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The energy of the Ps2− (three electrons and two positrons or vice versa) system

and all possible fragmentations are calculated in a magnetic field in their M=0

states using the stochastic variational method with a deformed correlated Gaussian

basis set. The stability of the system at various field strengths is assessed through

comparison of the system’s energy to the threshold energy. Examination of the

single particle and pairwise densities is also employed for assessment of stability.

The structure of the system is examined through calculation of distances between

the charged particles. The M=0 state of Ps2− is found to be stable in fields greater

than 0.01 a.u.
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I. INTRODUCTION

Few-body problems in magnetic fields are increasingly popular to study since the recent
realization that many high-energy stellar objects are highly magnetized. In order to under-
stand the make-up of these objects, it is helpful to understand what kinds of systems are
responsible for their emission spectra. It is likely that positronium-like systems are present
in such objects, especially given a magnetic field’s ability to stabilize such systems, even
when they are made up of increasing numbers of particles.

Given the propensity for constituents in positronium-like systems to annihilate with one
another and the extremely strong magnetic fields in question, laboratory studies of positron-
electron systems have been rare. Instead, we look to computational studies to understand
these systems. Additionally, the study of particle behavior in strong magnetic fields proves
difficult because of the challenges associated with the center-of-mass at the system when
there is an odd number of particles (Ref. 2). However, this challenge can be bypassed by
looking at states where M=0 for the system in question.

In this paper we calculate the energies of positron-electron systems of up to 5 particles in
magnetic fields of varying strength using the stochastic variational method with deformed
correlated Gaussian basis functions. First, we discuss the some of the formalisms for the
Hamiltonian and basis functions. Then, we discuss some of the observables used to assess
the stability and structure of the system. Finally, results are presented and discussed.

II. FORMALISM

A. Hamiltonian

The Hamiltonian of a Coulombic N-particle system with no nucleus in a magnetic field
is given by
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= T + Vho + VL + Vep +
B

2
(Lz + 2Sz) (2)

where Lz is the z component of the orbital momentum, Sz is the z component of the spin
of the system, and the magnetic field B is parallel to the z axis. In the second part of the
equation, T represents the kinetic energy term, Vho represents the harmonic-oscillator-like
contribution from the magnetic field in the xy plane, VL represents the contribution of the
azimuthal angular momentum in the magnetic field and Vep represents the electron-electron,
electron-positron, and positron-positron interactions. The positions of the particles relative
to the origin are depicted by ri while their relative positions are depicted by rij = ri − rj.
Atomic units are used.
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B. Basis functions

The stochastic variational method makes use of deformed correlated Gaussian basis func-
tions to calculate the energy of the system. The functions take this form:

exp{−1

2

N∑
i,j=1

Aijρi · ρj −
1

2

N∑
i,j=1

Bijzi · zj}, (3)

where the nonlinear parameters are independent in the xy and z directions and ρi = (xi, yi).
This form allows for separate descriptions of the xy plane and z axis. The Hamiltonian does
not commute with L2 but it shares eigenfunctions with Lz. The above form of the basis
function is specific to M = 0. To allow for states in which M 6= 0, we multiply the basis by

N∏
i=1

ξmi
(ρi) (4)

where
ξm(ρ) = (x+ iy)m. (5)

Thus, the complete basis function is

ΦM(r) = A

(
N∏
i=1

ξmi
(ρi)

)
exp{−1
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1

2

N∑
i,j=1

Bijzi · zj}, (6)

where mi are integers and M = m1 + m2 + ... + mN . This function is coupled with the
spin function to form the complete trial function (Sz = −S is used in the calculations). We
restrict ourselves to M=0 states in nonzero magnetic field calculations.

The DCG basis functions can be expanded to an equivalent form which emphasizes the
distance between particles.
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1

2
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Bijzi · zj} (7)

= exp{−1

2
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1

2

N∑
i,j=1

βij(zi − zj)2 −
1

2

N∑
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α′iρ
2
i −

1

2

N∑
i=1

β′iz
2
i }. (8)

The parameters αij, βij, α
′
i, and β

′
i can be defined in terms of Aij and Bij. The parameters

αij and βij are related to the distances between the charged particles while the parameters
α
′
i and β

′
i are related to the particles’ distance from the origin of the system. The results

deal only with the distances between particles, as the location of the origin in a system
with no nucleus is somewhat arbitrary. We select these parameters from the [γmin, γmax]
interval where γmin determines the closest distance between particles and γmax determines
the farthest distance.

ECG bases are widely used in atomic physics and quantum chemistry because they come
with a number of advantages. First, their matrix elements can be obtained analytically for a
general N particle system. Second, they are flexible enough to approximate rapidly changing
functions. Third, the permutation symmetry is imposed easily. Fourth, it is simply to make
a transformation between the single particle and relative coordinate systems.
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The stochastic variational method (SVM) is used to efficiently choose the basis param-
eters. In this method, the variational parameters Aij and Bij of the deformed correlated
Gaussian basis are randomly chosen and the parameters giving the lowest energy are retained
as basis states. This procedure can be optimized as described in Refs. 3 and 6.

