in other processes’ memory are specially flagged in the local copy of the tree as virtual

particles (‘pseudo particles’), so that the force calculation routine can keep track of the

information that needs to be communicated to other processes.

4. GPU implementation

The GPU implementation had to face the challenge of distributing the computational

tasks normally executed on one CPU core with one thread onto dozens of GPU cores with

thousands of threads. The most low-level parts of this task are handled by the CUDA

programming model developed by NVIDIA for its GPU devices. However, the logical

division of computational work as well as memory synchronization between CPU and GPU

device memory must be manually handled by the programmer. Only the Barnes-Hut tree

walk and force summation is computed on the GPU. The rest of the computations are done

as normal on the CPU with minimal code modification. This latter part of the code handles

the MPI parallel communication between CPU cores or nodes when compiled with MPI

– 9 –

© Nature Publishing Group1986

Fig. 1.— Figure 1 from Barnes & Hut (1986). “Hierarchical boxing and force calculation,

presented for simplicity in two dimensions. On the left, a system of particles and the recursive

subdivision of system space induced by these particles. Our algorithm makes the minimum

number of subdivisions necessary to isolate each particle. On the right, how the force on

particle x is calculated. Fitted cells contain particles that have been lumped together by our

‘opening angle’ criterion; each such cell represents a single term in the force summation.”

© Nature Publishing Group1986

Fig. 2.— Figure 2 from Barnes & Hut (1986). “Box structure induced by a three-dimensional

particle distribution. This example was taken from the early stages of an encounter of two

N = 64 systems, and shows how the boxing algorithm can accommodate systems with

arbitrarily complex geometry.”

– 10 –

in a multicore or cluster environment with identical code (with one important exception,

discussed below) to the public version of Gadget-2.

Initial testing revealed that the tree-code computation on the CPU took up between

90 and 95 percent of total simulation time. Since this was the only part of the computation

coded to run on the GPU, Amdahl’s law limits the total speedup of the simulation due to

the use of the GPU (regardless of how fast the GPU can do computations) to a factor of

10–20, a limit that is approached by the code for certain types of simulations.

4.1. Threading and memory model

The original developer of the G2X code took the strategy of transferring all of the

particle data and tree structure to the GPU device memory before starting to compute

the Barnes-Hut tree code on the GPU, and transferring the results back to CPU main

memory after the whole force calculation. This introduces the problem of keeping track of

the particles (‘export particles’ in the Gadget code paper) in the local tree which experience

significant forces from particles residing on other nodes (represented in the local tree

by ‘pseudo particles’); hence, other MPI processes must compute particle-particle forces

between the target particle and the nonlocal particles. This introduces additional logic into

the MPI communication, as there is now a buffer of ‘export particles’ which are sent for

force calculation with respect to the particles on other nodes.3 This mechanism is expected

to need to be changed for Gadget-3 (Springel 2012).

The force on each particle is computed independently, with a global tree walk for

each particle run on a GPU thread. This has the advantage of producing (in principle)

numerically identical forces to the standard version of Gadget-2 (avoiding numerical

3The correctness of this piece of the code is the only remaining obstacle to code release.

– 11 –

differences that arise in parallel sum reductions, see Higham 1993). The forces for many

thousands of particles are computed simultaneously on each GPU card. (The number of

threads is a tunable parameter which should require some adjusting for simulations with

order-of-magnitude different particle loads.) This consideration is not trivial, since one of

the goals of this project was to see if it were possible to reconstruct the exact accuracy of

the standard Gadget-2 code.

As noted above, the number of threads is a manually-tuned parameter. The GPU

hardware schedules synchronous groups of threads in units called ‘blocks.’ Therefore there

are two parameters: threads per block, and total number of blocks. NVIDIA recommends

setting the number of threads to a multiple of 32 for hardware-specific reasons and setting

the number of blocks to a number in the thousands, in order to fully take advantage

of future advances in hardware. However, in our implementation, this number can be

adjusted by the user through a configuration file. We choose, as a reasonable default,

threads-per-block of 64 and a block count of 1024. These values maximize the hardware

‘occupancy’ for our tree code, which is limited by the number of registers available in GPU

hardware to one-third of all execution units on the GPU. In principle, three times as many

threads could execute simultaneously on the GPU if additional hardware registers were

available (as they are on the new Kepler-class GPUs). The actual performance gain would

depend on memory contention and cache efficiency, however.

