
ALGORITHMS AND TECHNIQUES FOR AUTOMATED DEPLOYMENT AND

EFFICIENT MANAGEMENT OF LARGE-SCALE DISTRIBUTED DATA

ANALYTICS SERVICES

By

Anirban Bhattacharjee

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

February 29, 2020

Nashville, Tennessee

Approved:

Aniruddha S. Gokhale, Ph.D.

Abhishek Dubey, Ph.D.

Douglas C. Schmidt, Ph.D.

Gabor Karsai, Ph.D.

Hongyang Sun, Ph.D.

https://www.linkedin.com/in/anirban-bhattacharjee-76285a19/

DEDICATION

To my late Grandmother, Bina Roy Chowdhury, infinitely inspirational

and

To my beloved wife, Malabika, unbelievably encouraging

and

To my parents, Ashok and Nilanjana Bhattacharjee, amazingly supportive

ii

ACKNOWLEDGMENTS

I express my sincere gratitude to those who have contributed to this thesis and supported

me during this fantastic journey. I am grateful to all of those with whom I have had the

pleasure to work during these years.

First and foremost, I would like to express my sincere thanks to my advisor Dr. Anirud-

dha S. Gokhale, for providing me the opportunity to work in the Distributed Object Com-

puting (DOC) group at the Vanderbilt Vanderbilt School of Engineering. His thoughtful

advice, guidance, mentorship, and unwavering support over the years helped me at various

stages of my research. I appreciate his valuable suggestions, comments, and leadership,

which encouraged me to learn more every day and to become an independent researcher.

His support has been the most worthy experience for me, and I owe him a big thanks once

again for being a fantastic advisor and mentor.

I want to thank Dr. Abhishek Dubey, Dr. Douglas C. Schmidt, Dr. Gabor Karsai, and

Dr. Hongyang Sun, for serving on my dissertation committee. Each of my dissertation

committee members has provided extensive professional guidance and taught me a great

deal about scientific research. I want to acknowledge the collaboration from Dr. Hongyang

Sun in my multiple research works. He helped me remarkably in formulating the research

problems in various areas. Thank you, Dr. Hongyang Sun, for your valuable time, co-

operation, and generosity, which set this dissertation work possible.

I am grateful to Dr. Douglas Fisher for allowing me to join the Vanderbilt University

and for mentoring me during the early stage of my Ph.D. program. I would especially

like to thank Dr. Xenofon Koutsoukos for his mentorship, skeptical feedbacks, and deep

insights at the DDDAS project meetings. I would also like to thank Dr. Zhifeng Yun for

his mentorship and leadership during my internship days at ARM Ltd.

This work would not have been possible without the financial support of various agen-

cies, and I’m grateful for their generous support. This thesis was supported in part by

iii

NEC Corporation, Kanagawa, Japan, and NSF US Ignite CNS 1531079, AFOSR DDDAS

FA9550-18-1-0126, and AFRL/Lockheed Martin’s StreamlinedML program. I appreciate

the feedback and insights from our sponsors, Mr. Thomas Damiano of Lockheed Martin

and Dr. Takayuki Kuroda of NEC Corporation.

My sincere gratitude is reserved for my colleague, Ajay Dev Chhokra, for his collabo-

ration and research contributions on multiple projects. His valuable insights and collabo-

ration made the last chapter of the dissertation possible. His contribution towards the third

chapter, Barista, is also distinguishable, where he helped me to devise the problem and

algorithm. I would also like to thank the members of the DOC group, Shashank Shekhar,

Yogesh Barve, Shweta Khare, Shunxing Bao, Subhav Pradhan, Prithviraj Patil, Zhuangwei

Kang, and Robert Canady for their collaboration, feedback, and encouragement. I would

especially like to thank Shashank Shekhar, Yogesh Barve, Shweta Khare, and Zhuangwei

Kang for collaborating with me on multiple projects. I also thank Shreyas Ramakrishna for

his deep insights and thoughtful ideas, which helped define the last chapter of this disser-

tation.

Nobody has been more valuable to me in the pursuit of this Ph.D. journey than my

family members. I’m hugely thankful to my late grandmother, Bina Roy Chowdhury, with-

out whose support the Ph.D. journey would have never begun. I want to acknowledge the

patience, support, and encouragement of my parents, Ashok and Nilanjana Bhattacharjee.

Most importantly, I would like to express my gratitude to my beloved wife, Malabika, for

her continuous support during the ups and downs of my Ph.D. journey.

iv

TABLE OF CONTENTS

Page

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

I Introduction . 1

I.1 Emerging Trends . 1

I.2 Key Research Challenges and Solution Needs 5

I.2.1 Requirement 1: Automation of the ML Development Pipeline . . . 5

I.2.1.1 Challenge 1: Abstraction of ML Pipeline 6

I.2.1.2 Challenge 2: Code-generation for ML Model Training

and Evaluation . 6

I.2.1.3 Challenge 3: Support for ML Deployment 7

I.2.2 Requirement 2: Automation of Infrastructure and Application Pro-

visioning . 7

I.2.2.1 Challenge 4: Abstraction of Application and Infrastruc-

ture details . 8

I.2.2.2 Challenge 5: Infrastructure Code-generation from Abstract

Model . 8

I.2.2.3 Challenge 6: Verification of Abstract Deployment Model . 8

I.2.2.4 Challenge 7: Extensibility and Re-usability 9

I.2.3 Requirement 3: Proactive Resource Management 9

I.2.3.1 Challenge 8: Workload Variation 9

I.2.3.2 Challenge 9: Optimal Resource Selection 10

v

I.2.3.3 Challenge 10: Proactive Resource Provisioning 10

I.2.4 Requirement 4: Interference-aware Strategy for ML Model Update . 10

I.2.4.1 Challenge 11: Heterogeneity-aware Data Management . . 10

I.2.4.2 Challenge 12: Resource Interference-awareness 11

I.3 Organization of the Dissertation . 11

II Erudite: A Lifecycle Management Framework for Machine Learning based Pre-

dictive Analytics Applications . 13

II.1 Introduction . 13

II.1.1 Emerging Trends . 13

II.1.2 Challenges and State-of-the-art Solutions 13

II.1.3 Overview of Technical Contributions 15

II.1.4 Organization of the Chapter . 17

II.2 Related Work . 17

II.3 Problem Formulation . 20

II.3.1 Motivating Case Study and Key Challenges 21

II.3.1.1 Deployment Challenges 22

II.3.1.2 Data Movement and Management Challenges 22

II.3.1.3 Model Building and Dissemination Challenges 23

II.3.1.4 Challenges in Determining the Right Hardware Needed . . 24

II.3.1.5 Runtime Resource Monitoring Challenges 24

II.3.2 Solution Requirements . 24

II.3.2.1 Requirement 1: Automated Deployment of Application

components in Heterogeneous environment 25

II.3.2.2 Requirement 2: Framework for Flexible ML Service De-

velopment and Encapsulation 25

II.3.2.3 Requirement 3: Performance Monitoring and Intelligent

Resource Allocation . 26

vi

II.4 Design and Implementation of Erudite . 26

II.4.1 Addressing Requirement 1: CloudCAMP - Automated Deployment

of Application Components in Heterogeneous Resources 27

II.4.1.1 Meta-model for Heterogeneous Resources 28

II.4.1.2 Meta-model for Data Ingestion Frameworks 29

II.4.1.3 Meta-model for Data Analytics Applications 30

II.4.1.4 Meta-model for Data Storage Services 30

II.4.2 Addressing Requirement 2: Erudite Development Kit for AI/ML

Model Development . 30

II.4.2.1 Main Meta-model for Erudite Framework 31

II.4.2.2 Meta-model for Machine Learning Algorithms 32

II.4.2.3 Model Evaluation and Flexible ML Service Encapsulation 33

II.4.3 Addressing Requirement 3: Framework for Performance Monitor-

ing and Intelligent Resource Management 34

II.4.3.1 Performance Monitoring 35

II.4.3.2 Resource Management 35

II.4.4 Support for Collaboration and Versioning 37

II.5 Evaluation . 38

II.5.1 Evaluating the Rapid Model Development Framework 38

II.5.2 Evaluation of Rapid Application Prototyping Framework 40

II.5.3 Performance Monitoring on Heterogeneous Hardware 41

II.5.4 Resource Management . 43

II.6 Conclusion . 45

II.6.1 Summary . 45

vii

III CloudCAMP: A Model-Driven Approach to Automate Cloud Services Deploy-

ment and Management . 46

III.1 Introduction . 46

III.1.1 Motivation . 46

III.1.2 Requirements and State-of-the-art Solutions 47

III.1.2.1 Requirement 1: Reduction in specification details needed

for deployment . 47

III.1.2.2 Requirement 2: Auto-completion of Infrastructure Provi-

sioning . 48

III.1.2.3 Requirement 3: Support for Continuous Integration, Mi-

gration, and Delivery . 49

III.1.3 Overview of Technical Contributions 51

III.1.4 Organization of the Chapter . 52

III.2 Related Work . 52

III.3 Design and Implementation of CloudCAMP 55

III.3.1 System Architecture of CloudCAMP 55

III.3.2 System Implementation of CloudCAMP 57

III.3.3 CloudCAMP Domain-specific Modeling Language (DSML) 58

III.3.3.1 Design Rationale for CloudCAMP Meta-models 58

III.3.3.2 Meta-model for the Cloud Platforms 59

III.3.3.3 Meta-model for Application Components 61

III.3.3.4 Defining the Relationship among Components 61

III.3.3.5 Extensibility of the Meta-model 62

III.3.4 Design of CloudCAMP Knowledge Base 63

III.3.4.1 Design of Knowledge Base Database 63

III.3.4.2 Design of Knowledge Base Template 64

III.3.4.3 Extensibility of the Knowledge Base 64

viii

III.3.5 Generative Capabilities of CloudCAMP DSML 65

III.3.5.1 Knowledge Base for Generation of Infrastructure-as-code

Solution for Deployment 66

III.3.5.2 Determining the Order of Deployment and Execution . . . 66

III.3.5.3 Generation of Infrastructure-as-code for Migration 68

III.3.5.4 Support for Continuous Delivery 69

III.3.5.5 Constraints Checking for Correctness Business Models . . 70

III.4 Evaluation . 70

III.4.1 Case Study 1: LAMP-based Service Deployment Study 70

III.4.1.1 Measurement of Manual Effort 72

III.4.2 Case Study 2: Application Component Migration for LAMP-based

Web Service . 74

III.5 Conclusion . 74

III.5.1 Summary . 74

III.5.2 Discussions . 75

IV Barista: Efficient and Scalable Serverless Serving System for Deep Learning

Prediction Services . 76

IV.1 Introduction . 76

IV.1.1 Emerging Trends . 76

IV.1.2 Challenges and State-of-the-Art Solutions 77

IV.1.3 Overview of Technical Contributions 78

IV.1.4 Organization of the Chapter . 79

IV.2 Background and Related Work . 79

IV.2.1 Deep Learning-based Prediction Services 79

IV.2.2 Serverless Computing . 80

IV.2.3 Dynamic Infrastructure Elasticity 81

IV.2.4 Workload Forecasting . 82

ix

IV.3 System Model and Problem Description 83

IV.3.1 Infrastructure Model and Assumptions 83

IV.3.2 VM Flavor Selection and Initial Deployment 84

IV.3.3 Dynamic Resource Provisioning via Workload Forecasting and In-

frastructure Elasticity . 85

IV.4 Design and Implementation of Barista . 87

IV.4.1 Architecture of Barista . 87

IV.4.2 Execution Time Distribution Estimation 90

IV.4.3 Workload Forecasting . 91

IV.4.3.1 Forecaster . 91

IV.4.3.2 Compensator . 92

IV.4.4 Resource Estimation . 93

IV.4.5 Resource Provisioner . 94

IV.5 Evaluation . 98

IV.5.1 Experiment Setup . 98

IV.5.2 Predicting Execution Time of Predictive Analytics Services 99

IV.5.3 Workload Forecasting . 99

IV.5.4 Resources Selection and Provision 101

IV.5.5 Reactive Vertical Scaling for Model Correction 104

IV.6 Conclusion . 105

IV.6.1 Summary . 105

IV.6.2 Discussions . 105

V Deep-Edge: An Efficient Framework for Deep Learning Model Update on Het-

erogeneous Edge . 107

V.1 Introduction . 107

V.1.1 Emerging Trends . 107

V.1.2 Challenges and State-of-the-Art Solutions 107

x

V.1.3 Overview of Technical Contributions 110

V.1.4 Organization of the Chapter . 111

V.2 Background and Related Work . 111

V.2.1 Deep Learning Model Training . 111

V.2.1.1 Distributed Deep Learning - Data Parallelism 112

V.2.1.2 Distributed Deep Learning Task Scheduling 114

V.2.2 Model Update Strategy . 115

V.2.3 Resource Interference and Performance Modeling 115

V.3 Motivation . 117

V.3.1 Motivation for Model Update . 117

V.3.2 Motivation for Distributed Training 118

V.3.3 Impact of Heterogeneity on Model Update Time 119

V.3.4 Impact of Resource Interference on Background Tasks 120

V.4 Problem Formulation . 121

V.4.1 Cost Models . 121

V.4.1.1 Data Transfer Cost . 122

V.4.1.2 Initialization Cost . 122

V.4.1.3 Training Cost . 122

V.4.1.4 Total Cost . 123

V.4.2 Optimization Problem . 124

V.4.3 Assumptions . 125

V.5 Design and Implementation of Deep-Edge 125

V.5.1 Architecture Model of Deep-Edge 125

V.5.2 Components of Deep-Edge Manager 126

V.5.3 Modes of Operation . 128

V.5.3.1 Performance and Interference Modeling 128

V.5.3.2 Resource Scheduling . 131

xi

V.5.3.3 Fault Tolerance . 132

V.6 Evaluation . 135

V.6.1 Experiment Setup . 135

V.6.1.1 TestBed . 135

V.6.1.2 Workloads . 135

V.6.2 Performance Modeling . 136

V.6.3 Resource Scheduling . 138

V.6.3.1 Effectiveness of Data Sharding Strategy on Epoch Time . 139

V.6.4 Model Convergence . 143

V.7 Conclusion . 143

V.7.1 Summary . 143

V.7.2 Discussions . 144

VI Summary of Research Contributions . 145

VI.1 Stratum Summary . 145

VI.2 CloudCAMP Summary . 146

VI.3 Barista Summary . 147

VI.4 Deep-Edge Summary . 148

VI.5 List of Publications . 149

BIBLIOGRAPHY . 154

xii

LIST OF TABLES

Table Page

II.1 Comparing Stratum with other state-of-the-art solutions. 18

III.1 Survey Questionnaire: For Q1–Q3, rate on a scale of (1-10) 72

III.2 Median and mean±std.dev for deployment time, lines of code written for

deployment, migration time and Lines of code written for migration (for

Q5–Q6). 73

V.1 Estimator results . 139

xiii

LIST OF FIGURES

Figure Page

I.1 Generalized Representation of Applications Architecture 4

I.2 A Taxonomy of requirements and challenges for Data Analytics Service

development, deployment, and management across the cloud-fog-edge

spectrum . 6

II.1 Generalized Architecture of Smart Application Framework 21

II.2 Meta-model for (a) Data Ingestion Frameworks and (b) Data Analytics

Applications . 27

II.3 Erudite Workflow to Deploy Data Analytics Pipeline 29

II.4 Sample Machine Learning Pipeline . 31

II.5 Meta-model for Machine Learning Algorithms 32

II.6 Sample generative capabilities of Erudite 33

II.7 Integrated version control to reproduce all historical states 37

II.8 Usability of the Erudite Framework. Box 1 shows the available selection

of metamodel elements available to create an ML pipeline as shown in

Box 2. Individual metamodel element’s attributes can be set using the

attribute selection panel in Box 3. Box 4 shows model evaluation. 39

II.9 Example of Data Analytics Application Deployment Model 40

II.10 ML Model Accuracy and Loss trend graph on CIFAR10 dataset (Test and

Train) . 42

II.11 GPU Performance Metrics for Sample Deep Learning Training 42

xiv

II.12 Performance Monitoring of the prediction services (a)The execution la-

tency of InceptionResnetV2 and Xception model on different ML con-

tainers with variable configurations, (b) Host CPU utilization of the ML

containers (c) Host Memory utilization of ML containers (in MB) 43

II.13 Varying number of machines (each host a ML container) to guarantee QoS

on dynamic workload . 44

III.1 Desired Level of Abstraction for a WebApp Business Model 47

III.2 A TOSCA-compliant PHP- and MySQL-based Application Deployment

Workflow . 48

III.3 Box 1 depicts the responsibilities of service deployment team, which is

to define the low-level scripts so that existing automation tools can con-

figure the application components and orchestration tools can provision

the infrastructure for application components and execute them on het-

erogeneous cloud environments. Box 2 depicts the contributions of this

chapter which introduces a self-service framework and automates whole

infrastructure design solutions for these tools. 50

III.4 The CloudCAMP Workflow . 55

III.5 A Partial Meta-Object Facility (MOF) model of CloudCAMP DSML and

Platform . 57

III.6 Main Meta-Model of CloudCAMP framework. The black lines depict

containment, the red lines depict inheritence and blue lines depict connec-

tion. 60

III.7 Entity-Relation(ER) Diagram of CloudCAMP knowledge base 63

III.8 Sample portion of KnowledgeBase Database tables 63

III.9 (a)Sample DBapplication type template and (b)Sample portion of the Auto-

generated code for Deploying MySQL DB application 64

III.10 Specifications related to WebApplication type 71

xv

III.11 Specifications related to DBApplication type 71

III.12 Comparing difficulty percentages to deploy services in different approaches 73

III.13 Likeliness of using CloudCAMP for future cloud services deployment . . 73

IV.1 Box plots of prediction times for different deep learning pre-trained mod-

els on different numbers of CPU cores (2, 4 and 8). 81

IV.2 An abstract state machine showing different states and transitions associ-

ated with a life cycle of a VM in cloud infrastructure. Edges are labeled

with actions and time duration to complete the state transition. 86

IV.3 The setup times (in seconds) for different deep-learning prediction models

as per our experiment. The blue bar shows VM deployment time (tvm),

orange bars show the specific pre-trained model container download time

(tcd), and grey bar show prediction model loading time (tml). 87

IV.4 Architecture of Barista serving system. 89

IV.5 Data flow model of Barista platform manager. 90

IV.6 Top ranked distribution that describes the variation in the sample data.

The distribution (blue) is plotted on top of the histograms (orange) of ob-

servations. 98

IV.7 Performance comparison of Barista (blue) and Prophet(green) along with

ground truth (First Dataset) (red) . 101

IV.8 Performance comparison of Barista (blue) and Prophet(green) along with

ground truth (Second Dataset) (red) . 101

IV.9 Cumulative Absolute Percentage Error Distribution of First Dataset 102

IV.10 Cumulative Absolute Percentage Error Distribution of Second Dataset . . 102

IV.11 Cost comparison between multiple VM configurations (Cost infinity means

the VM is infeasible option, it cannot serve the request within the SLO

bound) . 103

xvi

IV.12 The upper image shows how we guaranteed 2 seconds SLO for Resnet

Prediction service and the experienced latency by selecting Barista se-

lected VM configuration on toll dataset, Lower image shows the actual re-

quest rate, predicted request rate, and number of allocated VMs (t3.small

(2cores)). 104

IV.13 The upper image shows how we guaranteed 1.5 seconds SLO for Wavenet

Prediction service and the experienced latency by selecting Barista se-

lected VM configuration on taxi dataset, Lower image shows the actual re-

quest rate, predicted request rate, and number of allocated VMs (t3.small

(2cores)). 104

IV.14 The upper image shows how we guaranteed 2 seconds SLO for Xcep-

tion Prediction service and the experienced latency by selecting Barista

selected VM configuration on toll dataset, Lower image shows the ac-

tual request rate, predicted request rate, and number of allocated VMs(

t3.xlarge (4cores)). 104

IV.15 Barista Performance Results on selected VM configuration as backend . . 104

IV.16 Vertical Scaling to allocate the number of CPU cores(red line) while main-

taining the SLO bound of 5 seconds. The blue dotted line shows the work-

load pattern, and solid navy blue line shows the latency of the prediction

services if run on maximum allocated cores on a VM of 8 cores. The

green line shows the latency if we dynamically (de)-allocate the cores. . . 104

V.1 Life Cycle of Machine Learning Task . 108

V.2 Parameter Server architecture for distributed DL (data parallel) training . . 113

V.3 Absolute error between predicted steering value and the actual steering

value (with and without model update) 118

V.4 DL model training time (per epoch) for different resource configurations

and different batch sizes. 119

xvii

V.5 DL model training time (per epoch) on standAlone TX2 and on heteroge-

neous cluster with different batch sizes. 119

V.6 Variation of step time w.r.t device type 120

V.7 Increase in step time due to resource contention 120

V.8 Initial and Final resource Usage along multiple resource dimensions. . . . 121

V.9 Deep-Edge architecture . 126

V.10 Modes of operation . 128

V.11 Event Sequence Diagram of Data Sharding and Resource Scheduling . . . 130

V.12 Event Sequence Diagram of Profiling the background tasks along with DL

model update task . 130

V.13 Event Sequence Diagram of Failure handling 134

V.14 Stressing GPU increases compute time. 136

V.15 Stressing CPU increases compute time. 136

V.16 Increasing Batch size decreases compute time. 137

V.17 Increasing Batch size decreases update time. 137

V.18 Increasing the batch size increases the memory footprint. 137

V.19 Increasing workers nodes increase update time. 137

V.20 Stressing CPU of parameter server increases update time. 138

V.21 Epoch time distribution . 140

V.22 Speed Up distribution . 141

V.23 Epoch time with different cluster setup. 142

V.24 EpochTime when GPU is occupied by co-located application 142

V.25 Model convergence with batch combination of 64,16,16,16 on cluster of

1tx2 and 3 nanos. 143

V.26 Model convergence with batch combination of 8,8,8,8 on cluster of 1tx2

and 3 nanos. 143

xviii

CHAPTER I

INTRODUCTION

I.1 Emerging Trends

The adoption of Cloud computing across business organizations continues to grow be-

cause of its attractive offerings such as on-demand self-service, broad network access, rapid

elasticity, scalability, resiliency, measured service, and many more. Infrastructure-as-a-

service (IaaS), powerful virtual Platform-as-a-Service(PaaS), and advanced cloud Software-

as-a-Service(SaaS) enable cloud computing to permeate every business community. To top

it off, the Internet of Things (IoT) comprising smart edge computing devices along with

Big Data Analytics has pushed the limits of what can be achieved with the cloud comput-

ing paradigm.

IoT devices (e.g., surveillance cameras, wearable technologies, industrial sensors, smart

building appliances, health monitoring systems, vehicles) have enabled a variety of smart

distributed applications where data is collected and transformed in high volumes and ve-

locity. Smart applications process continuous streams of information and provide real-time

and robust predictive analytics based on the identified data patterns [1]. For finding the

patterns of the data over time, the data needs to be stored and then analyzed using batch an-

alytics, e.g., as in the case of finding consumer shopping behaviors in a store over a month

or to find a traffic pattern of an area during rush hours.

The backbone of the predictive analytics tasks comprises one or more underlying ma-

chine learning (ML) models for detecting the patterns in the dataset. In developing these

ML models, developers must be cognizant of the range of feasible ML models (e.g., lin-

ear models, decision trees or deep neural networks), and be able to select from among the

plethora of ML libraries and frameworks that are available. Moreover, the prediction qual-

ity of the developed ML models depends on features and hyperparameters tuning, which

1

are time-consuming and requires significant expertise. Therefore, developers can benefit

from using an intuitive and rapid ML model development framework that enables a faster

and robust model building process using automation and seamless deployment on the state-

of-the-art computing infrastructure to accomplish training and evaluation tasks.

The predictive data analytics business model is deployed to obtain insights from the

new stream of information (live analytics) or to perform batch prediction by querying a set

of new observations. Typically, the data analytics pipeline comprises ingestion, storing,

pre-processing, transformation, and cleaning, and visualization of the data.

The ML-based data analytics application deployment and management are often ham-

pered by the complex system configuration management, diversity of ML libraries and

frameworks, and the range of hardware and cloud platform choices available. The con-

cept of data analytics service advocates the view that data can be analyzed efficiently and

seamlessly without the need for complex deployment, infrastructure provisioning and con-

figuration, capacity planning, and management procedures during the application lifecycle

management phase [2]. With the emergence of microservice-based architecture and in-

frastructure automation and orchestration tools, there is a trend these days to have these

data analytics services be built around serverless computing concepts. All the application

deployment and management details of infrastructure are abstracted from the developer or

operator.

