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We examine models of quintessence in which a minimally-coupled scalar field φ evolves near a
local extremum of its potential V (φ) at φ∗. Assuming that (1/V )(∂φV ) is small and w ≈ −1, we
Taylor expand the potential about φ∗ and derive a general expression for w(a). The dynamics of this
field are determined by the initial and final equation of state parameters wi and w0, the quantity
V ′′(φ∗)/V (φ∗), and the direction of φ̇i in relation to φ̇0. This approximation is then tested for six
values of V ′′(φ∗)/V (φ∗) and shown to lie within 2% of the exact solution for five of these cases.

However, the model becomes less precise near certain values of V ′′(φ∗)/V (φ∗) where φ̇ becomes very
large.

I. INTRODUCTION

Dark energy, the mysterious component of the universe responsible for its accelerated expansion, has been shown
by experiment to constitute approximately 70% of its total energy density (see Refs. [1–9]). Although there has been
no shortage of possible explanations for this late-time acceleration, we still know almost nothing of dark energy’s true
nature. This startling premise–that 70% of our universe is still completely unknown to us–reveals that although we
have made great strides in understanding the cosmos, there may still be much more to learn.

In this thesis, I will explore a particular model of dark energy known as quintessence. After providing a brief
background on the physics of dark energy and the motivation behind quintessence, I will present the findings that
Prof. Scherrer and I have made over the past year: that the plethora of potential curves for quintessence result in
similar behavior which can be categorized by a much smaller class of models. This result has been previously shown
for special cases, but this thesis will demonstrate that the same holds true for arbitrary initial conditions. I will
first derive the class of models that we are proposing, which will then be compared to numerical solutions for various
different potential curves. These results will then hopefully allow us to place meaningful limits on quintessence models
as we continue to gather data on the accelerating universe.

A. The Evolution of the Cosmos

The story of dark energy begins with Edwin Hubble’s discovery in 1929 that distant galaxies are receding away
from us. He observed that these galaxies’ redshifts—and hence, velocities—were directly proportional to their distance
from us, a formula known as Hubble’s Law. In light of Einstein’s theory of general relativity, this observation could
best be understood as a homogeneous, isotropic expansion of space itself. The distance between any two points in
space, then, is given by the formula

dp = a(t)r (1)

where dp is the proper distance, r is a co-moving coordinate, unchanging for two objects at rest with respect to the
expansion of space, and a(t) is the scale factor, a quantity representing the size of the universe at any given moment,
generally normalized to 1 at the present time. Taking the time derivative yields

vp = ḋp = ȧr =
ȧ

a
dp (2)

which is Hubble’s Law. The quantity ȧ/a is called the Hubble parameter and is usually written as H, while its current
value H0 is called the Hubble constant.

In 1922, Alexander Friedmann solved the equations of general relativity to relate the scale factor a to the energy
density ρ and the pressure p of the universe in the following system of equations:

H2 =
ρ

3
− k

R2
0a(t)2

(3)

ä

a
= −1

6
(ρ+ 3p) (4)
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in units where h̄ = c = 8πG = 1. The quantity k describes the curvature of the universe and takes on values of
+1, 0, or −1 for a universe that is positively curved, flat, or negatively curved, respectively. R0 is the radius of this
curvature, and because the universe has been measured to be essentially flat [7, 8], we will assume that either k = 0 or
R0 is large enough to make this curvature term negligible. From here onward, we will therefore assume a flat universe.
It can also be useful to express (3) in the form

Ω(a)− 1 =
k

R2
0a(t)2H2

0

≈ 0 (5)

where Ω(a) is the density parameter defined by Ω(a) = ρ/3H2. Since the right side of (5) is approximately 0, we can
deduce that Ω ≈ 1.

The Friedmann equations in a flat universe can then be solved if the relationship between density and pressure is
determined. The simplest kind of barotropic fluid with equation of state

p = wρ (6)

yields the solution

ρ(a) = ρ0a
3(1+w) (7)

and hence

a(t) ∝ t2/3(1+w), w 6= −1 (8)

Furthermore, we see very clearly from (4) and (8) that only a fluid with w < −1/3 leads to accelerated expansion. Since
nonrelativistic matter has w = 0 and radiation has w = 1/3, the late-time acceleration observed is only explainable
through a more exotic type of energy that possesses this unusual quality of a negative pressure.

B. The Cosmological Constant

Because the substances thought to contribute the vast majority of the universe’s energy density—matter and
radiation—both have w > 0, it had been taken for granted that the expansion of the universe was decelerating.
Naturally, experiments were conducted to precisely measure the rate of this deceleration as given by the deceleration
parameter, q = − äaȧ2 , with the surprising result that q is negative. In 1998, a comparison of the redshift and
apparent luminosity of Type Ia supernovae showed with over 99% confidence that the universe is currently accelerating
[1, 3], indicating that something was missing from our cosmological picture. The enigmatic culprit for this late-time
acceleration has since been dubbed “dark energy.”

One of the first suspects for dark energy was a concept first introduced—and later discarded—by Einstein: a
parameter known as the cosmological constant. When Einstein developed his theory of general relativity, he attempted
to solve his equations for the case of a static universe (H = Ḣ = 0) and realized this was only possible with the
inclusion of an additional term Λ, set precisely at the value 1

2ρ . With this extra term, the Friedmann equations (3)

and (4) then become

H2 =
ρ

3
+

Λ

3
(9)

ä

a
= −ρ

6
(ρ+ 3p) +

Λ

3
(10)

It can be seen from these equations that the cosmological constant Λ functions as an additional component of the
energy density with w = −1, which we would expect from (7). Furthermore, the supernova data show that, since
Ω ≈ 1, the best fit for a universe composed of matter and a cosmological constant has the partial densities Ωm0 ≈ 0.3
and ΩΛ0 ≈ 0.7. With only these two components in a flat universe, the Friedmann equation can be rearranged as