This threading model, however, is not necessarily ideal for memory accesses. As

implemented in the code, each tree walk (i.e. each thread) requires accesses to global

memory (in the absence of hardware caching; however, we enable the larger L1 cache

configuration and find L1 cache efficiency to be ≈ 75 percent for the galaxy simulation

detailed in section 5.2). However, threads that execute in the same hardware unit (warp)

coalesce memory accesses, so if a group of threads all access very similar data, this penalty

– 12 –

is reduced significantly. In this implementation, particles are assigned by particle ID to

threads, so that threads nearby in ID-space are nearby in thread-space. For cosmological

initial conditions appropriately created, close particle IDs should indicate spatial proximity

(for most particles)4. Re-ordering particles as part of the tree construction may improve

tree-walking efficiency (although for the galaxy simulation below we find that branching

operations for a given warp only diverge for ≈ 10 percent of conditional branches), but this

is left for future work.

More explicit management of the GPU memory hierarchy can create problems unless

the programmer is very careful about correctness. Caching strategies and parallel reduction

threading models will almost certainly introduce bugs in the first coding attempt unless one

is an an expert shared-memory parallel programmer, since there is (almost) no compiler

or hardware protection against race conditions or write-after-read memory inconsistencies

(there is no hardware cache coherence, for instance). Debugging tools have improved greatly

with the advent of versions four and five of CUDA, but are still substandard compared to

the robustness and richness of tools available for on-CPU debugging (especially problematic

for hybrid CUDA-MPI codes). There are hardware atomic operations present in newer

GPUs that protect against non-cache memory inconsistencies, but performance seems to be

still too slow for practical use in N-body codes.

4.2. Numerical precision and rounding issues

In principle, the GPU and CPU versions of Gadget-2 should yield the same numerical

results. However, we discovered that single-precision computations are not, in fact, identical

across architectures. As noted in a technical document, the details of the rounding in

4(as noted by Frigaard in the release notes)

– 13 –

arithmetic operations in GPUs is not identical to that in CPUs, although they should meet

a minimal level of accuracy established by the IEEE standard (Whitehead & Fit-Florea

2011). Hence double precision arithmetic and data structures were implemented in the

code and enabled by default. An additional source of numerical differences is that of

fused multiply-add instructions, which combine multiply and add operations without an

intermediate rounding step. (Among mainstream architectures, this combined operation

without intermediate rounding currently only exists on GPUs, but will be introduced to

Intel CPUs in 2013.) In principle, these arithmetic operations should be more precise and

result in a more accurate simulation. However, rounding differences at this level should be

subdominant to all other sources of error.

A more problematic source of error that has usually required fine-tuning of simulation

parameters in order to control has been the scale cut-off between short- and long-range force

calculations (see sections 3 and 6.3 in Heitmann et al. (2010), figure 2 in Springel (2005)).

The smoothing between calculational methods requires the evaluation of the complementary

error function for each force term, a difficult function to approximate numerically. Since

this is extremely expensive computationally, Gadget-2 uses a look-up table to approximate

this factor. On the GPU, we can in principle take advantage of the CUDA library function

erfc, which should be considerably faster than on the CPU due to the faster floating-point

arithmetic and additional intrinsics. However, we leave careful numerical tests of this for

future work.

For a fair comparison of precision between CPU and GPU codes, we enabled compiler

options for strict IEEE compliance and strict double precision in the x86 code (no

extended-precision allowed on x86, since there is no such hardware equivalent for GPUs).5

5A summary of our compiler options (nvcc is for CUDA-Gadget only, of course):

nvcc -m64 -arch sm_20 -ftz=false -prec-div=true -prec-sqrt=true -fmad=false -Xptxas -dlcm=ca

– 14 –

We chose to use gcc since it is the most commonly used compiler for scientific work and is

the only officially-supported compiler for CUDA.6

4.3. Current state of the code

There is one outstanding bug involved with multiple MPI processes and tree-walking

on the GPU. On single-process GPU runs, the results of all tests we could run are

numerically identical to the accuracy of Gadget-2 snapshot outputs (i.e. single precision).