In the serverless computing realm, infrastructure (re-)configuration, deployment, mi-

gration of application components, and performance monitoring of resources are essential

to scale the application components iteratively to guarantee that the Service Level Objec-

tives (SLOs) are met under workload variation. Moreover, resource optimization for these

services while maintaining the SLOs is of utmost importance to minimize the operational

budgets. This is a hard problem due to the diverse set of available resource configurations,

each with its deployment and management costs.

Modern smart data analytics applications such as image recognition or voice assistants

2

often provide live predictive analytics by analyzing the new stream of information in near

real-time. Due to low-latency requirements, traditional cloud computing alone may not

provide the desired quality of service (QoS) properties of these IoT analytics applications

due to the high cost of moving data to distant clouds, network congestion, and the unac-

ceptable round trip delays in obtaining critical insights about the domain problems [3, 4].

Instead, these applications must be able to utilize the edge computing resources [5] to

execute the live analytics model closer to the source of the data – often referred to as edge

analytics. However, stringent constraints on CPU and memory of edge/fog resources re-

quire an intelligent distribution and management of these analytics application components

across cloud-edge resources. The generalized architecture of a data analytics application

across the cloud-edge spectrum is shown in Figure I.1.

To develop, deploy, and manage all the predictive data analytics service components,

we have developed a framework called Stratum. Figure I.1 depicts the general architec-

ture of how an analytics application can be deployed using Stratum using model-driven

engineering (MDE) [6]. The Stratum deployment engine can deploy data ingestion tools,

stream processing tools, batch analytics tools, machine learning platforms, and frameworks

on the target machine (bare metal and virtualized). Given an abstract business model and

user-defined attributes, the deployment engine in Stratum called CloudCAMP (see Chap-

ter III) is capable of generating Infrastructure-as-Code (IAC) solution, and then deploy it

on the respective target machines [7, 8].

At the heart of Stratum is a domain-specific modeling language (DSML)-based rapid

ML model development framework called Erudite (see Chaper II). Erudite provides ML

developers and deployers a user-interface with higher-level abstractions. Using the code-

generation capabilities of the DSML, the ML developer can create and evaluate their model

using existing ML libraries and frameworks. Once the ML model is built and evaluated, the

Stratum framework can save and profile it [9, 10]. Then, based on the provisioning strat-

egy, the user’s ML model will be integrated with the data analytics pipeline on the appro-

3

Other Data
Sources

Data
Collection

Visualization

Notebook

Data Scientist

EDGE Layer
Cloud - Fog Layer

Data
Ingestor

Saved Trained Model Transfer

 ML Model
Development
Platform &
Libraries

Constrained Edge
Devices

GATEWAYS

Sensors /
Actuators

Data
Storage

Live Stream
Processing
Engine

Batch
Processing

 Databases

 Logging

Monitoring

Edge
Analytics

Figure I.1: Generalized Representation of Applications Architecture

priate machine across cloud-fog-edge, and the right number of resources is allocated to the

user by Stratum’s serverless model serving platform called Barista (see Chapter IV) [11].

Moreover, Stratum can also decide to place the ML model on the edge devices based on

analyzing the computation and communication overhead. The model evaluation, train-

ing(update), and deployment can be done iteratively in an event-driven manner based on

business requirements.

Despite advances in ML technology, especially deep learning (DL), predictive analytics-

based applications hosted in production environments often experience the arrival of new

data, or the existing data patterns change rapidly over time. This leads to Concept Drift [12],

where the accuracy of the prediction model degrades over time [13], making the deployed

DL model a poor fit for changing situations, and thereby requiring updates to the model

with the new data. The cloud meets the high computational needs of the model update

process though continuously sending the new raw data to the cloud incurs significant com-

munication overhead and can also incur privacy issues. With the advent of GPU-enabled

4

edge devices, the DL model update can be performed at the edge in a distributed manner

using multiple connected edge devices. However, efficiently using the edge resources for

deep learning model updates is a hard problem due to the heterogeneity in the edge devices

and the resource interference caused by background workloads, such as predictive analyt-

ics tasks, already running on the edge devices. Deep-Edge (see Chapter V) proposes an

efficient framework for ML, especially Deep Learning(DL) model update, to incorporate

recent data on heterogeneous edge clusters while minimizing the job completion time for

distributed data-parallel deep learning re-training jobs.

I.2 Key Research Challenges and Solution Needs

In the context of deployment and management of data analytics services along with

the development of the predictive analytics model, we have identified a set of fundamental

underlying requirements and challenges. We have organized these challenges along four

dimensions as described in Figure I.2, which form the four focus areas of this research:

1 Automation of Infrastructure and Application provisioning, 2 Automation of Ma-

chine Learning (ML) pipeline development, 3 Proactive Resource Management to handle

the dynamic workload using serverless computing paradigm, and 4 Interference-aware

strategy for continual ML model update on the heterogeneous edge cluster.

I.2.1 Requirement 1: Automation of the ML Development Pipeline

The goal of the ML model development framework is to enable fast and flexible devel-

opment of the ML model by raising the level of abstraction and deployment of state-of-the-

art ML capabilities. It should aid application developers in prototyping the ML model, and

the ML model should be deployed automatically with the desired ML library on the target

hardware. Moreover, such an approach should be both scalable and efficient [14]. We will

now discuss the challenges to abstract ML framework and library-specific code generation

capabilities.

5

Figure I.2: A Taxonomy of requirements and challenges for Data Analytics Service development, deployment, and manage-
ment across the cloud-fog-edge spectrum

I.2.1.1 Challenge 1: Abstraction of ML Pipeline

The parameters of feasible ML models (e.g., linear models, decision trees, or deep neu-

ral networks) need to be captured and abstracted away from novice users. The developers

should be able to select the required ML algorithms from among the plethora of ML li-

braries and frameworks that are available along with data-preprocessing methodologies.

To use the Model-Driven Engineering(MDE) [15] paradigm, we have to capture all the ML

algorithms, their specific attributes, and the data pre-processing methods in a metamodel

by virtue of reverse engineering. The evaluation methodologies of ML algorithms should

be incorporated in a metamodel for model-driven code generation.

I.2.1.2 Challenge 2: Code-generation for ML Model Training and Evaluation

To aid the developer in building their model without writing code, we have to develop

an abstraction, which can generate code with the target libraries such as scikit-learn, spark

MLlib, based on high-level user-defined choices. Moreover, to ensure the high prediction

quality of the developed ML models, the hyperparameter tuning needs to be automated.

6

The framework should distribute ML model training (if feasible) on different machines (if

available) to speed up the process. Based on the evaluation strategy, the framework should

give the best-fitted model on the training data.

I.2.1.3 Challenge 3: Support for ML Deployment

The microservice architecture supports the integration and migration of application

components with ease. The microservice architecture holds promise for ML model in-

corporation in the data analytics service pipeline [16]. For instance, microservices expose

methods and REST APIs that can be used to control the ML pipeline deployed in the con-

tainer and can be placed in the cloud, fog, and edge nodes. Moreover, the ML module can

be placed on the edge devices for edge analytics, or it can be placed on cloud or fog layer for

live or batch analysis of data. These decisions are made based on user requirements and the

requirement-capability analysis. However, for automating the encapsulation process with

all required software packages, one needs to handle the aforementioned challenges. More-

over, building Linux containers is also dependent on the target hardware, which requires

domain expertise.

I.2.2 Requirement 2: Automation of Infrastructure and Application Provisioning

Consider, as an example, a distributed, data-intensive application deployed in the cloud.

It requires significant efforts for the designers to:

1 configure and deploy the application to use the available big data frameworks [17],

2 set up the virtual machines to host the frameworks, and finally

3 establish the connection properly among the application components.

Moreover, adding an application component which requires a different framework ex-

acerbates these problems. We need to abstract away the architecting phase by pre-defining

7

the configuration of applications and infrastructure as intuitive, high-level modeling arti-

facts, which will speed up the deployment and migration process. To propose an automated

infrastructure and application provisioning framework by addressing these problems, we

outline the following key technical challenges:

I.2.2.1 Challenge 4: Abstraction of Application and Infrastructure details

The intriguing infrastructure complexities for the deployment of the application have

to be identified and abstracted away from users. The required software packages for the

application components depend on the operating systems (OS), the version of OS, and the

package manager of OS – which are the commonality points for the application details. The

variability points, such as selection of cloud providers, hardware selection, OS selection can

be defined by the user. Moreover, all related cloud and application-specific configuration

need to be abstracted away from the user. The goal is to reduce the number of variability

points for rapid deployment using the framework. Designing the framework by capturing

all the required specifications is challenging.

I.2.2.2 Challenge 5: Infrastructure Code-generation from Abstract Model

For the template-based transformation from the abstract business model to an Infrastructure-

as-code (IAC) solution (e.g., in Ansible), a language has to be developed. Developing a

DSML to realize the abstract model and to parse the user-defined variability points is key

to abstracting away the infrastructure specific details.

I.2.2.3 Challenge 6: Verification of Abstract Deployment Model

The framework needs to provide out-of-the-box “correct-by-construction” IAC solution

using constraint checkers. We need to validate the abstract business model by conducting

requirement-capability analysis on the target hardware or cloud provider offerings before

proceeding to actual deployment.

8

I.2.2.4 Challenge 7: Extensibility and Re-usability

The framework should be implemented in a modularized way, and each module must be

easy to reuse via a seamless plug and play architecture. Incorporating these agile method-

ologies during the design phase needs to be addressed. If a new hardware architecture is

introduced or a new service is introduced, we need to add support in a standardized man-

ner. The framework should provide RESTful APIs to communicate among various services

including other platform service APIs/RESTful services to enable the deployment and run-

time integration of application components or services. Moreover, the framework should

support collaboration and version control.

I.2.3 Requirement 3: Proactive Resource Management

Continuously monitoring the performance of the infrastructure and application com-

ponents is required to derive the best hardware configuration under dynamic workloads.

Making effective resource management decisions for these services is a hard problem due

to the dynamic workloads and diverse set of available resource configurations that have

their deployment and management costs. The goal of proactive resource management is to

upgrade the current infrastructure state ahead of time to minimize the SLO violation in a

dynamic environment while minimizing the operating budget of the data-analytics service

providers.

I.2.3.1 Challenge 8: Workload Variation

The workload generated for predictive analytics applications may be dynamic but may

follow a diurnal pattern over a long period. These patterns need to be learned based on

historical data and subsequently handled [18]. Identifying the seasonality and trend based

on the historical time series pattern of the workload is required to forecast the number of

requests.

9

I.2.3.2 Challenge 9: Optimal Resource Selection

The state-space to search for the optimal cloud configuration is vast, and it is not fea-

sible to try all the options. The total cost needs to be minimized while the SLOs of all the

requests can be satisfied, however, as this is a known NP-hard hard, an efficient heuristic

needs to be developed based on the application performance model.

I.2.3.3 Challenge 10: Proactive Resource Provisioning

As the resource provisioning time is much higher than the prediction SLO, the resources

need to be provisioned proactively ahead of time to meet the stringent SLO requirements.

Based on the forecasted workload, current infrastructure state, provisioning time, and pro-

filed execution time of the application on the hardware, the resource manager has to be

designed to make horizontal and vertical scaling decisions dynamically.

I.2.4 Requirement 4: Interference-aware Strategy for ML Model Update

As the quality of prediction analytics task degrades over time with the arrival of new

data, machine learned models, especially Deep Learning (DL) models, need to be updated

with the new data points. Sending all the data to the cloud imposes significant communi-

cation overhead [3, 19, 10] and may raise privacy issues. DL models can be updated on the

GPU-enable edge cluster; however, there are multiple challenges that need to be handled

to minimize the model update time.

I.2.4.1 Challenge 11: Heterogeneity-aware Data Management

The change in the number of data points changes the training time. In the edge cluster,

the nodes are heterogeneous, and because of the background load, each node has a differ-

ent per-sample processing time, and it may vary if we change the number of workers in

the cluster. The goal of our solution called Deep-Edge is to minimize the overall cost of

10

distributed training on a set of heterogeneous edge nodes by choosing the proper data dis-

tribution for each edge device while subject to some system and performance constraints.

I.2.4.2 Challenge 12: Resource Interference-awareness

The edge devices are typically assigned to perform some latency-critical jobs. Hence,

the DL model update on these devices should not hamper the existing latency-critical jobs.

The performance suffers due to interference from the co-located workload and the sharing

of non-partitionable resources [20, 21]. This issue has to be handled proactively before de-

ploying the model task. Moreover, due to background latency-critical jobs, the re-training

time for the DL model can be affected. Therefore, devising an interference-aware strategy

to minimize the job completion time of the distributed DL model update while guaranteeing

the SLO of the latency-critical jobs is challenging.

I.3 Organization of the Dissertation

To resolve the range of challenges described in Section I.2, this doctoral research studies

the challenges and requirements in detail1. For all the requirement and challenges, this

doctoral research formulates the problem, design the proposed solution, and validate novel

ideas by conducting empirical studies as required in the field of systems research. The

contributions of this research include the following tasks:

1 TASK 1: Automation of ML model development and deployment

A holistic and intelligent ML model lifecycle management framework, ERUDITE,

for development and deployment of ML-based predictive analytics applications is

introduced in Chapter II.

2 TASK 2: Automation of infrastructure and application provisioning

A model-driven approach to automate cloud services deployment and management is

1All the literature surveys specific to the requirements are described in the respective chapters.

11

discussed in Chapter III. The CloudCAMP framework is introduced as the basis for

the deployment time and runtime composition and orchestration through generative

programming.

3 TASK 3: Proactive resource management to handle the dynamic workload

Chapter IV proposes an efficient and scalable serverless framework for deployment

and management prediction services, especially deep-learning prediction services.

Based on workload forecasting and application profiling, how to select the optimal

resource configuration, and how to manage the resources, proactively are the main

thrusts of this chapter.

4 TASK 4: Interference-aware strategy for continual ML model update on heteroge-

neous edge

Chapter V proposes a framework to facilitate ML, especially deep learning (DL)

model update on the heterogeneous edge cluster. Based on the application per-

formance model with various background stress, Deep-Edge presents an efficient

interference-aware strategy to update the ML/DL model to minimize job completion

time while guaranteeing the SLO of latency-critical jobs.

Finally, Chapter VI summarizes the dissertation research by alluding to future direc-

tions.

12

CHAPTER II

ERUDITE: A LIFECYCLE MANAGEMENT FRAMEWORK FOR MACHINE

LEARNING BASED PREDICTIVE ANALYTICS APPLICATIONS

II.1 Introduction

II.1.1 Emerging Trends

Internet of Things (IoT) provides an ecosystem of interconnected devices (e.g., surveil-

lance cameras, wearable technologies, industrial sensors, smart building appliances, health

monitoring systems, vehicles, etc.), which generate and transform high volumes of data at

high velocity that is then analyzed to derive valuable insights and make informed decisions

for a variety of smart application domains. For instance, smart data analytics applications

such as product management, process optimization, video analytics, predictive analytics,

and recommendation systems rely on the live and in-depth analysis of the incoming data

streams as well as the historical data [22].

II.1.2 Challenges and State-of-the-art Solutions

It is in this context that traditional cloud computing alone may not provide the desired

quality of service (QoS) properties of these IoT analytics applications due to the high cost

of moving large amounts of data to distant clouds and the unacceptable round trip delays

in obtaining critical insights about the domain problems. In particular, applications such

as emergency response, health monitoring, intelligent assistants, among others, require

real-time, low latency analytics capabilities. Instead, these applications must be able to

exploit the edge [5] and fog computing resources opportunistically. Edge/fog computing

enables applications to be executed closer to the source of the data, thereby eliminating

many of the problems that stem from having to use the distant cloud. At the same time,

13

however, stringent constraints on CPU and memory of edge/fog resources may require an

intelligent distribution and management of these analytics applications across such edge/-

fog resources.

Unfortunately, IoT analytics application developers often do not possess the expertise

to enforce useful application (re)deployment and dynamic resource management decisions.

Thus, there is a compelling need for an approach that relieves the IoT analytics application

developer from having to determine the placement of analytics application components,

monitoring their resource usage, and controlling different data processing tasks across the

cloud-fog-edge devices to enable optimal data control across the edge-to-cloud resource

spectrum [23, 20].

Serverless computing shows promise in addressing these issues because it allows appli-

cation developers to develop the application components without concerns for the intrigu-

ing details of the infrastructure. Specifically, Functions as a Service (FaaS) is a concept

to achieve serverless computing by allowing developers to execute code in an event-driven

manner without building or maintaining a complex infrastructure. Scrutiny of an IoT data

analytics application reveals an application structure that is made up of a collection of

loosely coupled services, such as data ingestion, stream and batch processing, Machine

Learning (ML)-as-a-service, visualization, and storage [24], where individual components

are interconnected by Restful APIs. The loosely coupled nature and event-driven nature of

these applications make them highly suitable to be hosted using a serverless paradigm.

An additional challenge faced by IoT analytics application developers pertains to de-

veloping artificial intelligence (AI)/machine learning (ML) model using large training data

sets. This requires the developers to be cognizant of the range of feasible ML models (e.g.,

linear models, decision trees or deep neural networks), and be able to select from among

the plethora of ML libraries and frameworks that are available. Moreover, they are also

responsible for ensuring high prediction quality of the developed ML models, which de-

pends heavily on the choice of features and hyperparameters, which themselves need to be

14

tuned in an offline evaluation process. IoT analytics application developers are unlikely to

be experts in all of these steps, including using the trained models at runtime.

II.1.3 Overview of Technical Contributions

To address the range of the challenges mentioned above that an IoT analytics applica-

tion developer is likely to face, in this chapter, we present Erudite, which exploits the bene-

fits of the serverless computing paradigm thereby relieving the developer of all the deploy-

ment and resource management issues while ensuring that applications are delivered their

required QoS properties. To make it easier and intuitive for the developer to develop ML

models for their analytics application workflow, and to overcome the challenges stemming

from having to deal with the variability in ML libraries and hyperparameter optimizations,

Erudite defines a domain-specific modeling language that enables declarative specification

of application needs. In turn, generative programming mechanisms within Erudite helps to

synthesize the metadata needed to provision an ML training and optimization workflow au-

tomatically. Subsequently, Erudite automates the deployment and execution of the trained

models across the distributed edge-cloud resources using the serverless approach wherein

it enforces appropriate and effective auto-scaling mechanisms for individual services and

also provides strategies to migrate trained ML model between different nodes as required

to maintain the QoS while optimizing the cost of model execution.

The novelty of the Erudite approach lies in how it holistically addresses a range of

challenges that IoT analytics application developers face and systematically blends mul-

tiple different approaches to realize a complete solution. Specifically, Erudite makes the

following contributions:

1 Erudite integrated with CloudCAMP (see Chapter III) provides a Domain-Specific

Modeling Language (DSML) to hide the lower-level details of infrastructure de-

ployment and provides an easy to use web-interface for the end-users to utilize the

platform. Erudite support built-in ‘correct-by-construction’ using constraint checker.

15

Erudite can validate the application deployment architecture by conducting a requirement-

capability analysis on the target hardware before actual deployment.

2 We present a rapid AI/ML model development framework, where the developers can

connect to a wide range of data sources and build their own AI/ML applications.

Specifically, Erudite provides an AI/ML Service Encapsulation approach by lever-

aging CPU and GPU-enabled containerization architectures and API abstraction for

standard ML libraries and frameworks. It provides an easy-to-use framework on

which developers can quickly build, train, and evaluate the ML model on historical

data requiring little to no-code development.

3 Once the AI/ML model is ready and finalized, the application components can be

exposed as RESTful APIs, and seamlessly integrated into the business application

workflow using Erudite (as shown in Figure II.1). Erudite manages the lifecycle of

models efficiently and triggers retraining of the models also if the model becomes

stale over time.

4 Erudite provides an intelligent way to transfer the trained model to the target ma-

chines (across the cloud-fog-edge spectrum) as an ML module for inference and

analysis of incoming data sources. ML module(s) can be placed on the edge de-

vices for edge analytics, or at Cloud or Fog layer for live or in-depth analysis of data

depending on user requirement and requirement-capability analysis. All of these re-

sponsibilities are handled by the serverless platform using declarative specifications.

5 Erudite takes care of dynamic resource management by providing a strategic design

wherein other resource management algorithms can be plugged in. It supports moni-

toring of data management and models in production by instrumenting finer-grained

performance metrics collection on the target hardware. Based on the collected per-

formance metrics such as CPU, memory, IO utilization, the resource management

algorithms can enforce horizontal and vertical elasticity of resources to maintain the

16

QoS requirements. We validated these claims using our default resource management

algorithms are enforced.

II.1.4 Organization of the Chapter

The rest of the chapter is organized as follows: Section II.2 presents a survey of existing

solutions in the literature and compares them Erudite; Section II.3 presents the background

and problem formulation; Section II.4 presents the design of Erudite; Section II.5 evaluates

the Erudite resource allocator for a prototypical case study; and finally, Section II.6 presents

concluding remarks alluding to future directions.

II.2 Related Work

In this work, we compare and contrast Erudite with the existing state of the art solutions

for end-to-end software engineering lifecycle management of machine learning models

from the design phase to deployment phase across cloud and edge computing environments.

Ease.ml [25] is a training platform providing automatic model selection using a declarative

programming approach. It relieves users from determining which models to select for a

specific task at hand. Ease.ml introduces a resource scheduler to manage the deployment of

the training job in a shared cluster environment used by multiple users at once.t currently

supports language constructs for declaring 1) size of the input and output dataset and 2)

dataset itself.

Google Vizier [26] is ML platform which supports hyper-parameter tuning service.

Users within Google can specify the parameter configuration space and the optimization

goals. The Vizier service then proceeds with running experimentation trials until it has

met the user-specified goals. Similarly, TFX [27] is another machine learning platform

at Google, which provides tools for data preparation and model inference serving. The

system is built around the Tensorflow ML framework. Michelangelo [28] is an ML-as-a-

service framework deployed at Uber that facilitates, building, and deploying ML models

17

in the cluster environment. Michelangelo DSL provides users to define the ML tasks to be

used for both training and inference ML jobs. However, the DSL restricts the users from

choosing only the algorithms that are supported by the platform, thus limiting users from

experimenting using different ML algorithms. Alchemist [29] is another internal project at

Apple that addresses the training of machine learning models in a cluster environment. It

leverages the Kubernetes container orchestration platform for running the training jobs of

the ML models.

To the best of our knowledge, Google Vizier, Michelangelo, and Alchemist are internal

tools available for use by the users from the respective organizations and not available in

the open-source environment. Concerning commercial offerings, services such as Amazon

SageMaker, Microsoft Azure service, and IBM’s Watson Studio is available to the paid

customers. These end-to-end service running the machine learning training and deployment

pipelines are restricted to their proprietary runtime infrastructures, which can potentially

result in vendor lock-in issues for the end-users.

FEATURES

PROJECT
ML Model

Development
Model

Training
Inference
Serving

Resource
Monitoring

Code
Generation

Resource
Management

Collaborative
Environment

Model
Versioning

DSML
Cloud(C)/Edge(E)

Computing
Open-Source

Ease.ML 7 3 7 7 3 3 7 7 3 C 7

Vizier 7 3 7 7 7 7 7 7 3 C 7

Clipper 7 7 3 7 7 7 7 7 7 C 3

Michelangelo 3 3 3 7 3 7 7 7 3 C 7

Alchemist 3 3 7 3 7 3 7 7 7 C 7

Amazon ML

Microsoft ML

IBM Watson

3 3 3 7 3 7 3 3 7 C/E 7

MLFlow 3 3 3 7 7 7 7 7 7 C 3

InferLine 7 7 3 7 7 3 7 7 7 C 7

DLHub 7 7 3 7 7 7 7 3 7 C 7

ML.Net 3 7 7 7 7 7 7 7 7 C 3

Acumos 3 3 3 7 7 7 7 3 3 C 3

ModelDB 7 3 7 7 7 7 7 3 7 C 3

Weka

Mahout

Scikit-Learn

3 3 7 7 7 7 7 7 7 C 3

Rafiki 7 3 3 7 7 3 7 7 3 C 7

STRATUM 3 3 3 3 3 3 3 3 3 C/E 3

Table II.1: Comparing Stratum with other state-of-the-art solutions.

Clipper [14] focuses on low-latency prediction serving or inference serving aspect of

the ML stage. Clipper uses an ensemble of prediction models to select and combine the

best models that have higher accuracy from different ML frameworks. Unlike Clipper,

18

Rafiki [30] addresses training and inference service deployment in the cloud environment.