H2

H2
0

= Ωm0a
−3 + ΩΛ0 (11)

where (7) has been substituted for ρ(a). This differential equation then has the solution

a(t) = 3

√
Ω−1

Λ0 − 1 sinh2/3(t/tΛ) (12)

where tΛ = 2/
√

3Λ
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C. Beyond Lambda: Quintessence Models

While all of the current data are consistent with a universe dominated by a cosmological constant and nonrelativistic
matter—often called the ΛCDM model—we nonetheless have no reason to restrict ourselves to such a model. If this
exotic form of energy is not constant but allowed to vary through time, the simplest model that can be ascribed to
it is a minimally-coupled scalar field. Such a proposed scalar field has been given the name ‘quintessence’ after the
fifth element of the ancient Greeks; now, it represents the hypothesized fifth element of modern physics in addition to
baryons, leptons, radiation, and dark matter. From quantum field theory, a scalar field φ moving in a potential V (φ)
enjoys the following properties:

ρ =
1

2
φ̇2 + V (φ) (13)

p =
1

2
φ̇2 − V (φ) (14)

With this density and pressure, the Friedmann equations can be modified to the following form:

H2 =
1

3

[
ρm0a

−3 +
1

2
φ̇2 + V (φ)

]
(15)

φ̈+ 3Hφ̇+
dV

dφ
= 0 (16)

In addition, (13) and (14) also determine the equation-of-state parameter

wφ =
pφ
ρφ

= −1 +
2φ̇2

φ̇2 + 2V (φ)
(17)

Thus, quintessence produces an accelerated expansion when φ̇2 < V (φ), which occurs only for a relatively flat potential.
This acceleration is guaranteed when the following slow-roll conditions are satisfied:(

1

V

dV

dφ

)2

� 1 (18)

∣∣∣∣ 1

V

d2V

dφ2

∣∣∣∣� 1 (19)

yet this is only a sufficient condition, not a necessary one. As a result, we wish to investigate solutions which extend
beyond the narrow scope of slow-roll quintessence and relax this second condition in (19).

II. MOTIVATION

After the theory of quintessence was developed, an enormous number of scalar-field potentials have since been
proposed which agree with cosmological observations [11]. Rather than investigate each of these alternatives separately,
we wish to categorize those quintessence models which yield similar behavior for w(a), and hence for a(t). The main
objective of this thesis is to continue the work begun in Refs. [12–15], in which the trajectory of w(a) was modeled
for a large class of potentials with only a few free parameters. Recent observational evidence has shown that w0 ≈ −1
(where the subscript ‘0’ will herein denote the present value), and further assuming that w is close to −1 at all times
in the past allows (15) and (16) to be simplified considerably.

Ref. [12] examined the case of “thawing” potentials, in which the field is constrained to an initial velocity φ̇ = 0.
In addition, the potential was assumed to satisfy both slow-roll conditions (18) and (19) and have a roughly constant
first slow-roll parameter (1/V )(∂φV ). Such potentials were shown to evolve according to a single class of models
depending only on the parameters w0 and Ωφ0. Ref. [13] extended these results the more general case where wi 6= −1,
introducing the a third adjustable parameter wi into the expression for w(a).
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In later work, these assumptions were further relaxed to permit (19) to be violated, as in the case of a field evolving
near a local maximum [14] or minimum [15] of the potential at φ = φ∗. By Taylor expanding around this point and
assuming wi = −1, an expression was derived for w(a) which depended on the additional parameter V ′′(φ∗)/V (φ∗).
This result was further generalized in Ref. [16] where the Taylor expansion was not limited to a point at which
V ′(φ) = 0.

This thesis attempts to introduce an additional degree of freedom to the results of Refs. [14] and [15] by allowing

for φ̇i 6= 0. As we will see, this leads to an extra parameter w0 in the expression for w(a) along with a variable

‘±’ determined by the signs of φ̇i and φ̇0. In Section III, we present a derivation of the behavior of w(a) from the
Friedmann equations, and in Section IV, this result is extended to special cases of the parameter V ′′(φ∗)/V (φ∗).
Then, in Section V, we present a method to generate numerical solutions which match these parameters and test the
validity of our approximations.

III. THE DERIVATION

A. Initial Assumptions

We begin as in previous work by assuming a flat universe filled with matter and a scalar field. Also, we restrict our
attention to quintessence models in which w ≈ −1 so that we can make use of the relation

ρφ ≈ ρφ0 ≈ −pφ (20)

This condition is satisfied when the potential is relatively flat, i.e. when (18) is satisfied, as in the case of a hilltop
or a valley. In reduced Planck units, such a universe is described by (15) and (16). Equation (16) can be greatly
simplified by the substitution

u = (φ− φ∗)a3/2 (21)

where φ∗ is, as in [14] and [15], the local maximum or minimum of the potential. Substituted into (16), this yields

ü+
3

4
pTu+ a3/2 dV

dφ
= 0 (22)

Furthermore, we can expand such a potential about its maximum or minimum at φ∗ to obtain the approximation

V (φ) ≈ V (φ∗) +
1

2
V ′′(φ∗)(φ− φ∗)2 (23)

Using this Taylor expansion, along with the assumption that pT ≈ −ρφ0 ≈ V (φ∗), (22) becomes

ü+ [V ′′(φ∗)−
3

4
V (φ∗)]u = 0 (24)

which can be easily solved for u(t).

