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Abstract

Latent class moderated mediation in structural equation models can describe
individual differences in psychological processes across latent groups. This method
could be most useful where two latent classes have indirect paths of equal
magnitude, but opposite signs. Global model fit indices often failed to detect misfit
when a one-class model was fit to data from a two-class population with latent class
moderated mediation. Under this misfitted one-class model, significant indirect
effects were rarely found, even with strong indirect effects in each subpopulation.
Information criteria only reliably selected the correct number of classes with a
strong population indirect effect and measurement invariance. Violations of
assumed strong measurement invariance led to selecting more classes than in the

population.
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Introduction

Psychology aims to empirically validate directional, causal mechanisms that
influence human behavior. However, it can be challenging to model relationships
between multiple constructs. Methodologists have developed a number of models
that represent fundamental notions of causal sequencing. For example, consider the
simple diagram in Figure 1 that represents causal mediation in the relationships
among three variables. Variable X affects variable Y directly, but also affects Y
indirectly through its influence on a mediator M that also has an effect on Y. The
effect of X on Y through its influence on M is an indirect effect. Methodologists have
developed a number of models and designs to support the testing of such indirect
effects.

Mediation remains the most popular model for modeling indirect relationships
in psychology. Developed by Baron and Kenny, this approach describes the indirect
effect and direct effect through linear relationships between the exogenous variable
(X), the outcome variable (Y) and the mediator (M) (Baron & Kenny, 1986; D.

MacKinnon & Lockwood, 2002) as

M=B,+aX +r, (1)
and
y=p1+cX+bM+n (2)

In the above equations, f; and f; are intercepts; g, b, and c are weights; and 1, and
1, are residuals (Figure 1). The indirect effect, or how much X predicts Y through M,
is then quantified as ab. We can test the significance of this effect in a number of

ways. Relying on the asymptotic normality of the product ab, traditional methods
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utilize estimates of the standard error of ab to conduct Wald tests within a
traditional null hypothesis significance testing (NHST) framework (Goodman, 1960;
Sobel, 1982). More modern bootstrapping procedures (e.g., Preacher, Rucker, &
Hayes, 2007) do not rely on the normality of ab. Simulation studies have
demonstrated that using Wald tests leads to low power (D. MacKinnon & Lockwood,
2002). Thus, bootstrapping procedures should be used when testing the strength
and significance of the indirect effect (Biesanz, Falk, & Savalei, 2010).

Other effects are also represented in this modeling framework. The direct effect,
or how much X predicts Y not through M, is represented by c. The total effect, or how
much X predicts Y, is then just ¢ + ab. Although Baron and Kenny (1986) suggested
that a statistically significant test of the total effect should be performed prior to
testing the indirect effect, subsequent authors have refuted this claim (D. P.
MacKinnon et al,, 2002; Zhao et al.,, 2010). As c could be positive and ab negative,
the sum of a large indirect effect a large direct effect would be close to zero. This
possibility makes testing the total effect for significance before testing the others
result in increased Type Il error rates (D. MacKinnon & Lockwood, 2002).

The original mediation model described above is just-identified, and each model
coefficient may be calculated as a straightforward function of the observed
variances and correlations. Given the simplicity of the model, it is perhaps not
surprising that the analysis of mediation in regression has achieved wide use
(Hayes, 2009; Preacher, 2015).

Nevertheless, problems exist in both the model’s use and the model itself. Itis

tempting to interpret a significant indirect effect as evidence of a causal pathway.
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For example, Baron and Kenny (1986) called their stepwise mediation method the
“Causal Steps Method." Mediation! remains just a collection of predictions—which is
useful in psychology. However, without random assignment, longitudinal design, or
some other design or methodological approach, there is no reason why the
covariance structure implies a causal relationship (Imai, Keele, & Yamamoto, 2010;
D. P. MacKinnon et al,, 2002; Shrout & Bolger, 2002; Spencer, Zanna, & Fong, 2005;
Zhao et al., 2010). For example, suppose we model education mediating the effect of
intelligence on fertility. Instead of that directional relationship, a common factor,
genetic or otherwise, that causes all three could exist (Rodgers et al., 2008).

Beyond that misstep, the use of significance testing is problematic, especially
without consensus on a good measure of effect size. Significance testing provides
less information than often thought (Harlow, Mulaik, & Steiger, 1997). It only
signals whether a parameter estimate differs from a null, often zero, by an
unexpected amount—not whether this difference matters. Using confidence
intervals or effect sizes allow practitioners to quantify that difference. One can
construct confidence intervals for both methods that directly estimate the standard

error of the product (Goodman, 1960; Sobel, 1982) and resampling methods

1 Mediation now refers to a wide variety of models and techniques that describe
how the effect of one construct can be transmitted through intermediate variables.
These include the Bayesian net-based tradition and the propensity score approach
(Preacher, 2015). For the purposes of this paper, mediation refers to the predictive

model implemented in regression or SEM.
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produce confidence intervals due to their nature (Preacher, Rucker, & Hayes, 2007).
Nevertheless, no consensus on effect sizes in mediation exists (Preacher & Kelley,
2011).

There are other problems with mediation models beyond how they are
currently used. Tests of mediation in regression models with manifest variables
tend to have low power (D. MacKinnon, Lockwood, & Williams, 2004; D. P.
MacKinnon et al.,, 2002). Moreover, regression models on manifest variables do not
account for measurement error, which can lead to bias (Rigdon, 1994). The model
also assumes that relationships between variables are linear and stable across the
entire statistical population. As mediation is an intra-individual process (L. Collins,
Graham, & Flaherty, 1998), it is perhaps surprising that the model relies entirely
upon a random residual to account for individual differences, especially when
methods exist that capture a wider array of individual differences in mediation and
beyond (D. J. Bauer, 2011; Preacher, 2015). This assumption might well be incorrect
— there could be two groups in the population, only one in which the indirect path
is significant (Shrout & Bolger, 2002). If two or more groups do exist, some with
significant effects, then regression coefficients estimated without considering
possible subpopulations might produce biased estimates or fail to detect them
altogether.

Although the notion of mediation analysis has elicited great enthusiasm from
a wide range of researchers, it has become increasingly clear that this enthusiasm
was premature. There is still much work to be done. Although mediation is well

researched in the context of the simple regression model proposed by Baron and
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Kenny (1986), researchers are still working on incorporating various conceptions of
time and clustering into mediation (D. MacKinnon & Fairchild, 2009; Preacher,
2015). Nevertheless, social scientists will likely continue to employ mediation
analyses, no matter how statisticians may decry this lack of a sophisticated
understanding. Thus, if the methods can be improved, they should be.

The analysis of mediation through structural equation models can potentially
alleviate a few of the problems that result from simple regression models on
manifest variables. Structural equation modeling (SEM) describes relationships
between unobserved, or latent, variables (Figure 2). To measure these latent
variables, one uses multiple observations or measurements. These observed, or
manifest, variables are called indicators if they are predicted by the latent variables.
The model can then be represented as two equations. The latent variable model
describes the relationships between latent variables, and the measurement model
describes the relationships between the latent variables and the indicators they
predict:

Latent Variable Model:

n=v+pn+q (3)

where 1 is a ¢ X 1 random vector of latent variables with a multivariate normal
distribution, q is the number of latent variables, v is a ¢ X 1 vector of means of the
latent variables, f is a ¢ X q matrix of weights from one latent variable to another,
and { is a ¢ X 1 random vector of residuals.

Measurement Model:

y=a+An+46 (4)
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where p is the number of manifest variables, y is a p X 1 random vector of
manifest variables, , @ is ap X 1 vector of the means of the manifest variables, A is a
p X q matrix of weights from the latent variables to the manifest variables, and § is a
p X 1 random vector of manifest variables’ residuals with a mean of 0. Using
expected value and matrix algebra, we can derive the following mean and
covariance structures:
Z,=A0-p) oI -p) A +0 (5)
u=v+A(I-p)ta (6)
where 2, is the p X p population covariance matrix of the manifest variables, @
is a g X g covariance matrix of the latent variables, @ is the covariance matrix? of the
measurement model residuals, ¢ is a ¢ X 1 vector of the population means of
manifest variables. Parameters are then estimated so as to most closely reproduce
the population mean and covariance structures, given the sample means and
covariances. Maximum likelihood estimates of the model parameters are obtained
by minimizing a discrepancy function that compares the model-implied variance-
covariance matrix X,,, (@) from Equation 5 with the sample covariance matrix S,
(Bollen, 1989).
Modeling mediation through structural equation models instead of
regression offers many advantages. Several approaches to mediation in regression
estimate the relationship between X and M (a and r;) separately from the

relationships between X and Y and M and Y (b, ¢, and rz). By estimating all paths in

2 Assumed to be diagonal



LATENT CLASS MODERATED MEDIATION 9

structural equation models simultaneously, each parameter is estimated with all
relationships in the model, which is more parsimonious (Iacobucci, Saldanha, &
Deng, 2007). Structural equation models also estimate measurement error,
whereas regression models do not. If measurement error is not modeled and
manifest variables are not perfectly reliable, then parameter estimates can be
biased. This bias can exist even if one employs a path analysis approach, estimating
all coefficients simultaneously (Cole & Preacher, 2013). Simulation studies have
demonstrated that SEM has more power to detect indirect effects than a path
analysis on manifest variables, even in small samples (Iacobucci et al., 2007). While
the smallest sample size included in the study was 30, multivariate analyses should
probably be done with least that number of participants, if not more.

Nevertheless, regression models and basic structural equation models
remain sensitive to the existence of distinct, meaningful subgroups? within the
population. Both models assume a single population with multivariate-normally
distributed predictors. If one believes that certain weights and means differ across
groups, one could use a few different methods in regression (Cohen, Cohen, West, &

Aiken, 2003). One could dummy code group membership and include it as a

3 These subgroups are often considered to be qualitatively different, like those
modeled with fixed effects of group membership. Contrast these with the groups or
clusters that are modeled with random effects through multilevel or hierarchical
modeling. Much research on meditation in multilevel modeling has occurred since

the millennium (Bauer, Preacher, & Gil, 2006).
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covariate and as a moderator. One could also run each group’s model separately.
Both approaches can produce problems in terms of estimation and parsimony. If
there are a large number of groups or group-specific effects, the number of
parameters might make convergence difficult. If one estimates each group’s model
separately, one might drastically reduce the sample size. Moreover, separately
estimating group models is not parsimonious. In structural equation models, one
can use both of these solutions. One can also free certain parameters to be freely
estimated between groups or constrain other parameter estimates to be the same
across groups. In constraining parameter estimates, one assumes that the
parameters are equal across groups. In that case, the measurement and latent
variable model change:

Latent Variable Model:

Mk = Vi + Brtli + S (7)

Measurement Model:

Vi = + Ay + 6y (8)
where k is group membership. Multi-group SEM is ultimately more parsimonious
and flexible. It is parsimonious because all parameters are still estimated at the
same time, and only those that are thought to differ across classes are not
constrained to be the same across classes. It is also more flexible because any and
all parameters can theoretically be freed, including variances. This multiple-group
approach allows us to model different indirect effects between observed groups if

group membership is known.



