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Abstract

Electron microscopy has been the recent subject of molecular imaging due to

the strength of the electrons’ interaction with the target molecule making for a

detailed pattern at a small scale.[1] To achieve the best 4D image of the target,

one needs sufficient spatial and temporal resolution, the prior being an issue of

using electrons in the keV regime as to achieve an optimally small deBroglie

wavelength, and the latter being improved by the temporal width of the electron

wave packet itself.[2] In order to image the motion of the electronic structure of

the target molecule, this width must be within the attosecond regime. In this

paper, we use the computational method of time-dependent density functional

theory (TDDFT) to model our targets of Beryllium and the Nitrogen molecule,

N2, and an incoming electron wave packet with an energy of 1500 eV.

i



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Theory 4
2.1 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Hohenberg-Kohn Theorems . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Kohn-Sham Equation . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Time-Dependent Density Functional Theory . . . . . . . . . . . . . . . 6
2.3 The Finite Numerical Grid . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Complex Absorbing Potentials . . . . . . . . . . . . . . . . . . . 7
2.3.2 Numerical Methods Used . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Propagation of High Energy Wave Packets . . . . . . . . . . . . . . . . 8

3 System Configuration and Parameters 12

4 Results 13
4.1 Beryllium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Nitrogen Molecule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Summary 17

ii



1 Introduction

1.1 Motivation

Recent advancement in the production of a high-energy attosecond-width electron

source has been the primary motivation for this work.[3][4] Up until recently the ma-

jor obstacle to overcome had been the achievement of an electron wave packet with

a temporal width smaller than a few femtoseconds. It has been shown that by using

two counter-propagating optical waves one can create an interference pattern which

can then focus the femtosecond-width electron wave packet into individual attosec-

ond wave packets by mechanism of ponderomotive forces (Fig. 1a).[4] These optical

waves are aligned at an angle with respect to the traveling electrons (for many reasons

including not interacting with the target molecules) and do not impare their speed.

Simulations have shown a temporal width of as low as 20 attoseconds produced by this

method (Fig. 1b). In order to successfully image the 4D motion of the excited states

in a target, it is important that this temporal width be on the scale of under hundreds

of attoseconds, as such is the regime at which electron motion occurs.[4]

Coulomb forces will cause repulsion, known as a space charge effect, between the

electrons which hinders the overall electron flux that can be achieved which, in turn,

hinders the intensity of the created diffraction pattern. An optimal number of 10

electrons per attosecond-width packet was found to minimize these effects while also

maximizing the electron flux possible.[4] In this paper, we will only be using one electron

in our wave packet.

Such an electron beam can be implemented into an experiment by use of a pump-

probe method, in which an initial packet of electrons (pump) is used to excite the target

molecule, and a second, well-timed, packet (probe) is used to analyze the changes in the

system caused by the first interaction.[2][4] We have replicated the role of the pump
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in this paper while using an unexcited Beryllium atom and an unexcited Nitrogen

molecule as our targets. By use of TDDFT we are then able to visualize the resulting

initial diffraction patterns as well as the motion of the electron density.

Figure 1: a) Two counter-propagating optical waves create an interference pattern that
overlaps with the femtosecond width eletron wave packet. Ponderomotive forces then
allow the creation of individual attosecond regime wave packets. b) The interfering
optical waves are aligned at an angle so as not to interfere with the target. Slanted
several-attosecond-width electron wave packets are created with the same original speed
and direction.(Source: P. Baum and A. H. Zewail[4])

1.2 Outline

In section 2, a mathematical formalism is developed that describes the theoretical

methods used in creating these simulations. First, the framework of density functional

theory (DFT) as a method of finding the ground state of a system is demonstrated;

then, TDDFT is looked into as the method of representing the density as a function of

time thereby allowing the modeling of excited states. The implementation of a finite

numerical grid is also discussed. We mention our use of complex absorbing potentials,

describe our methods for integration and differentiation, and develop a modified kinetic
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energy term for the Hamiltonian which allows for the propagation of high-momentum

Gaussian wave packets.

In section 3, the conducted simulations are discussed in terms of the parameters

used and the configuration of the system.

Section 4 then presents the resulting images created. Here we analyze the diffraction

pattern created by Be and look at the detailed motion of the electron density of N2 as

it develops. We also look at the possiblity of electron capture in the N2 simulation.