B. Solving for φ

Equation (24) yields the general solution:

u = Cekt +De−kt (25)

where

k =

√
3

4
V (φ∗)− V ′′(φ∗) (26)

Then, taking the derivative and dividing by k, we have

u̇

k
= Cekt −De−kt (27)
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From here, we solve for C and D as follows:

C =
ku+ u̇

2k
e−kt (28)

D =
ku− u̇

2k
ekt (29)

Then, using (21) and its derivative

u̇ = φ̇a3/2 +
3

2
(φ− φ∗)Ha3/2 (30)

we can express C and D in terms of the initial conditions φi and φ̇i at some ti (and ai) in the distant past.
To get rid of the hanging φ∗ term, we first shift φ so that φ∗ = 0. Then substituting (21) and (30) into (28) and

(29) and evaluating at ti, we obtain

C =
kφi + φ̇i + 3

2φiHi

2k
a

3/2
i e−kti (31)

and

D =
kφi − φ̇i − 3

2φiHi

2k
a

3/2
i ekti (32)

When these values are inserted into (25), we arrive at our first useful result

φ =
1

2k

(
a

ai

)−3/2{[
φ̇i +

(
3

2
Hi + k

)
φi

]
ek(t−ti) −

[
φ̇i +

(
3

2
Hi − k

)
φi

]
e−k(t−ti)

}
(33)

C. Using the ΛCDM approximation

Next, we attempt to express φ solely as a function of time. Since we assume that w ≈ −1 and hence that ρφ is
approximately constant, we can use the solution to the Friedmann equations in a universe with only matter and a
cosmological constant Λ. This is given by the following modified version of (12):

a(t) = 3

√
Ω−1
φ0 − 1 sinh2/3(t/tΛ) (34)

where now tΛ = 2/
√

3ρφ0. The Hubble parameter then can then be found by the relation

H(t) =
d

dt
ln(a) =

2

3tΛ
coth(t/tΛ) (35)

Substituting back into (33), this gives us

φ(t) =
1

2k

sinh(ti/tΛ)

sinh(t/tΛ)

{[
φ̇i +

(
coth(ti/tΛ)

tΛ
+ k

)
φi

]
ek(t−ti) −

[
φ̇i +

(
coth(ti/tΛ)

tΛ
− k
)
φi

]
e−k(t−ti)

}
(36)

As a check, we note that as ti → 0:

φ(t) =
1

2k sinh(t/tΛ)

[(
φi cosh(ti/tΛ)

tΛ

)
ekt −

(
φi cosh(ti/tΛ)

tΛ

)
e−kt

]
=

φi
ktΛ

sinh(kt)

sinh(t/tΛ)

(37)

in agreement with Ref. [14]. Now we can distribute the sinh(ti/tΛ) and take the time derivative to find

φ̇(t) =

[
φi
ktΛ

cosh(ti/tΛ) +
φ̇i
k

sinh(ti/tΛ)

] [
k cosh(k(t− ti)) sinh(t/tΛ)− t−1

Λ sinh(k(t− ti)) cosh(t/tΛ)

sinh2(t/tΛ)

]
+ φi sinh(ti/tΛ)

[
k sinh(k(t− ti)) sinh(t/tΛ)− t−1

Λ cosh(k(t− ti)) cosh(t/tΛ)

sinh2(t/tΛ)

]
(38)
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D. Converting to w(a)

From here, we can solve for the parameter of state w via the relation

1 + w =
φ̇2

ρφ0
=

3

4
φ̇2t2Λ (39)

Using (38) for the value of φ̇, we have

1 + w(t) =
3

4

{[
φi
ktΛ

cosh(ti/tΛ) +
φ̇i
k

sinh(ti/tΛ)

] [
ktΛ cosh(k(t− ti)) sinh(t/tΛ)− sinh(k(t− ti)) cosh(t/tΛ)

sinh2(t/tΛ)

]

+ φi sinh(ti/tΛ)

[
ktΛ sinh(k(t− ti)) sinh(t/tΛ)− cosh(k(t− ti)) cosh(t/tΛ)

sinh4(t/tΛ)

]}2

(40)

Then, in order to normalize 1 + w to the present day value, i.e. for a = 1, we must change the variable back from t
to a with the ΛCDM approximation in (12). The hyperbolic functions in (40) then simplify to

sinh(t/tΛ) =
a3/2√

Ω−1
φ0 − 1

(41)

cosh(t/tΛ) =

√
1 + sinh2(t/tΛ) =

√
1 +

a3

Ω−1
φ0 − 1

(42)

sinh(k(t− ti)) = sinh

ktΛ
sinh−1

 a3/2√
Ω−1
φ0 − 1

− sinh−1

 a
3/2
i√

Ω−1
φ0 − 1



= sinh

ktΛ ln


a3/2√
Ω−1
φ0−1

+

√
1 + a3

Ω−1
φ0−1

a
3/2
i√

Ω−1
φ0−1

+

√
1 +

a3
i

Ω−1
φ0−1




=
1

2




a3/2√
Ω−1
φ0−1

+

√
1 + a3

Ω−1
φ0−1

a
3/2
i√

Ω−1
φ0−1

+

√
1 +

a3
i

Ω−1
φ0−1


ktΛ

−


a3/2√
Ω−1
φ0−1

+

√
1 + a3

Ω−1
φ0−1

a
3/2
i√

Ω−1
φ0−1

+

√
1 +

a3
i

Ω−1
φ0−1


−ktΛ

(43)

cosh(k(t− ti)) =
1

2




a3/2√
Ω−1
φ0−1

+

√
1 + a3

Ω−1
φ0−1

a
3/2
i√

Ω−1
φ0−1

+

√
1 +

a3
i

Ω−1
φ0−1


ktΛ

+


a3/2√
Ω−1
φ0−1

+

√
1 + a3

Ω−1
φ0−1

a
3/2
i√

Ω−1
φ0−1

+

√
1 +

a3
i

Ω−1
φ0−1


−ktΛ (44)