Despite computational advantages, the ECG basis has a couple of disadvantages compared
to the exponential exp(−αr) basis. For one, the ECG basis functions do not have the correct
form near the rij → 0 coalescence point for interacting Coulombic particles.

C. Observables

To determine stability, we must compare the energy it takes to move one electron or
positron to infinity, called the ionization threshold energy ET (M,Sz), to the total energy
of the Ps2− system. The system is energetically stable if the total energy is lower than the
threshold energy of the system’s fragmentations.

ET (M,Sz) = min
(
EPs2(MPs2, SPs2

z ) + Ee(M e, Se
z), EPs−(MPs− , SPs−

z ) + EPs(MPs, SPs
z ), ...

)
,

(9)
where EPs2(MPs2, SPs2

z ) is the total energy of the Ps2 system, which, along with an electron,
is one such fragmentation that makes up Ps2−. The others include Ps− + Ps, Ps− + e− +
p+, Ps + 2e− +p+, and 3e− + 2p+. The energy of the Ps, Ps−, Ps2, and Ps2− are calculated
via the stochastic variational method while the energy of the single electrons and positrons
are given by the Landau energy:

Ee(M e, Se
z) = (M e + |M e|+ 2Se

z + 1)
B

2
(10)

Ep(Mp, Sp
z ) = (−Mp + |Mp| − 2Sp

z + 1)
B

2
, (11)

whose quantum numbers satisfy

M = MPs2 +M e,MPs− +Mp +M e, ...Sz = SPs2
z + Se

z , Sz = SPs−

z + Sp
z + Se

z . (12)

An important consequence of these equations is that negative (positive) M states are en-
ergetically degenerate with the M=0 state for electrons (positrons). Meanwhile, positive
(negative) M states increase the energy of the electrons. This allows us to make the gener-
alization that the electron and positron energy is minimized at the M=0 state.

Aside from the energy, we also calculate the probability density and average distances
between particles. Separate calculations were done for distances and probabilities between
electrons and electrons, electrons and positrons, and positrons and positrons. The probabil-
ity density averaged over the radial coordinate is given by

Csp(z) = 〈Ψ|
∑
i

δ(z − zi)|Ψ〉, (13)

where Ψ is the variational wave function and the bra-ket notation stands for integration over
all the single-particle coordinates. The probability density averaged over the z coordinate is
given by

Csp(ρ) = 〈Ψ|
∑
i

δ(ρ− ρi)|Ψ〉 (14)
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With these in mind, the square distances for single particles are given by

ρ2sp =

∫ ∞
0

ρ2C(ρ)dρ (15)

and

z2sp =

∫ ∞
−∞

z2C(z)dz. (16)

The probability density for pairs of particles are given by

Cpair(z) = 〈Ψ|
∑
i

< jδ(zj − zi)|Ψ〉, (17)

and

Cpair(ρ) = 〈Ψ|
∑
i

< jδ(ρj − ρi)|Ψ〉 (18)

The average distances are defined similarly for pairs of particles. In unbound systems, these
distances diverge to infinity. Thus, the average distances of the wave functions are important
in assessing the stability of the system.

D. Virial Theorem

If the wave function is an exact eigenstate of the Hamiltonian, then it will satisfy

〈Ψ|[H,O]|Ψ〉 = 0, (19)

where O is any operator. We will use

O =
i

~
∑
i

ripi =
∑
i

ri
∂

∂ri
, (20)

in which case, the virial theorem for our Hamiltonian is

− 2〈Ψ|T |Ψ〉 = 〈Ψ|Vep|Ψ〉 − 2〈Ψ|Vho|Ψ〉 (21)

and we can define

η = −2
〈Ψ|T |Ψ〉

〈Ψ|Vep|Ψ〉 − 2〈Ψ|Vho|Ψ〉
. (22)

The virial theorem is satisfied when η = 1. It is very rare to satisfy the theorem exactly
when using the variational principle, however the proximity of η to the desired value provides
a useful measure of the quality of the calculation. Note, however, that this is a necessary
but insufficient condition for a good wave function. A bad wave function can still be used
to obtain a good virial value through scaling.
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III. RESULTS

A. Method

Using the DCG basis functions, we achieved results comparable to results obtained using
Hylleraas-type basis functions (Wunner et al. 1981), however our basis set does provide a
value quite as low as the Hylleraas-type set. Given that energies always approach the lower
limit when using the variational method, we can say that this basis set is not as effective as
the Hylleraas basis at very high magnetic fields.

In the absence of a magnetic field, the analytic ground state energy of Ps is approximated
from the hydrogen case and has a value of -0.25 a.u. Our calculations approach this closely
from above with a value of -0.24995 a.u. at basis size N = 400. We also reproduce the
results for the ground state of Ps2 in zero magnetic field found using SVM with a correlated
Gaussian basis (Usukura et al. 1998).