In conclusion, Section 5 summarizes the findings of our simulations along with room

for possible improvement and proposed future extensions of this work.
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2 Theory

2.1 Density Functional Theory

2.1.1 Hohenberg-Kohn Theorems

DFT is currently one of the most popular and promising modeling schemes for solving

the Schrödinger equation for a system with interacting electrons. Such a modeling

technique is required for this problem as an analytical solution to the many-electron

Schrödinger equation is impossible due to the complexity of the the interaction be-

tween those bodies.[5] For use in systems where the Born-Oppenheimer approximation

is assumed to be valid, the N -electron Schrödinger equation can be written as the

following: [
−

N∑
i=1

h̄2

2m
∇2
i +

N∑
i=1

V (ri) +
N∑
i<j

U (ri, rj)

]
Ψ = EΨ, (1)

where

V (ri) =

NA∑
A=1

ZAe
2

|ri −RA|
, U (ri, rj) =

e2

|rj − ri|
, (2)

and Ψ is a function of all electron coordinates as well as their spins.

To traditionally solve this equation we would have to work with a 3N dimensional

wavefunction. DFT, instead, uses the particle density, n (r)

n (r) = N

∫
Ψ∗ (r1, r2, ..., rN) Ψ (r1, r2, ..., rN) dr2dr3...drN , (3)

with the goal of no longer working with many interacting particles but rather with

ficticious, noninteracting particles within an effective external potential containing the

effects of that interaction.

This concept is based around the two Hohenberg-Kohn Theorems:

Theorem 1. The ground state density has a one-to-one correspondence with the poten-
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tial and thus uniquely determines all properties of the system, including the many-body

wave function.

Theorem 2. For any positive integer N and potential υ (r) there exists a density

functional F [n] (the HohenbergKohn functional) such that

E(υ,N) [n] = F [n] +

∫
υext (r)n (r) dr (4)

obtains its minimal value at the ground-state density of N electrons. This minimum

value of E(υ,N) [n] is then the ground state energy of this system.

What this says is that by finding the ground state density, n0 (r), we can derive the

ground state energy and map the corresponding wavefunction, Ψ0 [n0].

2.1.2 Kohn-Sham Equation

We first go about implementing this method by use of Kohn-Sham energy partitioning.

We define F [n] = TKS [n] + EH [n] + EXC [n] so that

E [n] = TKS [n] + EH [n] + Eext [n] + EXC [n], (5)

where

-TKS[n] ≡ kinetic energy functional,

-EH [n] =
∫ ∫ n(r′)

|r−r′|drdr
′ ≡ Hartree energy,

-Eext[n] =
∫
εext(r)n(r)dr ≡ energy functional due to fixed ions and external fields,

-EXC [n] ≡ exchange-correlation energy.

Extrapolating on this concept we develop the Kohn-Sham equation
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(
− h̄2

2m
∇2
i + VH [n](r) + Vext[n](r) + VXC [n](r)

)
φk(r) = εkφk(r), (6)

where n(r) = 2
∑N

i=1 |φi(r)|2 (The factor of 2 accounts for spin). This equation is

commonly rewritten in terms of the Kohn-Sham potential, VKS = VH + Vext + VXC , as

(
− h̄2

2m
∇2
i + VKS[n](r)

)
φk(r) = εkφk(r). (7)

It follows that φk must be solved self-consistently.

It is worth noting that VXC is not known analytically for all systems. Well-fitting

approximations exist that are used.[6][7] Other problems with using DFT include in-

nacaurate band gap predictions and a lack of being able to describe excited states. For

the latter, TDDFT can be used.

2.2 Time-Dependent Density Functional Theory

The concept behind TDDFT is described by the Runge-Gross theorem.[8]

Theorem 3. For a many-body system described by an initial wavefunction, there exists

a one-to-one mapping between the time-dependent potential(s) and the time-dependent

density of the system.

By use of this theorem, the time-dependent Kohn-Sham equation takes the following

form:

ih̄
∂φk(r, t)

∂t
=

(
− h̄2

2m
∇2 + VKS[n](r, t)

)
φk(r, t), (8)

where once again n(r, t) = 2
∑N

k=1 |φk(r, t)|2 and

VKS(r, t) = Vext(r, t) + VH(r, t) + VXC(r, t). (9)

6



The exchange-correlation potential is simlarly unknown analytically as with DFT,

however in TDDFT it is more complex and more poorly described. Creating better

descriptions of VXC(r, t) is an active area of research.[7][9]

2.3 The Finite Numerical Grid

2.3.1 Complex Absorbing Potentials

In our simulations, a numerical grid is implemented as a real-space approach for repre-

senting our system. This raises new challenges in correctly representing the dynamics

being studied. A major example of this comes with the requirement that our wave-

functions reach zero at the boundaries of our finite grid, which leads to non-physical

reflection. To solve this problem, we incorporate a complex absorbing potential (CAP)

of the form VCAP (r) = V0(r) + iW (r) where V0(r) is the original potential (before the

implementation of the CAP) and W (r) is an arbitrary smooth fucntion that is only

non-zero near the boundaries of the grid and approaches infinity at those boundaries.