LATENT CLASS MODERATED MEDIATION 11

This method cannot model mediation in populations where unobserved
groups exist. Standard multi-group analyses require group membership to be
known. The potential existence of unknown subgroups becomes especially relevant
in psychological research. For a clinical example, suppose that only a small subgroup
of individuals has a disorder, and mediation occurs only in subjects with that
disorder. One requires a different model to describe group-specific indirect effects if
the groups are unobserved.

Finite mixture models posit the existence of unobserved subgroups that
combine to account for the population distribution. Thus, any distribution can be
represented as the probabilistically weighted sum of multivariate normal
distributions. Let f; (v, |0} ) represent the density functions implied by the

structural model of the kth class. Then,

k (9)

fFOIm0) = > mfi (7100
k=1

where m,is the proportion of the kt class in a population and @, is a vector of
parameters in the class. These unobserved subgroups, or latent classes, have
multiple interpretations. The “strong” interpretation is that these groups actually
exist (L. M. Collins & Lanza, 2010). The “weak” interpretation, and the more tenable
one by far, is that these groups provide a flexibile approach to modeling non-
normality (Bauer & Curran, 2004; Bauer & Curran, 2003). One should note that,
within each class, no more individual differences are accounted for than in the

original one class model at this point (Vermunt & Magidson, 2005). Random slopes

and intercepts could be added if observations within or even between classes were
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somehow grouped together (D.]. Bauer, 2011). Contrast this approach with latent
growth curve models and multilevel models, which allow for intercepts, slopes, and
other parameters to randomly vary across people and groups according to specified
distributions.

In freeing certain paths to differ across class, we must consider the
requirements of measurement invariance. Measurement invariance is an
assumption first developed in multi-group structural equation modeling (W
Meredith, 1993; Meredith & Teresi, 2006). Generally measurement invariance
means that all measurement models remain constant across groups. For example,
many hypotheses in cross-cultural psychology require constructs to be comparable
across cultures (Meade & Bauer, 2007). Otherwise, it makes little sense to go further
in analyzing culture specific or invariant phenomena.

There are several types of measurement invariance discussed in the literature.
Strong measurement invariance occurs when both the item intercepts and factor-
indicator weights do not vary across groups (Meredith, 1993). If this assumption
holds true, then we can be more confident that the factors remain qualitatively the
same across groups. If the factors are qualitatively the same across classes and only
the relationships vary, then we can attribute the difference of paths between classes
to the paths themselves, including unobserved moderators.

Latent class moderated mediation (LCMM) models unobserved groups that
differ in their indirect effects. Moderation occurs whenever the effect of one variable
on another depends on a third variable (Baron & Kenny, 1986). Thus, whenever the

indirect path differs between classes, latent class moderated mediation occurs.
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Moderated mediation is not a new concept and has been developed for a number of
different situations (Bauer, Preacher, & Gil, 2006; Edwards & Lambert, 2007; Muller,
Judd, & Yzerbyt, 2005; Preacher et al., 2007; Wang & Preacher, 2013). However,
latent class moderated mediation, especially in structural equation modeling,
remains an unexplored method.

This modeling approach seems most intuitive when one constrains all
measurement models to be equal across groups. Issues of estimation and
interpretation motivate this recommendation. First, given the sheer number of
parameters in structural equation mixture models, equality constraints can
noticeably improve estimation. Second, measurement invariance makes it more
tenable to compare the sizes of indirect paths across classes. If measurement
invariance does not exist, then the constructs are not comparable across classes. In
that case, then one does not know whether the operative difference lies in the
construct or in the process. The assumption of strong measurement invariance once
again implies that the difference lies in the process, not in the constructs
themselves.

Latent class moderated mediation could be useful in modeling mediation
when the paths of each group cancel out when aggregated. Consider a two-class
structural equation mediation model where the classes only differ in their indirect
paths, and each class is around the same size. If a;, = —a, and b; = —b,, then they
will cancel out. Even if these magnitudes are not exactly the same or the classes are

not exactly equal, the overall estimated indirect effect would be close to zero. Unless
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one somehow detects latent classes during the analytic process, within-class
mediation effects may also go undetected.

Latent class moderated mediation presents the possibility of disentangling
these effects. In doing so, we can identify possible mechanisms where we could not
before. Later, covariates, such as SES or trauma, could be added as predictors of
class membership. These covariates would improve the model’s utility to clinicians
and policy makers, by connecting latent processes to observable traits. Unlike in
multi-group SEM, here we first check for the existence of different regression
coefficients and then check whether manifest groups predict them.

No rigorous literature currently exists on using latent class moderated
mediation. Although work has been done on structural equation mixture models
(Tueller & Lubke, 2010; Vermunt & Magidson, 2005), it provides no evidence as to
whether this modeling approach will detect these equal but opposite classes. Given
the practical importance of measurement invariance, it also behooves us to examine
the impact of violations of that assumption. Thus, [ will investigate three questions.
First, will a traditional one-class structural equation model not fit when there are
two equally sized classes with indirect effects of the same magnitude but opposite
signs? Second, how is model selection impacted by the size of the sample and the
indirect effect while strong measurement invariance holds across classes? Finally,
how is model selection affected by wrongfully imposing equality constraints on
measurement models when strict measurement invariance does not hold in the
population? I predict that a one-class structural equation model will fit for models

with smaller indirect effects but not larger ones. I also predict that information
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criteria will tend to select a two-class model when measurement invariance holds,
but when measurement invariance does not hold in the population, information
criteria will select the three-class model more often when equality constraints are
wrongfully imposed on measurement models.

Methods

To answer these questions, I simulated data from two-class models with
mediation between three latent factors. I generated the data and fit the models in
Mplus through the R package MplusAutomation. Models are included in Appendix A,
and selected code from post-processing is included in Appendix B.

Conditions of the Generating Models

The generating models varied based on three factors: sample size, indirect
effect size, and extent of violations of measurement invariance (Figures 3, 4, and 5).
Models had a sample size of either 300 or 800 subjects. These are reasonable
sample sizes for substantive researchers who already use SEM or mixture models.
The weights of the indirect paths had magnitudes of either 0.30 or 0.80. For each
model, a; = —a,, b, = —b,, and m; = m, = 0.50.

Extent of violations of measurement invariance had three levels: none,
mediating factor only, or all factors. I chose to examine the mediating factor for two
reasons. First, it is between the two paths that vary across classes. A violation of
measurement invariance in this location might have a larger effect. Second, if the a
and b paths have weights of different signs, then the mediating process could be
qualitatively different. The mediator itself might then be qualitatively different in

that class.
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In this simulation, a violation of measurement invariance meant that the
measurement model differed between classes by the regression weights between
the factor and the indicators. Each factor had three indicators, and the model was
identified via a unit loading constraint on one of those indicators for each factor. If
the assumption of strong measurement invariance was upheld, then the other two
indicators for each factor had loadings of 0.60 across both classes. If the assumption
of strong measurement was violated, loadings for the two remaining indicators
were equal to 0.60 for one class and 0.80 and 0.30 for the other. These loadings
were chosen so that each set of weights had approximately the same average
squared loading. This equivalence prevents confounding between differences in
factor communality and violations of strong measurement invariance.

For each of the twelve conditions, 1000 data sets were generated. Multiple
samples were generated for each condition so as to obtain reliable results and
estimate the variability of this approach.

Question 1: Detecting the Need for LCMM

All data sets were then fit with a one-class structural equation model.
Afterwards, | examined whether the Chi-Square test and the Root Mean Square
Error Approximation (RMSEA) could detect that a one-class model does not fit data
generated from a two-class model.

The Chi-Square test 4 is a NHST performed by calculating the statistic

X2 :_Z(Ll_LO) (10)

4 The Chi-Square test is also referred to as the likelihood ratio test (LRT).
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which has degrees of freedom equal to

p(p+1) (11)
V=T—m

where L; — L, is the in difference log likelihoods between the chosen model and the
null model, q is the number of observed variables in the model, and m is the number
of free parameters (Steiger, Shapiro, & Browne, 1985). In this case, the null model is
simply a positive definite covariance matrix. Thus, the test’s degrees of freedom is
equal to the difference between the number of parameters estimated in covariance
matrix (the “saturated” model) and the model under examination. For this study, I
used alphas of .01 and .05 to test the rejection rate of the Chi-Square test. In

practice, the chi-square statistic is computed as (n-1)F,,, with n the sample size
and F,, the maximum likelihood discrepancy function minimized during the

maximum likelihood estimation.

The RMSEA is calculated according to equation 12:

(12)
F*
RMSEA = |—
v

where F* is the value of the maximum likelihood discrepancy function that would be
obtained if the model were fit to the population covariance matrix. v is the degrees
of freedom (Steiger & Lind, 1980). As one might notice, the RMSEA and the Chi-
Square test are very similar. By constructing a certain confidence interval around
the RMSEA, one can exactly reproduces the result of a Chi-Square test. Moreover, the
RMSEA offers several advantages over the Chi-Square test. Specifically, it improves

upon the NHST approach of the test by providing more graded measure of model fit.
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The RMSEA results will be analyzed in accordance to recommended cut points
(Browne and Cudeck, 1993). Under their approach, an RMSEA of 0 signals “perfect”
fit, an RMSEA less than .01 signals “excellent” fit, less than .05 signals “good”, less
than .08 signals “mediocre”, and a model with an RMSEA greater than .10 should not
be used. While these cut-offs provide more information than Accept—Support
testing, they still remain cut-offs.

It is clearly flawed to use a point estimate from a single index to determine
model fit. Multiple sources of fit information should be considered when selecting a
model. Additionally, many believe that point estimates of indices should not be
preferred to interval estimates (Steiger, 2000). Although the use of fixed cutoff
points is problematic, I include it because it is still employed widely throughout the
field.

As I only fit data from a population with two classes to one-class models,
these indices should reject the one-class model as poorly fitting.  recorded the
proportion of times a one-class model is rejected by each method. I then compared
these results across conditions and indices. While the Chi-Square test and the
RMSEA are very similar, the RMSEA might provide a more nuanced picture.

Finally, having fit the data to a two-class model, I checked whether the
indirect effect was estimated to be zero. To do so, I used the bootstrap method of
testing the indirect effect (D. P. MacKinnon et al., 2004; Selig & Preacher, 2008). I
then recorded how often an indirect effect would be detected.