Then, using the function F (a), defined as

F (a) =
√

1 + (Ω−1
φ0 − 1)a−3 (45)

we can greatly simplify these expressions as follows:

sinh(t/tΛ) =
1√

F (a)2 − 1
(46)

cosh(t/tΛ) =
F (a)√
F (a)2 − 1

(47)
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sinh(k(t− ti)) =
1

2

( a

ai

) 3ktΛ
2
(
F (a) + 1

F (ai) + 1

)ktΛ
−
(
a

ai

)−3ktΛ
2
(
F (a) + 1

F (ai) + 1

)−ktΛ
=

1

2

( a

ai

) 3ktΛ
2
(
F (a) + 1

F (ai) + 1

)ktΛ
−
(
a

ai

) 3ktΛ
2
(
F (a)2 − 1

F (ai)2 − 1

)ktΛ ( F (a) + 1

F (ai) + 1

)−ktΛ
=

1

2

(
a

ai

) 3ktΛ
2

[(
F (a) + 1

F (ai) + 1

)ktΛ
−
(
F (a)− 1

F (ai)− 1

)ktΛ]
(48)

cosh(k(t− ti)) =
1

2

(
a

ai

) 3ktΛ
2

[(
F (a) + 1

F (ai) + 1

)ktΛ
+

(
F (a)− 1

F (ai)− 1

)ktΛ]
(49)

Thus, we can finally substitute these expressions into (40) to determine 1 +w(a). After some factorization, we obtain

1 + w(a) =
3

16K2

(
a

ai

)3(K−1)
{

(K − F (a))
[
φ̇itΛ + φi(F (ai) +K)

]( F (a) + 1

F (ai) + 1

)K

+ (K + F (a))
[
φ̇itΛ + φi(F (ai)−K)

]( F (a)− 1

F (ai)− 1

)K}2

(50)

where K = ktΛ. Furthermore, the expression φ̇itΛ is just ±
√

4
3 (1 + wi), and so we can write the part of (50) inside

braces as the sum of two terms—one of φi and the other of 1 + wi:

1+w(a) =
3

16K2

(
a

ai

)3(K−1)
{
φi

[
(K − F (a)) (F (ai) +K)

(
F (a) + 1

F (ai) + 1

)K
+(K + F (a)) (F (ai)−K)

(
F (a)− 1

F (ai)− 1

)K]

±
√

4

3
(1 + wi)

[
(K − F (a))

(
F (a) + 1

F (ai) + 1

)K
+ (K + F (a))

(
F (a)− 1

F (ai)− 1

)K]}2

(51)

In particular, we find that for a = a0 = 1, (51) can be rearranged to give

φi =

2K
(
ai
a0

) 3
2 (K−1)√

4
3 (1 + w0)∓

[
(K − F (a0))

(
F (a0)+1
F (ai)+1

)K
+ (K + F (a0))

(
F (a0)−1
F (ai)−1

)K]√
4
3 (1 + wi)

(K − F (a0)) (F (ai) +K)
(
F (a0)+1
F (ai)+1

)K
+ (K + F (a0)) (F (ai)−K)

(
F (a0)−1
F (ai)−1

)K (52)

Substitution into (51), after some rearrangement, yields our main result:

1 + w(a) =

(
XK(a)

√
1 + w0 ∓ YK(a)

√
1 + wi

ZK

)2

(53)

where

XK(a) =

(
a

ai

) 3
2K
(
a

a0

)− 3
2

[
(F (ai) +K) (K − F (a))

(
F (a) + 1

F (ai) + 1

)K
+ (F (ai)−K) (K + F (a))

(
F (a)− 1

F (ai)− 1

)K]
(54)

YK(a) =

(
a

a0

) 3
2K
(
a

ai

)− 3
2

[
(F (a0) +K) (K − F (a))

(
F (a) + 1

F (a0) + 1

)K
+ (F (a0)−K) (K + F (a))

(
F (a)− 1

F (a0)− 1

)K]
(55)
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and

ZK = (K − F (a0)) (F (ai) +K)

[
(F (a0) + 1) (F (ai)− 1)

(F (ai) + 1) (F (a0)− 1)

]K/2
+ (K + F (a0)) (F (ai)−K)

[
(F (ai) + 1) (F (a0)− 1)

(F (a0) + 1) (F (ai)− 1)

]K/2
(56)

There is a readily apparent symmetry between XK(a) and YK(a), which can be transformed into each other by
replacing ai with a0 and vice versa.

E. Various Checks

A quick glance at (54) and (55) shows that

XK(ai) = YK(a0) = 0 (57)

but it is also useful to show that

XK(a0) = (K − F (a0)) (F (ai) +K)

(
a0

ai

)3K/2(
F (a0) + 1

F (ai) + 1

)K
+ (K + F (a0)) (F (ai)−K)

(
a0

ai

)3K/2(
F (a0)− 1

F (ai)− 1

)K
= (K − F (a0)) (F (ai) +K)

√
F (ai)2 − 1

F (a0)2 − 1

K (
F (a0) + 1

F (ai) + 1

)K

+ (K + F (a0)) (F (ai)−K)

√
F (ai)2 − 1

F (a0)2 − 1

K (
F (a0)− 1

F (ai)− 1

)K
= (K − F (a0)) (F (ai) +K)

[
(F (a0) + 1) (F (ai)− 1)

(F (ai) + 1) (F (a0)− 1)

]K/2
+ (K + F (a0)) (F (ai)−K)

[
(F (ai) + 1) (F (a0)− 1)

(F (a0) + 1) (F (ai)− 1)

]K/2
= ZK

(58)

And similarly,

YK(ai) = −ZK (59)

This identity preserves the symmetry between XK and YK and, taken together with (53) and (57), guarantees that
w(ai) = wi and w(a0) = w0. This also allows us to write (53) in the simpler form:

1 + w(a) =

(
XK(a)

XK(a0)

√
1 + w0 ±

YK(a)

YK(ai)

√
1 + wi

)2

(60)

Another important check is the behavior of 1 + w(a) as ai → 0. In this limit, F (ai) → ∞, and so the expressions
F (ai)± 1 and F (ai)±K approach F (ai). Thus, substituting 1 for a0, XK/XK(a0) and YK/YK(ai) become:

XK(a)

XK(a0)
= a

3
2 (K−1)