Rafiki also provides a hyperparameter tuning service for parameter exploration. For infer-

ence serving, it provides an ensemble approach to allow for better accuracy of prediction

results. MLFlow [31] is an open-source ML platform project that covers end to end life-

cycle phases of ML development and deployment. It has Python-based generic APIs that

allow binding to different ML libraries. It also has support for data preparation, training,

and deployment of the ML models across heterogeneous service providers such as Mi-

crosoft Azure, Amazon Sagemaker, Apache Spark. InferLine [32] presents a prediction

pipeline provisioning in a cloud environment. It provides inference serving across a DAG

of ML models subject to latency constraints. It provides a hybrid approach for maintaining

end-to-end latency constraints by changing model configurations.

ML.NET [33] is an open-source ML pipeline framework by Microsoft. ML models can

be integrated directly into application codebase natively. Also, predictions can be served

by the OS-agnostic platform supported by the .NET Core framework. This feature is use-

ful for prediction serving at the edge computing environments as the application need not

communicate with external service to get prediction results, as the model itself is packaged

within the application. DLHub [34] is a platform that supports publishing trained models

to model repositories and provides model serving capabilities for ML. DLHub implements

an executor model for deploying inference tasks to the serving infrastructures. The cur-

rently supported infrastructures in DLHub comprise of TensorFlow Serving, SageMaker,

and Parsl-based execution platforms.

Acumos [35] is another open-source effort towards easing packaging, cataloging, and

sharing activities of ML models. Acumos provides a marketplace where developers can

search and find pre-trained models for downloads. It also allows users to publish their cus-

tom models to the marketplace for easy sharing. Similarly, ModelDB also provides support

for training and managing ML models. It provides a web-based GUI that allows for easy

visualization of the ML pipelines. It also supports model versioning, visual exploration of

19

models, and has support for collaborations. Other efforts such as Weka, Apache Mahout,

Scikit-Learn provides declarative programming means to design and create ML pipelines

and models. However, these platforms do not provide means for model versioning and

model deployment.

Compared to these existing work, Erudite provides a unified framework that supports

design-time tools and deployment tools for model construction and deployment. Also, Eru-

dite handles deployment across a heterogeneous set of platforms spanning from cloud to

edge computing platforms using CloudCAMP [7]. Erudite also provides version support

while creating designing models using a visual drag and drop GUI interface. Erudite lever-

ages model-driven engineering technologies that facilitate creating custom domain-specific

modeling language, automated code generation facility, and orchestration of models to be

deployed on the target platforms. We believe these end-to-end capabilities are lacking in

the current state of the art integrated tool suites which Erudite addresses. Table II.1 gives

an overview of different feature supports provided by the existing works.

In the literature, there exist several model-based approaches to managing end-to-end

application performance and resource management autonomically based on the domain-

specific modeling language (DSML) [36, 37], however they do not consider about dis-

tributing the model across the cloud-edge spectrum like Erudite.

Similar to Erudite integrated with Barista [11], several platforms leverage virtual ma-

chine and container technology to deploy and scale the application components [38, 39];

however, they do not provide end-to-end data analytics deployment and management plat-

form.

II.3 Problem Formulation

In this section, we use a motivating case study to derive the key solution requirements

for the Erudite framework that we present in this chapter.

20

Social Data
Constrained Edge

Devices

GATEWAYS

Logging

Monitoring

Edge
Analytics

Sensors /
Actuators

Constrained Edge
Devices

GATEWAYS

Logging

Monitoring

Edge
Analytics

Sensors /
Actuators

Data
Collection

MQTT/ HTTP

 Spark Streaming /

 Kinesis Analytics /
 Stream Analytics /

 Apache Storm / Flink

Live Stream
Processing Engines

 HDFS / Ceph/
 Amazon S3 /

 Azure DataLake

Data Storage

 Kibana / Power BI/
 Tableau/ QuickSight /

 SQL Reporting

Visualization

Amazon EMR
 Apache Hadoop /Spark

 Azure DataBricks

 Batch Processing

Notebook

Jupyter / Zepplin

Data Scientist

EDGE Layer Cloud - Fog Layer

Data Ingestor

Apache Nifi /
Kafka / Amazon
Kinesis/ Azure
Events HUB

Saved Trained Model Transfer

 CassandraDB / HBase /
 MongoDB/ PrestoDB

 Azure CosmosDB /
 Amazon DynamoDB

 Databases

ERUDITE

 Amazon SageMaker /
 Azure MLStudio / R /

 Spark MLlib / Tensorflow /
 ScikitLearn/ H20.ai

 ML Model Development
 Platform & Libraries

Figure II.1: Generalized Architecture of Smart Application Framework

II.3.1 Motivating Case Study and Key Challenges

Consider an IoT use case of an automated toll booth that takes images of a vehicle’s

license plate in order to charge the toll [40]. This application will involve a real-world

workload of an image recognition service that needs predictive analytics so that it can auto-

matically detect the license plate of the entering or leaving car from a toll plaza. The overall

system will thus involve a camera that takes a picture of the license plate and analyzes the

image to identify the license plate and accordingly charge the associated account with the

appropriate toll. Our use case belongs to a category of applications for which many design

considerations must be taken into account when developing and deploying such applica-

tions. These design considerations and the range of challenges faced by a developer are

depicted in Figure II.1 and described below.

21

II.3.1.1 Deployment Challenges

For applications involving computer vision (e.g., the toll booth use case) or for automa-

tion assistants like Google Home using the natural language inference model, the device-

to-cloud data round trip latency is considerable. Thus, processing at the edge is attractive

as it reduces latency and makes connected applications more responsive. Therefore, the

ability to analyze, filter, or aggregate the data before sending it to the cloud data center can

lead to significant savings in network and computing resources. As shown in Figure II.1,

however, an IoT analytics application developer will need the expertise to deploy such ap-

plications on a plethora of edge device types, such as Raspberry Pi, MinnowBoard, Beagle

Bone, and Arduino.

Since not all analytics can be performed at the edge because an edge device may not

contain all the data, for that, it may be necessary to aggregate information at fog or cloud

data center servers. Examples of applications that need these capabilities include route

planning for a vehicle in nearby-locations, which can be done in fog/cloud servers if the

localized edge devices send the traffic data, weather data on the fog server to aggregate. Fog

servers can be energy-efficient multi-core ARM64 processors and GPGPUs (e.g., NVidia

TX1 with a GPU), or it can be a private cloud with limited processing power (e.g., few Intel

Xeon Servers). Thus, a developer needs to be cognizant of the capabilities of the fog/cloud

resources in order to make the best use of these resources.

II.3.1.2 Data Movement and Management Challenges

IoT applications generate enormous amounts of data and operate on data streams from

edge devices to cloud-based resources. As shown in Figure II.1, edge devices must send

the filtered data to the fog/cloud servers using one of the various communication protocols,

e.g., HTTP, MQTT, CoAP. Moreover, Data Ingestion services such as Apache Kafka [41],

Apache Nifi or Amazon Kinesis must be programmed to listen to incoming data streams

and be able to retain the data in databases or data lakes [23]. We also require adaptive batch-

22

ing to acquire data at higher throughput. Once data is ingested in the server, it is possible

that different subscribers may be interested in it so they can run separate live analytics on

the window of streaming data and visualize the live patterns. Stream processing platforms

like Apache Flink and Spark Streaming can aid in building live data analytics models. Such

a system, however, must scale to the needs and numbers of the subscribers. All of these

become the responsibility of the analytics application developer, who are unlikely to be

experts in all of these technologies and protocols.

II.3.1.3 Model Building and Dissemination Challenges

Building predictive analytics requires the development of AI/ML learning models based

on historical datasets. For that, data preparation strategies, and different ML algorithms

need to be tried using one of many available ML frameworks. Developing highly accu-

rate models requires feature engineering, model selection, hyperparameter tuning, and so

on. Moreover, to speed up the training process, it needs to be driven by high-performance

computing using GPU and CPU and needs to be distributed if possible. The model devel-

opment platform needs to be ready rapidly for best model selection by evaluating a large

number of models with automatic scoring. The model evaluation phase needs to be also

parallelized.

Once the AI/ML model is trained, it may need to be pushed to edge devices for infer-

ence. For example, at the toll booth, vehicle license plate detection model can be placed

at the roadside unit, which detects the license plate number, and debits a certain amount of

money from the account associated with the license plate. The inference algorithm converts

the license plate image to a text string, and because the size of an image is significantly less

than the text strings, the amount of information flow in the network is much less, and it also

reduces the latency.

23

II.3.1.4 Challenges in Determining the Right Hardware Needed

For more in-depth analytics, it may be necessary to build a deep learning model from

the traffic cameras of the city or to analyze the behavioral and driving pattern of a car that

requires a detailed analysis of data, all of which need massive computation resources. The

storage and computation can be scaled in the cloud seamlessly. Batch processing frame-

works such as Apache Hadoop or Spark can run deep analytics by aggregating data from

multiple data sources. These frameworks can integrate the trained ML model for their

diagnostic or predictive analytics as required. The challenges lie in determining proper

hardware from the wide variety of device classes, selecting correct connectivity protocol,

choosing deployment options (on-premise or over the cloud), and configuring the deploy-

ment platform for prototyping the business application to deliver real value.

II.3.1.5 Runtime Resource Monitoring Challenges

Once the analytics framework is deployed, it needs to be scaled automatically to handle

the dynamic workload cost-effectively. The framework also needs to monitor model decay

to retrain the ML model and need to push the trained model in business workflow efficiently.

Moreover, all the performance metrics of the hardware components need to be monitored

for dynamic decision making.

II.3.2 Solution Requirements

Based on the discussion of the wide range of challenges that an analytics application

developer is likely to face, we need a solution approach that will maximally decouple the

developer from these challenges and automate many of these tasks on their behalf. The

solution requirements that Erudite ought to support are described next.

24

II.3.2.1 Requirement 1: Automated Deployment of Application components in Hetero-

geneous environment

In the cloud-fog-edge spectrum, significant numbers of application components can use

different hardware with different operating systems (OS). The software package manager

differs based on OS, and software requirements can differ based on OS versions. Software

package requirements are necessary to reverse engineer the template-based creation of the

microservice [8, 42]. For example, to install Apache Kafka on multiple Ubuntu machines,

we need to gather all the software packages required to install Kafka, and we need to

write the infrastructure-as-Code(IAC) script to deploy Kafka on target machines. We have

to repeat the whole process if we want to deploy Kafka on a different cluster of Windows

machine. To alleviate the labor for the application developer, we aim to build the framework

so that the user only requires to fill some user-specific details, and then through one click,

the Kafka service will be deployed seamlessly on target hardware. Using the framework,

lifecycle services must be easily pluggable, reusable, flexible, and customizable. All the

components are exposed by RESTful APIs, and can easily be interconnected. We also aim

to provide a version-controlled and collaborative environment to the application developer

to deploy their business workflow.

II.3.2.2 Requirement 2: Framework for Flexible ML Service Development and Encap-

sulation

There is a need for an AI/ML model building framework that can abstract away the

ML algorithms from existing ML frameworks. A diverse set of ML capabilities, includ-

ing classification (e.g., logistic regression, naive Bayes), regression, decision trees, random

forests, and gradient-boosted trees, recommendation (ALS), clustering (K-means, GMMs),

and many others provided by different libraries and frameworks such as Scikit-learn, Weka,

Spark MLlib needs to the captured, encapsulated and abstracted in the framework. Such

a development kit for the ML models also needs to provide Repository APIs, Commu-

25

nication Services APIs, Orchestration APIs, and other platform services APIs/RESTful

services to enable the integration of various software components/services as required for

model development. The model developer selects the required building blocks and tunes

the hyperparameters as needed to develop and fine-tune the model. The framework also

aims to integrate the autoML model to select the best model or the ensemble of models

based on the evaluations.

II.3.2.3 Requirement 3: Performance Monitoring and Intelligent Resource Allocation

Erudite aims to integrate data and storage services, schedule and workload manage-

ment, and container deployment and orchestrated by an execution engine with continuous

monitoring of system metrics. The framework should integrate a performance data col-

lection strategy, and then based on the metrics, the decision engine needs to allocate the

resources for the specific tasks. The duration of computation can range from milliseconds

(e.g., taking action based on the inference model) to hours (e.g., training a complex pol-

icy). Additionally, training often requires various hardware (e.g., CPUs, GPUs, or TPUs),

whereas inference can be made in low-powerful edge devices. Therefore, application com-

ponent profiling is needed before actual deployment. In the management phase, based on

profiled data, and current performance data, the framework will be able to provide scala-

bility across different dimensions, including parallel pipeline executions, event, and stream

processing.

II.4 Design and Implementation of Erudite

Based on identified requirements specified in Section II.3, we have designed Erudite,

which is a framework to deploy and manage data analytics pipelines. The design and im-

plementation of the Erudite modeling environment are developed around the core concepts

of Model-Driven Engineering (MDE). As part of the serverless offering, Erudite provides

the user with intuitive abstractions to specify their needs. These specifications are then used

26

to automate the entire workflow for the user maximally. The rest of this section delves into

the details of its design, outlining how it addresses the solution requirements.

Figure II.2: Meta-model for (a) Data Ingestion Frameworks and (b) Data Analytics Applications

II.4.1 Addressing Requirement 1: CloudCAMP - Automated Deployment of Appli-

cation Components in Heterogeneous Resources

We address requirement 1 by providing the user with a higher level of abstraction to

work with and automate most of the tasks. Figure II.2 depicts the meta-model that captures

all the concepts necessary to specify the commonalities and variabilities of the data ana-

lytics pipeline based on our Domain-Specific Modeling Language (DSML). We build our

DSML on the WebGME modeling environment [43]. Using the WebGME framework, we

have defined our meta-models for the DSML, created the semantics for model interpreters,

and encoded generative logic for synthesizing artifacts. We capture various facets of the

application and target machine hardware specifications in the meta-model.

The Erudite meta-models were developed through a combination of (1) reverse engi-

neering, (2) dependency mapping across heterogeneous hardware, (3) dependency map-

ping across different operating systems and their versions. We abstract the specification

27

details from the end-users by identifying the commonalities of the provisioning stacks,

which become the high-level reusable building blocks of the deployment and management

pipeline that are captured as domain-specific artifacts. The high-level meta-model for the

data-analytics and data ingestion framework are shown in the figure. The user-defined vari-

ability points (e.g., Number of Machines, pre-defined business policy) are needed to be

specified by the user.

The visual GUI environment provides component blocks, which can be dragged and

dropped easily to construct a prototype deployment. This reduces the barrier to entry for de-

velopers who can rapidly and concisely describe the abstract deployment model. Then, the

Erudite model interpreter verifies the correctness of the abstract model. A NodeJS-based

code Generator of Erudite then realizes the user-defined model through one or more inter-

related meta-models that capture the syntax and semantics, and generate the Infrastructure-

as-Code (IAC) solution by parsing the user-defined model and deploy it on the target ma-

chine using a template-based transformation and knowledge base. Finally, the IAC solution

is executed by the code executor to deploy the desired data analytics architecture on the tar-

get machines across the cloud-fog-edge spectrum, as shown in Figure II.3. The deployment

of the tools can be done using the Erudite model-driven approach without writing a single

line of code. More details about the cloudCAMP platform are described in Chapter III. The

details of the transformation approach can be found in our previous works [7, 8], and are

out of scope for this chapter.

II.4.1.1 Meta-model for Heterogeneous Resources

As noted before, the resources used can be target hardware such as Raspberry Pis,

NVidia Jetson TX1 GPU, any of bare metal CPU machines such as Intel Xeon, or GPU

machines such as NVidia Tesla or it could be any cloud platform such as Amazon AWS or

Microsoft Azure. The target OS residing on it can be Linux, Windows, Raspbian, etc., and

their versions can be different. In the meta-model, we capture hardware details, operating

28

User-specific
Abstract Models

User

Model
Interpreter

Code
Generator

Knowledge
Base

Constraint
Checker

Application-
specific

Templates

Code
Executor

Figure II.3: Erudite Workflow to Deploy Data Analytics Pipeline

system type, and their version. The package manager of the software packages such as

apt, yum, depends on the underlying hardware, whereas the software installment process

depends on OS type and versions.

II.4.1.2 Meta-model for Data Ingestion Frameworks

Figure II.2(a) illustrates the meta-model for data ingestion tools (e.g., RabbitMQ, Kafka),

which receive the data from the edge devices, who serve as the publisher. The data is for-

warded to the subscribers and can be stored in Data Repositories. Here we capture the

specifications for the Data Ingestion tools, and a specific Data Ingestion tool such as Kafka

is contained within the parent dataIngestionTool class. The modeling environment includes

services for interacting with the Data Repositories and other microservices using RESTful

APIs, as shown in Figure II.1. The user must select the specific data ingestion tool to de-

ploy it on the target platform. We also verify the correctness of the user model based on

the semantics defined in the meta-model. For example, if the user selects the AzureEven-

tHubs as there desired Data Ingestion Tool, then Amazon AWS or OpenStack or bare metal

cannot be its’ target deployment platform.

29

II.4.1.3 Meta-model for Data Analytics Applications

The live or in-depth analytics frameworks such as Hadoop, Spark, Flink, Samza, and

more need to be deployed on the target distributed systems. Henceforth, those frameworks’

specifications need to be contained in the Data Analytics parent class. Moreover, as shown

in Figure II.1, the trained ML model needs to be integrated with the stream and batch

analytics frameworks. So to deploy the production-ready machine-learning pipeline we

need to capture the specifications for the ML libraries and frameworks such as Tensorflow,

sci-kit learn, PyTorch, CNTK and more as shown in Figure II.2(b). We also capture the

specifications to start the AmazonEMR service on the cluster of Amazon EC2 machines or

AzureDataBricks service on the cluster of Azure Virtual Machines.

II.4.1.4 Meta-model for Data Storage Services

We have captured the storage service specifications in the meta-model also. The sub-

scribers from the data ingestion tools can consume the data in an event-driven way and

store in the storage service. Our storage class contains AmazonS3, HDFS, AzureBlobStor-

age, Ceph based distributed storage services. The storage service can easily be deployed

with user specifications such as folder name, bucket name. The data can also be stored in

relational databases such as MySQL or NoSQL databases such as MongoDB, Cassandra.

The user has to select the database of their choice, and the database attributes need to be

configured by the user by providing database names, user id, password, replication factor,

etc.

II.4.2 Addressing Requirement 2: Erudite Development Kit for AI/ML Model De-

velopment

The Erudite Development Kit is part of the Erudite framework and is built with a fo-

cus on ML service development and encapsulation. It is an integrated model environment

30

 Source Files
 Database
 Storage

Pre­
Processing

Test­Train
Split

Training on
Different ML
Algorithms

Hyper­
Parameter
Optimization

Evaluate ML
Models on
Test Data

Select Best
Model

Figure II.4: Sample Machine Learning Pipeline

aid to build machine learning (ML) pipeline by abstracting data pre-processing strategies,

ML algorithms on an existing ML framework, and evaluation strategies. The model-driven

ML development framework will benefit the novice and expert data scientists to rapidly

prototype their model using the generative capabilities provided by the framework. It pro-

vides a diverse set of encapsulated ML capabilities, which can be easily bound to the ML

pipeline as required using the user interface, as shown in Figure II.4. The data scientist

needs to specify the data storage type and location, their pre-processing strategies, selected

ML techniques, hyper-parameter tuning strategies, evaluation techniques to create the ML

pipeline.

II.4.2.1 Main Meta-model for Erudite Framework

Erudite modeling environment consists of a standard data exchange format that pro-

vides read and write capabilities in various data formats from various data sources. It

also provides unified data access across different machine learning frameworks such as

scikit-learn, SparkMLlib, and tensorflow. The integrated ML pipeline allows retrieval (in-

put block), and manipulation of data stored in cloud storage such as Amazon S3, or Azure

DataLake Store, or locally or in a scalable (HDFS-based) datastore via RESTful and other

microservice interfaces (DataPreprocessing block).

Machine Learning frameworks also provide ML pipeline construction, model evalua-

31

Figure II.5: Meta-model for Machine Learning Algorithms

tion, and hyper-parameter tuning capabilities, which forms the basis for continuous evalua-

tion. We also integrated Jupyter Notebook and Apache Zeppelin (notebook-based environ-

ment) to provide data-scientists the ability to train their models interactively. We fill up the

iPython notebook with basic code blocks as per the user-defined model, and if the expert

data-scientists want to play more with the ML model in the notebook, they can easily do it

as shown in Figure II.6. The data-scientist can also directly generate python code if needed.

The Deployment Platform can be distributed systems or standalone hardware, and de-

ployment of the machine learning pipeline on the target machine for training is handled by

CloudCAMP as described in Section II.4.1.

II.4.2.2 Meta-model for Machine Learning Algorithms

The meta-model for the supported ML algorithms is shown in Figure II.5. We captured

the specifications for a diverse set of ML algorithms including classification (e.g., logistic

regression, naive Bayes), regression, decision trees, random forests, and gradient-boosted

32

Input

DataPreprocessing

Evaluate Model

Best
Model

Linear Regression
Support Vector
Regression

Random Forest
Regression

B

A ­ ML Pipeline Deployment Workflow
B ­ ML Pipeline Development Workflow
C ­ Generated Code
D ­ Performance Monitoring Metrics

A C

D

Template
based
Code

 Generation

Figure II.6: Sample generative capabilities of Erudite

trees, recommendation (ALS), clustering (K-means, GMMs), and many others.

Using this meta-model, the data-scientist needs to drag relevant machine learning blocks

and needs to define all the parameters such as fit_intercept, normalize, n_jobs for scikit-

learn linear regression block or have to specify the type of layers such as dense, CNN, RNN

for deep learning.

II.4.2.3 Model Evaluation and Flexible ML Service Encapsulation

Users express pipelines as a directed acyclic graph (DAG) where each node represents

a task such as data pre-processing, training based on different ML techniques, and de-

ployment to evaluate the model. To allow for cyclic hyperparameter tuning based on cus-

tomizable optimization method, the optimization methods include Grid Search, Bayesian

optimization, Gradient-based Optimization, Reinforcement Learning based optimization,

etc. These hyperparameter optimization methods [44] are an advanced mechanism to eval-

uate the model. Hence we have a placeholder where the data-scientist needs to write their

logic for their purpose.

33

Figure II.6 shows a sample pipeline prototypes for building various regression analysis

model for a specific use case using the Erudite meta-model and DSML. The DAG structure

of creating an ML pipeline is flexible, and other ML techniques for the specific dataset can

easily be plugged with the existing pipeline. We built the WebGME based GUI for the data

scientist where they can rapidly prototype their model, and specify the ML model related

attributes. Then our DSML parses the user-specific model and generates the code based on

the choice of user ML libraries and framework using template-based transformation. All

the ML algorithms are containerized, and they can process the data and produce the desired

output, such as prediction accuracy, error values. The ML algorithms are encapsulated in

Linux containers and exposed using endpoints. The DSML encapsulates the ML algorithms

in Linux containers to support the parallel execution of the pipeline based on the availability

of the resources. After training the model, we evaluate the model based on different scoring

methods such as accuracy, f1 score, precision, r2 score, mean square error. The ML model

developer needs to specify the evaluation method of their choice. Based on the evaluation

score, we find the model and save it for prediction jobs. The Erudite framework pushes the

saved model into the business application workflow.

Discussions. Our Erudite model, is capable of generating only Python-based code as

of now, and only scikit-learn and tensorflow are integrated with it for our demonstration.

However, other languages such as Java, C++ can easily be plugged into Erudite and other

cloud libraries such as Amazon SageMaker, AzureML, can be integrated with Erudite very

easily. The design of Erudite uses agile methodologies so that it can be extended with ease.

II.4.3 Addressing Requirement 3: Framework for Performance Monitoring and

Intelligent Resource Management

After configuring the runtime framework using the domain-specific modeling language,

the resource management logic such as scaling, load-balancing can be integrated with the

Erudite framework with ease. We show how Erudite provides these capabilities.