Question 2: Understanding the Effectiveness of LCMM
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Next, | examined whether the two-class model was selected from a choice of
one-, two-, and three-class models fit to the data from a population with two classes.
All data sets without violations of measurement invariance were then fit with one-,
two- and three-class models. | then measured correct model selection rates with the
Akaike Information Criteria (AIC), Schwarz’s Bayesian Information Criteria (BIC),
and sample-size adjusted BIC® (aBIC) (Akaike, 1974; Boekee & Buss, 1981; Schwarz,
1978). These three statistics, or information criteria, integrate a model’s log-
likelihood with information about a model’s complexity and sample size. A
researcher can then use information criteria to compare models. The model with the
lowest information criteria is considered the best fitting. The (AIC) can be calculated
as follows:

AIC = =2L+2m (13)
where L is the log-likelihood of the model, and m is the number of unconstrained

parameters in the model. While the AIC does not include information about sample

5 In looking for the first development of the aBIC, I found that Rissanen (1978)
originally designed a similar information criteria for signal processing with an
additional term. That additional term was dropped in a conference presentation
given by Boekee and Buss (1981) in German—producing the aBIC. The first work in
English discussing the new information criteria was published in Psychometrika by
Sclove in 1987, which explains why he is sometimes cited for the aBIC (Sclove,

1987).
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size, Schwarz’s Bayesian Information Criteria (BIC) does. The BIC can be calculated
according to Equation 14:

BIC = —2L +log(n)m (14)
where n is the number of subjects in the sample. So, as the sample size increases, the
cost of adding a parameter also increases. As a result, the BIC chooses less complex
models more often than the AIC. The AIC often selects models with more
parameters, which possibly leads to fitting noise. The adjusted BIC (aBIC) still

includes sample size but reduces its effect:

n+2 (15)
aBIC = —2L + log (T)m

[ tested the effectiveness of these three different information criteria in identifying
the two-class model across various conditions by calculating rates of correct model
selection. I compared how often the fit indices select a one- or three-class model to
how often it selected a two-class model.

Question 3: Testing the Robustness of LCMM

Once I establish the model selection rates in ideal cases, I examined how
robust information criteria are to violations of measurement invariance. Data from
all generating models with all levels of measurement invariance were then fit with
models that assumed strict metric invariance. Afterwards, I compared correct
model selection rates across conditions.

Results

Detecting the Need for LCMM

The efficacy of the Chi Square test and the RMSEA were examined. The Chi-

Square test identified misfit at rates less than the specified alpha (Table 1).
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Moreover, examining a beeswarm plot displays a lack of an effect of sample size or
indirect path size (Figure 6). I reran this analysis several times with the same result.

I[ssues with point estimates for the RMSEA were also evident in this simulation.
Given the cut offs specified by Browne and Cudeck (1993), the vast majority of
models with indirect path loadings of 0.30 were classified as having either “good” or
“perfect” fit (Figure 7, Table 2). Ultimately, sample size had a more noticeable effect
on fit, but all models demonstrated at least “mediocre” fit.

Using the bootstrapping method, it is clear that the indirect effects do cancel
out. An increase in the sample size or strength of the indirect effect does seem to
increase the rate of detecting an indirect effect (Table 3). However, that increase is
from .4% at least to 1.3%. These rates are noticeably lower than the specified alpha
of .05.

Understanding the Effectiveness of LCMM

I next examined whether information criteria would select the correct
number of classes given measurement invariance between classes. The BIC
invariably selected the one-class model in all but the models with loadings of 0.80
and sample sizes of 800. Under those conditions, the two-class model was selected
93% of the time. The BIC never selected a three-class model (Table 4, Figure 8).

For models with loadings of 0.30 in the indirect path, the AIC did better than
the BIC at identifying the need for multiple classes (Table 5, Figure 9). However, the
AIC selected the three-class model more than the two-class model for loadings of
0.80, across both sample sizes. This result represents the tendency of the AIC to

select more complex models than might be necessary.
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We also examined model selection using the aBIC. Like the BIC for conditions
with indirect path loadings of 0.30, it rarely selected a mixture model (Table 6,
Figure 10). Specifically, for sample sizes of 300, the aBIC selected the two-class
model only 7% of the time, and the three-class model 2% of the time. When the
sample size increased, it only selected the two-class model .4% of the time and
never selected the three-class model. For larger indirect effect sizes, the aBIC
performed better than the BIC, correctly identifying the need for a two-class model
77% of the time with 300 subjects and 99% of the time with 800 subjects. Although
the aBIC does not often detect classes with small indirect effects, it does so more
than the BIC.

Testing the Robustness of LCMM

Violations of measurement invariance drastically impacted class selection rates
for all three indices tested. Even when only the measurement model of the mediator
varied across classes, the misspecification affected class selection across most
indices. With one incorrectly constrained measurement model, the AIC increasingly
selected a three-class model. This effect grew as the size of the indirect effect and
the sample increased. The AIC always supported the selection of a three-class model
in 800 subject samples with indirect paths of 0.80 when the mediator was not
invariant across classes. The aBIC was not much better. Model selection among
models with smaller indirect effect sizes did not change much—the aBIC still
overwhelmingly supported selecting the one-class model. In models with large
indirect effects, however, a violation of measurement invariance drastically

increased the rate of selecting the three-class model.
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The information criteria least affected by violations of measurement invariance
was the BIC. Even when the mediator’s measurement model varied across classes,
the behavior of the BIC remained relatively constant. It still supported the selection
of the one-class model except when there were large indirect paths and sample
sizes. Only then did it select the two-class model 91% of the time, a rate comparable
to the measurement invariant condition. Thus, the BIC seems somewhat robust to
certain violations of measurement invariance, even though it does not detect latent
class moderated mediation with smaller indirect effects or with smaller sample
sizes.

When all constructs violated the assumption of measurement invariance, all
information criteria chose a three-class model the majority of the time they selected
a mixture model. The rate of selecting a three-class model generally increased with
the indirect effect size and sample size. There were a few exceptions. The BIC
continued to select the one class model almost exclusively, besides when a
population had large indirect effects and sample sizes. The aBIC continued to also
overwhelmingly favor one-class models when populations had smaller indirect
effects. Nevertheless, with widespread violations of measurement invariance,
information criteria rarely supported the selection of the correct number of classes.

Discussion

In this study, | simulated data from various populations to test the utility of
using latent class moderated mediation in SEM. I first predicted that the RMSEA and
Chi-Square Test would detect the need for mixture modeling. The RMSEA did detect

some misfit when one-class models were fit to a population with two classes with



LATENT CLASS MODERATED MEDIATION 24

larger indirect effects. Yet the RMSEA often did not detect misfit for models of
populations with smaller indirect effects. The Chi Square test did terribly, but its
perplexing results imply that its performance was affected by some other factor.
More work is needed to determine what exactly caused the seemingly random noise.
Thus, traditional fit indices may not reliably identify misfit in one-class models fit to
populations with latent class moderated mediation models. These findings hold
across the levels of sample size and indirect effect size tested. The inability to
identify the need for a two-class model given strong measurement invariance is
troubling.

The results also demonstrate that failing to identify the need for a different
model results in a failure to detect significant indirect effects. Evidence of a
significant indirect effect is exciting. Detecting it would provide not only theoretical
advances, but also a publication. Although using latent class moderated mediation
might increase model complexity, it could prevent missing substantively important
relationships.

[ also hypothesized that information criteria would be sufficient to select the
correct number of classes. The aBIC did the best out of all three information criteria
tested. However, the aBIC only reliably selected the two-class model given strong
indirect effects in the population. The BIC would select the two-class model only
with large samples of populations that had strong indirect effects. The AIC seemed
ineffective in all conditions studied. With a smaller indirect effect, the AIC would
often select the one-class model over the two-class model. With a larger indirect

effect, the AIC would select the three-class model over the two-class model. Overall,
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the aBIC selects the correct two-class LCMM model more often under ideal
circumstances, but the three information criteria tested leave much to be desired in
terms of sensitivity.

Finally, I predicted that violations of measurement invariance would lead to
selecting more classes than in the generating model. This effect was evident—
violations of measurement invariance severely reduced correct model selection.
Only the BIC was robust to a violation of measurement invariance, and only for large
samples of populations with sizeable indirect effects. The AIC and aBIC both selected
the three-class models more often, given that they selected a model with multiple
classes at all. Except in cases where one-class models were selected, if every
measurement model differed across class, all information criteria overwhelmingly
selected three-class models.

Applications to Latent Class Moderated Mediation Models

At first glance, it seems like using latent class moderated mediation in
structural equation models is impractical. Using two common methods, it is unlikely
that a one-class model does not completely represent data from a two-class model.
Information criteria only reliably select the correct model when the indirect effect is
large. Moreover, failing to account for different measurement models across classes
results in selecting models with more classes than necessary.

One explanation for these results is that the classes were unrealistically
similar. Indicators of each class were constrained to have the same mean, as well as
factor means. The only parameters that differed across class when measurement

invariance existed were the slopes of the indirect paths. The aforementioned
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problems could have resulted from poor class separation. Researchers quantify
class separation with entropy (Ramaswamy, Desarbo, Reibstein, & Robinson, 1993).

Entropy is calculated via Equation 16:

?’:1 Zfﬂ(‘ﬁ Inpy) (16)
N InK

Entropy =1 —

where K is the number of classes, p;, is the estimated posterior probability that
person i will be in the k" class. Entropy is bounded between 1 and 0 with 1
representing perfect class separation. Although class separation seems like an
excellent way to select a model, simulation studies have demonstrated that entropy
does not work well (L. M. Collins & Lanza, 2010; Henson, Reise, & Kim, 2007).
Entropy does provide information as to how different the classes are, which can be
useful in interpretation.

Another possible explanation is that, because of the constraints, the classes
may not have been different in the ways that matter. Perhaps class-varying indicator
means would support estimation. Covariates for class membership might also
improve estimation. Future simulation studies are needed to determine whether
this explanation even makes sense.

Even if measurement invariance does not hold across classes, all is not lost.
Interpreting latent class moderated mediation in models that do not abide by
measurement invariance is challenging. However, violations of measurement
invariance in structural equation mixture models can provide valuable information
about the psychological process under study. Just like in cross-cultural psychology

(Byrne & Watkins, 2003; Byrne, Shavelson, & Muthen, 1989), if measurement



LATENT CLASS MODERATED MEDIATION 27

models differ across groups, then the constructs could differ qualitatively. It seems
less tenable to directly compare the strengths of indirect effects across classes with
qualitative differences in a factor between classes. However, these differences can
provide information as to why the indirect effect varies across classes in the first
place. To return to the clinical example, perhaps the measurement models of the
construct of “stress” vary across the clinical and nonclinical subpopulations.
Researchers could then investigate how between-group heterogeneity in perceived
stress might contribute to unique processes or outcomes. Violations of
measurement invariance cause problems only when one fails to model them. When
modeled, they can describe complexity and direct further research.
Applications to Structural Equation Mixture Models

Beyond the latent class moderated mediation models tested, these findings can
inform the use of structural equation mixture models. This study has demonstrated
the need to develop model selection procedures that account for violations of
measurement invariance for structural equation mixture models. If someone were
to select the number of classes using information criteria first, they would select the

wrong number of classes. If the incorrect number of classes is chosen®, then testing

6 This problem comes from the strong interpretation of classes. Under a weak
interpretation of classes, then it might not be too problematic to select a model with
more groups than necessary (Bauer & Curran, 2003). Future work needs to be done
to see if wrongfully constrained measurement models also disrupt the use of

mixtures to semi-parametrically fit nonlinear relationships.



LATENT CLASS MODERATED MEDIATION 28

for measurement invariance does not matter. Thus, the model selection procedure
for structural equation mixture models must incorporate testing for measurement
invariance.