 (K − F (a)) (F (a) + 1)
K

+ (K + F (a)) (F (a)− 1)
K(

K − Ω
−1/2
φ0

)(
Ω
−1/2
φ0 + 1

)K
+
(
K + Ω

−1/2
φ0

)(
Ω
−1/2
φ0 − 1

)K
 (61)
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YK(a)

YK(ai)
=

(
a

ai

) 3
2 (K−1)


(

Ω
−1/2
φ0 +K

)
(K − F (a))

(
F (a)+1

Ω
−1/2
φ0 +1

)K
+
(

Ω
−1/2
φ0 −K

)
(K + F (a))

(
F (a)−1

Ω
−1/2
φ0 −1

)K
(

Ω
−1/2
φ0 +K

)
(K − F (ai))

(
F (ai)+1

Ω
−1/2
φ0 +1

)K
+
(

Ω
−1/2
φ0 −K

)
(K + F (ai))

(
F (ai)−1

Ω
−1/2
φ0 −1

)K


≈
(
a

ai

) 3
2 (K−1)

F (ai)
−(K+1)

×


(

Ω
−1/2
φ0 +K

)
(K − F (a))

(
F (a)+1

Ω
−1/2
φ0 +1

)K
+
(

Ω
−1/2
φ0 −K

)
(K + F (a))

(
F (a)−1

Ω
−1/2
φ0 −1

)K
−
(

Ω
−1/2
φ0 +K

)(
Ω
−1/2
φ0 + 1

)−K
+
(

Ω
−1/2
φ0 −K

)(
Ω
−1/2
φ0 − 1

)−K


≈ a3
i

(
Ω−1
φ0 − 1

)−(K+1)/2

a
3
2 (K−1)

×


(

Ω
−1/2
φ0 +K

)
(K − F (a))

(
F (a)+1

Ω
−1/2
φ0 +1

)K
+
(

Ω
−1/2
φ0 −K

)
(K + F (a))

(
F (a)−1

Ω
−1/2
φ0 −1

)K
−
(

Ω
−1/2
φ0 +K

)(
Ω
−1/2
φ0 + 1

)−K
+
(

Ω
−1/2
φ0 −K

)(
Ω
−1/2
φ0 − 1

)−K


= 0

(62)

Thus, we see that as ai → 0, (60) becomes the Scherrer-Dutta solution for ‘hilltop quintessence’ in Ref. [14].

IV. SPECIAL CASES

Equations (54), (55), and (60) apply only when K2 > 0, yet K2 can take on any real value. In this next section,
we repeat this derivation for K2 < 0 and K2 = 0.

A. K2 < 0

Technically, if we write K as iκtΛ, where κ is a positive real number, (54), (55), and (60) give the correct formula
for 1 + w(a). However, taking the real part of this formula can be quite complicated, and so we instead begin anew
from the Friedmann equations. In the K2 < 0 case, equation (24) then gives:

u = A sin(κt) +B cos(κt) (63)

From here, as before, we evaluate at ti to solve for A and B. Since

u̇

κ
= A cos(κt)−B sin(κt) (64)

we find that

A = u sin(κt) +
u̇

κ
cos(κt)

=

(
φi sin(κti) +

φ̇i + 3
2φiHi

κ
cos(κti)

)
a

3/2
i

(65)

and

B = u cos(κt)− u̇

κ
sin(κt)

=

(
φi cos(κti)−

φ̇i + 3
2φiHi

κ
sin(κti)

)
a

3/2
i

(66)
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Thus, by the definition of u, we can write the following expression for φ:

φ(a, t) =
1

κ

(
a

ai

)−3/2{[
φiκ sin(κti) +

(
φ̇i +

3

2
φiHi

)
cos(κti)

]
sin(κt)

+

[
φiκ cos(κti)−

(
φ̇i +

3

2
φiHi

)
sin(κti)

]
cos(κt)

}
(67)

Then, by the ΛCDM approximation, we can write this as just a function of t:

φ(t) =
1

κ

(
sinh(ti/tΛ)

sinh(t/tΛ)

){[
φiκ sin(κti) +

(
φ̇i +

3

2
φiHi

)
cos(κti)

]
sin(κt)

+

[
φiκ cos(κti)−

(
φ̇i +

3

2
φiHi

)
sin(κti)

]
cos(κt)

}
(68)

Now we can begin to work towards a formula for 1 + w by taking the time derivative of the equation above. This
yields, after evaluating H(t) with the ΛCDM approximation,

φ̇(t) =

[
φ̇i sinh(ti/tΛ) cos(κti) + φi

(
κ sinh(ti/tΛ) sin(κti) +

1

tΛ
cosh(ti/tΛ) cos(κti)

)](
cos(κt)

sinh(t/tΛ)
− sin(κt) cosh(t/tΛ)

κtΛ sinh2(t/tΛ)

)
+

[
φ̇i sinh(ti/tΛ) sin(κti)− φi

(
κ sinh(ti/tΛ) cos(κti)−

1

tΛ
cosh(ti/tΛ) sin(κti)

)](
sin(κt)

sinh(t/tΛ)
− cos(κt) cosh(t/tΛ)

κtΛ sinh2(t/tΛ)

)
(69)

After noting that φ̇tΛ ≈ ±
√

4
3 (1 + w) and converting the hyperbolic functions back to functions of a, this becomes

√
4

3
(1 + w) =

1

κtΛ

(
a

ai

)−3/2
{√

4

3
(1 + wi)

[
cos(κti) (κtΛ cos(κt)− F (a) sin(κt)) + sin(κti) (κtΛ sin(κt) + F (a) cos(κt))

]
+ φi

[
(κtΛ sin(κti) + F (ai) cos(κti)) (κtΛ cos(κt)− F (a) sin(κt))

− (κtΛ cos(κti)− F (ai) sin(κt)) (κtΛ sin(κt) + F (a) cos(κt))
]}

(70)

which can be evaluated at t0 and solved for φi as such:

φi =

{
κtΛ

(
a0

ai

)3/2
√

4

3
(1 + w0)∓

[
cos(κti) (κtΛ cos(κt0)− F (a0) sin(κt0))

+ sin(κti) (κtΛ sin(κt0) + F (a0) cos(κt0))
]√4

3
(1 + wi)

}
[

(κtΛ sin(κti) + F (ai) cos(κti)) (κtΛ cos(κt0)− F (a0) sin(κt0))

− (κtΛ cos(κti)− F (ai) sin(κti)) (κtΛ sin(κt0) + F (a0) cos(κt0))
]−1

(71)

Then, substituting into (70) and converting the sines and cosines into functions of a, we obtain the previously found
equation form: √

1 + w(a) =
XK(a)

XK(a0)

√
1 + w0 ±

YK(a)

YK(ai)

√
1 + wi (72)
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where

XK(a) =

(
a

a0

)−3/2
{[
|K| sin

(
|K| ln

√
F (ai) + 1

F (ai)− 1

)
+ F (ai) cos

(
|K| ln

√
F (ai) + 1

F (ai)− 1

)]

×

[
|K| cos

(
|K| ln

√
F (a) + 1

F (a)− 1

)
− F (a) sin

(
|K| ln

√
F (a) + 1

F (a)− 1

)]

−

[
|K| cos

(
|K| ln

√
F (ai) + 1

F (ai)− 1

)
− F (ai) sin

(
|K| ln

√
F (ai) + 1

F (ai)− 1

)]

×

[
|K| sin

(
|K| ln

√
F (a) + 1

F (a)− 1

)
+ F (a) cos

(
|K| ln

√
F (a) + 1

F (a)− 1

)]}
(73)

and

YK(a) =

(
a

ai

)−3/2
{[
|K| cos

(
|K| ln

√
F (a0) + 1

F (a0)− 1

)
− F (a0) sin

(
|K| ln

√
F (a0) + 1

F (a0)− 1

)]

×

[
|K| sin

(
|K| ln

√
F (a) + 1

F (a)− 1

)
+ F (a) cos

(
|K| ln

√
F (a) + 1

F (a)− 1

)]

−

[
|K| sin

(
|K| ln

√
F (a0) + 1

F (a0)− 1

)
+ F (a0) cos

(
|K| ln

√
F (a0) + 1

F (a0)− 1

)]

×

[
|K| cos

(
|K| ln

√
F (a) + 1

F (a)− 1

)
− F (a) sin

(
|K| ln

√
F (a) + 1

F (a)− 1

)]}
(74)

from which we can see that the same identities hold as in the K2 > 0 case, namely

XK(ai) = YK(a0) = 0 (75)

and

XK(a0) = −YK(ai) (76)

B. K2 = 0

We first solve (24) in the k = 0 case to find that

u = φa3/2 = At+B (77)

Then, evaluating at ti, we solve for A and B to obtain

A = u̇ =

(
φ̇i +

3

2
Hi

)
a

3/2
i (78)

and

B =

[
φi +

(
φ̇i +

3

2
Hi

)
ti

]
a

3/2
i (79)

Substitution into (77) yields

φ =

[
φi +

(
φ̇i +

3

2
Hi

)
(t− ti)

](
a

ai

)−3/2

(80)
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Then using the ΛCDM approximation, we have

φ(t) =

[
φi +

(
φ̇i +

3

2
Hi

)
(t− ti)

](
sinh(ti/tΛ)

sinh(t/tΛ)

)
(81)

and taking the derivative gives us

φ̇(t) =

[
φ̇i sinh(ti/tΛ) +

φi
tΛ

cosh(ti/tΛ)

]
1

sinh(t/tΛ)

− 1

tΛ

[
φi sinh(ti/tΛ) +

(
φ̇i sinh(ti/tΛ) +

φi
tΛ

cosh(ti/tΛ)

)
(t− ti)

]
cosh(t/tΛ)

sinh2(t/tΛ)
(82)

We can now convert back to a to find that

φ̇(a) =
1

tΛ

(
a

ai

)−3/2
{
φ̇itΛ

[
1− F (a) ln

[(
a

ai

)3/2(
F (a) + 1

F (ai) + 1

)]]

+ φi

[
F (ai)− F (a)− F (ai)F (a) ln

[(
a

ai

)3/2(
F (a) + 1

F (ai) + 1

)]]}
(83)

From here, we evaluate at t0 to find φi and use the relation ±
√

4
3 (1 + w) = φtΛ to arrive at the solution:

√
1 + w(a) =

X0(a)

X0(a0)

√
1 + w0 ±

Y0(a)

Y0(ai)

√
1 + wi (84)

where

X0 =

(
a

a0

)−3/2 [
F (ai)− F (a)− 1

2
F (ai)F (a) ln

[(
F (ai)− 1

F (ai) + 1

)(
F (a) + 1

F (a)− 1

)]]
(85)

and

Y0 =

(
a

ai

)−3/2 [
F (a0)− F (a)− 1

2
F (a0)F (a) ln

[(
F (a0)− 1

F (a0) + 1

)(
F (a) + 1

F (a)− 1

)]]
(86)

C. Conclusions

Thus, we arrive at a general formula for 1 + w(a), that is,

1 + w(a) =

(
XK(a)

XK(a0)

√
1 + w0 ±

YK(a)

YK(ai)

√
1 + wi

)2

(87)

The XK ’s take on the following forms
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XK2>0(a) =

(
a

ai

) 3
2K
(
a

a0

)− 3
2

[
(F (ai) +K) (K − F (a))

(
F (a) + 1

F (ai) + 1

)K
+ (F (ai)−K) (K + F (a))

(
F (a)− 1

F (ai)− 1

)K] (88)