This CAP absorbs the incoming wave so that it cannot reflect back.[5]

Figure 2: Complex absorbing potentials are placed at either end of this one dimen-
sional schematic. These potentials prevent the wavefunctions from reflecting off the
boundaries of the grid. (Source: K. Varga and J. Driscoll[10])
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2.3.2 Numerical Methods Used

Using a numerical grid also means that we must use discrete-point methods for repre-

senting integrals and derivatives. For all integrals we use the 3-dimensional trapezoidal

method[5] ∫
Ω

drf(r) = h3
∑
ijk

f(r(i, j, k)). (10)

For the calculation of first and second derivatives, we use a fourth order finite

difference approach.[5] For example, a common task is to compute the kinetic energy

acting on the wavefunction. This calculation incorporates the second derivative of the

wavefunction and can be represented as the following:

h̄2

2m
∇2ψ(r(i, j, k)) ≈ h̄2

2m

4∑
n=−4

Cn [ψ(i+ n, j, k) + ψ(i, j + 1, k) + ψ(i, j, k + n)] , (11)

where C0 = −205
72

, C±1 = 8
5
, C±2 = −1

5
, C±3 = 8

315
, and C±4 = − 1

560
.

These methods provide well-fit approximations for their respective yielded values

in typical cases. However, as is shown in the following section, if the grid spacing is

too large compared to drastic changes in the function being investigated, then these

approximations become inaccurate.[5]

2.4 Propagation of High Energy Wave Packets

The 3D Gaussian wave packet, which is used as the representation of the pump-electron

in this paper, can be described as the product of three 1D wave packets

ψG(r, t) = φx(x, t)φy(y, t)φz(z, t), (12)
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where

φa(a, t) =

(
σa√

π(1 + iΩat)

)1/2

exp

[
−σ

2
a

2

(a− υat)2

1 + iΩat)

]
eika(a−υat), (13)

with υa = h̄a/m, and Ωa = h̄σ2
a/m.

We propagate our wave packets by use of the time propagation operator

Ψ(r, t) = e−iHt/h̄Ψ(r, 0). (14)

Here, H is the Hamiltonian operator. In order to apply this Hamiltonian operator

within an exponential, we use the first four terms of a Taylor expansion to represent

the time propagating factor[5]

e−iHt/h̄ ≈
4∑

n=0

[
(−i∆t/h̄)nHn

n!

]
. (15)

This method provides accurate results for low wave packet energies (e.g. ∼50 eV)

using a reasonably small grid spacing; however, if one increases the momentum of the

wave packet and, therefore, the energy, then the de Broglie wavelength of the particle

becomes very small, requiring a much smaller grid spacing to accurately describe it.[5]

This necessity can be seen in the example depicted in equation 11. As stated above, if

the function changes, or in this case, oscillates too rapidly within the scale of one grid

spacing, then our value returned for the second derivative will be innacurate.

This problem can be worked around by separating the oscillatory term from the

smooth Gaussian ψG(r, t):[5]

Ψ(r, t) = eik·rψG(r, t). (16)
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Rewriting the Schrödinger equation then obtains the following:

ih̄
∂ψG
∂t

= HkψG, (17)

where Hk is a modified Hamiltonian

Hk =

[
h̄2

2m
(−∇2 − 2ik · ∇+ k2) + V (r)

]
. (18)

By substituting this modified Hamiltonian into the time propagation operator, we only

propagate a smooth Gaussian ψG(r, t) while retaining all relevant information.[5] To

reobtain the original wavefunction at time t we must only reapply the oscillatory factor

to the smooth Gaussian at that time.
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Figure 3: Representations of the wavefunction corresponding to an electron with energy
562 eV. The plotted analytical wavefunction Ψ (orange), the smoothed wavefunction
ψG (black), and the plotted, reobtained solution for the wavefunction (grey) are each
shown as represented on a grid with a spacing of 0.1 Å. Note that the reobtained and
analytical wavefunction should agree given a small enough grid spacing.
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3 System Configuration and Parameters

For our simulation we used a 30 × 20 × 20 Å
3

box with a grid spacing of 0.125 Å.

Our targets were placed at the center of the box (at coordinate (0,0,0)) while the

incoming wave packet was initialized at a distance of −8 Å away in the x-direction

and with a momentum of 13.06 eV · fs/Å (corresponding to 1500 eV and a de Broglie

wavelength of 0.317 Å) towards them (see Fig. 4). The width of the wave packet was

chosen to be 2 Å in x and 10 Å in both y and z in order to approximate a plane wave

interaction. This width in the x-direction along with the above mentioned momentum

corresponded to a temporal width of 8.7 as. Our complex absorbing potentials were

non-zero at x < −12 Å and 12 < x Å as measured from the target.