There are a few possible model selection approaches that could incorporate
testing the assumption of measurement invariance. One option would be to fit all
models under consideration, with all possible numbers of classes and most levels of
measurement invariance, and then use information criteria to sort through them.
This approach sounds very time consuming. Another option would be to test for
measurement invariance within class and then select the ideal number of classes.
After selecting the best model for each number of classes, the models could be
compared using information criteria. Finally, one could perform the second method,
except testing only sequential models. For example, one would fit a one-class model.
Then they would fit a two-class model and test for measurement invariance in that
two-class model. Then the one-class model and best two-class model would be
compared. The process would continue until the fit indices began to increase again.
These three approaches are both atheoretical and untested. Work needs to be done
to examine how well these methods select the correct number of classes given class-
varying measurement models.

Limitations

The design of this study limits inferences in a number of ways. As a
simulation study, it generates data based on a single “true” model, but true models
do not exist (Box & Draper, 1987). Successfully fitting a model to data generated by

that same model does not prove its utility. Moreover, there are countless models
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with latent class-moderated mediation—I only simulated twelve of them. Some then
might see the small number of models as a limitation. Yet the failure of information
criteria to select the correct model suggests something else. These models were not
terribly complex and had sizeable samples and reasonably large indirect effects. If
selecting a model fit to data generated by that same model is unlikely, then there is a
problem.

Nevertheless, I only examined one type of model, one with two equally sized
classes with indirect paths of equal magnitude but opposite direction. Thus, it is
impossible to determine whether this approach does not work well over all cases, or
that this case is simply very hard to estimate. I can only infer that using latent class
moderated mediation to model this type of population does not provide ideal
results.

The number of conditions I used also reduced the inferences possible from
this study. I only simulated two levels of sample size and effect size and three levels
of measurement invariance to keep the simulation’s runtime reasonable. The small
number of conditions leaves many opportunities for future work. Two conditions
can demonstrate the direction and magnitude of an effect. However, two conditions
cannot provide any information as to the shape of the relationship. For example,
additional levels of sample size and indirect effect size would better describe the
stark differences observed in the BIC results. Simulating violations of measurement
invariance for different constructs (X or Y), as well as different combinations (e.g. X
and M but not Y) would also provide more information as to how the location of the

violation(s) might impact model selection. All these possible, but unexamined,
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conditions prevent a more nuanced comment on the effect of violations of
measurement invariance on model selection in latent class moderated mediation in
structural equation models.

Another limitation of this study is that I did not examine whether the Lo-
Mendell-Rubin likelihood ratio test (LRT) (Lo, Mendell, & Rubin, 2001) or the
Bootstrapped likelihood ratio test (BLRT) could identify the need for different
measurement models under these conditions (McLachlan, 1987). Although the
traditional LRT requires nested models, the Lo-Mendell-Rubin LRT can be used to
compare models that are not nested. BLRT simply bootstraps the estimates of this
ratio and then constructs confidence intervals around it. These tests can definitely
be used to check for measurement invariance as well. The LMR-LRT, or the BLRT
were not examined in this study, and the LRT was not used to test for measurement
invariance. Previous work has demonstrated that the LMR-LRT and especially the
BLRT perform well in model selection for structural equation mixture modeling
(Henson et al., 2007; Nylund, Asparouhov, & Muthén, 2007). Future research should
examine how these fit indices perform specifically with latent class moderated
mediation and generally with structural equation mixture models with varying
levels of measurement invariance.

Finally, even if improvements make latent class moderated mediation more
usable in structural equation modeling, it does not eliminate all issues with causal
inference in mediation. Latent class moderated mediation only offers a potential
solution to the problem of latent groups with different indirect effects in the

population. If possible, design-based approaches, such as random assignment and
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manipulation, as well as longitudinal data collection, should still be applied.
Moreover, integrating latent class moderated mediation into the causal model-based
approaches remains an open field of research.

Conclusions:

In this study, I examined whether one can identify the need for latent class
moderated mediation in structural equation models, how information criteria
perform at selecting the correct number of classes, and the impact of violations of
measurement invariance on latent class moderated mediation model selection. I
then demonstrated that both the RMSEA and Chi-Square test have trouble with
rejecting the null that a one-class model fits well to data generated from a two-class
latent class moderated mediation model. The aBIC reliably selects the two-class
model when fit to data generated from a two-class model with large indirect effects.
Only the BIC is moderately robust to violations of measurement invariance. Model
selection procedures for structural equation mixture models need to consider
violations of measurement invariance before the number of classes is selected.
However, these exact methods still require further study before any strong
recommendation can be made. At the moment, currently tested approaches to latent
class moderated mediation in structural equation mixture models have not

rendered them useful to practitioners.
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Figure Captions

Figure 1: Mediation in regression, with X as the predictor, Y as the outcome, M as the

mediator, and a, b, and c are regression weights.

Figure 2: Mediation in structural equation modeling, with 1, as the predictor, n; as

the outcome, and 7, as the mediator.

Figure 3: Structural Equation Mixture Model with Latent Class Moderated Mediation

which upholds the assumption of strong measurement invariance.

Figure 4: Structural Equation Mixture Model with Latent Class Moderated Mediation
with a mediator that violates the assumption of strong measurement

invariance.

Figure 5: Structural Equation Mixture Model with Latent Class Moderated Mediation
with all three factors that violate the assumption of strong measurement

invariance.

Figure 6: Chi-Square Test p-values across sample sizes and indirect path loadings in

models where the assumption of strong measurement invariance holds.

Figure 7: RMSEA values across sample sizes and indirect path loadings in models

where the assumption of strong measurement invariance holds.

Figure 8: Model selection rates of the AIC between 1-, 2-, and 3- class models across

levels of sample size, indirect path loadings, and measurement invariance.
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Figure 9: Model selection rates of the BIC between 1-, 2-, and 3- class models across

levels of sample size, indirect path loadings, and measurement invariance.

Figure 10: Model selection rates of the aBIC between 1-, 2-, and 3- class models
across levels of sample size, indirect path loadings, and measurement

invariance.
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Figure 1: Mediation in regression, with X as the predictor, Y as the outcome, M as the

mediator, and a, b, and c are regression weights.
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Figure 2: Mediation in structural equation modeling, with 1, as the predictor, n; as

the outcome, and 7, as the mediator.
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Figure 3: Structural Equation Mixture Model with Latent Class Moderated Mediation

which upholds the assumption of strong measurement invariance.
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Figure 4: Structural Equation Mixture Model with Latent Class Moderated Mediation

with a mediator that violates the assumption of strong measurement invariance.
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Figure 5: Structural Equation Mixture Model with Latent Class Moderated Mediation
with all three factors that violate the assumption of strong measurement invariance.
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Figure 6: Chi-Square Test p-values across sample sizes and indirect path loadings in

models where the assumption of strong measurement invariance holds.
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Figure 7: RMSEA values across sample sizes and indirect path loadings in models

where the assumption of strong measurement invariance holds.
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Figure 8: Model selection rates of the AIC between 1-, 2-, and 3- class models across

levels of sample size, indirect path loadings, and measurement invariance.
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Figure 9: Model selection rates of the BIC between 1-, 2-, and 3- class models across

levels of sample size, indirect path loadings, and measurement invariance.
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Figure 10: Model selection rates of the aBIC between 1-, 2-, and 3- class models

across levels of sample size, indirect path loadings, and measurement invariance.

Model Selechon with aBIC

‘J- MI Vco:at_n MI Al MI ‘13 M Mncm or MI Al VI
Loading of Indirect Paths

1000 =~

500 -

aBIC fit

1000 -

Samnle Size

750

500~

52




LATENT CLASS MODERATED MEDIATION 53

Table Captions

Table 1: Misfit of 1-class model fit to 2-class data as measured by the Chi-Square

test.

Table 2: Misfit of 1-class model fit to 2-class data as measured by the RMSEA.

Table 3: Rate of detecting an indirect effect via bootstrap in misfitted 1-class model.

Figure 4: Model selection rates of the AIC between 1-, 2-, and 3- class models across

levels of sample size, indirect path loadings, and measurement invariance.

Figure 5: Model selection rates of the BIC between 1-, 2-, and 3- class models across

levels of sample size, indirect path loadings, and measurement invariance.

Figure 6: Model selection rates of the aBIC between 1-, 2-, and 3- class models across

levels of sample size, indirect path loadings, and measurement invariance.
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Table 1: Percent Rejection by Chi-Square Test of Incorrect 1-Class Model
Loading N Reject at .01  Reject at .05

0.30 300 1.4% 3.8%
300 6% 4.1%
0.80 300 1% 4.3%

800 A% 4.4%
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Table 2: Misfit by RMSEA of Incorrect 1-Class Model

Loading N Perfect Fit  Excellent Fit  Good Fit Mediocre Fit  Poor Fit  Bad Fit

0.30 300 52.94% 4.13% 40.80% 1.75% 0% 0%
800 52.75% 10.25% 33.88% 0% 0% 0%
0.80 300 53.25% 3.00% 41.12% 1.50% 0% 0%

800 52.62% 10.75% 34.75% 0% 0% 0%
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Table 3: Detecting an Indirect Effect in 1-Class Model
Loading N ab Significant

(.30 300 A%
800 4%
(.80 300 9%

S00 1.3%
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Table 4: BIC Model Selection by Indirect Path Loading, MI, and N
Incorrect  Correct Incorrect

Loading MI N 1-Class  2-Class 3-Class
0.30 No MI 300 100% 0% 0%
300 100% 0% 0%

Mediator MI 300 100% 0% 0%

300 100% 0% 0%

All MI 300 100% 0% 0%

300 100% 0% 0%

0.80 No MI 300 99.28%  0.72% 0%
200 7.04%  92.96% 0%

Mediator MI 300 99.29% 0.71% 0.00%
800 8.36% 91.22% 0.42%
All MI 300 99.09% 0.91% 0%
800 2.94%  13.68% 83.38%
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Table 5: AIC Model Selection by Indirect Path Loading, MI, and N
Incorrect  Correct Incorrect

Loading MI N 1-Class  2-Class 3-Class
0.30 No MI 300 57% 21% 22%
800 54% 23% 23%

Mediator MI 300 51% 23% 26%

s00 36% 23% 42%

All MI 300 39% 27% 33%

800 15% 20% 65%

0.80 No MI 300 00% 45% 54%
800 00% 44% 56%

Mediator MI 300 00% 10% 89%

800 00% 00% 100%

All MI 300 00% 00% 100%

800 00% 00% 100%
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Table 6: aBIC Model Selection by Indirect Path Loading, M|, and N
Incorrect Correct Incorrect
Loading MI N 1-Class  2-Class 3-Class

0.30 No MI 300 91.62% 6.87% 1.52%
300 99.59% 0.41% 0.00%
Mediator MI 300 90.36% 7.31% 2.34%

800 100% 0% 0%

All MI 300 87.77% 9.10% 3.13%

800 99.70% 0.30% 0%

0.80 No MI 300 6.25%  77.46% 16.29%
800 0%  98.59% 1.41%

Mediator MI 300 3.55%  45.28% 51.17%

800 0% 18.20% 81.80%

All MI 300 0.40% 3.22% 96.38%

800 0% 0% 100%
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Appendices
Appendix A: Model Code for MplusAutomation