34

II.4.3.1 Performance Monitoring

To understand the runtime performance of the infrastructure and the application, it is

critical to monitor the status of these systems. Considering the distributed nature of the sys-

tems spanning from cloud to edge computing environments, monitoring of such systems

can become challenging. Also, given the heterogeneity in the computing platforms, there

is a need for a monitoring tool that can integrate different architecture-specific monitoring

tools in a unified fashion. To address these challenges, we built our monitoring infrastruc-

ture leveraging CollectD [45] monitoring daemon and different metric specific tools such

as Linux Perf, nvidia-smi [46] to monitor various system metrics. We leveraged rabbitmq

[47] based publish/subscribe system to provide data dissemination in the distributed in-

frastructure. The collected data is stored in InfluxDB [48] which is a time-series database

utilized for analysis and triggering resource resource management decisions. The system

metric data, which is collected includes GPU specific metrics such as power consumption,

GPU utilization, temperature and host-specific metrics such as CPU, disk, network, low

level cache utilization, memory bandwidth utilization.

II.4.3.2 Resource Management

Erudite contains a Resource Manager to maintain the QoS of the application compo-

nents by scaling and migrating the application components. The ML-based data analytics

applications’ total latency comprises the round trip latency(lrt) of data and the ML model

execution time. We profile the ML model execution time on various data and target hard-

ware before actually deploying the model, and consider it’s 95th percentile execution la-

tency as estimated execution time (exechw_id,mlmodel). In the cloud, fog, and edge analytics

spectrum, the ML prediction model can be deployed for various purposes such as image

recognition, speech recognition.

ML Prediction Task Migration. Before considering edge devices as a potential node for

executing predictive analytics, we check if it has sufficient memory to keep the model in

35

memory. If the edge node can host the ML model, we profile the ML model on the edge

devices. We also profile 95th percentile network latency(lrt) between edge and cloud node.

We consider the migration of the ML model in the edge when the below condition is true.

execedge,mlmodel < execcloud,mlmodel + lrt (II.1)

Discussion: The transfer of the ML model happens asynchronously, so the transfer cost

is amortized. We also consider that the rate of incoming data is less than the execution

time in the edge device so that we do not have to build a queue for data at the edge. If the

incoming data rate is high, we have to consider a scenario for the cluster of edge devices

and have to build some queuing mechanism.

Auto-scaling of Application Components. Let χ denote the constraint specified by the

Service Level Objective (SLO) of the ML model execution latency, and let exechw_id,mlmodel,p

denote 95th percentile execution latency on p CPU cores. For each server configuration, we

can compute the number of requests n_req it can serve for a prediction service while meet-

ing the SLOs using p CPU cores.

nreq = χ/exechw_id,mlmodel,p (II.2)

By monitoring the total number of incoming requests, we can easily calculate the total

number of machines (total_incomingrequests/nreq) require to handle the workload. Based

on the difference between the current state and desired state, we can calculate how many

more machines to start. Erudite Resource Manager can deploy the ML model on the re-

quired machines and start the prediction service automatically to handle dynamic workload

reactively. During the scaling down phase, we monitor the number of requests for a cer-

tain period (e.g., 30 minutes), and if we have more machines than required based on the

calculation, we decide to scale down by turning off the machines one by one. Moreover,

a batching mechanism is considered to send bulk data at an interval or based on the num-

36

ber of messages, using data ingestion tools like Apache Kafka. Similarly, to handle the

incoming message rate, we can autoscale the data ingestion tools also.

Discussions: We consider that the resources are homogeneous in the cloud, and during

scaling, the configuration of the resources does not change. The configuration of the re-

source is fixed during deployment time based on the user’s choice and requirement-capacity

analysis. Moreover, the management of resources can be done proactively also; however,

that problem is out of the scope of this chapter.

II.4.4 Support for Collaboration and Versioning

Erudite core concepts are developed using WebGME, which supports collaboration in

a version-controlled environment. We also incorporated the automatic version control in

the Erudite framework so that we can recall a specific version of the framework later if

required. We save data, code, and attributes of the modeling environment to guarantee that

every state is reproducible. Because of collaborative editing support, the developers can

easily tag branches when they are developing their part of the model, and the branches can

be merged easily to integrate the whole model. Figure II.7 shows an integrated version

control for all developers to make any historical state reproducible in the collaborative

environment.

Figure II.7: Integrated version control to reproduce all historical states

37

II.5 Evaluation

In this section, we evaluate the simplicity, rapid deployment, and resource management

capabilities of Erudite, along with the accessibility, scalability, and efficiency of the Erudite

ML model development framework of Erudite.

II.5.1 Evaluating the Rapid Model Development Framework

The Erudite Rapid Model Development framework leverages the strength of Model-

Driven Engineering(MDE) to provide a visual development environment for machine learn-

ing pipelines. It provides a hybrid visual-textual interface for various phases of ML model

development in a version-controlled, collaborative visual environment. The Erudite model

transformer can distribute different jobs with different ML techniques over a cluster of

connected machines and aids the developer to select the best model or ensemble of models

based on the user’s choice of evaluation methods.

As shown in Figure II.8, the ML developer can build their machine learning pipeline

using the visual interface of Erudite. In the left-hand pane (box1), all the building blocks are

defined using the metamodel. The ML model developer has to drag and drop the required

blocks in the design pane (box 2) and must connect the blocks to define the ML pipeline, as

shown in Figure II.4. All the attributes of the selected ML algorithms, such as max_depth,

criteria need to be specified by the user (or can take default values) from the right pane (box

3). The name of the attributes are dependent on ML algorithms, and this aspect is captured

by reverse engineering. The ML execution framework needs to be mentioned to bind the

workflow with a specific library or framework such as Scikit-learn or Tensorflow.

All the ML algorithms are encapsulated in Docker containers, and different algorithms

can be executed in parallel to speed up the training and tuning phases. Similarly, in the Input

building block, the source data type, and path, e.g., database, HDFS needs to be mentioned,

and also data source type, e.g., csv, Avro, text is required. In the data preprocessing block,

38

Random
Forest

Regression

Principal
Component
Regression

Input
DataPreprocessing

Ridge
Regression

Evaluate Model

Best
Model

Linear
Regression

Support
Vector

Regression

2

4

1

3

Figure II.8: Usability of the Erudite Framework. Box 1 shows the available selection of metamodel elements available to
create an ML pipeline as shown in Box 2. Individual metamodel element’s attributes can be set using the attribute selection
panel in Box 3. Box 4 shows model evaluation.

we only support simple data cleaning methods, such as filtering and normalization. In the

evaluation building block, the method of evaluation needs to be specified, and based on that,

Erudite selects the best model. A sample ROC curve is shown in box 4, which is showing

that the ensemble of two ML methods has the highest accuracy in the training phase on a

sample dataset, and it should be selected as the best model. Thus, Erudite helps to build

the ML model using MDE techniques, and the ML developer does not need to write any

code. The framework can also generate the code in the notebook environment as depicted

in Figure II.6 for the expert user, where they can tune the ML model as required. We save

the model in the ML framework-specific format.

39

II.5.2 Evaluation of Rapid Application Prototyping Framework

As depicted in Figure II.9, using the visual interface of Erudite, the application devel-

oper can develop the data analytics application. As described in our previous work [8, 7],

the building blocks for application components and infrastructure components need to be

dragged from the left panel in the design space. Then all the building blocks need to be

connected to build the business application workflow. The ‘hostedOn’ connection illus-

trates on which target machine the application components are deployed, and ‘connectsTo’

connection represents that the source component needs to be started before destination

components because the destination component is dependent on the source component. As

shown in Figure II.3, by parsing the user-defined abstract model tree, the Erudite DSML

creates the deployable model (Ansible-specific in our case) and using NodeJS based plu-

gin it executes the deployable model and creates the infrastructure of the application as

described in Section. II.4.1.

hostedOn

connectsTo

RaspberryPi

hostedOn

Edge Analytics
Application

hostedOn

connectsTo
Consumer

Component

hostedOn

connectsTo MySQL
Database

connectsTo

hostedOnconnectsTo SPARK MLlib
ApplicationhostedOn

Server

Figure II.9: Example of Data Analytics Application Deployment Model

Figure II.9 illustrates that using the Erudite modeling environment, edge analytics ap-

plication component can be deployed on Raspberry Pi machine, and data ingestion tool,

e.g., Kafka can be deployed on cloud VMs, which is maintained by OpenStack. The data

consumer application component can be similarly deployed on OpenStack VM, which will

40

consume the data from Kafka in a batch or stream and store it in MySQL database, which

is deployed on top of the bare-metal server. Then, Spark with the MLlib library can be

deployed and configured on OpenStack VMs, and a visualization engine like Kibana can

be integrated with workflow. RESTful APIs connect all the application components, so the

ML model can easily be pushed into a predictive analytics application during the manage-

ment phase.

To deploy the complex workflow such as this, Erudite provides easy to use rapid de-

ployment environment and using the in-built DSML of CloudCAMP (see Chapter III)the

entire workflow can be deployed without writing a single line of code.

II.5.3 Performance Monitoring on Heterogeneous Hardware

As described in Section II.4.3.1, we need to monitor the performance of the infrastruc-

ture as well as the application components to take dynamic resource management decisions.

To describe the monitoring capabilities of Erudite, we set up the training experiments on

NVIDIA GeForce Titan X Pascal GPU machine integrated with Intel(R) Xeon(R) CPU

E5-2620 v4. For prediction experiments, we set up a cluster of Intel(R) Xeon(R) CPU E5-

2620 v4 machines in the private cloud, Dell OptiPlex 3020 machines in the fog nodes, and

MinnowBoard with 64-bit Intel Atom devices as edge devices.

We developed a deep learning model for image classification using CIFAR10 datasetWe

monitor the accuracy and loss of the custom-developed ML model, as shown in Fig-

ure II.10. Figure II.11 show the GPU performance metric, such as GPU utilization, GPU

memory utilization per core, the power drawn by GPU cores in watt, and the temperature

of the GPU machine in Celsius, during the training phase of the ML model.

We encapsulate the trained models in Docker containers and build the container for

the target hardware. We monitor the performance of the Docker containers along with host

machines on which the ML models reside. We collect various metrics of the container from

the host, and it includes execution time, CPU, memory, network, disk utilization along with

41

Figure II.10: ML Model Accuracy and Loss trend graph on CIFAR10 dataset (Test and Train)

Figure II.11: GPU Performance Metrics for Sample Deep Learning Training

L2, L3 cache bandwidth, cache miss ratio, and many more.

Figure II.12 illustrates a glimpse of collected performance metrics during the predic-

tion serving phase. Figure II.12(a) shows the execution latency of InceptionResnetV2 and

Xception model on different ML containers with variable configurations, which is hosted

on different bare-metal machines. Figure II.12(b) shows CPU utilization of the ML con-

tainers from the host machines(such as two cores container only use around 12% of CPU

resources of a sixteen cores machine, while two cores container use around 100% of CPU

resources of a two cores machine), and Figure II.12(c) shows memory utilization of ML

containers (in MB) from the host machines.

42

a

b

c

Figure II.12: Performance Monitoring of the prediction services (a)The execution latency of InceptionResnetV2 and Xception
model on different ML containers with variable configurations, (b) Host CPU utilization of the ML containers (c) Host Memory
utilization of ML containers (in MB)

II.5.4 Resource Management

As mentioned Section. II.4.3.2, we profile the prediction service on the specific hard-

ware before deploying it on the cluster of machines. The prediction service is encapsulated

in a docker container, and based on the number of incoming requests (dynamic workload),

we scale our system in an event-driven manner. Using the Docker swarm cluster man-

agement tool, we can easily scale up and down the number of ML model containers to

guarantee the pre-defined QoS.

As shown in Figure II.13, we profiled InceptionResnetV2 image classification algo-

rithm on four cores and eight cores virtual machines(VM), which is running on a cluster

43

(a) Number of 8 Cores machines are required to maintain 800 ms
execution latency of inceptionresnetv2 model on dynamic workload

(b) Number of 4 Cores machines are required to maintain 2 seconds
execution latency of inceptionresnetv2 model on dynamic workload

Figure II.13: Varying number of machines (each host a ML container) to guarantee QoS on dynamic workload

of Intel(R) Xeon(R) CPU E5-2640 v4 machines. The classification algorithms are docker

container, which is pinned on all available cores of the VM. Figure II.13(a) depicts that

to guarantee 800 ms execution latency on eight cores machines, how we change the num-

ber of machines to handle the dynamic workload. Similarly, Figure II.13(b) shows that to

guarantee 2 seconds execution latency on four core machines, how we change the number

of machines. This approach remains the same for any parallelizable prediction services, as

shown in our recent work [11]. For the non-parallelizable ML algorithms, we currently run

each container on a single core and spawn the required containers every time. In the future,

we will look into adaptive batching strategies to handle the problem.

Moreover, to migrate the machine learning application component as described in Sec-

tion. II.4.3.2, we monitor the round trip latency to send the data from the edge to cloud,

and also the execution latency of the ML model on cloud and edge hardware as shown in

44

II.12(a). If the total execution time (round trip latency + execution latency) is more in the

cloud than the edge, we migrate the saved ML model to edge. We do not provide container

migration from cloud to edge, because the same Docker container cannot run on edge be-

cause of hardware mismatch. We do the requirement-capacity analysis on edge, and the

edge device is feasible to deploy the ML model by installing all the dependent software

packages on edge to serve the ML model.

II.6 Conclusion

II.6.1 Summary

As the realm of IoT-based analytics becomes increasingly sophisticated, developers are

finding themselves lacking expertise in a wide range of skills while at the same time are

overwhelmed by the plethora of frameworks, libraries, protocols, programming languages,

and hardware available to design and deploy these analytics applications. To address these

highly practical challenges, this chapter presents a novel holistic framework that system-

atically integrates a number of underlying platforms and technologies, hiding most of the

details of these underlying artifacts while providing the user with higher-level, intuitive ab-

stractions based on model-driven engineering (MDE) and domain-specific modeling. The

MDE capabilities are offered in our Erudite framework as part of a serverless offering so

that the user-supplied specifications are used to automate the application lifecycle man-

agement. Erudite focuses on three key dimensions: automating the deployment of the

application, simplifying the machine learning model building process, and ensuring that

the models get their desired quality of service properties when the models are used in

the inference phase. The Erudite framework capabilities are available for download from

https://github.com/doc-vu/EruditeMLplatform.git.

45

https://github.com/doc-vu/EruditeMLplatform.git

CHAPTER III

CLOUDCAMP: A MODEL-DRIVEN APPROACH TO AUTOMATE CLOUD

SERVICES DEPLOYMENT AND MANAGEMENT

III.1 Introduction

Self-service application deployment and management in a fault-free manner is desired

for enterprises to speed up time-to-market for their cloud services. Enterprises often suf-

fer from service outages and delays that stem predominantly from the use of tedious and

error-prone manual efforts that are expended in the service configuration, integration, and

infrastructure provisioning across the heterogeneous platforms. Modern cloud services

are architected as microservices, and each of the components must be configured and de-

ployed on cloud platforms – sometimes federated – in a specific order. The capabilities of

the entire service are realized through a collection of distributed, loosely coupled service

components [49, 6]. Script-centric efforts to deploy and manage these complex scenarios,

degrade productivity, and adversely impact the product time-to-market.

III.1.1 Motivation

Consider the case of a LAMP [Linux, Apache, MySQL, and PHP] -based service de-

ployment on a cloud platform. Figure III.1 shows the desired cloud application topology

consisting of two connected software stacks, i.e., a PHP-based web front-end and a MySQL

database backend. The front-end WebApplication stack holds the business logic, and it

will be deployed on Ubuntu 16.04 server virtual machine (VM), which is managed us-

ing the OpenStack cloud platform. The backend DBApplication stack holds the relational

database, which is used to store and query the product data. The backend database is a

MySQL DBMS, which will be deployed on the Amazon Elastic Compute Cloud (EC2)

VM instance with an Ubuntu 14.04 server.

46

Figure III.1: Desired Level of Abstraction for a WebApp Business Model

III.1.2 Requirements and State-of-the-art Solutions

Based on this use case, we elicit the following requirements that drive the solution

presented in this chapter.

III.1.2.1 Requirement 1: Reduction in specification details needed for deployment

As depicted in Figure III.2, the deployer needs to provision the PHP and MySQL-based

e-commerce application stack from two aspects. In the cloud infrastructure provisioning

aspects, the application topology needs to be woven into the execution environment, which

can be virtual machines (VM), containers, or third party services. To provision the cloud

infrastructure, the deployer needs to select a proper image for their VM, along with the

security group, roles, network, number of instances, the storage unit in the target cloud

providers’ platform. In the service provisioning aspects, all the dependent software needs

to be installed, and all the constraints need to be configured. For example, for the front-end

of our motivating example, Apache Httpd needs to be installed and configured along with

PHP and Java. Similarly, in the backend, MySQL needs to be installed and configured.

Moreover, the database service should start before the PHP application service so as to run

the WebApp properly. The IAC solution for the application provisioning requires all the

47

installation and configuration details to execute the deployment plan.

This scenario shows that a user must possess extensive domain knowledge to provision

even a simple web application correctly, and we aim to abstract these detailed specifications

from the users.

Figure III.2: A TOSCA-compliant PHP- and MySQL-based Application Deployment Workflow

III.1.2.2 Requirement 2: Auto-completion of Infrastructure Provisioning

Writing the complex low-level scripts to provision the infrastructure for the motivat-

ing scenario is time-consuming. To improve productivity by significantly alleviating such

efforts requires a self-service framework, which should be capable of transforming the

abstracted business models to complete, deployable TOSCA-compliant1 Infrastructure-as-
1TOSCA [50] is an OASIS standard for vendor-neutral topology and orchestration specification for cloud-

based applications.

48

Code (IAC) solution [51].

III.1.2.3 Requirement 3: Support for Continuous Integration, Migration, and Delivery

Suppose that for the use case of Figure III.2, the enterprise wants to execute a man-

agement task to migrate the web front-end to Amazon’s EC2 with the purpose of reducing

the number of cloud providers used by their services. To migrate the front-end, the user

must perform the following steps: (1) shut down the old virtual machine on OpenStack, (2)

create a new virtual machine on Amazon EC2, (3) install the Apache HTTP server and the

other dependencies, (4) deploy the PHP-based front-end, and so on.

This migration activity gives rise to several issues, such as having to deal with miss-

ing database drivers and missing configurations of the target database service. Manually

performing the migration tasks often require sheer technical expertise about the different

cloud APIs and its underlying technologies. Application extensibility (such as adding one

database server node or data analysis toolkits with the existing application) will also incur

additional challenges.

All of these challenges motivate the need for a fully automated platform that can gen-

erate robust deployment plans. Nevertheless, the challenge here also lies in capturing the

application and cloud specifications in the metamodel and the DSML. However, apart from

that, there are a few more problems, which are listed below:

III.1.2.3.1 Extensibility and Reusability of the Application Components

New application components need to be added at runtime to the existing application by

leveraging the platform. The specifications captured in the metamodel should be modu-

larized and loosely coupled with a particular application. DSMLs should do all the bind-

ing after querying for the specification for a particular application type in the knowledge

base, and then the DSML will generate a concrete cloud-specific, operating-system specific

infrastructure-as-a-code solution. The IAC is idempotent, so it will not change the existing

49

deployment if configured correctly. The correctness of the added application components

can be validated using a constraint checker at the model level.

III.1.2.3.2 Extensibility of the Platform

The platform can transform the business-relevant model to actionable infrastructure-as-

a-code, which produces application deployments in the cloud. However, the challenge is

to make the platform loosely coupled with any DevOps or orchestrating tool, so that later

different tools can be added if required. Moreover, adding new application requires reverse-

engineering the application components, and capturing the application specifications in

the metamodel of our platform, and adding new cloud providers also requires a similar

approach. Defining commonality and variability points is critical to building a modularized

platform so that the extensibility of the platform will be relatively easy.

In our proof-of-concept solution, we only generate the Ansible specific code from the

business model, and our WebGME metamodel handles the TOSCA specification.

Figure III.3: Box 1 depicts the responsibilities of service deployment team, which is to define the low-level scripts so that
existing automation tools can configure the application components and orchestration tools can provision the infrastructure
for application components and execute them on heterogeneous cloud environments. Box 2 depicts the contributions of this
chapter which introduces a self-service framework and automates whole infrastructure design solutions for these tools.

Self-service application provisioning requires extensive planning for their smooth op-

erations. In the context of cloud-based service hosting, service provisioning includes two

key steps: (a) orchestration, where the deployment and ordering of individual components

of the service must be managed across distributed resources of a cloud platform or feder-

ated cloud platforms, and (b) service automation, where defining and executing individual

resource-specific configurations, such as a virtual machine or container configurations, and

50

deployment of service components on these resources are automated. Infrastructure as

Code (IAC) is a term used by the DevOps community in which the cloud infrastructure is

viewed as software for which code is developed to automate the entire cloud-based service

provisioning. To that end, the DevOps community today leverages orchestration solutions

such as Cloudify, Apache Brooklyn, and Kubernetes, among others, in conjunction with

automation tools such as Ansible, Puppet, and Chef, among others. This state of the art

(i.e., the extensive choices available to the developer) is reflected in Figure III.3.

The choice of services provided by different cloud providers needs to be selected and

configured by the deployer. It requires elaborate specifications of service topologies com-

prising requirements, functionalities, dependencies , and relationships of the components.

For instance, depending on the technology used, e.g., MySQL versus PostgreSQL or PHP

versus Node.js, the script must include the appropriate drivers. Also, architecting the solu-

tion for different cloud providers is different. For instance, creating data flow architecture

using AWS Kinesis and DynamoDB is much different from creating the same architecture

using Azure Event Hubs and CosmosDB. Additional dimensions of variability (i.e., ad-

dressing application’s compatibility and cloud providers’ incompatible APIs) as depicted

in Box 1 of Figure III.3 complicates the manual effort, which is already daunting, tedious,

and error-prone. Finally, existing approaches do not account for pre-deployment validation

to check if the end-user requirements and software dependencies are met.

III.1.3 Overview of Technical Contributions

Our motivating example shows that a user must possess extensive domain knowledge to

provision even a simple web application stack correctly. Users need to write Infrastructure-

as-Code (IAC) solutions via low-level scripting. Instead, the desired capability would re-

quire a self-service platform, in which (1) a deployer specify only the application compo-

nents, such as a Web App, and (2) the framework automatically transforms the business

model into deployable artifacts. To achieve the goal, we propose a model-driven and scal-

51

able, rapid provisioning framework called CloudCAMP. It complies with TOSCA (Topol-

ogy and Orchestration Specification for Cloud Applications) specification, which enables

the creation of portable and interoperable plans-as-a-service template for cloud services.

TOSCA provides the standardization for decoupling software applications and its depen-

dencies from the cloud platform specifications.

The key contributions in this chapter include:

1 We present key elements of CloudCAMP’s domain-specific modeling language (DSML)

that masks low-level details of the application component specifications and cloud

provider specifications and instead offers intuitive high-level representations;

2 We present the use of an extensible knowledge base and algorithms to perform

Model-to-Infrastructure-as-code (IAC) transformations automatically; and

3 We present a concrete realization of CloudCAMP and validation in the context of

real-world use cases.

III.1.4 Organization of the Chapter

The rest of the chapter is organized as follows: Section III.2 presents a brief survey of

existing literature and compares to our solution; Section III.3 presents the design of Cloud-

CAMP; Section III.4 evaluates our metamodel for a prototypical case study and presents a

user survey; and finally, Section III.5 concludes the chapter alluding to future directions.

III.2 Related Work

The problem of deployment and management abstraction has been explored in the

area of cloud automation and orchestration. In this section, we compare existing efforts

in the literature with our work. The use of these toolchains adds the burden of config-

uring the application components and integrating pre-deployment verification on appli-

cation developers. The script-centric DevOps community provides toolchains for elimi-

52

nating the disconnect between developers and operations providers [52], and these tools

incur limitations in providing a self-service provisioning platform. Cloud orchestration

tools like Apache Scalr (https://scalr-wiki.atlassian.net/wiki/display/docs/Apache), Cloud-

Foundry (https://www.cloudfoundry.org/), Cloudify (http://getcloudify.org/) etc. are ex-

cellent toolchains to deploy and manage applications on any cloud providers. They pro-

vide techniques to monitor the health of the application and to migrate between the cloud

providers using standardized approaches. However, they all suffer from the limitations of

requiring the users to define the complete and correct deployable model with all the func-

tionalities and features. In this context, Alien4Cloud [53] proposes a visual way to gen-

erate TOSCA topology model, which can be orchestrated by Apache Brooklyn. However,

building the proper topology, even using an MDE approach combined with the TOSCA

specification needs domain expertise. Unlike these approaches, CloudCAMP abstracts all

the application and cloud-specific details in the metamodel of its DSML and transforms the

business model to TOSCA-compliant IAC.