This system was propagated with a time step size of 0.01 as over a total time of

400 as. By use of the previously discussed techniques we were able to calculate the 3D

density of the system as a function of time. Because nucleonic motion occurs at the

femtosecond scale, the nuclei are fixed and any molecular dynamical effects are ignored.

It is also worth noting that the momentum of this electron wave packet corresponds

with a speed of 0.08c, thus we are justified in ignoring any relativistic effects.

Figure 4: A plane wave approximation consisting of one electron is initialized at x =
−8 Å and given positive momentum in the x-direction. The ground state electron
density of N2 shown here sits at the center of the box. A contour scheme is used to
image the 3D density throughout this paper.
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4 Results

4.1 Beryllium

Fig. 5 shows the results of our model for Beryllium. The electron wave packet can be

seen passing through the atom and being absorbed by our CAP afterwards. Note that

due to a lack of CAPs on either the y or z axes, there is some minimal reflection within

our wave packet off of these boundaries. This effect is slight enough that it does not

cause any unwanted behavior in the created excited states of the target.

We observed the created diffraction pattern much as an experimental screen would

by taking a slice of the density at x = 8 Å. Expected time-dependent circular rings

were produced (Fig. 6).

Figure 5: Frames of the 3D density taken at increments of 20 as for a total duration
of 100 as for Be. (an order of top-left to bottem-right is used throughout this paper)
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Figure 6: Frames of the 2D density slice taken at x = 8 Å in increments of 100 as during
400 as for our Be simulation. Note that in this visualization method the density scale
is normalized in each frame.

4.2 Nitrogen Molecule

Next, in Fig. 7, the electron density is shown through the first 120 as for N2. First, we

can notice the created diffraction pattern within the electron wave packet after impact

(Fig. 8). The rectangular wave-like properties of the wave packet are a product of

the above mentioned reflection from the bounderies; however, the circular diffraction

pattern is evident. We also investigated any possible electron capture by analyzing the

total number of electrons after the plane wave had been absorbed. The difference of this

value and the expected number of electrons in N2 came to be only 6× 10−7 electrons,

which is small enough to be considered numerical noise; therefore, we conclude that

there is no electron capture or ionization for that matter. Lastly, we can determine

that any back scattering effects are minimal as they only arise in our vizualizations

with very small density values and, therefore, in effect, have only a very low probability

of occuring.

Next, to examine the excited states of the target molecule, we took the difference
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Figure 7: Frames of the 3D density taken at increments of 30 as for 120 as.

of the density at each time frame and the original density at t = 0. This then, of

course, created positive values for where the electron density went, and negative values

for where the electrons were. Plotted together, these new images show a detailed

depiction of the electron motion in the excited states of the Nitrogen molecule (Fig. 9).
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Figure 8: The circularly symetric diffraction pattern can be seen within the wave packet
after its collision with the N2 molecule.

Figure 9: The difference in the density at t = 10 through t = 400 and the ground state
density taken at increments of 50 as depicted as either positive values (red) or negative
values (blue). The first frame is omitted as it is completely cancelled out and appears
blank.
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5 Summary

We have successfully modeled a high-energy attosecond-width electron diffraction ex-

periment using TDDFT and a modified Hamiltonian necessary for depicting a highly

oscillatory wavefunction on a numerical grid. Through this model we have visual-

ized the diffraction pattern created by a target of Beryllium, and the excited states

of the Nitrogen molecule replicating the aftermath of the pump in a pump-probe ex-

periment. Moreover, we have validated that the electron count for N2 during such a

pump-electron interaction stays constant, thereby illustrating that there is no electron

capture or ionization taking place.

An improvement to the methods shown here could be the use of a larger box for

our system, in remark to the noise created in our wave packet resulting from its close

proximity to the boundaries of the grid. Similarly CAPs for each of these remaining

sides of the box would eliminate such an effect, given that the box is large enough to

allow a CAP that does not overlap with the wave packet itself. As stated above, this

effect has no effects in our simulations; however, if we were to replicate a diffraction

pattern created by the probe in a pump-probe experiment, we would want a clean

image for comparison with experimental data. Obviously improvement also comes

with smaller grid spacings and time steps at the cost of computational time.

As alluded to above, a possible future extension of this work would be to include

the probing electron and an analysis of its created diffraction pattern. There is also

the capability in DFT to include laser excitation (as an oscillating electric field) which

could be used to study the created diffraction patterns of target molecules under such

conditions.
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