XK2=0(a) =

(
a

a0

)−3/2 [
F (ai)− F (a)− 1

2
F (ai)F (a) ln

[(
F (ai)− 1

F (ai) + 1

)(
F (a) + 1

F (a)− 1

)]]
(89)

XK2<0 =

(
a

a0

)−3/2
{[
|K| sin

(
|K| ln

√
F (ai) + 1

F (ai)− 1

)
+ F (ai) cos

(
|K| ln

√
F (ai) + 1

F (ai)− 1

)]

×

[
|K| cos

(
|K| ln

√
F (a) + 1

F (a)− 1

)
− F (a) sin

(
|K| ln

√
F (a) + 1

F (a)− 1

)]

−

[
|K| cos

(
|K| ln

√
F (ai) + 1

F (ai)− 1

)
− F (ai) sin

(
|K| ln

√
F (ai) + 1

F (ai)− 1

)]

×

[
|K| sin

(
|K| ln

√
F (a) + 1

F (a)− 1

)
+ F (a) cos

(
|K| ln

√
F (a) + 1

F (a)− 1

)]}
(90)

and the YK ’s are just these with ai and a0 interchanged. It should also be noted that these formulae are not unique;
since the relevant quantity is XK(a)/XK(a0), any scalar multiple of these is equally valid. (88), for instance, is a
factor of 2i larger than (90) if an imaginary K is directly substituted.

In addition, the high degree of symmetry in these equations motivates a simpler way of expressing them. Indeed,
we can also write this solution in the following form:

√
1 + w(a) =

(
a

a0

)−3/2(
fK(a)gK(ai)− fK(ai)gK(a)

fK(a0)gK(ai)− fK(ai)gK(a0)

)√
1 + w0

±
(
a

ai

)−3/2(
fK(a)gK(a0)− fK(a0)gK(a)

fK(ai)gK(a0)− fK(a0)gK(ai)

)√
1 + wi (91)

where fK(a) and gK(a) are the much more manageable functions:

fK(a) =


(K + F (a))

(
F (a)−1
F (a)+1

)K/2
(K2 > 0)

F (a) (K2 = 0)

|K| sin ln
(
F (a)+1
F (a)−1

)|K|/2
+ F (a) cos ln

(
F (a)+1
F (a)−1

)|K|/2
(K2 < 0)

(92)

gK(a) =


(K − F (a))

(
F (a)+1
F (a)−1

)K/2
(K2 > 0)

1− F (a) ln
(
F (a)+1
F (a)−1

)1/2

(K2 = 0)

|K| cos ln
(
F (a)+1
F (a)−1

)|K|/2
− F (a) sin ln

(
F (a)+1
F (a)−1

)|K|/2
(K2 < 0)

(93)

V. COMPARISON WITH NUMERICAL SOLUTIONS

A. Method

In the following section, we compare these models for w(a) with numerical results for three different potentials: a
quadratic

V (φ) = V0 + V2(φ− φ∗)2 (94)
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a Gaussian

V (φ) = V0e
−(φ−φ∗)2/σ2

(95)

and—perhaps the most important model of scalar field evolution near a potential maximum or minimum—the PNGB
potential

V (φ) = V0 [1 + cos ((φ− φ∗)/f)] (96)

These, of course, are not meant to be an exhaustive list of scalar field potentials, but we merely wish to show that these
different potentials will produce similar curves for w(a) which converge upon our model in (91), (92), and (93). Our
numerical solutions to Eqs. (15) and (16) are constrained by four boundary conditions—wi, w0, Ωφ0, and K—which
together determine the parameters in each of these potential forms. The boundary condition on K requires that

1−K2 =
4V ′′(φ∗)

3V (φ∗)
(97)

and so

V ′′(φ∗) =
3

4
(1−K2)V (φ∗) (98)

Furthermore, through the condition on Ωφ0, we have:

ρφ0 =
1

2
φ̇2

0 + V (φ0) (99)

and since φ̇2
0 = (1 + w0)ρφ0 and ρφ0 = 3H2

0 Ωφ0, this expression can be rewritten as:

V (φ0) =
3

2
H2

0 Ωφ0 (1− w0) (100)

The conditions in (98) and (100) can then be applied to the various potential forms to determine the given parameters
in each case. For a quadratic, shifting to φ∗ = 0 these become

V2 =
3

8
(1−K2)V0 (101)

and

V0 + V2φ
2
0 =

3

2
H2

0 Ωφ0(1− w0) (102)

respectively, which yield the solution

V0 =
3
2H

2
0 Ωφ0(1− w0)

1 + 3
8 (1−K2)φ2

0

(103)

V2 =
3

8
(1−K2)

3
2H

2
0 Ωφ0(1− w0)

1 + 3
8 (1−K2)φ2

0

(104)

In a similar fashion, we have for a Gaussian

σ2 =
8

3(K2 − 1)
(105)

V0 =
3

2
H2

0 Ωφ0
(1− w0)e

3
8 (K2−1)φ2

0 (106)

which yields a negative value of σ2 for K2 < 1. While this is no longer a Gaussian curve in the strict sense, the
resulting potential—a sharply increasing well—is nonetheless valid for our purposes. For a PNGB potential, we find

f =
2

3
√
K2 − 1

(107)
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V0 =
3
2H

2
0 Ωφ0(1− w0)

1 + cos(3
2φ0

√
K2 − 1)

(108)

This potential undergoes a similar change around K2 = 1, where f becomes imaginary, changing the cosine curve
into a hyperbolic cosine well.

Thus, the appropriate parameters for a potential curve with a given K value can be determined by specifying w0

and φ0. Three of the four boundary conditions—K, Ωφ0, and w0—therefore depend only on the present state, and
hence it is appropriate to run the simulation backwards from a0 to ai in order to find a value of φ0 which satisfies
the fourth boundary condition: wi. The particular algorithm in these simulations first found values of φ0 between
which φ̇i changes sign, and then pinpointed the φ0 value for which wi = −1. Then, by deviating from this point,
appropriate φ0 values could be found corresponding to the correct wi.