Several patterns-based approaches are proposed to reduce the complexity of service

deployment [54, 55]. They differentiate between business logic and the deployment of a

service-oriented architecture platform. Each pattern offers a set of capabilities and char-

acteristics. Likewise, model-based patterns of proven solutions are used for service de-

ployment in cloud infrastructures [56, 57]. For instance, MODAClouds [58] allows users

to design, develop, and re-design application components to operate and manage in multi-

cloud environments using a Decision Support System. In Computation Independent Model,

the design artifacts are semi-automatically translated to the Cloud-Provider Independent

Model level, where an entirely deployable abstract cloud model is generated by matching

the application patterns. The abstract deployment model is concretized to Cloud-Provider

Specific Model (CPSM) by a domain-specific language. Similar to CloudCAMP, they also

support reuse and role-based iterative refinement in a component-based approach. How-

ever, their deployment plan generation lacks verification and extensibility. They also did

53

https://scalr-wiki.atlassian.net/wiki/display/docs/Apache
https://www.cloudfoundry.org/
http://getcloudify.org/

not consider distributing application components in a heterogeneous cloud environment.

Several efforts come close to the CloudCAMP idea. For instance, ConfigAssure [59] is

a requirement solver to synthesize infrastructure configuration in a declarative fashion. All

the requirements are expressed as constraints by the developer, and the provider predefines

a configuration database containing variables as a deployment model. Kodkod [60] is a

relational model finder that takes these arguments as a first-order logic constraint in the

finite domain. Engage [61] deploys and manages the application from a partial specifica-

tion using a constraint-based algorithm. Aeolus Blender [36] comprises the configuration

optimizer Zephyrus [62], the ad-hoc planner Metis [63], and deployment engine Arnomic.

Zephyrus automatically generates an abstract configuration of the desired system based on

a partial description. They guarantee meeting all the end-user requirements for software de-

pendencies and provide an optimal solution for a given number of active virtual machines.

In contrast to the use of the knowledge base in CloudCAMP, these efforts use a CSP solver

to transform the business model. CSP solvers, however, can take significant time to execute.

Moreover, defining constraints on the configurations requires domain expertise, which is

not needed in CloudCAMP.

Similar to CloudCAMP, Hirmer et al. [64] focus on producing complete TOSCA-

compliant topology from users’ partial business-relevant topology. Users have to specify

the requirements directly using definitions of the corresponding node types or are added

manually for refinement. Their completion engine compares user specifications with tar-

get models and combines the missing components to make it a fully deployable model,

and then the service components can be executed in the right order using an OpenTOSCA

toolchain [65]. CELAR [66] combines MDE and TOSCA specification to automate de-

ployment cloud applications, where topology completion is fulfilled by requirement and

capability analysis on node template. Unlike these efforts, the model transformation in

CloudCAMP is based on querying the knowledge base and idempotent infrastructure code

generation.

54

III.3 Design and Implementation of CloudCAMP

This section delves into the design details of CloudCAMP (Figure III.4) and shows how

it meets the requirements discussed in Section III.1.2.

Figure III.4: The CloudCAMP Workflow

III.3.1 System Architecture of CloudCAMP

To better appreciate the CloudCAMP solution presented below, consider the funda-

mental requirements outlined earlier and depicted in Figure III.4. As per our framework

design, 1) A deployer needs to specify only the application components, such as a Web

App, using intuitive notations provided by the framework, 2) The DSML transforms the

business model into deployable artifacts. Thus, the first step is for the user to utilize an in-

tuitive, higher-level modeling framework that simplifies the modeling of business logic and

automatically takes care of non-business centric deployment and management artifacts.

To that end, we have architected CloudCAMP’s cloud-based service provisioning work-

flow, as depicted in Figure III.4. Below we explain the roles of the different actors in-

volved [8]:

1 Business User Modeling: A business application is modeled as a compendium of

different application components. The user has to select appropriate application com-

55

ponent types from the CloudCAMP application pane to deploy the associated appli-

cation code. The user needs to specify the variability points for application compo-

nents’ deployment, as depicted in Figure III.1. The design details of CloudCAMP

DSML is described in Section III.3.3.

2 Configurator: This actor is responsible for transforming each abstract description

of an application component to a deployable cloud automation task (e.g., Ansible-

specific) for each application component. Configurator realizes a user-defined ab-

stract description of a cloud application model, and then maps the application com-

ponents with the operating system, and query the knowledge base to find the soft-

ware dependency tree; it generates full ‘correct-by-construction’ Ansible (https://

www.ansible.com/) specific code from the application type template. The details of

template-based transformation and code generation are described in Section III.3.5.

3 Enactor: It generates the infrastructure design workflow of IAC solutions by inte-

grating the generated automation code with the business rules and cloud infrastruc-

ture specifications. The users define the connection types between the application

components. There are four types of connections: ‘hostedOn’, ‘connectsTo’, ‘delete-

From’, ‘migrateTo’. The details of the connection types and their role is described

in Section III.3.3.4. The orchestration tool executes all the automation tasks based

on the connection types to deploy and run the business application components in

proper order.

4 Knowledge Base: A knowledge base is needed for auto-completing the partially

specified deployment models. We pre-define the software dependencies for applica-

tion type in a relational table with a key-value pair. All the software packages needed

for a particular application component are defined in the tables, along with their de-

pendency on the operating system and its version. The application developer needs to

populate the tables with all software dependencies for including the new application

56

https://www.ansible.com/
https://www.ansible.com/

component type in the CloudCAMP. The design details of the knowledge base are

described in Section III.3.4.

Figure III.5: A Partial Meta-Object Facility (MOF) model of CloudCAMP DSML and Platform

III.3.2 System Implementation of CloudCAMP

The CloudCAMP DSML shown in Figure III.5 is developed using the WebGME MDE

framework (www.webgme.org). WebGME is a cloud-based framework that offers an en-

vironment for DSML developers to define their language and create model parsers that

can serve as generators of code artifacts. The CloudCAMP runtime platform uses a mi-

croservices architecture comprising three services: (a) the modeling infrastructure, i.e.,

the WebGME UI, and orchestration and automation frameworks forming one service, (b)

the WebGME modeling details are stored in a MongoDB NoSQL database, and (c) the

knowledge base is hosted as a MySQL database service. The microservices are connected

57

www.webgme.org

through the API endpoints and placed behind an HAproxy (http://www.haproxy.org/) load

balancer. Thus, all the services can independently scale to support parallel spawning and

configuration of multiple VMs or containers in the cloud platform.

III.3.3 CloudCAMP Domain-specific Modeling Language (DSML)

The CloudCAMP DSML abstracts the design complexities by separating the applica-

tion from deployment and infrastructure technologies according to TOSCA specification as

described in Requirement III.1.2.1.

III.3.3.1 Design Rationale for CloudCAMP Meta-models

DSMLs are realized through one or more interrelated meta-models that capture the

DSML’s syntax and semantics. In our case, to transform the business model to a full-blown

deployment model, we needed to capture various facets of the application and cloud speci-

fications in our meta-model. CloudCAMP’s deployment modeling automation meta-model

was developed by harnessing a combination of (1) reverse engineering, (2) dependency

mapping across heterogeneous clouds, (3) dependency mapping across different operating

systems and their versions, (4) semantic mapping, (5) business policy, and (6) prototyping.

Capturing this variability helps to enrich the expressive power, multi-cloud tool support and

interoperability of the platform. Prototyping and reverse engineering helped to identify the

different application components, cloud and operating system specific endpoints. The de-

pendent software packages, their relationship mapping, and configuration templates were

realized in the meta-model by querying the knowledge base. The set of available build-

ing blocks, requirements, policies, and other information concerning the implementation

of the services and all other known constraints are pre-defined in the high-level application

meta-model.

To that end, CloudCAMP provides different node types, which are the application com-

ponents such as Web Application, Database Application, DataAnalytics Application, and

58

http://www.haproxy.org/

various cloud providers such as OpenStack, Amazon AWS, Microsoft Azure. The goal

is to concretize the abstract application node type by matching the application deploy-

ers’ desired specification with the pre-defined functionalities captured in the CloudCAMP

meta-model and knowledge base. The concrete node templates are then woven to specific

cloud provider types and their VMs to create a dependency graph that has to be executed to

deploy the application on the desired target machine, as shown in Figure III.4. Using our

DSML, the deployer can configure the node in a defined cloud platform or particular target

system with ease.

Snippets of the meta-models for CloudCAMP are shown in the M1 and M2 level of

Figure III.5, which are based on the Meta-Object Facility (MOF) standard provided by Ob-

ject Management Group (OMG [http://www.omg.org/]). Using our DSML, the application

deployer can configure the node in a defined cloud platform or particular target system

without providing any deployment or implementation artifacts that contain code or logic.

The high-level meta-model is depicted in the Figure III.6. It shows the M2 and M3 level

of the MOF standard. The First Class Object(FCO) is the root node, and under it, the meta-

model for the cloud platform, operating systems, containers, and application components

(M2 level) are defined. The connection type is also defined at the M2 level. We will now

dive down into the meta-model for Cloud Platforms and Application components.

The CloudCAMP meta-models are extensible and reusable, so new component types

and platforms can be added as required in the CloudCAMP meta-model.

III.3.3.2 Meta-model for the Cloud Platforms

In designing the meta-model for cloud platforms, we observed (i.e., reverse engineered)

the process of hosting applications across different cloud environments, and captured all the

commonalities and variabilities. The specifications for different cloud platforms such as

OpenStack, Amazon AWS, Microsoft Azure, etc. for provisioning virtual machines (VMs)

with different operating systems (OS) are captured. The deployers can choose their desired

59

 http://www.omg.org/

Figure III.6: Main Meta-Model of CloudCAMP framework. The black lines depict containment, the red lines depict inheritence
and blue lines depict connection.

OS images to spawn the VMs/containers.

cloudSpec(type, vmtype, services, ostype)

type ::= Openstack | Amazon | Azure | Hardware

services ::= Function

vmtype ::= Function

os_type ::= ubuntu | redhat | windows

The deployer can select a pre-defined VM flavor, available networks, security groups,

roles, and the available images, all of which are defined as variabilities in our meta-model.

They also must specify their environment file, the secret key for the selected cloud host

types, which are the endpoints to bind to a particular cloud provider as shown in Fig-

ure III.1. Optionally, a pre-deployed machine can be specified by providing the IP address

60

and OS. Available services and VM types for cloud platforms are pre-defined in the meta-

model.

III.3.3.3 Meta-model for Application Components

For cloud-hosted services, CloudCAMP provides different node types for application

components such as Web Application, Database Application, DataAnalytics Application,

etc. For instance, the meta-model enables a deployer to choose the web server attribute,

language for the code, the database server attribute, or the NoSQL database attributes from

the provided list. The deployer has to specify the variable attributes to deploy the desired

application component type.

appSpec(type, os_type, swdependency, attributes)

type ::= Web | Database | DataAnalytics | ...

os_type ::= ubuntu | redhat | windows

swdependency ::= Query to knowledgeBase

attributes ::= Function

III.3.3.4 Defining the Relationship among Components

Four relationship types bind the node types in the meta-model as follows:

1 ‘hostedOn’ relationship type implies the source node type is required to be deployed

on the destination node type, e.g., Webserver is hosted on Ubuntu 16.04 in Open-

Stack.

2 ‘connectsTo’ relationship type is used for deployment order to relate the source node

type’s endpoint to the required target node type endpoint if they are dependent on

each other. The node types linked by ‘connectsTo’ can be configured in parallel, but

the service at the source node needs to deploy only after starting the target node.

61

3 ‘deleteFrom’ connection type defines the source node type is required to be removed

from the end node type.

4 ‘migrateTo’ connection type defines the source node type that is to be migrated to

the end node type. The ’migrateTo’ relation type cannot be defined without a ’delete-

From’ connection type to assure the correctness of the business model.

III.3.3.5 Extensibility of the Meta-model

CloudCAMP is an opinionated framework, however, with lots of freedom. The meta-

model has been designed for extensibility so that in future we can add more application

node types.

1 If the application type is defined, e.g., SQLite needs to be added, it will go under the

DBApplication branch, and all the specific attributes will be automatically inherited

from the parent node e.g., DBApplication. If more attributes need to defined, the

framework designer can add it under the SQLite component type.

2 If the application type is not defined, such as if the framework designer wants to

add a stream processing engine, then the StreamProcessingEngine component should

be added under the parent Application node and should capture the commonalities

as attributes. Then as a child of StreamProcessingEngine node type (at M1 level)

specific engine, such as Apache Kafka, Storm needs to be added. The variability

points specific to be the engines needs to be added as attributes. Reverse engineering

can obtain variable attributes.

Adding a new application component is time-consuming; however, it is a one-time effort,

and it is reusable.

62

III.3.4 Design of CloudCAMP Knowledge Base

The Knowledge Base of CloudCAMP comprises a database and the application type

templates.

Figure III.7: Entity-Relation(ER) Diagram of CloudCAMP knowl-
edge base

Figure III.8: Sample portion of KnowledgeBase
Database tables

III.3.4.1 Design of Knowledge Base Database

The ER diagram of the knowledge base database is depicted in Figure III.7, and it

reflects the artifact sets stored in the knowledge base. We have structured it as four tables:

os_pkg_mgr, os-dependency, packages and swdependency to build the knowledge

database. We store 1) all the operating systems, their distributions, and versions in the

os_pkg_manager table, 2) all available application component types, e.g., PHP based

web application, MySQL based DB applications, etc. are stored in swdependency table,

and 3) all the software packages needed for a particular application type is found using

reverse engineering and stored in the packages table. For example, to install the scikit-

learn package (http://scikit-learn.org), one needs to install python, python-dev, python-pip,

python-numpy, etc. using the apt-manager package, and then the scikit-learn package can

be installed from the pip package manager. In a relational table called os_dependency,

we map the software packages and their versions with operating systems and their versions

and store it as a key-value pair. For instance, to install java8 on Ubuntu 16.04, we need

63

 http://scikit-learn.org

different packages than to install java8 on windows10. We build the lookup table manually

to handle these variability points. For new application component types, the application

developer needs to populate the tables with all software dependencies. The sample section

of the database table structure is shown in Figure III.8.

III.3.4.2 Design of Knowledge Base Template

The knowledge base templates are designed by capturing the commonality point of

the application components, and it leaves the placeholders which need to be filled up by

the CloudCAMP DSML by querying the knowledge base database. One sample ansible-

specific template is shown in Figure. III.9(a). The algorithms to fill the template from

the user-defined specifications are described in Algorithm 1 and 2. The generated filled

template is shown in Figure. III.9(b). Different templates are designed to serve specific

application components with different configurations.

Figure III.9: (a)Sample DBapplication type template and (b)Sample portion of the Auto-generated code for Deploying MySQL
DB application

III.3.4.3 Extensibility of the Knowledge Base

The knowledge base is extensible by design. Addition of new application components

require the design of new templates (at least by part) by reverse-engineering the software

64

stack. The commonalities and variabilities need to be identified, and according to that,

the template needs to be designed. The software dependencies for the application com-

ponents need to be identified, and this information should be inserted in the knowledge

base database tables: os_pkg_mgr, os-dependency, packages and swdependency.

Similarly, for the new application components, the framework designer should insert and

manipulate the records in these tables correctly.

III.3.5 Generative Capabilities of CloudCAMP DSML

CloudCAMP DSML provides generative capabilities for an IAC solution by interpret-

ing the instances of models for which it incorporates a built-in knowledge base. The Cloud-

CAMP DSML in WebGME is built using JavaScript, NodeJS, and a MySQL database.

As an example, we will walk through the specifications needed to be captured for the

WebApplication and DBApplication component types. As shown in the M0 level of Fig-

ure III.5, the HTTP servers (e.g., Apache web server) for the webEngines are captured in

WebApplication component type, and that is related to the node template for a WebAppli-

cation. The development languages and frameworks (Node.js, PHP, Django, etc.) of the

webApplication is taken as attributes in the software property as depicted in the M1 level

of Figure III.5, which is derived from Application type of M2 level, and our modeling tools

meta-model is shown in M3 level. Similarly, as shown in the M0 level of Figure III.5, the

software for the database types (e.g., Relational Databases such as MySQL, PostgreSQL,

or NoSQL databases such as Cassandra, MongoDB) are captured in DBApplication com-

ponent type, and that is related to the node template for the Database Application. Related

features, such as the user id, password, specific binding port number of the Database appli-

cation, etc. are stated as attributes, which is captured in the M1 level of the MOF.

65

III.3.5.1 Knowledge Base for Generation of Infrastructure-as-code Solution for Deploy-

ment

CloudCAMP’s generative capabilities (Requirement III.1.2.2) are enabled via a We-

bGME plugin, which is invoked by a user after the modeling process. It generates and ex-

ecutes IAC as described in Algorithm 1. The VMs are spawned in the specified cloud plat-

form based on the destination of ‘HostedOn’ connection [Lines 8-14]. Wherever possible,

CloudCAMP will ensure that scripts specific to provisioning run in parallel to provide faster

deployment. Once the VMs are spawned, GenerateConfig() queries the knowledge base

[line24-34] to populate the appModel [line17] based on the user’s specifications. Then,

the query result fills application-specific pre-defined configuration templates and generates

IAC, e.g., Ansible, for specific application components [line 29-34] using template-based

transformation. A similar approach is taken to configure the service-specific containers or

to start the cloud-specific services.

A sample of the automated SQL script used to query the knowledge base for deploy-

ment script generation is shown below:

SELECT pkg . pkg_name

FROM packages pkg ,

swdependency dep

WHERE pkg . app_id = dep . id

AND pkg . apptype = <language>

AND pkg . sw_id IN

(SELECT app_sw_id

FROM os_dependency

WHERE os_ id IN

(SELECT id

FROM os_pkg_mgr

WHERE concat (os_type , os_ver s ion)=<os >, <vers ion >))

III.3.5.2 Determining the Order of Deployment and Execution

The Enactor component, which is a NodeJS script, builds the dependency tree for the

application types defined in the meta-model and feeds it to the orchestration workflow

66

Algorithm 1: Deployment Script Generation
1 cloudModel← Objects to store cloud specs
2 appModel← Objects to store app specs
3
4 Procedure GenerateIAC()
5 if ConectionType == ‘HostedOn’ then
6 cloudType← the destination node of connection
7 appType← the source node of connection
8 if cloudType == ‘Desired Cloud Platform’ then
9 while !cloudModel.empty() do

10 Traverse the cloudModel
11 Fill ‘cloudType’ specific API Template
12 Generate ’cloudType’ specific script
13 Execute script to spwan VMs
14 end
15 end
16 IPAddress(es)← IP Address of target machine
17 GenerateConfig(IPAddress(es),appType)
18 if ConectionType == ‘connectsTo’ then
19 Find the source and destination application type
20 Prepare workflow to execute destination script(s)
21 Prepare workflow to execute source script(s)
22 end
23 end
24
25 Procedure GenerateConfig()

Input: IPAddress(es) of Application Component Type
26 Create empty Tree Structure
27 Fill ‘hosts’ with IPAddress(es) of App Component Location
28 if appComponent == ‘Desired Application Type’ then
29 while !appModel.empty() do
30 Traverse the appModel
31 Query dataBase for appType = ‘appComponent’
32 Fill ‘appType’ specific API Templates
33 Create complete Tree Structure
34 end
35 end
36 Wait for SSH in target machine(s)
37 Run workflow to execute tasks in parallel

67

engine. We generate scripts for automation tools (e.g., Ansible playbooks) for different

component types, and these tools can, in turn, dispatch tasks to multiple hosts in parallel. If

there is a ‘connectsTo’ relationship in the model, we let the dependent script complete first

by defining the dependency chain [Line 18-21]. All the ‘HostedOn’ dependent building

blocks run in a linear fashion. Thus, the Enactor remotely connects to the deployment

hosts and deploys the application in proper order.

III.3.5.3 Generation of Infrastructure-as-code for Migration

The algorithm for generating a migration workflow (Requirement III.1.2.3) is portrayed

in Algorithm 2. The ‘deleteFrom’ connection type specifies from where the user wants to

move the application components and attaches a ‘migrateTo’ connection type to indicate

the destination. The migrationType (stateless or stateful) must be selected, and depending

on that, CloudCAMP decides to checkpoint the application state or not before terminating

the old VMs/containers [Line 17-23]. The ‘migrateTo’ relation type cannot be defined

without ‘deleteFrom’ connection type to ensure the correctness of the model.

Although actions are taken for live migration, an application component from one VM

to another depends on the application component type, which is a hard problem. For exam-

ple, live migration of DBApplication needs a two-phase commit protocol, and a consensus

algorithm to make it reliable. For the sake of simplicity, in the Algorithm 2, we generalize

our approach. Our future work will consider more complicated scenarios of live migration

and application consistency and availability issues.

According to Algorithm 2, it will spawn a new VM with the new operating system for

the ‘migrateTo’ destination node. For Stateful migration[line 20-23], our platform creates

a manager node with a load balancer, and deploy the application on the current node. From

that point of time, the load balancer redirects all the new requests to the current node, and

it checkpoints the current state of the old node and restores it in the current node. Finally, it

detaches the load balancer node. Thus, it produces the full infrastructure-as-code solution

68

Algorithm 2: Migration Script Generation
1 cloudModel← Objects to store cloud specs
2 appModel← Objects to store app specs
3
4 Procedure MigrationIAC()
5 if ConectionType == ‘ deleteFrom’ then
6 cloudType← the destination node of connection
7 appType← the source node of connection
8 IPAddress(es)← IP Address of target machine
9 if cloudType == ‘Desired Cloud Platform’ then

10 Generate ’cloudType’ specific workflow script
11 Execute script to terminate VMs
12 end
13 end
14 if ConectionType == ‘migrateTo’ then
15 GenerateIAC()
16 end
17 if migrationType == ‘stateless’ then
18 Execute deletion and migration scripts in parallel
19 end
20 else if migrationType == ‘stateful’ then
21 Checkpoint current application state on old machine
22 Restore checkpoint on the current machine
23 Execute deletion and migration scripts in parallel
24 end

along with the related configuration files. All of these complete the Ansible layout tree

structure helps to migrate application components from one node to another node.

III.3.5.4 Support for Continuous Delivery

CloudCAMP can also handle continuous delivery and component addition/deletion,

which is just a matter of updating the model with addition or removal of a component.

For instance, to add a new database server, a user extends the model with a DBApplication

node type and ‘connectsTo’ relationships from the webserver to the database server. Cloud-

CAMP will generate IAC for the newly added component and executes it to deploy added

component without hampering the availability of the existing application. Since Ansible is

idempotent, it always sets the same configuration in the target environment regardless of

their current state.

69

III.3.5.5 Constraints Checking for Correctness Business Models

We also validate the business model by checking for constraint violations, thereby en-

suring that the models are “correct-by-construction.” We verify the correctness of the end-

point configurations for application component types, the relationship types, cloud-specific

types, etc., and the business model as a whole before generating any infrastructure code.

Examples of some of the constraints are shown below:

• ∀ Applications ∈WebApplication ∃! WebEngine

• ∀ Applications ∈ DBApplication ∃! DBEngine

• ∀ Platform ∈ Openstack ∃! imageName

• ∀ Applications ∈ DataAnalyticsApp ∃ processEngine etc.

We also verify other rule-based constraints to verify the compatibility of the component.

For example, Amazon Kinesis delivery stream destination has to be Amazon Services (e.g.,

Redshift, S3), it cannot be Azure or OpenStack Services. We gather this information using

reverse engineering. Thus, we validate the business model by satisfying the constraints and

notify the user if there are any discrepancies in the business model.

III.4 Evaluation

This section describes results comparing the time and effort incurred in deploying ap-

plication use cases using (a) manual efforts, where the deployer must log into each machine

and type the commands to install packages and deploy the applications, (b) manually writ-

ing scripts to deploy these applications, and (c) using the CloudCAMP framework.

III.4.1 Case Study 1: LAMP-based Service Deployment Study

This is a prototypical three-tier Linux, Apache, MySQL, and PHP (LAMP)-based mi-

croservice architecture deployment similar to the motivating example described in Sec-

70

tion III.1.1. Figure III.1 shows the application topology illustrating the modeling effort in

CloudCAMP.

Here, we describe the details of template-based transformation that happens behind

the scenes within CloudCAMP DSML. As stated in Algorithm 1, the DSML traverses

the business logic tree of Figure III.1, which is defined by the deployer, and collects all

the user-defined attributes as shown in Figure III.10 and Figure III.11. It populates the

pre-defined template for the specific application type with the user-defined attributes. The

‘mysql_user’ and ‘mysql_root_pass’ will be filled from specifications related to DBAppli-

cation type (Figure III.11).