For multiple-process runs, there remain some unresolved discrepancies (see fig. 8 and

discussion below).

5. Astrophysical examples

5.1. The Universe

We ran cosmological simulations of varying particle number in a comoving volume

of size (130Mpc)3 using standard cold dark matter initial conditions, with parameters

Ωm = 0.25, ΩΛ = 0.75, and σ8 = 0.8. For evolution to the starting redshift zstart = 126, we

used 2LPT evolution from the primordial CMB power spectrum (Crocce et al. 2006).

As an illustration, for the 3843-particle simulation, we show halo profiles (fig. 3; fig. 4)

mass functions (fig. 5), mass function residuals (fig. 6), and a ray-traced visualization (fig.

7).

For the 5123-particle simulation running on 36 cores and 36 GPUs, the total runtime of

mpicc -m64 -O3 -mmmx -msse -msse2 -msse3 -mfpmath=sse

6This does not mean that you should use it, if you have a choice.

– 15 –

100 101 102 103 104

radius (kpc)

101

102

103

104

105

106

de
ns

ity

most massive halo density profile (z=0)

Fig. 3.— A plot of the most massive halo in a simulation, with radial density profiles at z = 0

computed with AHF (Knollmann & Knebe 2009) from the outputs of CUDA-Gadget and

standard Gadget-2. There are small discrepancies, as noted in the text, due to a remaining

bug in the interaction between MPI and CUDA code.

−500 0 500 1000 1500 2000 2500

radius (kpc)

0

200

400

600

800

1000

1200

1400

1600

1800

ci
rc

ul
ar

ve
lo

ci
ty

(k
m

/s
)

most massive halo velocity profile (z=0)

Fig. 4.— As above, but for radial velocity.

– 16 –

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2

log Vmax

100

101

102

103

104

ha
lo

s

MF from CPU code
MF from GPU code

Fig. 5.— The halo mass function for the GPU results and CPU results at z = 0 (also with

AHF halos).

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2

log Vmax

−3

−2

−1

0

1

2

3

po
is

so
n

re
la

tiv
e

er
ro

r

Fig. 6.— The residuals between the mass function from the GPU results and the CPU

results normalized relative to Poisson error in halo counts in the CPU results).

– 17 –

Fig. 7.— A 3D ray-traced visualization of particles from a cosmological simulation run with

CUDA-Gadget at z = 0. Rendered with Splotch (Dolag et al. 2008).

– 18 –

the simulation using only CPU cores was 35.6 hours, compared to a GPU-enabled runtime

of 12.7 hours, yielding a speedup factor of 2.8. The speedup is less impressive than that for

the galaxy simulation (see below); this is likely due to the larger size of the tree in memory

causing cache problems. The cache hit rate measured for this cosmological simulation is

65 percent, meaning that this simulation is about 10 percent less cache-efficient than the

galaxy simulation (as discussed in section 4.1). Since the latency for GPU memory access

is on the order of 20 to 40 times worse than due to cache access, this yields a worst-case

scenario slowdown of 3.6, which is close to the observed relative slowdown.

5.2. Galaxies: M81

We simulated a M81-type galaxy in isolation (realized as 17.5 million total particles

in the halo, bulge, and disc) as a test of galaxy-size simulation problems, which live on a

smaller physical scale and where small-scale forces are comparatively more important. Even

in this case, the discrepancies between CUDA-Gadget and Gadget-2 are apparent only with

a detailed analysis (fig. 8).

With the CPU Gadget-2 running just under 24 hours and CUDA-Gadget running for

a total of 2.6 hours for identical numbers of time steps (5742), the speedup between CPU

and GPU simulations was a factor of 9.4. Due to current limitations of the code, the GPU

cards must be matched to the CPU cores in a 1:1 ratio (in this case, 12 GPU cards and

12 CPU cores), so this speedup is on a per-card/per-core basis, even though the recent

sharp increase in cores per socket in computer systems may affect whether this is the most

practical comparison to make, for instance, for hardware acquisitions. However, this is

the fairest way to evaluate the effect of the GPU on speeding up the code; this should

also tell us to what extent the code approaches the theoretical maximum speedup which

is limited by the amount of code remaining on the CPU, as discussed above. Since the

– 19 –

forces are shorter-range and higher accuracy is needed and periodic boundary conditions

are inadvisable, galaxy simulations such as this one use a Barnes-Hut tree-only force

computation (no PM hybrid).