Appendix B: Code From Postprocessing
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Appendix A: Code From Models
Data Generation File:
[[init]]
iterators = ns loading mi;
ns=1:2;
loading = 1:2;
mi=1:3;!1isno 2 is factor and 3 is total
n#ns = 300 800;
c2#loading = 0.30 0.80;
cl#loading =-0.30 -0.80;
factorh#mi = 0.60 0.80 0.80; !for the factor with measurement invariance
factorl#mi = 0.60 0.30 0.30;
filename = "[[n#ns]]_[[c2#loading]].inp";
outputDirectory = "C:\Users\markiend\Desktop\First Run"; Ichange based on
computer

[/init]]

TITLE:2class_[[n#ns]]_[[c2#loading]]
MONTECARLO:

NAMES ARE y1-y9;

NOBSERVATIONS = [[n#ns]];

NREPS = 500;

SEED = 45236;

GENCLASSES = class(2);

CLASSES = class(2);

REPSAVE = ALL; !Save data from ALL replications
SAVE =
C:\Users\markiend\Desktop\First_Run\data\[[n#ns]]_[[c2#loading]]_[[mi]]_*.DAT;
MODEL POPULATION:

%overall%

[class#1*0];

[[mi<3]] 'when there's no and factor measurement invariance
fx BY y1*1 y2*.6 y3*.6;

fy BY y7*1 y8*.6 y9*.6;

[[/mi<3]]

[[mi=1]] !for when there's no measurement invariance
fm BY y4*1 y5*.6 y6*.6;
[[/mi=1]]

Ifactor variances
fx@1; fm*1; fy*1;

Iresidual variances
y1*1; y2*0.36; y3*0.36; y4*1; y5*0.36; y6*0.36; y7*1; y8*0.36; y9*0.36;
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litem intercepts
[y1*0 y2*0 y3*0
y4*0 y5*0 y6*0
y7*0 y8*0 y9*0];

fm WITH fy@0;
%class#1%

[[mi>1]]!
fm BY y4*1 y5*[[factorh#mi]] y6*[[factorl#mi]];
[[/mi>1]]

[[mi>2]] 'when there's no and factor measurement invariance
fx BY y1*1 y2*[[factorh#mi]] y3*[[factorl#mi]];
fy BY y7*1 y8*[[factorh#mi]] y9*[[factorl#mi]];

[[/mi>2]]

fy ON fm*[[c1#loading]];
fy ON fx*0.10;
fm ON fx*[[c1#loading]];

Ifactor means
[fx*0 fm*0 fy*0];

%class#2%

[[mi>2]] 'when there's no and factor measurement invariance
fx BY y1*1 y2*.6 y3*.6;

fy BY y7*1 y8*.6 y9*.6;

[[/mi>2]]

[[mi>1]] !for when there's no measurement invariance
fm BY y4*1 y5*.6 y6*.6;

[[/mi>1]]

fy ON fm*[[c2#loading]];

fy ON fx*.10;

fm ON fx*[[c2#loading]];

Ifactor means
[fx*0 fm*0 fy*0];

ANALYSIS: TYPE = MIXTURE;
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Single Class Fit File:

[[init]] iterators = ns loading mi fitclasses rep;

rep = 1:500;

fitclasses = 1;

ns=1:2;

loading = 1:2;

mi=1:3;

n#ns = 300 800;

c2#loading = 0.30 0.80;

cl#loading =-0.30 -0.80;

filename= "ft_[[fitclasses]]_[[n#ns]]_[[c2#loading]]_[[mi]]_[[rep]].inp";
outputDirectory = "C:\Users\markiend\Desktop\First_Run\an";

[/init]]

TITLE:

DATA: FILE =
C:\Users\markiend\Desktop\First_Run\data\[[n#ns]]_[[c2#loading]]_[[mi]]_[[rep]
|.DAT;

VARIABLE:

NAMES =y1-y9;

ANALYSIS: STARTS = 20;

MODEL:

fx BY y1*1 y2*.6 y3*.6;

fm BY y4*1 y5*.6 y6*.6;

fy BY y7*1 y8*.6 y9*.6;

'factor variance

fx@1;

Iresidual variances

y1*1; y2*0.36; y3*0.36; y4*1; y5*0.36; y6*0.36; y7*1; y8*0.36; y9*0.36;
litem intercepts [y1*0 y2*0 y3*0 y4*0 y5*0 y6*0 y7*0 y8*0 y9*0]; fy ON fm*0;
fy ON fx*0.10;

fm ON fx*0;

fm WITH fy@0;

I'factor means

[fx@0 fm@0 fy@0]
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Two and Three Class Fit Model:

[[init]]

iterators = ns loading rep fitclasses;

rep = 1:500;

fitclasses = 2:3;

ns=1:2;

loading = 1:2;

mi=1:3;!1isno 2 is factor and 3 is total

n#ns = 300 800;

c2#loading = 0.30 0.80;

cl#loading =-0.30 -0.80;

factorh#mi = 0.60 0.80 0.80; !for the factor with measurement invariance
totalh#mi = 0.60 0.60 0.80;

factorl#mi = 0.60 0.30 0.30;

totall#mi = 0.60 0.60 0.30;

filename = "ft_[[fitclasses]]_[[n#ns]]_[[c2#loading]]_m[[i]]_[[rep]]_.inp";
outputDirectory = "C:\Users\markiend\Desktop\First_Run\an";

[/init]]

TITLE:
DATA: FILE =
C:\Users\markiend\Desktop\First_ Run\data\_[[n#ns]]_[[c2#loading]]|_[[rep]].DAT;
VARIABLE: NAMES = y1-y9;
CLASSES = class(][[fitclasses]]);

ANALYSIS: TYPE = MIXTURE;

STARTS = 200 20;
MODEL:
%overall%
[[fitclasses>1]]
[class#1*0];
[[/fitclasses>1]]

[[mi<3]] 'when there's no and factor measurement invariance
fx BY y1*1 y2*.6 y3*.6;

fy BY y7*1 y8*.6 y9*.6;

[[/mi<3]]

[[mi=1]] !for when there's no measurement invariance
fm BY y4*1 y5*.6 y6*.6;
[[/mi=1]]

Ifactor variance
fx@1;
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Iresidual variances
y1*1; y2*0.36; y3*0.36; y4*1; y5*0.36; y6*0.36; y7*1; y8*0.36; y9*0.36;

litem intercepts
[y1*0 y2*0 y3*0
y4*0 y5*0 y6*0
y7*0 y8*0 y9*0];

fm WITH fy@0;

[[fitclasses>1]]
%class#1%
[[/fitclasses>1]]

fy ON fm*[[c1#loading]];
fy ON fx*0.10;
fm ON fx*[[c1#loading]];

[[mi>1]]!
fm BY y4*1 y5*[[factorh#mi]] y6*[[factorl#mi]];
[[/mi>1]]

[[mi>2]] 'when there's no and factor measurement invariance
fx BY y1*1 y2*[[factorh#mi]] y3*[[factorl#mi]];
fy BY y7*1 y8*[[factorh#mi]] y9*[[factorl#mi]];

[[/mi>2]]

Ifactor means
[fx*0 fm*0 fy*0];

[[fitclasses>1]]
%class#2%

fy ON fm*[[c2#loading]];
fy ON fx*.1;

fm ON fx*[[c2#loading]];

[[mi>2]] 'when there's no and factor measurement invariance
fx BY y1*1 y2*.6 y3*.6;

fy BY y7*1 y8*.6 y9*.6;

[[/mi>2]]

[[mi>1]] !for when there's no measurement invariance
fm BY y4*1 y5*.6 y6*.6;
[[/mi>1]]
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Ifactor means
[fx*0 fm*0 fy*0];
[[/fitclasses>1]]

[[fitclasses>2]]
%class#3%
fy ON fm*0;
fy ON fx*.1;
fm ON fx*0;

[[mi>2]] 'when there's no and factor measurement invariance
fx BY yl y2y3;

fy BY y7 y8 y9;

[[/mi>2]]

[[mi>1]] !for when there's no measurement invariance
fm BY y4 y5 y6;
[[/mi>1]]

Ifactor means
[fx*0 fm*0 fy*0];
[[/fitclasses>2]]
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Appendix B: Selected Code From Post-Processing

loadings<-c("0.30","0.80") #these are strings not numbers because of the specific
titles give to the output files.

ns<-c(300,800)

class<-c(1,2,3)

mi<-c(1,2,3)

lists<-as.vector(NULL)
rowdata<-NULL
frame<-NULL
load(file.choose())
count=0
frame.2<-as.data.frame(frame.2)
frame.t<-rbind(frame.m, frame.2)
range(frame.t[,"rep"])
for (fin 1:2){
loading<-loadings|f]
for (gin 1:2){
n <-ns[g]
for (iin 1:3){
mi <-1i
for (h in 1:800){
rep<-h
for (jin 1:3){
class<-j
if (class>1){case<-pasteO(c("ft","_", class,"_", n,"_", loading,"_", mi,"_1_",
rep,".out"),collapse="")} #paste0 concatenates without spaces in between.
else {case<-pasteO(c("ft","_", class,
rep,".out"),collapse="")}
case<-paste0("interlist<-second.results$",case) #concatenate that with first run
eval(parse(text=case))

AlC<-as.numeric(as.character(interlist$summaries$AIC))

#AICC<-as.numeric(as.character(interlist$summaries$AICC))

BIC<-as.numeric(as.character(interlistfsummaries$BIC))

aBIC<-as.numeric(as.character(interlist$summaries$aBIC))

LL<-as.numeric(as.character(interlist$summaries$LL))

# CAIC<-((-
2*interlist$summaries$LL)+(log(interlist$summaries$Observations)+1)*interlist$s
ummaries$Parameters)

# ssBIC<-((-
2*interlist$summaries$LL)+log((interlist$summaries$Observations+2)/24)*interlis
t$summaries$Parameters)

,n,"_", loading,"_", mi,"_",

# if (class==1){
# RMSEA<-as.numeric(as.character(interlist$summaries$RMSEA_Estimate))
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# RMSEA.lb<-as.numeric(as.character(interlist$summaries$RMSEA_90CI_LB))
# RMSEA.ub<-as.numeric(as.character(interlist$summaries$SRMSEA_90CI_UB))
# ChiSgM_val <- (as.character(interlist$summaries$ChiSqM_Value))

#  ChiSqM_df <- (as.character(interlist$summaries$ChiSqM_DF))
# ChiSqM_p <- (as.character(interlist$summaries$ChiSqM_PValue))

# ChiSqBase_val <- (as.character(interlist$summaries$ChiSqBaseline_Value))

# ChiSqBase_df <- (as.character(interlist$summaries$ChiSqBaseline_DF))

# ChiSqBase_p <- (as.character(interlist$summaries$ChiSqBaseline_PValue))}

#else{

# RMSEA<-NA

# RMSEA.Ib <- NA

# RMSEA.ub <- NA

# ChiSgM_val <- NA

# ChiSqM_df <- NA

# ChiSqM_p <- NA

# ChiSqBase_val <- NA
# ChiSqBase_df <- NA
# ChiSqBase_p <- NA}

#put all of the fit indices in here
rowdata <- c(loading, n, mi, rep, class, AIC, BIC, aBIC, LL) #putting it together
frame.2<-rbind(frame.2, rowdata)#adding it to the data frame
}
}

}
}
}

}

frame.2<-NULL

, RMSEA, RMSEA.lIb, RMSEA.ub, ChiSqM_val, ChiSqM_df, ChiSqM_p, ChiSqBase_val,
ChiSqBase_df, ChiSqBase_p

frame.m|,"rep"]<-as.numeric(as.character(frame.m[,"rep"]))

frame.2[,"rep"]<-as.numeric(as.character(frame.2[,"rep"]))+200
# changing the index for rep number so things dont get weird.