Figure III.10: Specifications related to WebAppli-
cation type

Figure III.11: Specifications related to DBApplica-
tion type

The application components’ software dependencies are gathered by querying the knowl-

edge base database. For example, to install MySQL on a Ubuntu16.04 machine, the mysql-

server and mysql-client software packages are needed. So, CloudCAMP DSML will query

the knowledge base database and runs the template-based transformation to concretize the

pre-defined partial template. The DSML copies the related configuration files in specific

folders to configure MySQL correctly. Thus, the DSML will populate the pre-defined tem-

plate file with all the details, and generate deployable Ansible-specific deployable IAC. Af-

ter generating all the Ansible-specific files, the CloudCAMP executes these files in proper

order to deploy the application by provisioning the cloud infrastructure as described in

Algorithm 1.

71

III.4.1.1 Measurement of Manual Effort

We conducted a small user study in a Cloud Computing course for case study 1 involv-

ing sixteen teams of three students each. We requested users to manually configure the

files, create the handlers to specify the deployment order in the desired host, log into each

host where the application components are deployed and manually install the packages,

configure the software packages and finally start the different components in the correct

order. We have also requested them to write the ansible script to provision the same ap-

plication stack and infrastructure. We measured the time taken, and efforts for (a) a fully

manual effort, (b) for writing scripts in Ansible and executing these manually, and (c) using

the CloudCAMP framework to deploy the scenario.

. Quantitative Evaluation based on a User Study: The questionnaire as shown in Ta-

ble III.1 was created to conduct the study. For each question, the evaluation scale was 1–10

where one is the easiest and ten is the hardest.

Num Question
Q1 How easy is it to deploy PHP MySQL application manually?
Q2 How easy is it to deploy PHPMySQL using DevOps tool like Ansible?
Q3 How easy is it to deploy PHPMySQL using CloudCAMP?
Q4 How much time and effort did you require to deploy the application manually (in minutes)?

Q5
How much time and effort are required in deploying the application using DevOps tool like
Ansible (in minutes)?

Q6
How much time and effort are required deploying the application using CloudCAMP (in
minutes)?

Q7 How likely are you to use the CloudCAMP platform to deploy applications in future?

Table III.1: Survey Questionnaire: For Q1–Q3, rate on a scale of (1-10)

. Responses to Q1, Q2, and Q3 - Ease of use: As seen from Figure III.12, the “ease of

use” rating for the CloudCAMP platform is much higher compared to manual and scripting

efforts. The median difficulty in the manual effort is rated as 72.2%, and median difficulty

in scripting effort is rated as 71.6%, while the median difficulty rating for CloudCAMP use

is 30.9%.

72

D
iff
ic
ul
ty
 P
er
ce
nt
ag
e

Figure III.12: Comparing difficulty percentages to deploy services in
different approaches

Figure III.13: Likeliness of using Cloud-
CAMP for future cloud services deployment

Deployment
Time(mins)

Lines to
Deploy

Migration
Time(mins)

Lines to
Migrate

median 510 300 720 550
mean ± std.dev. 516±244 315±47 653±231 553±142

Table III.2: Median and mean±std.dev for deployment time, lines of code written for deployment, migration time and Lines
of code written for migration (for Q5–Q6).

. Responses to Q4, Q5, and Q6 - Time to complete the entire deployment:

The effort incurred by the user to deploy the LAMP model in the Cloud is shown in

Table III.2, whereas using the CloudCAMP the same topology deployment time is approx-

imately 15-20 minutes for the first time users.

. Response to Q7:As shown in Figure III.13, 65% of the respondents agreed to use

CloudCAMP tool to deploy cloud applications in the future, whereas 30% are still unsure.

Discussions. Results from our user study strengthen our belief that the CloudCAMP

platform will be a very resourceful and productive tool for business application deployers.

We have also conducted a user study specifying to create Docker Containers (https://www.

docker.com/) and deploy the LAMP architecture inside it using scripting tools and found

very similar results. The visual drag and drop environment helps users to quickly deploy

various scenarios of business application topology in distributed systems. Therefore, the

benefits of automated provisioning accrued using CloudCAMP can easily be understood.

73

https://www.docker.com/
https://www.docker.com/

III.4.2 Case Study 2: Application Component Migration for LAMP-based Web Ser-

vice

CloudCAMP platform also supports application component migration with ease for

which we have two connection types ‘deleteFrom’ and ‘migrateTo’. As described in Sce-

nario III.1.2.2, suppose the user wants to migrate the database application component from

one machine to another machine, which resides on a different OpenStack cloud platform.

This assignment was to migrate the ‘stateful’ MySQL database service from one node

to another node, and the students are asked to add load balancer node to make the ser-

vice available all the time. CloudCAMP generates a new workflow structure based on the

changed user specifications as described in section III.3.5.3.

. Responses to Q4, Q5, and Q6: Time to complete the whole migration: The average

time the students took to write the scripts to complete the entire migration process is 653

minutes, with a median of 720 minutes as shown in Table III.2. Whereas our rough es-

timates for students using the CloudCAMP-based topology migration will be only 10-15

minutes for the first time users. The average lines of code written using manual effort for

the migration process are 553 lines as per the survey is shown in Table III.2.

III.5 Conclusion

III.5.1 Summary

This chapter presented a model-driven engineering and generative programming ap-

proach for an automated deployment and management platform for cloud applications. It

aids the application deployer in modeling service provisioning at a higher level of abstrac-

tion, and deploy its code without requiring significant domain expertise while requiring

only minimal modeling effort and no low-level scripting. All the application components

are the building blocks in our modeling environments and can be connected using exposed

endpoints as a pipeline. The DSML will generate a "correct-by-construction" IAC solu-

74

tion from the pipeline and execute the IAC to provision the application stack on the target

cloud environment. Using WebGME to define the CloudCAMP framework enables us to

decouple its metamodel(s) and knowledge base from the generative aspects while permit-

ting extensibility. CloudCAMP significantly increases the productivity and efficiency of the

application deployment and management team. CloudCAMP is available in open source

from https://doc-vu.github.io/DeploymentAutomation.

III.5.2 Discussions

CloudCAMP provides the flexibility to modify the application components as needed

and facilitates selecting the building blocks for business requirements. We leave the choice

of application design to the application deployer. For example, one can select MongoDB

and Cassandra for their backend in the development phase, deploy and do a performance

test without much hassle. As the framework matures, we can support more application

components.

75

https://doc-vu.github.io/DeploymentAutomation.

CHAPTER IV

BARISTA: EFFICIENT AND SCALABLE SERVERLESS SERVING SYSTEM

FOR DEEP LEARNING PREDICTION SERVICES

IV.1 Introduction

IV.1.1 Emerging Trends

Cloud-hosted, predictive analytics services based on pre-trained deep learning mod-

els [67] have given rise to a diverse set of applications, such as speech recognition, natural

language processing, fitness tracking, online recommendation systems, fraudulent behav-

ior detection, genomics, and computer vision. End-users of these services query these

pre-trained models using an interactive web or mobile interface through RESTful APIs.

Based on the supplied input, these pre-trained models infer the target values and return the

prediction results to the end-users. As an example, a speech recognition system transcribes

spoken words into text [68].

These prediction services are usually containarized [69] and encapsulated with all the

required software packages. Thus, deployer of these services can preferably use the function-

as-a-service (FaaS) approach to hosting these services in an event-driven manner, wherein

the functions are executed on the occurrence of some trigger or event (e.g., incoming re-

quest). This overall approach can be handled using serverless computing [70] since the

service creator needs only to provide the function logic, the trigger conditions, and the

service level objectives(SLOs), such as latency bounds, which are on order of few sec-

onds. It is then the responsibility of the serverless platform provider to provide the hosting

environment for these services and ensure that the SLOs are met.

76

IV.1.2 Challenges and State-of-the-Art Solutions

The execution environments for deep learning-based prediction services typically com-

prise containers running on a cluster of virtual machines (VMs). These prediction services

are usually stateless, parallelizable(multi-threaded), and compute-intensive. The model

sizes of these prediction services are large (hundreds of megabytes to gigabytes), which

takes a significant time to load them into the containers and provision the infrastructure.

Moreover, due to the parallelizable nature of these models, their running times can be sub-

stantially reduced by assigning more CPU cores (see Figure IV.1). However, allocating

more memory only marginally improves the running times. Thus, a naïve approach to as-

suring the SLOs is to over-provision the service infrastructure; however, doing so imposes

undue costs on the serverless provider. The efficient management of computing resources

dynamically is required to minimize the cost of hosting these services in the cloud environ-

ment [71, 70, 14].

Although a substantial amount of literature exists on finding the sweet spot between

resource overprovisioning (which wastes resources and increases the cost) and underpro-

visioning (which can violate the SLOs) [72, 73, 74], these works focus primarily on long-

running analytics jobs for which the goal is to find optimal configurations to meet the SLOs

and scale the resources dynamically to handle their variable workloads.

In contrast, the prediction services have short running times. Moreover, the incoming

request (workloads) patterns can fluctuate significantly and follow a diurnal model, which

requires rapid management of resources to meet the variable workload demands. A reactive

approach is not suitable as the prediction latency may increase significantly due to infras-

tructure provisioning time (e.g., an order of minutes due to VM creation and model loading

times). Hence, the desired solution is one that can forecast the workload patterns and can

estimate the required resources for the application to maintain the SLOs under the fore-

casted workload. Determining the right cluster configurations and allocate the resources

dynamically is hard due to the variability of cloud configurations (VM instance types), the

77

number of VMs, and their deployment and management costs [72, 75, 9].

Only recently have some solutions started to emerge to address these concerns [71, 76].

Nevertheless, there remain many unresolved problems. First, current horizontal elasticity

solutions for prediction services often do not account for the container-based service life-

cycle states (e.g., whether the VM is already up or not, or whether the container is running,

and if so, whether the model is loaded or not). Each such state incurs a hosting cost and im-

pacts the running time. Second, vertical elasticity solutions for containers do not yet fully

exploit the parallelizable aspects of the pre-trained models. Third, proactive resource scal-

ing decisions require effective workload forecasting and must be able to monitor the service

lifecycle states, both of which are missing in prior efforts. Finally, existing strategies for

container allocation tend to overlook performance interference issues from other co-located

containerized services, which may cause unpredictable performance degradation [20].

IV.1.3 Overview of Technical Contributions

To address these unresolved problems, we present a serverless framework called Barista

which hosts containerized, pre-trained deep learning models for predictive analytics in the

cloud environment, and meets the SLOs of these services while minimizing hosting costs.

Barista comprises an efficient, data-driven, and scalable resource allocator, which estimates

the resource requirements ahead of time by exploiting the variable patterns of the incoming

requests and the forecast-aware scheduling mechanism improves resource utilization while

preventing physical resource exhaustion. We show how serverless computing concepts for

dynamically scaling the resources vertically and horizontally can be utilized under differ-

ent scenarios. Barista efficiently and cost-effectively provisions (scale-up and scale-down)

resources for the prediction analytics services to meet its prediction latency bound. Specif-

ically, we make the following contributions:

1 Workload Forecast: We propose a hierarchical methodology to forecast the work-

load based on historical data.

78

2 Resource Estimation: Barista allows service providers to communicate the perfor-

mance constraints of their service models regarding their SLOs. An analytical model

is provided to predict resource estimation based on latency bound, workload fore-

casting, and the profiled execution time model on different cloud configurations.

3 Serverless Resource Allocation: Barista provides a novel mechanism using the server-

less paradigm to allocate resources proactively based on the difference between re-

source requirement estimation and current infrastructure state in an event-driven

fashion.

IV.1.4 Organization of the Chapter

The rest of the chapter is organized as follows: Section IV.2 presents a survey of existing

solutions in the literature and compares them Barista; Section IV.3 presents the problem

formulation; Section IV.4 presents the design of Barista; Section IV.5 evaluates the Barista

resouce allocator for a prototypical case study; and finally, Section IV.6 presents concluding

remarks alluding to future directions.

IV.2 Background and Related Work

This section provides an overview of and literature survey along the dimensions of

Deep Learning-based Prediction Services, Infrastructure Elasticity, Serverless Computing,

and Workload forecasting, all of which are critical for the success of the presented work on

Barista.

IV.2.1 Deep Learning-based Prediction Services

Pre-trained models based on Deep Learning techniques are increasingly being used in

prediction analytics services. In this approach, all the learned internal parameters are stored

in the form of a vector of scores for each category along with their weights in a pre-trained

79

deep learning model of desired accuracy [67]. Once the models are trained, these prediction

models are seamlessly integrated into applications to predict outcomes based on new input

data.

IV.2.2 Serverless Computing

Serverless Computing focuses on providing zero administration by automating deploy-

ment and management tasks. In this paradigm, the responsibility of deployment and man-

agement is delegated to another entity, which could be the cloud infrastructure provider

itself or a mediating entity. The execution platform leverages container technology to de-

ploy and scale the prediction service components, which helps to minimize idle resource

capacity [38]. These features are beneficial to the design and deployment of parallelizable

(multi-threaded) deep learning prediction services.

These features are beneficial to the design and deployment of deep learning prediction

services. Moreover, isolation and decentralization of the pre-trained models due to con-

tainers help to isolate both scaling on a per-model execution level and failures. However,

due to variation in workloads, the providers of prediction services are required to modify

their resource requirements by monitoring the resources continuously [77], and that reac-

tive approach can often violate the SLOs. Barista intelligently and efficiently manages the

containerized allocation based on resource estimation by workload forecasting and profil-

ing the execution time of prediction services.

The MxNet deep learning framework [78] shows the feasibility of using serverless com-

puting AWS Lambda framework [79]. There are several efforts [39, 7, 80, 36, 8, 36] to

deploy and orchestrate VMs or containers dynamically with all software dependencies.

Barista’s focus is orthogonal to these efforts; instead, it is to trigger the deployment pro-

cess ahead of time so that the system can handle the workload surges by utilizing the afore-

mentioned efforts.

80

Figure IV.1: Box plots of prediction times for different deep learning pre-trained models on different numbers of CPU cores
(2, 4 and 8).

IV.2.3 Dynamic Infrastructure Elasticity

Most state-of-the-art technology and research strategies to horizontally or vertically

scale the resources are heuristics-driven or rule-based and have custom triggers. Selecting

optimal cloud configurations is an NP-hard problem, and various models are presented

based on heuristics [81, 20, 82, 37, 83, 73]. In Barista, we consider leasing VMs from

the cloud provider to meet the latency bounds by relying on time series forecasting of the

incoming workloads. We propose an efficient heuristic to select configuration types to

guarantee bounded prediction latency while minimizing the cost.

Swayam [71] presented a short-term predictive provisioning model to guarantee SLO

while minimizing resource waste. However, they only consider horizontal scaling by al-

locating more backend containers from the resource pool. Model loading time for deep

learning models is significant, especially when the container is in cold state [78]. In con-

trast, Barista proactively considers infrastructure provisioning time to scale the system and

also allows vertical resource scaling.

Vertical elasticity adds flexibility as it eliminates the overhead in starting a new VM

and loading the service model. Prior efforts to scale the CPU resources vertically appear

in [84, 85] including an approach that uses the discrete-time feedback controller leverag-

ing MAPE-K loop for containerized applications [69]. Barista uses an efficient, proactive

method to trigger the scaling of resources horizontally while relying on vertical scaling

reactively to allocate and de-allocate CPU cores for model correction when our estimation

model cannot predict accurately. Our reactive approach can also handle sudden workload

81

spikes within a threshold.

IV.2.4 Workload Forecasting

Workload forecasting is indispensable for service providers to anticipate changes in

resource demands and make proactive resource allocation decisions. Various forecasting

methods based on time series analysis are described in [86]. In AGILE [87], a resource

prediction algorithm is proposed to scale up the server pool by renting the VMs from the

cloud providers a priori to guarantee the SLOs of the services. Similarly, Dejavu [88] and

Bubble-Flux [89] proposed self-adaptive resource management algorithms, which lever-

age workload prediction and application performance characterization to predict resource

requirements. These efforts employ a linear model for workload prediction, which often

results in low-quality forecasts with high uncertainty.

Several non-linear methodologies based on Support Vector Machine [90], Error Cor-

rection Neural Network (ECNN) [91], Gaussian processes [92, 18] are proposed to predict

workloads. However, these models fail to capture longer-term trends, which are charac-

teristics of cloud-hosted services [93]. In [93], a hybrid model called Prophet is proposed

for forecasting workloads by combining linear/logistic trend models with a Fourier series-

based seasonality model. According to the authors, Prophet is easier to use than the widely

used ARIMA models [69, 94, 95] as it handles missing values automatically. Moreover, the

ARIMA models generally struggle to produce good quality forecasts as it lacks seasonality

detection.

In general, workload forecasting methods tend to lack feedback to update predictions

based on recent performance. Therefore, Barista extends Prophet with a non-linear decision-

based model that modifies the forecast according to previous prediction errors. Barista

workload forecasting model estimates the resource requirement and proactively scales the

infrastructure to guarantee application SLOs.

82

IV.3 System Model and Problem Description

This section first describes the system model and assumptions and then presents the

problem formulation, which has two subproblems. First, given the SLO of the service, the

pre-trained model properties, and the costs of VM configurations, we determine the cost-

effective VM types by solving an optimization problem to meet their SLOs (Section IV.3.2).

We then consider the dynamic management of VM and container resources through work-

load forecasting and infrastructure elasticity (Section IV.3.3).

IV.3.1 Infrastructure Model and Assumptions

To explore the /emphserverless capabilities, we assume that the Deep Learning pre-

trained model for the predictive analytics service is encapsulated inside containers that are

executed in a cluster of VMs. All the requests to the service are assumed to be homoge-

neous, i.e., they execute the same prediction model, and that the service is stateless. Since

deep learning models are generally compute-intensive, they benefit from executing on mul-

tiple cores. We validate this claim in Figure IV.1, which shows the range of prediction time

latencies for several pre-trained deep-learning models on a VM hosted on AMD Opteron

2300 (Gen 3 Class Opteron) physical machine with different numbers of assigned CPU

cores, demonstrating good speedup behaviors. The results are obtained by running 10,000

trial executions in isolation for each model. Further, let min_mem denote the minimum

amount of memory required to run a prediction model.

The VM lifecycle in cloud infrastructure for service deployment and management is

considered as follows.

1 VM Cold: VM has not been deployed.

2 VM Warm: VM is deployed, but the container inside the VM has not been down-

loaded.

83

3 Container Cold: the container is downloaded, but the pre-trained deep-learning

model has not been loaded into the container’s memory.

4 Container Warm: the deep-learning model is loaded, and the container is ready to

serve the prediction requests.

Finally, we assume that once a VM is deployed, it is leased from the cloud provider

for a minimum duration of τvm time. During this time, the deployment cost is paid for

even if the VM is not used (because we do not scale down the system immediately). This

could happen when the prediction model is unloaded from the container’s memory during

lightly-loaded periods so that the VM could serve other batch jobs in the background (e.g.,

deep analytics applications).

IV.3.2 VM Flavor Selection and Initial Deployment

We first consider the static problem of serving a fixed set of requests that execute a

deep-learning prediction model by finding the most cost-effective VM flavor type. Let λ

denote the constraint specified by the SLO of the model regarding its execution latency1,

and let tp denote the latency when the model is executed on p CPU cores.

To serve the prediction requests, we need to deploy a set of VMs from the cloud

provider that offers a collection of m possible configurations (flavors), denoted as {vm1,vm2,

. . . ,vmm}. We consider three parameters to specify each configuration vmi, i.e. 1 pi, the

number of available cores, 2 memi, the memory capacity, and 3 costi, the cost of deploy-

ment. In particular, the cost includes both the running cost and the management cost of

deploying the VM. For each configuration vmi, suppose αi ∈ {0,1,2, . . . ,} number of VMs

are deployed. Then, the total deployment cost is given by total_cost =∑
m
i=1 αi ·costi. While

each deployed VM is assumed to serve only one request at a time (because each request

is benefited from consuming all the cores as the prediction service is highly-parallelizable)

1Depending on the SLO; the execution latency can be flexibly defined, based on, e.g., worst-case latency,
x-percentile latency. In this chapter, we consider the 95th percentile latency.

84

and could serve multiple requests one after another. In this case, the request that is served

later in the pipeline needs to wait for the preceding requests to be first completed, which

will delay its prediction time.

The optimization problem concerns deploying a set of VMs, i.e., to choose αi’s for all

i = 1, . . . ,m, so that the total cost is minimized while the SLOs of all the requests can be

satisfied (i.e., with latency not larger than λ). Section IV.4.4 presents our VM deployment

solution.

IV.3.3 Dynamic Resource Provisioning via Workload Forecasting and Infrastruc-

ture Elasticity

The resources must be provisioned dynamically to meet the SLOs under the workload

variations. Since the reactive approach can be detrimental to response times, we use a

proactive approach to handle the variation of the workload by forecasting the future service

demands based on historical workload patterns of a deep-learning prediction model.

With the forecasted future workload (i.e., number of service requests), the VM deploy-

ment decision (as described in Section IV.3.2) must also be adapted accordingly. Horizontal

scaling [96] is a promising approach to provision the resources dynamically. To that end,

we exploit the four cloud infrastructure states explained earlier. Figure IV.2 illustrates the

actions needed to transition between the states. Each action incurs a state transition time.

Specifically, we denote the VM deployment time by tvm, the container service download

time as tcd , and the pre-trained model loading time as tml .2

Figure IV.3 shows concrete timings for the different prediction services we tested on

our experimental infrastructure. Further, we refer to total time to set up the service as

tsetup = tvm + tcd + tml . This motivates the need to forecast the future workload t ′setup =

tsetup + t f orecast time ahead to guarantee the SLO with certain accuracy, where t f orecast is

2The time required to unload the model from memory, denoted as tmu, is negligible and thus not consid-
ered. The time taken to move from any state to VM Cold is denoted as texp. This duration does not impact
the resource manager logic and hence is also ignored.

85

VM
Cold

Expire
(texp)

VM
Warm

VM
Spawn
(tvm)

Expire
(texp)

Container
Warm

Model
Load
(tml)

Expire
(texp) Container

Cold
Model
UnLoad
(tmu)

Container
Download
(tcd)

Figure IV.2: An abstract state machine showing different states and transitions associated with a life cycle of a VM in cloud
infrastructure. Edges are labeled with actions and time duration to complete the state transition.

the time taken to obtain the forecast. The forecasting needs to be performed for t ′setup time

into the future to account for the infrastructure setup time.

When the VM is not servicing any requests, the infrastructure state transitions from

Container Warm to Container Cold. Later on, when the load increases and the VM

needs to serve requests again, the model will be reloaded. As a result, we also need to check

the infrastructure state ahead of time to make decisions for downloading the container and

loading the model if it is not already in the Container Warm state. We account for all

of these times in meeting the SLOs while avoiding excess over-provisioning of the infras-

tructure resources. Section IV.4.5 presents our combined solution to the dynamic resource

management problem that incorporates infrastructure elasticity, workload forecasting, and

VM deployment.

Moreover, if the workload forecaster overestimates the workload, we allow the excess

resources to be utilized by the low-priority batch jobs by vertical scaling. Co-locating

86

Figure IV.3: The setup times (in seconds) for different deep-learning prediction models as per our experiment. The blue bar
shows VM deployment time (tvm), orange bars show the specific pre-trained model container download time (tcd), and grey
bar show prediction model loading time (tml).

various jobs on a server can cause performance interferences. In our approach, we assume

20% performance degradation (for the worst-case scenario based on our experiment) if the

latency-sensitive prediction service is co-hosted with batch jobs.

IV.4 Design and Implementation of Barista

In this section, we give the architectural insights of Barista by describing its various

components. We also explain our solutions to the problems of static VM deployment and

dynamic resource provisioning, as mentioned in Section IV.3.

IV.4.1 Architecture of Barista

Barista architecture consists of a pool of frontend and backend servers, load balancers

to distribute the requests, a platform manager to allocate and scale backends for different

prediction services, as shown in Figure IV.4. Frontend servers are the virtual machines,

87

which host the user interface, whereas backend servers host the containerized pre-trained

deep learning model. End users send their requests to the frontend load balancer, which

redirects the requests to the frontend servers based on the round robin policy. Each frontend

server forwards the request to the backend load balancer, which then redirects the request

to one of the backend servers assigned to serve the prediction query based on the least

loaded connection policy. Each backend processes a single request at a time and gives

the prediction result back. The platform manager is an integral part of Barista, which is

responsible for dynamic provisioning of resources in cloud infrastructure by forecasting

workload patterns and estimating the execution time of various prediction queries. The

platform manager (as zoomed-in Figure IV.4) consists of a prediction service profiler, a

request monitor, a request forecaster, a prediction latency monitor, and a resource manager.