6. Future work

The current work is only a beginning in exploring the opportunities provided by

GPU clusters for large astrophysical simulations, but should indicate that doing so is both

possible and practical, due to the code’s public availability, for computational astronomers.

Further optimizations, such as temporally overlapping the computation of Fast Fourier

Transforms for the long-range PM forces (which run efficiently on the CPU) and the

Barnes-Hut tree forces (which run efficiently on the GPU), will only increase the speedup

gained with GPUs. (Another strategy might be to use Ewald periodic image summation for

periodic forces instead of using a hybrid TreePM scheme, as T (2012) explored.)

Some algorithmic modifications are also suggested by the hybrid CPU-GPU

architecture, and work is needed to test their efficiency as well as the accuracy of

simulations with such modifications. One such optimization is to group nearby particles

into ‘buckets’ and walk the Barnes-Hut tree for each bucket, rather than for each particle,

thus reducing the total number of tree walks and thus improving cache usage, as done in

T (2012) and Barnes (1990). In another area, a static domain decomposition strategy such

as the ‘slab’ decomposition used in FFTW, rather than the adaptive one used by Gadget

(Springel 2005), might suffice for very large cosmological simulations and would reduce the

CPU overhead that limits the maximum speedup available from the GPU (suggested by

Nikhil Padmanabhan).

– 20 –

0 2000 4000 6000 8000 10000

n-th most displaced particle

10−5

10−4

10−3

10−2

10−1

100

101

di
sp

la
ce

m
en

t(
kp

c)

Fig. 8.— A ray-traced density projection of the stars in an M81-type galaxy dynamics sim-

ulation. Rendered with Splotch (Dolag et al. 2008). The top left panel shows the system

evolved with CUDA-Gadget; the top right shows the evolution with Gadget-2. The initial

conditions are identical in both simulation runs. The bottom panel shows the particle dis-

placement between the GPU and CPU simulations as a function of the n-th most displaced

particle. The maximum displacement is ≈ 5 kpc, however, the mean displacement was of

order 10−5 kpc. Of a total of 17.4 million particles, only 10790 were displaced with respect

to the particles in the reference simulation. This suggests that there remains a subtle bug

in the code for multi-GPU runs, rather than a numerical defect of the GPU code in general.

– 21 –

I am grateful to Andreas Berlind, Kelly Holley-Bockelmann, and Manodeep Sinha for

continual discussions and help throughout the project. I thank Prof. Holley-Bockelmann

for providing initial conditions for the galaxy simulation. I also acknowledge Carsten

Frigaard’s work in providing the initial CUDA code base for CUDA-Gadget, and of course

Volcker Springel for Gadget itself. Financial support for the author was provided by the

College of Arts and Science, Vanderbilt University, and the William and Nancy McMinn

Scholarship in the Natural Sciences at Vanderbilt University. Computational resources

were provided by ACCRE at Vanderbilt and Keeneland/KIDS at Georgia Tech through a

discretionary allocation. We made use of pynbody (http://code.google.com/p/pynbody)

and AHF (Knollmann & Knebe 2009) in our analysis for this paper.

More information on CUDA-Gadget is available

at http://code.google.com/p/cuda-gadget.