#H#H#H#H#H##H#H##]S This Effect Evident?
frame.ie<-NULL

for (fin 1:2){
loading<-loadings|f]
for (gin 1:2){

n <-ns[g]
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for (iin 1){
mi <-1i
for (hin 1:1000){
rep<-h
for (jin 1){
class<-j
if (class>1){case<-pasteO(c("ft","_", class,"_", n,"_", loading,"_", mi,"_1_",
rep,".out"),collapse="")} #paste0 concatenates without spaces in between.
else {case<-pasteO(c("ft","_", class,"_", n,"_", loading,"_", mi,"_",
rep,".out"),collapse="")}
case<-paste0("interlist<-results.t$",case) #concatenate that with first run
eval(parse(text=case))
a<-as.numeric(as.character(interlist$parameters$unstandardized$est[10]))
b<-as.numeric(as.character(interlist$parameters$unstandardized$est[12]))
a.se<-as.numeric(as.character(interlist$parameters$unstandardized$se[10]))
b.se<-as.numeric(as.character(interlist§parameters$unstandardized$se[12]))
a.p<-as.numeric(as.character(interlist$parameters$unstandardized$pval[10]))
b.p<-as.numeric(as.character(interlist$parameters$unstandardized$pval[12]))

RMSEA<-as.numeric(as.character(interlistfsummaries$SRMSEA_Estimate))
RMSEA.Ib<-as.numeric(as.character(interlist$summariesSRMSEA_90CI_LB))
RMSEA.ub<-as.numeric(as.character(interlist$summariesSRMSEA_90CI_UB))

ChiSgM_val <- (as.character(interlist$summaries$ChiSqM_Value))
ChiSqM_df <- (as.character(interlist$summaries$ChiSqM_DF))

ChiSqM_p <- (as.character(interlist$summaries$ChiSqM_PValue))
ChiSqBase_val <- (as.character(interlist$summaries$ChiSqBaseline_Value))
ChiSqBase_df <- (as.character(interlist$summaries$ChiSqBaseline_DF))
ChiSqBase_p <- (as.character(interlistfsummaries$ChiSqBaseline_PValue))}

#put all of the fit indices in here

rowdata <- c(loading, n, mi, rep, class, a, b, a.se, b.se, a.p, b.p, RMSEA, RMSEA.lb,
RMSEA.ub, ChiSqM_val, ChiSqM_df, ChiSqM_p, ChiSqBase_val, ChiSqBase_df,
ChiSqBase_p) #putting it together

frame.1lt<-rbind(frame.1t, rowdata)#adding it to the data frame

##because I dropped the chi square p values:
for (fin 1:2){
loading<-loadings|f]
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for (gin 1:2){
n <-ns[g]
for (iin 1){
mi <-1i
for (hin 1:1000){
rep<-h
for (jin 1){
class<-j
if (class>1){case<-pasteO(c("ft","_", class,"_", n,"_", loading,"_", mi,"_1_",
rep,".out"),collapse="")} #paste0 concatenates without spaces in between.
else {case<-pasteO(c("ft","_", class,"_", n,"_", loading,"_", mi,"_",
rep,".out"),collapse="")}
case<-paste0("interlist<-results.t$",case) #concatenate that with first run
eval(parse(text=case))

ChiSgM_p <- as.numeric(as.character(interlist$summaries$ChiSqM_PValue))
rowdata <- c(loading, n, rep, ChiSqM_p )
blank.cs<-rbind(blank.cs, rowdata)#adding it to the data frame
}
}
}
}
}

blank.cs<-as.data.frame(blank.cs)
#H#

rowdata<-NULL
colnames(blank.cs)<-c("loading", "n", "rep", "ChiSqM_p")

frame.1t<-NULL

frame.1t<-as.data.frame(frame.1t)
colnames(frame.1t)<-c("loading", "n", "mi", "rep", "class", "a", "b", "a.se", "b.se", "a.p",
"b.p", "RMSEA", "RMSEA.Ib", "RMSEA.ub", "ChiSqM_val", "ChiSqM_df", "ChiSqM_p",

"ChiSqBase_val", "ChiSqBase_df", "ChiSqBase_p")

library(beeswarm)

class(frame.ie[,"a.p"])
frame.1t[,"rep"]<-as.numeric(as.character(frame.1t[,"rep"]))
)library(beeswarm)

beeswarm(a ~ n, pwcol=loading,pch=16, data =
frame.1t[which(frame.1t[,"rep"]<400),])

abline(h=.05, col="goldenrod")

abline(h=.01, col="goldenrod")

colnames(frame.ie) <- c("Loading", "N", "MI", "Rep", "class","a","b","a.p","b.p")
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legend("topright’, legend = levels(frame.ie$loading), title = 'loading’, pch = 16, col =
1:2)

legend(title = 'AIC Selection')

gplot(b.p, method="hist",facets=N~Loading,
data=frame.ie[which(frame.ie$MI==1),])
gplot(a.p, method="hist",facets=N~Loading,
data=frame.ie[which(frame.ie$MI==1),])

abline(v=.05, col="goldenrod")
class(frame.ie[v,"a.p"])

v=1

while(v<2401){

if (frame.ie[v,"b.p"]<0.05){frame.ie.rb[v]<-1}
else {frame.ie.rb[v]<-0}

v=v+1

}

frame.ie.rb<-NULL
frame.ie.r<-as.data.frame(frame.ie.r)
frame.ie<-cbind(frame.ie[,1:5],frame.ie.r,frame.ie.r1,frame.ie.rb,frame.ie.rb1)

colnames(frame.ie)<-
c("Loading","N","MI","Rep","class","r.a.05","r.a.01","r.b.05","r.b.01")
frame.ie<-frame.ie[which(frame.ie[,"MI"]==1),]
aggregate(frame.ie[,"r.a.05"],by=list(frame.ie$Loading, frame.ie$N), Mean)
aggregate(frame.ie[,"r.a.01"],by=list(frame.ie$Loading, frame.ie$N), Mean)
aggregate(frame.ie[,"r.b.05"],by=list(frame.ie$Loading, frame.ie$N), Mean)
aggregate(frame.ie[,"r.b.01"],by=list(frame.ie$Loading, frame.ie$N), Mean)

)
)

###testing indirect effects via bootstrapping

frame.1t
frame.1t
frame.1t
frame.1t

,6]<-as.numeric(as.character(frame.1t[,6]))
,7]<-as.numeric(as.character(frame.1t[,7]))
,8]<-as.numeric(as.character(frame.1t[,8]))
,9]<-as.numeric(as.character(frame.1t[,9]))

— p— f— p—

for (iin 1:4000){
a <- frame.1t[j,6]
b <- frame.1t[i,7]
a.v <- frame.1t[i,8]"2
b.v <- frame.1t[i,9]"2
pest=c(a,b)
acov <- matrix(c(
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a.v, 0,

0, b.v
),2,2)
mcmc <- mvrnorm(1000,pest,acov,empirical=FALSE)
ab <- mcmc|,1]*mcmcl,2]
low=(1-95/100)/2
upp=((1-95/100)/2)+(95/100)
LL=quantile(ab,low)
UL=quantile(ab,upp)
if(LL<0 & UL>0){

ie.present[i] <- 0}
else{

ie.present[i] <- 1

}
}

ie.present<-as.data.frame(ie.present)
frame.1t<-cbind(frame.1t,ie.present)
ie.present<-NULL

xtable(aggregate(frame.1t[,"ie.present"],by=list(frame.1t$loading, frame.1t$n),
Mean), digits=3)

gplot(ie.present, data=frame.1t, facets=n~loading, main = "Indirect Effect",
xlab="Loading of Indirect Paths", ylab="Sample Size")

HHHH

frame<-as.data.frame(frame)

colnames(frame)<-c("loading","N","mi", "rep","classfit", "AIC", "BIC", "aBIC","LL",
"RMSEA", "RMSEA.Ib", "RMSEA.ub", "ChiSqM_val", "ChiSqM_df", "ChiSqM_p",
"ChiSqBase_val", "ChiSqBase_df", "ChiSqBase_p")

colnames(frame.2)<-c("loading","N","mi","rep","classfit", "AIC", "BIC", "aBIC", "LL")
rownames( aBIC.selection ) <- seq_len( nrow( aBIC.selection ) )
frame.1t[,"RMSEA"]<-as.numeric(as.character(frame.1t[,"RMSEA"]))

## Beeswarm Plot for RMSEA

class(bframe[,"RMSEA"])
library(beeswarm)
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beeswarm.rmsea <- beeswarm(RMSEA ~ n, data =
frame.1t[which(frame.1t[,"rep"]>800),], method = 'swarm', pwcol = loading,
pch=16, spacing=1.2, main = "RMSEA 2 Class LCMM Data Fit to 1 Class Model")
colnames(beeswarm) <- c("x", "y", "N", "loading")
legend("topright’, legend = levels(frame.1t$loading), title = 'loading’, pch = 16, col =
1:2)

abline(h=.05, col="goldenrod")
abline(h=.01, col="goldenrod")
abline(h=.08, col="goldenrod")
#H#

## Table for RMSEA
RMSEA.summary <- aggregate(frame.1t[,"RMSEA"],by=list(frame.1t$loading,
frame.1t$n, frame.1t$mi), Mean)

a=1
while(a<4000){

if(frame.1t[a,"RMSEA"]<1){
if(frame.1t[a,"RMSEA"]==0){frame.1t[a,"RMSEA.Perf"]|=1}else{frame.1t[a,"RMSEA.P
erf"]=0}
if(frame.1t[a,"RMSEA"]<0.01 &
frame.1t[a,"RMSEA"]|!=0){frame.1t[a,"RMSEA.Ex"|=1}else{frame.1t[a,"RMSEA.Ex"]=
0}
if(frame.1t[a,"RMSEA"]<0.05 & frame.1t[a,"RMSEA"]
>(0.01){frame.1t[a,"RMSEA.Good"]=1}else{frame.1t[a,"RMSEA.Good"]=0}
if(frame.1t[a,"RMSEA"]<0.08 & frame.1t[a,"RMSEA"]
>(0.05){frame.1t[a,"RMSEA.Medi"]=1}else{frame.1t[a,"RMSEA.Medi"]|=0}
if(frame.1t[a,"RMSEA"]>0.08 & frame.1t[a,"RMSEA"]
<0.1){frame.1t[a,"RMSEA.Poor"]|=1}else{frame.1t[a,"RMSEA.Poor"]=0}
if(frame.1t[a,"RMSEA"]>0.1){frame.1t[a,"RMSEA.Bad"]|=1}else{frame.1t[a,"RMSEA.B

ad"]=0}

}

else{
frame.1t[a,"RMSEA.Perf"] <- NA
frame.1t[a,"RMSEA.Ex"] <-NA
frame.1t[a,"RMSEA.Good"] <- NA
frame.1t[a,"RMSEA.Medi"] <- NA
frame.1t[a,"RMSEA.Poor"] <- NA
frame.1t[a,"RMSEA.Bad"] <- NA