They are described as follows:

1 Prediction Service Profiler: It profiles the execution time of a prediction service

on different numbers of CPU cores and finds the best distribution (as shown in Fig-

ure IV.5). This provides the 95th percentile latency estimate of the execution time

for the prediction service based on the assigned number of cores.

2 Request Monitor: It monitors and logs the number of aggregated incoming requests

received every minute by the backend load balancer.

3 Request Forecaster: It predicts the number of requests t ′setup time steps into the

future based on the historical data. The forecaster also updates its model every minute

based on the previous prediction errors and the actual data from the request monitor

to diminish uncertainty.

4 Prediction Latency Monitor: It monitors and logs the SLO violations for the in-

coming requests every five seconds. SLO is defined over the response time of the

backend servers to a prediction query requested by the frontend servers.

88

5 Resource Manager: It allocates the required number of virtual machines for the

forecasted workloads and performs intelligent scaling based on resource estimation

and provisioning strategies, as discussed in Section IV.4.4.

Load Balancer
(Frontend) Web Frontend

Servers

Load Balancer
(Backend)

Platform
Manager

Barista Control Plane

End Users

Backend
Servers

Latency
 Monitor

Request
Forecaster

Request
Monitor

Resource
Manager

Prediction
Service Profiler

Figure IV.4: Architecture of Barista serving system.

The operation of the platform manager can be categorized into two phases, online and

offline, as shown in Figure IV.5. In the offline or design phase, the execution time of the

deep learning model is profiled on different VM configurations followed by distribution

estimation. The workload forecasting model is also trained in this phase. In the online or

runtime phase, based on the output of workload forecaster and execution time estimator,

resources are estimated and provisioned. The actual workload is also being monitored and

stored, which is used to update the forecasting model based on the last five error predictions

and rolling training window. The following subsections provide more details on these

operations.

89

Offline Phase

Online Phase

Desired SLO for
the prediction

Service

Input

Workload
Monitor

Required
Resource
Estimation

Prediction
Service Profiler

Execution Time
Distribution
Estimation

95th Percentile
Execution Time
Estimation

Historical Web
Traffic Traces

WorkLoad
Model Learning

Workload
Forecasting and
Model Update

Figure IV.5: Data flow model of Barista platform manager.

IV.4.2 Execution Time Distribution Estimation

An inaccurate estimate of the execution time of a pre-trained deep learning model can

result in erroneous output produced by the resource manager, which may lead to over- or

under-provisioning of resources. Thus, in Barista, extensive offline profiling of different

deep learning models is performed on various VM configurations. Figure IV.1 shows our

experiments on configurations involving 2, 4, and 8 CPU cores with required memory size,

where each experiment contains 10,000 trails. The execution times are random and follow

an unknown distribution. In Barista, the resource manager uses the 95th percentile statistic

of the execution time to provision resources. In order to accurately calculate the percentile

values, we remove sample bias and estimate the unknown distribution.

Barista prediction service profiler estimates the distribution using parametric methods

based on Maximum Likelihood Estimation (MLE) for fitting different distributions and

finding their respective unknown parameters. For quantifying the goodness of fit, we

use one-sample Kolmogorov-Smirnov (K-S) test [97] to rank different hypothesized dis-

tributions. Given the cumulative distribution function F0 of the hypothesized distribution

and the empirical distribution function Fdata(x) of the observed dataset, the test statistic (Dn

) can be calculated by Equation (IV.1), where supx is the supremum of the set of distances

90

and n is the size of the data. According to [98], if the sample comes from distribution F0(x),

then Dn converges to 0 almost surely in the limit when n goes to infinity.

Dn = supx|F0(x)−Fdata(x)| (IV.1)

IV.4.3 Workload Forecasting

Barista uses an online rolling window based forecasting methodology to predict work-

load in order to allocate resources proactively. Request forecaster is composed of two main

components: 1 Forecaster, which is responsible for modeling both periodic and non-

periodic elements associated with time-varying workloads, and 2 Compensator, which

modifies the forecast produced by the first component according to the last five forecast

errors. These two components are briefly described as follows:

IV.4.3.1 Forecaster

A time-varying workload can be composed of three main elements - trend, seasonality

and holidays [99, 93], and they are combined as shown in Equation (IV.2) below:

y(t) = g(t)+ s(t)+h(t)+ εt (IV.2)

where g(t), s(t), h(t) model non-periodic changes, periodic changes (e.g., daily, weekly and

yearly seasonality), and effects of holidays which occur on potentially irregular schedules

over one or more days, and εt represents noise.

The trend function (g(t)) models how the workload has grown in the past and how

it is expected to continue growing. Modeling web traffic is often similar to population

growth in natural ecosystem, where there is a non-linear growth that saturates at carrying

capacity [93]. This kind of growth is typically modeled using the logistic function shown

in Equation (IV.3), where C is the carrying capacity, k is the growth rate, and m is an offset

91

parameter.

g(t) =
C

1+ exp(−k(t−m))
(IV.3)

The seasonality function (s(t)) models multi-period seasonality that repeats after a cer-

tain period. For instance, a five day work week can produce effects on a time series that

repeat each week. A standard Fourier series, as shown in Equation (IV.4), is used to provide

a flexible model of periodic effects [100], where P is the expected time series period and N

is the order.

s(t) =
1
2

a0 +
N

∑
n=1

[
an cos(

2πnt
P

)+bn sin(
2πnt

P
)

]
(IV.4)

The holiday function (h(t)) models the predictable variations in workload caused due to

holidays. However, these variations do not follow a periodic pattern, so their effects are not

well modeled by a cycle. The holidays are added in the form of a list and are assumed

independent of each other. An indicator function is added for each holiday that shows the

effect of a given holiday on the forecast. Barista leverages Prophet [93] for implementing

Forecaster.

IV.4.3.2 Compensator

This component adjusts the output of the forecaster based on the past forecast errors.

It can be modeled as a transformation function c, which changes the output of the fore-

caster y based on the errors from the last m forecasts E = {e1,e2, . . . ,em}, as shown in

Equation (IV.5) below:

y′ = c(y,yupp,ylow,E) (IV.5)

where yupp and ylow are the upper and lower estimation bounds of y. The transformation can

be learned using data-driven methods. In Barista, we use H2O’s AutoML framework [101]

to find the best hyper-parameter tuned algorithm.

92

IV.4.4 Resource Estimation

Resource estimation is one of the two main tasks performed by the resource manager.

Depending upon the forecasted value, the SLO, and the service type, the resource manager,

solves the static VM deployment problem described in Section IV.3.2. Due to the NP-

hardness of the problem, this subsection presents a greedy heuristic to perform static VM

deployment.

For each VM configuration vmi, we can compute the number of requests n_reqi it is

able to serve for a deep learning prediction service while meeting the SLOs:

n_reqi =


b λ

tpi
c, if memi ≥ min_mem

0, otherwise

Recall that λ is the model’s SLO timing constraint, min_mem is the model’s minimum

memory requirement, tpi is the latency to serve each request of the model using configura-

tion vmi with pi CPU cores, and memi is amount of memory available in vmi. We can then

define the cost per request for each configuration vmi as follows:

cpri =
costi

n_reqi

Let i∗ denote the index of the VM configuration with the minimum cost per request,

i.e., cpri∗ = mini=1...m{cpri}. Clearly, given an estimated workload y′ from the output of

Equation (IV.5), an optimal rational solution will deploy α∗ = y′
n_reqi∗

VMs of configuration

vmi∗ and incurs a total cost:

total_cost∗ =
y′

n_reqi∗
· costi∗ (IV.6)

To find the optimal integral solution is unfortunately NP-hard (via a simple reduction from

the knapsack or the subset sum problem). However, Equation (IV.6) nevertheless serves as

93

a lower bound on the optimal total cost.

To solve the integral problem, our greedy algorithm also chooses a single configuration

vmi∗ that has the minimum cost per request while breaking ties by selecting the configura-

tion with a smaller deployment cost. Thus, it deploys α = d y′
n_reqi∗

e VMs of configuration

vmi∗ for serving y′ requests, and incurs a total cost that satisfies:

total_cost = d y′

n_reqi∗
e · costi∗

<
(y′

n_reqi∗
+1
)
· costi∗

= total_cost∗+ costi∗ (IV.7)

Equation (IV.7) shows that the total cost of the greedy algorithm is no more than the optimal

cost plus an additive factor costi∗ . When serving a large number of requests, the incurred

cost is expected to be close to the optimal. Furthermore, the algorithm always deploys

VMs from the same configuration regardless of the number of requests to be served. This

makes it an attractive solution for handling dynamic workload variations without switching

between different VM configurations. The complete algorithm is illustrated in Algorithm 3.

IV.4.5 Resource Provisioner

Resource provisioning is a critical process running inside the Barista resource manager.

Its main objective is to scale the resources proactively to handle the dynamic workload.

Barista resource provisioner intelligently frees acquired resources for latency-sensitive ser-

vices when the predicted workload is low, i.e., horizontal scaling down. And when the

workload increases, the resource provisioner acquires new resources while taking into ac-

count already freed resources. We use two sets, κ and ψ , to indicate VMs that are used for

latency-sensitive prediction services. The VMs in κ denote resources that are actively used

for serving latency-sensitive prediction services while the VMs in ψ are those that have

been freed by resource provisioner.

94

Algorithm 3: Resource Estimation
1 Initialize: i∗← 0, cpr∗← ∞, cost∗← ∞, n_req∗← 0
2 for i = 1 to m do
3 tpi ← getExecutionTime(vmi,model)
4 memi← getMemory(vmi)
5 costi← getCost(vmi)
6 if memi ≥ min_mem then
7 n_reqi← b λ

tpi
c

8 cpri = costi
n_reqi

. Cost per request
9 if cpri < cpr∗ then

10 i∗← i
11 cpr∗← cpri

12 n_req∗← n_reqi

13 cost∗← costi
14 else if cpri = cpr∗ & costi < cost∗ then
15 i∗← i
16 n_req∗← n_reqi

17 cost∗← costi
18 end
19 end
20 end
21 Deploy α ← d y′

n_req∗ e VMs of configuration vmi∗

95

Algorithm 4: Resource Provisioning
1 Initialize: Flag← True, α ← 0, n_reqi∗ ← 0, i∗← 0,

params←{model,λ ,min_mem,memi, pi,costi,∀i = 1 . . .m}, κ ← /0, ψ ← /0, Hcdl , Hmld ,
Hexp

2 while True do
3 t← GetCurrentTime()
4 y′← GetForecast(t, t ′setup)

5 if Flag then
6 i∗,n_reqi∗ ← ResourceEstimation(params)
7 Flag← False
8 end
9 α ← d y′

n_reqi∗
e

10 Cκ
exp,C

ψ
exp← GetExpireVMCount(t + t ′setup,κ,ψ)

11 δ ← α− (|κ|−Cκ
exp)

12 if δ > 0 then
13 δscaled ←min

(
|ψ|−Cψ

exp,δ
)

14 δnew←max
(
0,δ −δscaled

)
15 for i = 1 to δnew do
16 IP←DeployVM(i∗)
17 κ .add(IP)
18 Hcdl[t + tvm] = (IP, model)
19 Hmld[t + tvm + tcd] = (IP, model)
20 Hexp[t + τvm] = (IP, model)
21 end
22 HScaleUp(δscaled ,κ,ψ)

23 else
24 HScaleDown(δ ,ψ,κ)
25 end
26 C← Hcdl[t]
27 M← Hmld[t]
28 E← Hexp[t]
29 foreach c ∈C do
30 DownloadContainer(c.IP,c.model)
31 end
32 foreach m ∈M do
33 LoadModel(m.IP,m.model)
34 end
35 foreach e ∈ E do
36 ModelUnload(e.IP,e.model)
37 TerminateVM(e.IP)
38 end
39 LoadBalancerUpdate()
40 WakeUpAtNextTick()
41 end

96

Resource provisioner is implemented as a daemon process that is invoked at a fixed in-

terval of time, as shown in Algorithm 4. On each invocation, the resource manager obtains

a workload forecast t ′setup timesteps into the future [Line 4], where t ′setup is the accumula-

tion of infrastructure provisioning time (tsetup) and forecasting time (t f orecast). The required

number of VMs (i.e., α) can be calculated based on the forecasted workload, as indicated

in Algorithm 3. The heuristic presented in Section IV.4.4 depends upon the SLO and cost

per request; the best VM configuration will remain fixed as long as these two factors are

unaltered. Thus, the best VM configuration index and the maximum number of requests

served per VM are calculated once and stored in variables i∗ and n_req∗, respectively [Lines

5-8]. After obtaining the required number of VMs α [Line 9], the difference between α

and |κ| is calculated to find the net number of VMs needed at timestep t + t ′setup. For this

difference, Cκ
exp (the number of VMs that will expire at time t + t ′setup) is subtracted from

|κ| to compensate for the VMs that will become unavailable due to lease expiration. The

final difference value is referred to as δ [Lines 10-11].

A positive value of δ implies more VMs will be required at t + t ′setup. This requirement

is fulfilled by: 1 re-acquiring δscaled freed VMs, and 2 spawning δnew new VMs, such

that δ = δscaled + δnew [Lines 13-22]. A negative value of δ signifies the abundance of

VMs at timestep t + t ′setup which leads to freeing VMs [Lines 23-25]. Here, HScaleUp

and HScaleDown functions scale the resources by re-acquiring δscaled VMs from κ to ψ

and freeing δ VMs from κ and ψ , respectively. New VMs are spawned by scheduling

container download, model loading and lease expiration events at timestamps t + tvm, t +

tvm + tcd and t + τvm, respectively [Lines 16-20]. Here, Hcdl , Hmld and Hexp are used to

register events related to downloading containers, loading models and terminating VMs as

key-value pairs, where the timestamps are the keys and the tuple (IP,model) is the value.

Apart from scheduling VMs for the future, resource provisioner also initiates the routines

for downloading containers and loading models from the previous forecasts at the current

timestamp t, followed by terminating VMs whose leases expire [Lines 29-38]. In the end,

97

Figure IV.6: Top ranked distribution that describes the variation in the sample data. The distribution (blue) is plotted on top
of the histograms (orange) of observations.

resource provisioner updates load balancer for newly deployed VMs, and sleeps till the

next tick [Lines 39-40].

We vertically scale down the number of cores of a particular container if we meet the

SLO with some threshold margin, and share the cores with the batch jobs. Vertical scaling

is also helpful in allocating more resources for sudden workload surges. Moreover, if the

resource estimator over-estimates the resources and whenever our prediction services can

de-allocate cores while maintaining the SLO, Barista frees up cores, and if we miss any

SLO, Barista will increase the number of cores immediately if more cores are available.

We de-allocate one core at a time to minimize latency miss, and we double the number of

cores (within maximum core limits of the VM) for the prediction service if there is any

SLO miss.

IV.5 Evaluation

We now empirically validate the Barista framework.

IV.5.1 Experiment Setup

Our testbed comprises an OpenStack Cloud Management system running on a cluster

of AMD Opteron 2300 (Gen 3 Class Opteron) physical machines. We emulated the VM

configurations as per the Amazon EC2 pricing model3 [102]. We used the AWS pricing

3We considered only forty-seven different configurations with two, four, and eight cores. Any GPU-based
or SSD-based configuration was not considered.

98

model to emulate our pricing model4. We employed DockerSwarm [103] as our container

management service on top of the VMs. HAProxy (http://www.haproxy.org) was used as

our frontend and backend load balancers. We built a NodeJS-based frontend web applica-

tion to relay the query to the backend predictive analytics service.

IV.5.2 Predicting Execution Time of Predictive Analytics Services

In this study, we considered two different kinds of predictive analytics applications:

image recognition and speech recognition based on six different pre-trained deep learning

models: Xception, VGG16, InceptionV3, Resnet50, InceptionResnetV2, and Wavenet (see

Figure IV.1). All these models were profiled on OpenStack VMs of variable numbers of

VCPU cores. Based on the data generated from profiling these models, the best distri-

bution was estimated from a list of available probability distributions. All the empirical

distributions closely resembled the hypothesized distributions. The best-fit distribution for

Wavenet service on two and four cores, Resnet50 service on four and eight cores, and In-

ceptionResnetV2 service on four and eight cores as a sample shown in Figure IV.6. Based

on the best-fit distribution, we calculate 95th percentile latency for each service.

IV.5.3 Workload Forecasting

Two different time-series datasets are used to emulate a realistic workload for predictive

analytics services. The first dataset is collected and published by NYC Taxi and Limousine

Commission [104]. We processed the data to extract the number of cab requests generated

every minute based on pick-up and drop-off dates and times [104]. This dataset is an

appropriate workload for a speech recognition component in a ride-sharing application to

request a ride. The second dataset contains data on the number and types of vehicles that

entered from each entry point on the toll section of the Thruway with their exit points [105].

This data can be used to represent a real-world workload of an image recognition based

4We did not run the experiments on Amazon cloud because of monetary constraints.

99

http://www.haproxy.org

predictive analytics service that aims to automatically detect the license plate number of

the entering or leaving car from a toll plaza. We processed the data to extract the total

number of cars entering a toll plaza every minute.

A total of 10,000 data-points from each dataset was used in our study. We utilized 6000,

500, 2500 data points for training, validation, and testing the Prophet-based Forecaster

model in both datasets, respectively. We performed hyper-parameter tuning for Fourier

series order, N, by iterating over five different values, [10, 15, 20, 25, 30], and with different

sizes of training window,W [4000, 5000, 6000]. Out of 15 possibilities, the configurations

with (N=30, W=6000) and (N=20, W=6000) produced the least absolute percentage error

(95th percentile) for first and second data sets respectively. The mean absolute error and

absolute percentage error (95th percentile) for first and second datasets are (27.66, 29%),

and (27.84, 30.26%), respectively.

In Barista, we extended Prophet with a machine learning-based compensator to adjust

the forecast based on the last five prediction errors. We determined ‘five’ errors to be

considered based on empirical results. Apart from five past prediction errors, the recent

forecast of Prophet along with upper and lower estimation bounds are used as features

for learning the model. We used the data points of Prophet (3000 points) to train the

compensator model, and another 1000 points were used to test and analyze our hybrid

approach with Prophet. We used H2O’s implementation of AutoML framework [101] to

identify the best family of the learning algorithm and tune hyperparameters. XGBoost

based gradient boosted trees outperformed other machine learning models such as Neural

Networks, Random forest model, and selected as the best model. The training, cross-

validation, and testing mean absolute errors for first and second datasets are (12.65, 15.10,

21.26), (12.24, 15.13, 22.65), respectively. The forecasting results of Barista and Prophet,

along with the actual workloads, are shown in Figure IV.7 and IV.8.

It is visible from the figure that the Barista prediction curve closely resembles the actual

workload and predicts the sudden burst of requests with reasonable accuracy as compared

100

Figure IV.7: Performance comparison of Barista (blue) and Prophet(green) along with ground truth (First Dataset)
(red)

Figure IV.8: Performance comparison of Barista (blue) and Prophet(green) along with ground truth (Second Dataset)
(red)

to Prophet, which often lags and leads. Figure IV.9 and IV.10 shows the cumulative per-

centage error distribution of both approaches on the test set of thousand points. Barista

outperforms Prophet by 37 and 46% in first and second data sets, respectively.

IV.5.4 Resources Selection and Provision

Barista makes the resource selection and provisioning based on algorithms described in

section IV.4.4 and IV.4.5. We evaluated our resource estimator and provisioner at different

101

Figure IV.9: Cumulative Absolute Percentage Error Distribution of First Dataset

Figure IV.10: Cumulative Absolute Percentage Error Distribution of Second Dataset

time points in the life cycle of prediction services. We uniformly distributed the workload

traces from one minute to five seconds for our experiment. We met the target SLO (two

seconds and 1.5 seconds respectively) 99% of the time over 12000 seconds, as shown

in Figure IV.12 and IV.13 for the workload datasets. However, the SLO (two seconds)

compliance rate marginally dropped to 97%, as shown in Figure IV.14.

Barista not only guarantees SLO compliance but also minimizes running and man-

agement costs by intelligently selecting the VM type and provision these VMs. Even if

assigning more cores reduces the running time of the prediction services, selecting VMs

with the highest number of cores is not always the best option. As mentioned before in

Section IV.4.4, we consider the price of the Amazon EC2 instances for solving the re-

source estimation problem. Barista selected VM configuration depends on SLO, cost, and

estimated execution time of the prediction service. We considered VM expiration time on

an hourly basis (instance hour as an example scenario) and emulated the prices of VMs

accordingly. For configuration 1, we considered t3.2xlarge VMs, for configuration 2, we

102

Figure IV.11: Cost comparison between multiple VM configurations (Cost infinity means the VM is infeasible option, it cannot
serve the request within the SLO bound)

considered t3.xlarge VMs, and for configuration 3, we considered t3.small VMs(as our

min_mem constraint is 2 GB). We solved the optimization problem for given SLO bound

to select the VM type; we considered this VM type as one of the configurations for our ex-

periment. Then we considered the other two VMtypes of the same VM group(Here group

means Amazon EC2 instance types groups e.g., general-purpose(t3, compute-intensive(c4-

5 group), etc.) with different core capacities. In the figure IV.11, we have shown the total

cost for hosting the backend VMs for 10 hours(600 mins), while guaranteeing the SLO

bound for the workload traces [104, 105]. Because of the cost difference of different VM

configurations, selection of the most powerful VM type is not a good option always; as

shown here, more number of low-powerful VM configurations can be better. This hap-

pens because prediction services are stateless, and it utilizes all the cores available in that

VM/machine, and these jobs are always served sequentially. We observed Barista could

perform 50−95% better than the naive approach.

103

Figure IV.12: The upper image shows
how we guaranteed 2 seconds SLO
for Resnet Prediction service and
the experienced latency by selecting
Barista selected VM configuration on
toll dataset, Lower image shows the
actual request rate, predicted request
rate, and number of allocated VMs (
t3.small (2cores)).

Figure IV.13: The upper image shows
how we guaranteed 1.5 seconds SLO
for Wavenet Prediction service and
the experienced latency by selecting
Barista selected VM configuration on
taxi dataset, Lower image shows the
actual request rate, predicted request
rate, and number of allocated VMs (
t3.small (2cores)).

Figure IV.14: The upper image shows
how we guaranteed 2 seconds SLO
for Xception Prediction service and
the experienced latency by selecting
Barista selected VM configuration on
toll dataset, Lower image shows the
actual request rate, predicted request
rate, and number of allocated VMs(
t3.xlarge (4cores)).

Figure IV.15: Barista Performance Results on selected VM configuration as backend

IV.5.5 Reactive Vertical Scaling for Model Correction

We monitored the latency of the services at every five seconds and take decisions ac-

cordingly based on the monitored latency and the SLO bound. We considered a deployment

scenario where prediction services can run with other low-priority co-located services, so

our goal here to demonstrate that we can vertically allocate and de-allocate CPU cores by

monitoring the SLO.

La
te
nc
y(
Se
co
nd
s)

Time in Seconds

Latency with max(8) cores
Latency with allocated cores
Workload

Allocated Cores

InceptionV3 Prediction Service

C
or
es
#

Time in Seconds
Xception Prediction Service

Allocated Cores

Latency with max(8) cores
Latency with allocated cores
Workload

La
te
nc
y(
Se
co
nd
s)

C
or
es
#

Figure IV.16: Vertical Scaling to allocate the number of CPU cores(red line) while maintaining the SLO bound of 5 seconds.
The blue dotted line shows the workload pattern, and solid navy blue line shows the latency of the prediction services if run
on maximum allocated cores on a VM of 8 cores. The green line shows the latency if we dynamically (de)-allocate the cores.

Figure IV.16 shows how over-provisioning for two prediction services (Xception and

104

InceptionV3) could be handled reactively by adjusting the CPU cores at runtime. Using

our reactive approach for vertical scaling, we saved approximately 15% and 30% of CPU

shares of an eight cores OpenStack VM for Xception and InceptionV3, respectively, on

a particular workload trace. Our reactive approach also achieves over 98% of the SLO

hits while optimizing the CPU shares significantly. We also observed similar behaviors

for other prediction services, thus demonstrating the capabilities of Barista to make the

model correction if there is any resource over-provisioning due to over-estimated time-

series prediction.