– 22 –

REFERENCES

2007, Compute unified device architecture programming guide, Tech. rep., Nvidia

Aarseth, S., Henon, M., & Wielen, R. 1974, Astronomy and Astrophysics, 37, 183

Abazajian, K., Zheng, Z., Zehavi, I., et al. 2005, The Astrophysical Journal, 625, 613

Barnes, J., & Hut, P. 1986, Nature, 324, 446

Barnes, J. E. 1990, Journal of Computational Physics, 87, 161

Bédorf, J., Gaburov, E., & Portegies Zwart, S. 2012, Journal of Computational Physics,

231, 2825

Binney, J., & Tremaine, S. 1987, Galactic dynamics (Princeton, NJ: Princeton University

Press)

Bode, P., Ostriker, J. P., & Xu, G. 2000, ApJS, 128, 561

Burtscher, M., & Pingali, K. 2011, in GPU Computing Gems Emerald Edition (Morgan

Kaufmann), 75–92

Busha, M. T., Wechsler, R. H., Becker, M. R., Erickson, B., & Evrard, A. E. 2013, in

American Astronomical Society Meeting Abstracts, Vol. 221, American Astronomical

Society Meeting Abstracts, no. 341.07

Crocce, M., Pueblas, S., & Scoccimarro, R. 2006, Monthly Notices of the Royal Astronomical

Society, 373, 369

Dehnen, W. 2001, Monthly Notices of the Royal Astronomical Society, 324, 273

Diemand, J., Moore, B., Stadel, J., & Kazantzidis, S. 2004, Monthly Notices of the Royal

Astronomical Society, 348, 977

– 23 –

Dolag, K., Reinecke, M., Gheller, C., & Imboden, S. 2008, New Journal of Physics, 10,

125006

Frigaard, C. 2009, unpublished source code.

Frigo, M., & Johnson, S. G. 1998, in Acoustics, Speech and Signal Processing, 1998.

Proceedings of the 1998 IEEE International Conference on, Vol. 3, IEEE, 1381–1384

Habib, S., Morozov, V., Finkel, H., et al. 2012, ArXiv e-prints, arXiv:1211.4864

Hamada, T., & Iitaka, T. 2007, astro-ph/0703100

Heitmann, K., White, M., Wagner, C., Habib, S., & Higdon, D. 2010, ApJ, 715, 104

Heitmann, K., Lukić, Z., Fasel, P., et al. 2008, Computational Science and Discovery, 1,

015003

Higham, N. J. 1993, SIAM Journal on Scientific Computing, 14, 783

Hockney, R. W., & Eastwood, J. J. W. 1981, Computer simulation using particles (Taylor

& Francis Group)

Holmberg, E. 1941, The Astrophysical Journal, 94, 385

Ishiyama, T., Nitadori, K., & Makino, J. 2012, ArXiv e-prints, arXiv:1211.4406

Ivezic, Z., Tyson, J. A., Acosta, E., et al. 2008, ArXiv e-prints, arXiv:0805.2366

Knollmann, S. R., & Knebe, A. 2009, ApJS, 182, 608

Makino, J., & Hut, P. 1989, Celestial Mechanics, 45, 141

McBride, C., et al. 2013, in preparation

– 24 –

N-Body Shop. 2011, ChaNGa: Charm N-body GrAvity solver, astrophysics Source Code

Library, ascl:1105.005

Navarro, J. F., Frenk, C. S., & White, S. D. 1997, The Astrophysical Journal, 490, 493

Nyland, L., Harris, M., & Prins, J. 2007, GPU Gems 3 (Addison-Wesley Professional),

677–695

Quinlan, G. D., & Tremaine, S. 1992, MNRAS, 259, 505

Reed, D. S., Smith, R. E., Potter, D., et al. 2013, MNRAS, arXiv:1206.5302

Schive, H.-Y., Tsai, Y.-C., & Chiueh, T. 2010, ApJS, 186, 457

Springel, V. 2005, MNRAS, 364, 1105

Springel, V. 2012, personal communication

Springel, V., White, S. D., Jenkins, A., et al. 2005, Nature, 435, 629

T, S. 2012, Master’s thesis, Indian Institute of Science, Bangalore, India

Vetter, J. S., Glassbrook, R., Dongarra, J., et al. 2011, Computing in Science & Engineering,

13, 90

Whitehead, N., & Fit-Florea, A. 2011, Precision and Performance: Floating Point and

IEEE-754 Compliance for GPUs, Tech. rep., NVIDIA

Yokota, R., & Barba, L. A. 2011, 1108.5815

This manuscript was prepared with the AAS LATEX macros v5.2.