Case Our calculation Reference calculation Reference

Ps ground state β = 0 -0.24995 -0.25 Analytic

Ps ground state β = 50 -2.779 -2.91130 Wunner et al. 1981

Ps2 ground state β = 0 -0.51514 -0.51600 Usukura et al. 1998

B. Stability of Ps2−

While the DCG basis may not fully account for the energy, we can still make use of it
to make predictions about the stability of Ps2− because the variational method guarantees
that all the calculated energy values are overestimations. We predict that Ps2− becomes
stable between magnetic fields of β = 0 and β = 0.005 against decays into constituents in
the M=0 state. The table that compares the energy of Ps2− with the threshold energy at
various magnetic fields takes the threshold energy for decays into this state. All the systems
that give the threshold energy are in the M = 0 state.

β Ps2- Threshold Threshold system

0.0 -0.4974330 -0.5151445 Ps− + Ps

0.005 -0.5236842 -0.5213326 Ps− + Ps

0.01 -0.5363207 -0.5298523 Ps− + Ps

0.1 -0.7027896 -0.6108035 Ps− + Ps

0.2 -0.8358979 -0.5573477 Ps− + Ps

1.0 -1.3560716 0.6258706 Ps2 + e−

2.0 -1.7117848 2.2720147 Ps2 + e−

3.0 -1.9673873 4.018780971 Ps2 + e−

4.0 -2.1677849 5.8158273 Ps2 + e−

5.0 -2.3375918 7.6438768 Ps2 + e−

6.0 -2.4931030 9.4933668 Ps2 + e−

7.0 -2.6256301 11.3588853 Ps2 + e−

8.0 -2.7472093 13.2390526 Ps2 + e−

9.0 -2.8534868 15.1268289 Ps2 + e−

10.0 -2.9582851 17.0223008 Ps2 + e−
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FIG. 1: Contour plot of probability densities of average distances between like particles in Ps2− at beta = 0.2

The two most energetically favorable decay modes for Ps2− are Ps2 + e− and Ps− +
Ps as these systems minimize the number of free particles which tend to be high energy
in these magnetic fields. We know from equations 10 and 11 that we must only consider
electrons and positrons in the M=0 state to determine stability as other M states will be
at least as energetic as the M=0. For Ps, Ps−, and Ps2, we confirm that nonzero M states
have higher energy that the M=0 in the magnetic fields from the values given in the above
table. Thus, if a decay mode is energetically unfavorable in the M=0 state, it will remain
unfavorable in states where Mtotal 6= 0. Note that Mtotal = M+ +M− with M+ representing
the state of the positrons’ angular momenta in the system and M− representing the state
of the electrons’ angular momenta. With these considerations, we conclude that the M=0
state of Ps2− stable. The M− 6= 0 and M+ 6= 0 states were taken by setting the angular
momenta of all the electrons and positrons in the system to 1, respectively. Except for the
Ps2 β = 0.2 case of M+ 6= 0, where the positron angular momenta were set to -1 in order to
look at a slightly different case.

System β M = 0 M− 6= 0 M+ 6= 0

Ps 0.01 -0.259797099 -0.255251373 -0.235221431

Ps 0.1 -0.332299176 -0.292573204 -0.092645493

Ps− 0.01 -0.270055370 -0.262170232 -0.241215604

Ps− 0.1 -0.278504363 -0.230663742 -0.1781148854

Ps2 0.01 -0.544061662 -0.532652285 -0.543998106

Ps2 0.2 -0.851511152 -0.706864925 -0.742058025

Figures 1-4 represent the probability densities of the distances between particles of Ps2−

at two different magnetic field values. The x-axis represents the radial distance between
particles in the plane perpendicular to the magnetic field, while the y-axis represents their
distance in the direction of the magnetic field. It can be seen that at higher magnetic fields
(figures 3 and 4), the particles are squeezed closer to together, which corresponds to our
prediction of increased stability of the system in higher fields.
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FIG. 2: Contour plot of probability densities of average distances between electrons and positrons in Ps2− at beta = 0.2

FIG. 3: Contour plot of probability densities of average distances between like particles in Ps2− at beta = 1.0

IV. CONCLUSION

Using the stochastic variational method we have calculated the energies and inter-particle
distances of positron-electron systems in the M=0 state of up to five particles. We compared
the results of this method using deformed correlated Gaussian basis functions to other
findings in the literature to assess the efficacy of the basis set. We find that these functions
approximate the systems well in zero magnetic field. At very high magnetic fields, we find
that these functions do not fully account for the energy of the system.

Given the nature of the variational method, though, we could still use the DCG basis to
make predictions about the stability and structure of Ps2−. We predict that Ps2− becomes
energetically stable in fields between β = 0 and β = 0.005. We also offer the probability
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FIG. 4: Contour plot of probability densities of average distances between electrons and positrons in Ps2− at beta = 1.0

densities of the various inter-particle distances for Ps2− at β = 0.2 in figures 1 and 2 and
β = 1.0 in figures 3 and 4.

Ps2− has seen very little computational study. As far as we have seen, this is the first
statement that has been made regarding the stability of Ps2− in magnetic fields. Hopefully
other labs will begin to study this system in magnetic fields using different basis functions
or other methods.
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