}

a=a+l

}

frame.1t[,"RMSEA.Perf"] <- NULL
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frame.1t[,"RMSEA.Ex"] <- NULL

frame.1t[,"RMSEA.Good"] <- NULL
frame.1t[,"RMSEA.Medi"] <- NULL
frame.1t[,"RMSEA.Poor"] <- NULL
frame.1t[,"RMSEA.Bad"] <- NULL

RMSEA.perf <- aggregate(frame.1t[,"RMSEA.Perf"],by=list(frame.1t$loading,
frame.1t$n, frame.1t$mi), Mean)

RMSEA.ex <- aggregate(frame.1t[,"RMSEA.Ex"],by=list(frame.1t$loading,
frame.1t$n, frame.1t$mi), Mean)

RMSEA.good <- aggregate(frame.1t[,"RMSEA.Good"],by=list(frame.1t$loading,
frame.1t$n, frame.1t$mi), Mean)

RMSEA.medi <- aggregate(frame.1t[,"RMSEA.Medi"],by=list(frame.1t$loading,
frame.1t$n, frame.1t$mi), Mean)

RMSEA.poor <- aggregate(frame.1t[,"RMSEA.Poor"],by=list(frame.1t$loading,
frame.1t$n, frame.1t$mi), Mean)

RMSEA.bad <- aggregate(frame.1t[,"RMSEA.Bad"],by=list(frame.1t$loading,
frame.1t$n, frame.1t$mi), Mean)

RMSEA.summary <- cbind(RMSEA.summary/[,1:4], RMSEA.perf[,4]*100,
RMSEA.ex[,4]*100, RMSEA.good[,4]*100, RMSEA.medi[,4]*100,
RMSEA.poor[,4]*100, RMSEA.bad[,4]*100)

colnames(RMSEA.summary)<-c("loading","n","mi","mean RMSEA", "Perfect Fit",

"Excellent Fit", "Good Fit", "Mediocre Fit", "Poor Fit", "Bad Fit")

RMSEA.summary.table<-RMSEA.summary[order(RMSEA.summary$loading,
RMSEA.summary$n), ]

rownames( RMSEA.summary.table ) <- seq_len( nrow( RMSEA.summary.table ) )

RMSEA.summary.table<-
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cbind(RMSEA.summary.table[,1],rmsea.mi.factor, RMSEA.summary.table[,2] RMSEA.

summary.table[,4:10])
colnames(RMSEA.summary.table)<-c("loading","mi","N","mean RMSEA")

RMSEA.summary.table[,"mi"] <- as.factor(RMSEA.summary.table[,"mi"])
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is.factor(RMSEA.summary.table[,"mi"])

rmsea.mi.factor <- as.data.frame(factor(RMSEA.summary.table[,"mi"], levels=c("1",
"2","3"), labels=c("No MI", "Mediator MI", "All MI")))

xtable(RMSEA.summary.table)
#H#

## Chi Square

frame.1t[,"ChiSqM_p"] <- as.numeric(as.character(blank.cs[,"ChiSqM_p"]))
a=1

while(a<4000){

if(frame.1t[a,"ChiSqM_p"]<=1){

if(frame.1t[a,"ChiSqM_p"]<0.01){frame.1t[a,"R0.01"]=1}else{frame.1t[a,"R0.01"]=0}

if(frame.1t[a,"ChiSqM_p"]<0.05){frame.1t[a,"R0.05"]=1}else{frame.1t[a,"R0.05"]=0}
}
else{
frame.1t[a,"R0.01"] <-NA
frame.1t[a,"R0.05"] <-NA
}
a=a+1

}

cq.01 <- aggregate(frame.1t[,"R0.01"],by=list(frame.1t$loading, frame.1t$n), Mean)
cq.05<- aggregate(frame.1t[,"R0.05"],by=list(frame.1t$loading, frame.1t$n), Mean)
cq.summary<-cbind(cq.01, cq.05[,3])
cq.summary.table<-cq.summary[order(cq.summary[,1], cq.summary|,2]), |

rownames( cq.summary.table ) <- seq_len( nrow( cq.summary.table ) )
xtable(cq.summary.table, digits=3)
cq.summary.table<-cbind(cq.summary.table[,1],
cq.summary.table[,2],cq.summary.table[,3],cq.summary.table[,4:5]*100)
cq.summary.table[,3]<-as.integer(cq.summary.table[,3])

cq.mi.factor <- as.data.frame(factor(cq.summary.table[,"MI"], levels=c("1", "2", "3"),
labels=c("No MI", "Mediator MI", "All MI")))
cq.summary.table[,2]<-cq.mi.factor

colnames(cq.summary.table) <- ¢("Loading", "MI", "N", "0.01", "0.05")
xtable(cq.summary.table)

#H#
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#####Is Entropy to blame?

rowdata<-NULL
count=0

for (fin 1:2){
loading<-loadings|f]
for (gin 1:2){
n <-ns[g]
for (iin 1:3){
mi <-1i
for (hin 1:200){
rep<-h
for (j in 2:3){
class<-j
if (class>1){case<-pasteO(c("ft","_", class,"_", n,"_", loading,"_", mi,"_1_",
rep,".out"),collapse="")} #paste0 concatenates without spaces in between.
else {case<-pasteO(c("ft","_", class,"_", n,"_", loading,"_", mi,"_",
rep,".out"),collapse="")}
case<-paste0("interlist<-results$",case) #concatenate that with first run
eval(parse(text=case))
Entropy<-as.numeric(as.character(interlist$summaries$Entropy))
rowdata <- c(loading, n, mi, rep, class, Entropy) #putting it together
frame.ent<-rbind(frame.ent, rowdata)#adding it to the data frame

frame.ent<- as.data.frame(frame.ent)
colnames(frame.ent)<-c("loading","N", "MI","rep","class","Entropy")
frame.ent[,"Entropy"]<-as.numeric(as.character(frame.ent[,"Entropy"]))

frame.ent[,"MI"]<-as.numeric(as.character(frame.ent[,"MI"]))
frame.ent<-frame.ent[which(frame.ent[,"MI"]==1),]

aggregate(frame.ent[,"Entropy"],by=list(frame.ent|[,"loading"], frame.ent[,"N"],
frame.ent[,"class"]), Mean)

HHHH
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frame.1t

blank.cs[,"rep"]<-as.numeric(as.character(blank.cs[,"rep"]))

## Beeswarm Plot for Chi Square

class(blank.cs[,"ChiSqM_p"])

library(beeswarm)

beeswarm(ChiSqM_p ~ n, data = blank.cs[which(blank.cs[,"rep"]<400),], method =
'swarm’, pwcol = loading, pch=16, spacing=1.2, main = "2 Class LCMM Data Fit to 1
Class Model", vertical = F )

legend("topright’, legend = levels(frame.1t$loading), title = 'loading’, pch = 16, col =
1:2)

abline(v=.05, col="goldenrod")
abline(v=.01, col="goldenrod")

#H#

class(bframe[,"ChiSqM_p"])

frame(fitclasses]
bframe[,"ChiSqM_p"]<-as.numeric(as.character(bframe][,"ChiSqM_p"]))
bwplot(factor(N) ~ ChiSqM_p | loading, frame)

#looking at RMSEA

frame<-as.numeric(as.character(frame))

onlyone<- frame[ which(frame$classfit==1), ]
hist(as.numeric(as.character(onlyone[,"RMSEA"])),breaks=100)

quantile(as.numeric(as.character(onlyone[,"RMSEA"])),breaks=100)

quantile(as.numeric(as.character(onlyone[,"RMSEA"])),c(.10,.20,.30,.50,.60,.70,.80,.8
5,.90,.95,.99))

#creating a better data frame

bframe=frame
bframe[,"RMSEA"]<-as.numeric(as.character(frame[,"RMSEA"]))
bframe[,"loading"]<-as.numeric(as.character(frame[,"loading"]))
bframe[,"N"]<-as.numeric(as.character(frame[,"N"]))
write.csv(bframe,file="ft_1&2_RMSEA.csv")
plot(bframe[,"N"],bframe[,"RMSEA"])

fit<-lm(RMSEA~N+loading, data=bframe)
summary(fit)
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plot(fit)

case<-paste0(c("ft", classes,n, loading, rep,".out"), collapse="_") #paste0

concatenates without spaces in between.
case<-paste0("interlist<-first.run$",case) #concatenate that with first run
eval(parse(text=case)) #eval runs the code, parse turns the string into code
#store it into a working list called interlist

#pull that data file

#parameters into one line
#fit indices into another
#append

> bwplot(factor(N) ~ RMSEA | loading, frame, layout = c(5, 1))
> frame[,"RMSEA.ub"]<-as.numeric(as.character(frame[,"RMSEA.ub"]))
> bwplot(factor(N) ~ RMSEA.ub | loading, frame, layout = ¢(5, 1))

#making headers for the data frame
first.run$ft_1_100_0.00_1_.out$parameters$unstandardized[,1]

est.1<-
paste(first.run$ft_1_100_0.00_1_.out$parameters$unstandardized[,1] first.run$ft_1_
100_0.00_1_.out$parameters$unstandardized[,2], "est")

se.1<-
paste(first.run$ft_1_100_0.00_1_.out$parameters$unstandardized[,1] first.run$ft_1_
100_0.00_1_.out$parameters$unstandardized[,2], "se"

pval.1<-
paste(first.run$ft_1_100_0.00_1_.out$parameters$unstandardized[,1] first.run$ft_1_
100_0.00_1_.out$parameters$unstandardized[,2], "pval")

RMSEA.length<-frame[which(frame],"classfit"]==1), "RMSEA.ub"]-
frame[which(frame][,"classfit"]==1), "RMSEA.Ib"]

frame.m[,"aBIC"]<-as.numeric(as.character(frame.m[,"aBIC"]))

HAH#HH#HHA

AIC BIC comparison
frame.t[,"aBIC"]<-as.numeric(as.character(frame.t[,"aBIC"]))
frame.t[,"AIC"]<-as.numeric(as.character(frame.t[,"AIC"]))
frame.t[,"BIC"]<-as.numeric(as.character(frame.t[,"BIC"]))
correct<-NULL

low<-NULL
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high<-NULL
models<-NULL
AIC.fit<-NULL

(I'?CY'QJ
1l
_ o o

d
while (a <36000){
b<-a+1
c<-a+2
if (is.na(frame.t[a,"AIC"])){
correct[d]<-NA
AIC.fit[d]<-NA
}
else{
if(is.na(frame.t[b,"AIC"])){
correct[d]<-NA
AIC.fit[d]<-NA
}
else{
if (is.na(frame.t[c,"AIC"])){
correct[d]<-NA
AIC.fit[d]<-NA
}
else{
if (frame.t[a,"AIC"]<1000){
correct[d]<-NA
AIC.fit[d]<-NA
}
else{
if (frame.t[b,"AIC"]<1000){
correct[d]<-NA
AIC.fit[d]<-NA
}
else{
if (frame.t[c,"AIC"]<1000){
correct[d]<-NA
AIC.fit[d]<-NA
}

else{

if (frame.t[a,"AIC"]>frame.t[b,"AIC"] && frame.t[c,"AIC"] > frame.t[b,"AIC"] ){

correct[d]<-1
AIC.fit[d]<-"correct"