B. Graphical Comparisons

Using this method, numerical solutions were obtained for six values of K2: 0, ±4, ±40, and −60, with Ωφ0 ≈ 0.73
(see pp. 16-21). wi and w0 were chosen to allow reasonable deviations from our assumption that w ≈ −1. An ai
value of 0.2 was chosen, corresponding with z = 4, to prevent w from freezing too rapidly.

All of these except the K2 = −40 case show remarkable agreement (< 2% error) between our model and the
numerical simulations with no systematic error in either direction. As expected, the model becomes progressively
more accurate as w0 → −1, leading us to speculate that any potential with nonzero V (φ∗) and V ′′(φ∗) will produce
a w(a) curve arbitrarily close to (91), (92), and (93) as wi and w0 approach −1.

The K2 = −40 case is nonetheless surprising, but highlights a trend that is present in Figs. 1-8 as well. As K2

decreases, wavg must become progressively closer to −1 in order to generate suitable agreement between the model
and numerical solutions; in other words, this model is more accurate for greater values of K2. This phenomenon is
unrelated to the accuracy of the Taylor expansion; indeed, the quadratic potential displays this same trend. Rather,
the problem most likely lies in the definition of K. Our model in (91), (92), and (93) becomes more sensitive to slight
changes in K as K becomes increasingly negative, and Fig. 13 (p. 22) shows one example of how a small adjustment
in the value of K2 can produce almost perfect agreement in the −40 case. Thus, the imprecision in some of our initial
assumptions—namely, that pT ≈ −ρφ0 ≈ V (φ∗)—are most likely responsible for the poor agreement in Figs. 9-10,
and a more accurate method of approximation may perhaps be worthy of additional research.

Nonetheless, as evidenced by Figs. 11-12, the decreasing value of K2 is not the only factor leading to the irregularity
in the K2 = −40 case. Since K2 = −60 shows excellent agreement between the numerical results and our model, there
is clearly something unique about a K2 value of −40 which creates such an anomaly. At K2 = −37.96, our model
for wi = −0.9999 and w0 = −0.9998 breaks down and exhibits a peak above 170, 000, which is clearly unphysical
but demonstrates that φ̇ grows extremely large in such a potential. This sort of resonance in the model for w(a)
also exists around K2 values of −12.12 and −78.19 where the curve for 1 + w(a) acquires an extra root. The graphs
for K2 = −40 most likely show such poor agreement because of its proximity to one of these resonances. Since the
maximum value of φ̇ is changing very rapidly around K2 = −40, even a slight variation from the best-fitting K can
cause our approximation to deviate significantly from numerical results. The source of this resonance phenomenon is
still not fully understood, however, and may also deserve to be studied in further detail.

VI. CONCLUSIONS

Continuing upon the methods of Refs. [14] and [15], we have derived a general expression for w(a) of a minimally-
coupled scalar field evolving near a potential maximum or minimum. Unlike the references cited above, however,
this model does not assume that φ̇i = 0, thereby introducing the additional parameter w0 and a ‘±’ sign into the
expression for w(a). Thus, under our initial assumptions that w ≈ −1 and (1/V )(∂φV )� 1 (satisfied near a potential
extremum at φ∗), the most general expression for w(a) has five free parameters which together determine a unique

evolution of the field: Ωφ0, V ′′(φ∗)/V (φ∗), wi, w0 and a ‘±’ which depends upon the direction of φ̇i relative to φ̇0.
Varying these five parameters, we then compared our model to the exact solution as determined numerically. The

model proved to be a good approximation (< 2% error)for all but for one value of V ′′(φ∗)/V (φ∗), which we speculate
was due to a resonance-like effect for certain curvatures. Such a resonance peak in w(a) was predicted by our model for
various values of the curvature parameter, yet this phenomenon is still not fully understood and may merit additional
research.
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FIG. 1: The evolution of w(a) under a quadratic potential with K2 = 40. wi is fixed at −0.9 with ai = 0.2. Our model (blue)
is shown along with numerical solutions with quadratic (red), Gaussian (green), and PNGB (violet) potentials. w0 values of
−1,−0.9, and −0.8 are displayed in the case where the (+) solution of the ‘±’ in (91) has been chosen.
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FIG. 2: As Fig 1, except the (-) solution has been chosen.
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FIG. 3: An analog of Fig. 1 with the (+) solution for K2 = 4.

-1

-0.98

-0.96

-0.94

-0.92

-0.9

-0.88

-0.86

-0.84

-0.82

-0.8

0 0.2 0.4 0.6 0.8 1

w
(a

)

a

FIG. 4: As Fig. 3, except the (-) solution has been chosen.
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FIG. 5: An analog of Fig. 1 with the (+) solution for K2 = 0. wi is fixed at −0.97 with solutions plotted for w0 = −1,−0.97,
and −0.95.
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FIG. 6: As Fig. 5, except the (-) solution has been chosen.
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FIG. 7: An analog of Fig. 1 with the (+) solution for K2 = −4. wi is fixed at −0.99 with solutions plotted for w0 = −1,−0.99,
and −0.98.
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FIG. 8: As Fig. 7, except the (-) solution has been chosen.
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FIG. 9: An analog of Fig. 1 with the (+) solution for K2 = −40. wi is fixed at −0.9999 with solutions plotted for w0 =
−1,−0.9999, and −0.9998.
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FIG. 10: As Fig. 9, except the (-) solution has been chosen. No solution was found for the quadratic potential in the
w0 = −0.9998 case.
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FIG. 11: An analog of Fig. 1 with the (+) solution for K2 = −60. wi is fixed at −0.97 with solutions plotted for w0 =
−1,−0.999, and −0.998.
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FIG. 12: As Fig. 11, except the (-) solution has been chosen.
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FIG. 13: The numerical solutions for a PNGB potential in Fig. 9 overlaid with the K2 = −40.39 model.