}

else{correct[d]<-0}

80
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if (frame.t[b,"AIC"]>frame.t[c,"AIC"] && frame.t[a,"AIC"]>frame.t[c,"AIC"] ){
high[d]<-1
AIC.fit[d]<-"high"

}

else{high[d]<-0}

if (frame.t[c,"AIC"]>frame.t[a,"AIC"] && frame.t[b,"AIC"]>frame.t[a,"AIC"] ){
low[d]<-1
AIC.fit[d]<-"low"

}

else{low[d]<-0}

}
}

models<-rbind(models,frame.t[a,1:4])
a<-a+3
d<-d+1

[ R e SR ]

summary(frame.t[,"mi"])
AlC.selection<-cbind(frame.t[which(frame.t[,"classfit"]==1),1:4], low, correct, high,
AIC.fit)

AlC.selection$mi <- factor(AlC.selection$mi, levels=c("1", "2", "3"), labels=c("No MI",
"Mediator MI", "All MI"))

gplot(mi, data=AlC.selection, facets=N~loading, geom="bar", main = "Model
Selection with AIC", fill=AIC.fit, xlab="Loading of Indirect Paths", ylab="Sample
Size")

HHt##H##

##BIC Selection
low<-NULL
high<-NULL
models<-NULL
BIC.fit<-NULL

oo
S o

d=1
while (a <36000){
b<-a+1

(@]



LATENT CLASS MODERATED MEDIATION

c<-a+2
if (is.na(frame.t[a,"BIC"])){
correct[d]<-NA
BIC.fit[d]<-NA
}
else{
if(is.na(frame.t[b,"BIC"])){
correct[d]<-NA
BIC.fit[d]<-NA
}
else{
if (is.na(frame.t[c,"BIC"])){
correct[d]<-NA
BIC.fit[d]<-NA
}
else{
if (frame.t[a,"BIC"]<1000){
correct[d]<-NA
BIC.fit[d]<-NA
}
else{
if (frame.t[b,"BIC"]<1000){
correct[d]<-NA
BIC.fit[d]<-NA
}
else{
if (frame.t[c,"BIC"]<1000){
correct[d]<-NA
BIC.fit[d]<-NA
}

else{

82

if (frame.t[a,"BIC"]>frame.t[b,"BIC"] && frame.t[c,"BIC"] > frame.t[b,"BIC"] ){

correct[d]<-1
BIC.fit[d]<-"correct"

}

else{correct[d]<-0}

if (frame.t[b,"BIC"]>frame.t[c,"BIC"] && frame.t[a,"BIC"]>frame.t[c,"BIC"] ){

high[d]<-1
BIC.fit[d]<-"high"
}
else{high[d]<-0}

if (frame.t[c,"BIC"]>frame.t[a,"BIC"] && frame.t[b,"BIC"]>frame.t[a,"BIC"] ){

low[d]<-1
BIC.fit[d]<-"low"

}
else{low[d]<-0}
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summary(aBIC.selection)

BIC.selection<-cbind(frame.t[which(frame.t[,"classfit"]|==1),1:4], low, correct, high,
BIC.fit)

BIC.selection$mi <- factor(BIC.selection$mi, levels=c("1", "2", "3"), labels=c("No MI",
"Mediator MI", "All MI"))

gplot(mi, data=BIC.selection, facets=N~loading, fill=BIC.fit, geom="bar", main =
"Model Selection with BIC", ylab="Sample Size", xlab="Loading of Indirect Paths")

## End of BIC selection
##aBIC Selection
low<-NULL
high<-NULL
models<-NULL
aBIC.fit<-NULL

T
S o

d=1
while (a < 36000){
b<-a+1
c<-a+2
if (is.na(frame.t[a,"aBIC"])){
correct[d]<-NA
aBIC.fit[d]<-NA
}
else{
if(is.na(frame.t[b,"aBIC"])){
correct[d]<-NA
aBIC.fit[d]<-NA
}
else{
if (is.na(frame.t[c,"aBIC"])){
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correct[d]<-NA
aBIC.fit[d]<-NA
}
else{
if (frame.t[a,"aBIC"]<1000){
correct[d]<-NA
aBIC.fit[d]<-NA
}
else{
if (frame.t[b,"aBIC"]<1000){
correct[d]<-NA
aBIC.fit[d]<-NA
}
else{
if (frame.t[c,"aBIC"]<1000){
correct[d]<-NA
aBIC.fit[d]<-NA
}

else{

if (frame.t[a,"aBIC"]>frame.t[b,"aBIC"] && frame.t[c,"aBIC"] >

frame.t[b,"aBIC"] ){
correct[d]<-1
aBIC.fit[d]<-"correct"
}
else{correct[d]<-0}
if (frame.t[b,"aBIC"]>frame.t[c,"aBIC"] &&
frame.t[a,"aBIC"]>frame.t[c,"aBIC"] ){
high[d]<-1
aBIC.fit[d]<-"high"
}
else{high[d]<-0}
if (frame.t[c,"aBIC"]>frame.t[a,"aBIC"] &&
frame.t[b,"aBIC"]>frame.t[a,"aBIC"] ){
low[d]<-1
aBIC.fit[d]<-"low"
}
else{low[d]<-0}
}
}
models<-rbind(models,frame.t[a,1:4])
a<-a+3
d<-d+1

84
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}

aBIC.selection<-cbind(frame.t[which(frame.t[,"classfit"]==1),1:4], low, correct, high,
aBIC.fit)

aBIC.selection$mi <- factor(aBIC.selection$mi, levels=c("1", "2", "3"), labels=c("No
MI", "Mediator MI", "All MI"))

gplot(mi, data=aBIC.selection, facets=N~loading, fill=aBIC.fit, geom="bar", main =
"Model Selection with aBIC",ylab="Sample Size", xlab="Loading of Indirect Paths")

## End of aBIC selection

##making tables
Mean <-function(x){
mean(x, na.rm=T)

}

aBIC.correct <- aggregate(aBIC.selection][,"correct"],by=list(aBIC.selection$loading,
aBIC.selection$N, aBIC.selection$mi), Mean)

colnames(aBIC.correct)<-c("loading", "N", "mi", "correct")
aBIC.low <- aggregate(aBIC.selection[,"low"],by=list(aBIC.selection$loading,
aBIC.selection$N, aBIC.selection$mi), Mean)

colnames(aBIC.low)<-c("loading", "N", "mi", "low")
aBIC.high <- aggregate(aBIC.selection[,"high"],by=list(aBIC.selection$loading,
aBIC.selection$N, aBIC.selection$mi), Mean)

colnames(aBIC.high)<-c("loading", "N", "mi", "high")

aBIC.summary <-cbind( aBIC.low, aBIC.correct[,4], aBIC.high[,4])

colnames(aBIC.summary)<-c("loading", "N", "mi","low","correct”, "high")
#H#

##BIC
BIC.correct <- aggregate(BIC.selection[,"correct"],by=list(BIC.selection$loading,
BIC.selection$N, BIC.selection$mi), Mean)

colnames(BIC.correct)<-c("loading"”, "N", "mi", "correct")

BIC.low <- aggregate(BIC.selection[,"low"],by=list(BIC.selection$loading,
BIC.selection$N, BIC.selection$mi), Mean)
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colnames(BIC.low)<-c("loading", "N", "mi", "low")
BIC.high <- aggregate(BIC.selection[,"high"],by=list(BIC.selection$loading,
BIC.selection$N, BIC.selection$mi), Mean)

colnames(BIC.high)<-c("loading", "N", "mi", "high")

BIC.summary <-cbind( BIC.low, BIC.correct[,4], BIC.high[,4])

colnames(BIC.summary)<-c("loading", "N", "mi","low","correct"”, "high")
#H#

##AIC
AlC.correct <- aggregate(AlC.selection[,"correct”],by=list(AIC.selection$loading,
AlC.selection$N, AlC.selection$mi), Mean)

colnames(AIC.correct)<-c("loading", "N", "mi", "correct")
AlC.low <- aggregate(AlC.selection[,"low"],by=list(AIC.selection$loading,
AlC.selection$N, AlC.selection$mi), Mean)

colnames(AIC.low)<-c("loading", "N", "mi", "low")
AIC.high <- aggregate(AlC.selection[,"high"],by=list(AIC.selection$loading,
AlC.selection$N, AlC.selection$mi), Mean)

colnames(AIC.high)<-c("loading", "N", "mi", "high")

AlC.summary <-cbind( AIC.low, AIC.correct[,4], AIC.high[,4])
colnames(AIC.summary)<-c("loading", "N", " correct”, "high")

N", "mi","low",

##Effectiveness of the Chi Square Cut off

prop.chisqtest<-bframe[ which(bframe[,"loading"]==0.30 &
bframe[,"N"]==300),"ChiSqM_p"]
list.results<-sapply(prop.chisqtest, function(x)if(x<.05){1}else{0})
mean(list.results) # 15%

prop.chisqtest<-bframe[ which(bframe[,"loading"]==0.30 &
bframe[,"N"]==800),"ChiSqM_p"]
list.results<-sapply(prop.chisqtest, function(x)if(x<.05){1}else{0})
mean(list.results) # 37%

#H#

results[1]

86
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##Is a difference in Entropy corellated with correct model selection?
Ident.ent<-NULL

a=1
c=1
while (a<16001){
b=a+1
Ident.ent[c]<-frame.ent[b,"Entropy"]-frame.ent[a,"Entropy"]
a=a+2
c=c+1
}

##

##
#H#

AlC.summary <-cbind( AIC.low, AIC.correct[,4], AIC.high[,4])

colnames(AIC.summary)<-c("loading", "N", "mi","low","correct”, "high")
#H#

#H#

library("eeptools”,

lib.loc="/Library/Frameworks/R.framework/Versions/3.0 /Resources/library")
AlIC.summary<-AlC.summary[order(AIC.summary$loading, AIC.summary$mi,
AIC.summary$N), |

AlC.summary.table<-
cbind(AIC.summary[,1],AIC.summary[,3],AIC.summary|[,2],AIC.summary[,4:6])

xtable(AIC.summary.table)

aBIC.summary<-aBIC.summary[order(aBIC.summary$loading, aBIC.summary$mi,
aBIC.summary$N), |

aBIC.summary.table<-
cbind(aBIC.summary[,1],aBIC.summary[,3],aBIC.summary[,2],aBIC.summary[,4:6]*1
00)

xtable(aBIC.summary.table)

BIC.summary<-BIC.summary[order(BIC.summary$loading, BIC.summary$mi,
BIC.summary$N), ]

BIC.summary.table<-
cbind(BIC.summary[,1],BIC.summary[,3],BIC.summary[,2],BIC.summary[,4:6]*100)
xtable(BIC.summary.table)
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