IV.6 Conclusion

IV.6.1 Summary

Predictive analytics services based on deep learning pre-trained models can be hosted

using serverless computing paradigm due to their stateless nature. However, meeting their

service level objectives, i.e., bounded response times and bounded hosting costs, is a hard

problem because workloads on these services can fluctuate, and the state of infrastructure

can result in different performance characteristics. To resolve these challenges, this chapter

describes Barista, which is a dynamic resource management framework providing horizon-

tal and vertical auto-scaling of containers based on predicted service workloads. Selecting

an optimal cloud configuration is an NP-hard problem; hence we proposed a heuristic to

select proper cloud configuration, which is minimizing the cost while maintaining the pre-

diction latency bound (SLO).

IV.6.2 Discussions

The Barista approach can broadly apply to other compute-intensive and parallelizable

simulation services where the model needs to be loaded in memory first, and the behav-

ior of the simulation determined based on users’ request and user-specified SLO. In this

105

chapter, we did not consider running different co-located prediction services together on

the same machine, where workload patterns for each prediction service can be different.

Vertical scaling the different prediction services at the same time on the same machine is

the dimension of future work.

106

CHAPTER V

DEEP-EDGE: AN EFFICIENT FRAMEWORK FOR DEEP LEARNING MODEL

UPDATE ON HETEROGENEOUS EDGE

V.1 Introduction

V.1.1 Emerging Trends

The past decade has seen substantial progress in Deep Learning (DL) [67], particularly

Deep Neural Networks (DNNs), leading to its widespread adoption in various domains,

such as medicine [106], geology [107] and vehicular navigation [108]. With the advent

of the Internet of Things, intelligent edge devices gather and analyze data streams contin-

uously based on trained DL models. Traditionally, the model updating process happens

in the cloud where the data collected from the edge of the network is transferred to the

cloud data-centers. Once the models are trained, these prediction models are seamlessly

integrated into the edge-based applications to predict outcomes based on new input data.

These DL models perform exceedingly well in terms of accuracy on the trained and vali-

dation data.

V.1.2 Challenges and State-of-the-Art Solutions

Despite advances in DL technology, the predictive analytics-based application that is

composed of a deep learning component can experience a reduction in accuracy over time

due to changes in the input data distribution [13]. This phenomenon is referred to as Con-

cept Drift [12]. In order to overcome model staleness and incorporate changes due to input

data streams, continual learning [109]has been used to periodically refine the static mod-

els by re-training the existing model using the recent data. Figure V.1 shows the lifecycle

of a machine learning model in production, where an inference API hosts the DL model.

107

Recent data, along with the predicted and actual labels are stored in a data store that is fed

to the model update process based on a user-defined trigger to replace the stale model with

an updated one.

Training Data Deployed Model

Model Update

Client Query Prediction API

Label

Trigger
Data Store

(query, predicted label,
actual label)

Figure V.1: Life Cycle of Machine Learning Task

However, re-training of the DL model is a highly resource-intensive and time-consuming

task even with parallelization techniques. Various distributed DL frameworks, such as

Tensorflow [110], MXNET [111], Ray [112], have been developed to reduce the training

time by distributing the training workload among multiple machines (cluster) consisting of

one or more Graphics Processing Units (GPUs) or Application Specific Integrated Circuits

(ASICs) such as Tensor Processing Units (TPUs). With its resource-rich environment and

elastic capabilities, the cloud provides the right platform for the DL model re-training. In

this context, distributed training of DL models using powerful GPU clusters in cloud data

centers has been studied extensively in the literature [113, 114, 115]. Distributed training of

Deep Neural Networks (DNNs) is performed across multiple worker machines with many

possibilities for parallelization. The predominant methods of parallelization are (1) data-

parallelism, where each worker is responsible for training on a shard of the data set; (2)

model-parallelism, where each worker is responsible for training on a shard of the model;

108

and (3) a hybrid approach of the two. In this chapter, we mainly focus on data-parallel

distributed training.

However, the availability of powerful and reliable GPU-accelerated edge AI products,

such as NVIDIA’s Jetson family [116] (TX2, Nano, Xavier) and Google’s edge TPU [117]

(Coral), has made continual learning viable using edge devices. In particular, the edge

devices are suitable for performing the model update due to the following reasons:

1 The computational power of edge devices is sufficient for updating small to medium-

sized DNNs (up to 150 million parameters), such as VGG, Resnet, Inception, Mo-

bilenet, Densenet.

2 The duration of the model update task is far less than the initial model training time,

as fewer full data iterations (epochs) are required.

3 Performing model update at the edge avoids costly data transfers to the cloud.

4 Using edge devices for the model update also handles data privacy concerns and

reduces data security threats.

Edge computing has been discussed primarily in the literature to run prediction tasks

for DL applications to achieve low latency and bandwidth savings [118, 119, 11]. In this

chapter, we study methodologies to update DL models on edge devices in a distributed

manner to reduce training time and to increase throughput. Most prior works on distributed

learning (be it in the cloud or edge) assume a homogeneous cluster, where workers possess

similar computation and network capacity [120]. However, most of the approaches do not

apply to edge clusters due to the higher level of heterogeneity among the edge devices. The

heterogeneity can be a result of the different physical characteristics of the devices, such

as the number of processors, CUDA cores, memory, etc. or due to the workload associated

with the devices.

109

Furthermore, besides training jobs, the edge devices are also assigned to perform latency-

critical jobs, such as prediction or inference from the incoming image requests. These la-

tency requirements are captured by Service-Level Objectives (SLOs), which should be met

by the hosting platform. However, co-habiting DL training jobs in the background, along

with such latency-critical applications, may violate their SLOs. Hence, the sensitivity and

degree of interference between the different types of co-located jobs [73, 20] also need to

be investigated. Due to these challenges, there is a need to develop a custom resource man-

ager for DL model update workloads at the edge by considering the timing constraints of

the background applications, the computational capabilities, and workload of the individual

edge devices along with the structure and characteristics of the DL jobs.

V.1.3 Overview of Technical Contributions

In this chapter, we propose Deep-Edge, a custom resource management framework for

DL model update jobs to minimize the model update time by distributing the re-training

workloads among a set of heterogeneous edge devices while adhering to the timing and

latency constraints of the background tasks. We focus on data-parallel distributed training

based on the centralized parameter server architecture. Specifically, we make the following

contributions:

1 We define unified monitoring, profiling, and deployment framework for model update

tasks at the edge.

2 We build accurate performance and interference models for DL model update task

and latency-critical background tasks by profiling them under various system metrics,

such as CPU, GPU, Memory utilization, etc.

3 We formulate an optimization problem that incorporates the edge node selection and

workload distribution decisions to minimize the overall model update time.

110

4 We present a polynomial-time heuristic solution based on the timing constraints, the

performance, and interference models of the model update and background tasks.

5 We show the efficacy of the framework by evaluating the accuracy of the proposed

solution using a real-world DL model update task based on the Caltech dataset and

an edge AI cluster testbed.

V.1.4 Organization of the Chapter

The rest of the chapter is organized as follows: Section V.2 provides a brief introduc-

tion to DL and presents a survey of existing solutions in the literature and compares them

with Deep-Edge; Section V.3 presents the motivation behind the problem formulation and

solution of Deep-Edge; Section V.4 describes the problem formulation; Section V.5 dis-

cusses the design and implementation of Deep-Edge; Section V.6 evaluates the Deep-Edge

framework using a prototypical case study; and inally, Section V.7 presents the concluding

remarks by alluding towards future directions.

V.2 Background and Related Work

This section provides a literature survey along the dimensions of distributed deep learn-

ing, performance modeling, and resource interference, all of which are critical for the suc-

cess of Deep-Edge.

V.2.1 Deep Learning Model Training

Deep Learning(DL) methods aim to learn the representation of data with multiple lev-

els of transformation of the neural network model that is composed of multiple processing

layers [67]. The training process is resource-intensive, and it may speed up by paralleliza-

tion of the training in multiple devices, which can be either GPU or CPU. These devices

can be placed on a single machine or across multiple machines. In the literature, multiple

111

approaches have been studied to distribute the deep learning training in a cluster of ma-

chines, and multiple optimization techniques have been proposed to speed up the training

task [121, 113, 114, 115, 120].

V.2.1.1 Distributed Deep Learning - Data Parallelism

As mentioned earlier (Section V.1.2), the two predominant methods for parallelizing

deep learning training is data parallelism and model parallelism. In this chapter, we mainly

focus on the data parallelism approach; hence, we will discuss the data parallelism tech-

niques onwards.

In data parallelism, each worker runs an identical replica of the DL model, but with

the non-overlapping shard of the input data, which are further sliced up into batches. The

processing of a batch in each worker constitutes a training step, which involves: 1. inferring

the output and calculating a loss function for each data sample in the batch (forward pass);

2. determining the gradients based on the loss function, i.e., changes to be made to the

parameters of the DL model (backward pass); and 3. updating the parameters of the shared

global model after every batch, and then the updated model is used in the next round of

computation. When the forward pass, backward pass, and the model update processes are

completed on all the data points in the data shard, it is considered as an epoch. The process

repeats itself until the desired accuracy is achieved. Once the training is completed on

all the worker nodes, then the training job is considered as completed. The whole training

duration is denoted as job completion time. There are many challenges, and state-of-the-art

approaches are mentioned in the literature to update the shared model using these gradients

(parameter synchronization) [122, 123].

There exists another classification in distributed training based on how the knowledge

(parameters) learned by individual workers is shared across the group. Most DL frame-

works implement either centralized or decentralized architecture for storing and sharing

the updated parameters of a DL model. In centralized architecture, all workers compute

112

forward and backward passes locally and send the gradients to a central entity, designated

as parameter server, for updating the parameters based on an optimization algorithm such

Stochastic Gradient Descent (SGD). Parameters are then pulled back by each worker to

continue the next training step. In decentralized architecture, no central entity exists, and

the workers exchange among each other after each batch and locally update their gradients.

Decentralized architecture is not suitable for the model update at the edge because it incurs

higher transfer costs due to the need to broadcast the learned gradients to all the other work-

ers. The parameter server updates the model parameters synchronously or asynchronously

using these gradients [111, 121, 113] as shown in Figure V.2.

 Parameter Server

Data Shard 1 Data Shard 2 Data Shard n

gr
ad

ie
nt

s

ne
w

pa
ra

m
et

er
s

� � �

 =  − � ⋅ �

Worker 1 Worker 2 Worker n



Model
Replica

Model
Replica

Model
Replica

Figure V.2: Parameter Server architecture for distributed DL (data parallel) training

. In synchronous training, all workers use the same synchronized set of model pa-

rameters at the start of every batch. The synchronization cost for the heterogeneous edge

cluster may be very high because of the asymmetry between the computation powers of

the edge devices and the network partition, straggler problem, or node failure in the clus-

ter. [124, 125].

113

. In asynchronous training, the server updates the model parameters whenever it re-

ceives the gradients from one worker. Then the worker pulls the updated parameters from

servers and starts training on the next batch. It is faster than synchronous training because

there is no synchronization overhead. However, in this approach, the workers can get out

of sync, and compute their parameters on the stale parameters, which can delay the model

convergence [120] and increases the job completion time. In practice, for asynchronous

SGD, an upper bound of maximal delay can be placed to guarantee the convergence with

some synchronization costs [126].

We assume that there would be a single training job at a time, and we investigate how

to distribute the data into the available edge cluster to minimize the job completion time

as well as synchronization delay. The data management problem refers to the mapping of

training data shards to the processing nodes in the distributed infrastructure. A performance

model is required to map resources to training speed. Ernest [74] proposed a methodology

to estimate job completion time for tree-based ML jobs by running the experiment on small

data and configuration. Optimus [113] also proposed a similar approach to predict the num-

ber of remaining iterations for DL jobs, and schedule the resources in distributed systems.

V.2.1.2 Distributed Deep Learning Task Scheduling

There are several approaches in the scientific literature for resource allocation to achieve

a variety of objectives in cloud settings such as Borg [127], Coral [128], TetriSched [129],

Morpheus [130]. However, the schedulers mentioned above are not designed for DL work-

loads. There are recent research efforts on GPU sharing for machine learning tasks. Bay-

max [131] explores GPU sharing as a way to mitigate both queuing delay and resource

contention. Following that, Prophet [132] proposes an analytical model to predict the per-

formance of GPU workloads. Gandiva [114] proposes GPU time-sharing in shared GPU

clusters through checkpointing at low GPU memory usage of the training job. CROSS-

BOW [125] proposed a dynamic task scheduler to automatically tune the number of work-

114

ers to speed up the training and to use the infrastructure optimally. Optimus [113] also

dynamically adjusts the number of workers and parameter servers to minimize the train-

ing completion time while achieving the best resource efficiency. SLAQ [133] targets the

training quality of experimental ML models instead of models in production. It adopts

an online fitting technique similar to Optimus to estimate the training loss of convex al-

gorithms. Dorm [134] uses a utilization-fairness optimizer to schedule jobs. However,

these approaches are not applicable for edge clusters as none of them considers resource

interference while allocating heterogeneous resources for the DL model update task.

V.2.2 Model Update Strategy

Given that there is a monitoring mechanism to detect such changes after a model is

deployed in the production data pipeline, we trigger the model update to incorporate data

recency to avoid model staleness. Various methods are proposed in the literature to detect

model drift [135]; in this chapter, we are not focusing on how to detect the model drift.

We mainly focus on how to efficiently update the model when the change is detected.

Continuum [109] proposed two policies – best-effort and cost-aware, to keep the model

updated. Based on a prediction model, they estimate the training cost, with which the

update controller decides, for each application, when to perform updating based on the

application-specified policy. However, they always incorporate the recent data, and the

waiting is penalized. In this chapter, we took the update decision if the model is drifted

since the last update. Once the threshold is violated, we update the DL model to prevent

further degradation.

V.2.3 Resource Interference and Performance Modeling

Co-located applications on the same physical machine conflict over access for shared

resources, such as CPU, memory, network devices, and impose varying degrees of stress on

the underlying hardware. The contention for these resources causes resource interference

115

on the execution of co-located applications and harms their performance. Sensitivity mea-

sures the impact of co-located applications on the target application, and pressure measures

the impact of the target application on the co-located applications [136, 20].

In the literature, resource interference is studied extensively, and different approaches

are proposed to understand and quantify performance interference [89, 73, 83]. Perfor-

mance modeling is essential to predict the impact of interference for co-located applica-

tions on different hardware configurations [89, 137, 138, 139]. Paragon [83] presents an

interference-aware job scheduler to predict application performance under different stress

on different target architectures and server configurations using collaborative filtering. Au-

thors in [140] studied the impact of co-located application performance for a single multi-

core machine and developed a piece-wise regression model using cache contention and

bandwidth consumption of co-located applications as input features. The ESP project [141]

also uses a regression model to predict performance interference for every possible co-

location combination. Similarly, Pythia [139] proposed a linear regression model approach

for predicting combined resource contention by training on a small fraction of the large

configuration space of all possible co-locations. PARTIES [138] proposed a feedback-

based controller to dynamically adjust resources between co-scheduled latency-critical ap-

plications using fine-grained monitoring and resource partitioning to guarantee the QoS.

INDICES [20] proposes an interference aware fog server selection using a gradient boost-

ing based performance model of latency-critical applications. The authors extend the same

approach in [142] to offload a latency-critical task between fog and edge devices while con-

sidering user mobility. However, the effect of interference on GPU is not well-studied, in

Deep-Edge we build a performance model by stressing CPU, IO, memory as well as GPU,

and studied the effect of the interference on distributed deep learning job. Moreover, vir-

tualization techniques to isolate the GPU resources for multiple processes is not supported

on Tegra family NVIDIA edge devices.

116

V.3 Motivation

This section focuses on the motivation behind developing the Deep-Edge framework.

Here, we describe how a DL model degrades in the presence of new data, and why we

should update the existing DL model. We describe the motivation behind distributed train-

ing and the impact of heterogeneity and resource interference on the model update task and

latency-critical tasks running in the background.

V.3.1 Motivation for Model Update

We use an example of mapping images to steering angle control in the autonomous car

with CARLA [143], an autonomous driving simulator, to explain how the model degrades

when the initially trained images are synthetically changed with rain ntensities [144]. In

our experiments, we used the inbuilt controller to drive the car on a bright sunny day, and

collect 5000 front dashboard camera images at five fps (frames per second) along with

the steering data for training a neural network model. Using the labeled data, we trained

an NVIDIA’s DAVE-II CNN model [145] to learn the steering actions. We trained the

model for 50 epochs and evaluated its performance on a validation dataset, for which we

got a mean square error (MSE) of 0.0078 (lower is better). For evaluating the models’

performance for different weather conditions, we chose a single straight road seen during

training and then deployed the trained model to perform the steering actions. Figure V.3

shows the absolute error between the actual steering and the model steering predictions for

the entire experimental evaluation. For the first 150 simulation steps, we maintain sunny

weather, so the absolute error is minimal, and in the next simulation step, we change to

rainy weather. With the new rainy condition, the error increases, and here we collect the

images for 100 simulation steps with corrected steering value1 and then triggered the model

update. It takes about 10 seconds (50 simulation steps) to get the model updated. At step

1We assume that there will be a human-in-the-loop who will correct the steering angle if the DL model
predicts wrong.

117

301, we deploy the updated model, and we see the error goes low compared to the error

before it was retrained. Figure V.3 also illustrates that the error continues to be high if the

model is not updated.

Figure V.3: Absolute error between predicted steering value and the actual steering value (with and without model update)

Similar model degradation was also observed for the DL-based image classifiers when

we emulate the training on a small chunk of data from the Caltech dataset [146]. As new

data arrives, the model degrades over time, and the experiment motivates the need for an

online DL model updating with unseen images to make the model robust.

V.3.2 Motivation for Distributed Training

Our application is based on DL model training on Caltech dataset [146] using MxNet

framework [111]. We trained our model on 3855 data points with different resource con-

figurations and batch size.

We did our experiments on Jetson Nano devices on standalone mode and in distributed

(asynchronous-centralized) mode. For the first experiment, we ran the experiment in stan-

dalone mode with 8 and 16 batch size. As shown in Figure V.4, increasing batch size

reduces the per epoch training time, because of less number of updates. For the second set

of experiments, we distributed the training data equally (1928 and 1927 data points respec-

tively) on 2 Jetson Nano worker nodes and used the Jetson TX2 device as the parameter

server. We changed the batch size among 8, and 16 in all worker nodes, respectively2. As

2We considered maximum batch size as 16, because Nano is limited to 4GB memory, and bigger batch
size than 16 for CalTech DL model exceeds the memory of Nano device. The batch size limit for the TX2
device(8GB memory) is 64.

118

shown in Figure V.4, training time reduced when we distributed training over a single Jet-

son Nano device. For the third set of experiments, we distributed the training data equally

(1285 points on each node) on 3 Jetson Nano worker nodes and used the Jetson TX2 de-

vice as a parameter server. Similarly, we observed significant improvement in training

time by distributing the data points on three worker nodes over a single Jetson Nano de-

vice; however, the training time suffers significantly because of communication overhead.

Therefore, we should consider the communication impact on distributing DL training in

multiple machines [111].

Figure V.4: DL model training time (per epoch)
for different resource configurations and different
batch sizes.

64 64 - 16 - 16

batch	size

Figure V.5: DL model training time (per epoch)
on standAlone TX2 and on heterogeneous cluster
with different batch sizes.

V.3.3 Impact of Heterogeneity on Model Update Time

In this experiment, we trained our model on 3855 data points on a single Jetson TX2

device. Then, we distributed the training data equally (1285 points on each node) among

2 Jetson Nano worker nodes and a Jetson TX2 device. We used another Jetson Nano de-

vice as a parameter server. We conducted experiments with maximum possible batch size

combinations on each device. Typically, an equal amount of data is distributed among the

workers in multi-machine training. However, this approach can increase job completion

time because of the heterogeneity of the edge devices. Figure V.5 illustrates that dis-

tributed training in these experiments was less efficient than doing the same training on

the most powerful device, i.e., Jetson TX2. For instance, we observed that TX2 is 30%

faster on an average in completing a training step than Nano, when we updated a state of

the art Inception model [147] using Caltech-256 object category dataset. Figure V.6 shows

119

the cumulative distribution of time to complete one step, where the average step time for

TX2 and Nano are 1.89 and 2.69 secs, respectively. Thus, equal distribution can lead to

underutilization of edge resources. In the scenario mentioned above, TX2 was idle for a

significant amount of time. Hence, finding the proper ratio of data and map that among the

heterogeneous devices is challenging, and this motivates our study to find the near-optimal

data ratio to minimize the overall job completion time.

1.0 1.5 2.0 2.5 3.0 3.5
step time (secs)

0.0

0.5

1.0

D
en

si
ty Nano

TX2

Figure V.6: Variation of step time w.r.t device type

Moreover, the performance of the model update task can be impacted by the state of

the node (e.g., CPU, GPU, Memory Utilization) as shown in Figure V.7 where an initial

GPU utilization of 88% and 66% increases the average step time by almost 20%. Hence, an

intelligent data sharding policy is required, which considers the current state of the workers.

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
step time (secs)

0.0

0.5

1.0

D
en

si
ty Nano

TX2

Figure V.7: Increase in step time due to resource contention

V.3.4 Impact of Resource Interference on Background Tasks

The selection of a worker to participate in the model update task depends upon the

degree of interference that can be tolerated by the workers’ background tasks. Figure V.8

shows the changes in three system metrics (GPU, CPU, and memory utilization) after run-

ning a model update task on two workers (TX2 and Nano). The updated system state

(defined in terms of the system metrics) can lead to deadline violation of a latency-critical

120

background task. Moreover, adding more workers can reduce the training throughput, as

described in [113]. Hence, a resource scheduler for a DL task needs to find the optimal

number of workers, along with the ideal data shards, without violating the SLO constraints

of background tasks.

20 40 60 80
Initial Resource Usage%

40

60

80

100

Fi
na

l R
es

ou
rc

e
 U

sa
ge

%

TX2(CPU)
Nano(CPU)

TX2(GPU)
Nano(GPU)

TX2(Memory)
Nano(Memory)

Figure V.8: Initial and Final resource Usage along multiple resource dimensions.

V.4 Problem Formulation

In this chapter, we consider distributed data-parallel training of DL models using a

centralized parameter server architecture with asynchronous training loops. This section

models the various costs involved in the DL model update process, and formulates an opti-

mization problem to minimize the overall cost, and states our assumptions.

V.4.1 Cost Models

We consider a setW = {w1,w2, . . . ,wN} of N heterogeneous edge nodes (or workers)

that can perform distributed training, and a setM of data samples for training a DL model.

Let D = {d1,d2, . . . ,dN} denote the size of data shards among all the workers, i.e., the

number of data samples assigned to each worker, such that ∑
N
i=1 di = |M|.

121

V.4.1.1 Data Transfer Cost

All data samples are assumed to be initially stored in a data store ds ∈ DS, where DS

is the set of data stores, which need to be transferred to each edge worker for training. Let

trans f erds
i denote the cost of transferring a single data sample from data store ds to edge

node wi. Thus, the total transfer cost for node wi is given by Trans f erds
i = di · trans f erds

i .

V.4.1.2 Initialization Cost

After receiving the data samples, each edge node wi incurs a one-time initialization cost,

denoted by Initializei, before the training begins. This cost is DL framework dependent and

mainly consists of data pre-processing (un-packing), loading the DL model, setting up the

logical DL cluster, etc.

V.4.1.3 Training Cost

The data shards at each worker wi are further divided into batches of size bi, and let

B = {b1,b2, . . . ,bN} denote the set of batch sizes for all workers. The cost to process each

batch includes the time to do forward propagation (for computing the loss function) and the

time to do backward propagation (for computing the gradients). Let f orwardi denotes the

forward propagation time for one data sample on worker wi, and let backwardi denote the

backward propagation time, which is typically incurred once per batch and is not related to

the size of the batch. Given a batch size bi, the per-sample compute time on worker wi is

then given by tcompute
i = f orwardi +backwardi/bi.

After processing each batch, each worker wi pushes the gradients to a centralized pa-

rameter server ps for update, and then pulls the updated parameters before continuing to

train on the next batch. Let pushps
i , updateps and pullps

i denote the time to push, update

and pull the parameters, respectively. Then, the update time is given by the sum of these

three times, i.e., tupdate
i = pushps

i +updateps+ pullps
i . Since each worker wi has Bi ≈ di/bi

batches, the total time to process all the data samples on the worker, called an epoch, is

122

given by:

epochTimei = Bi

(
bi · tcompute

i + tupdate
i

)
.

Note that the per-sample compute time tcompute
i to perform forward and backward prop-

agation depends on the computing capability of the individual worker as well as the back-

ground tasks running on the worker. Further, the update time tupdate
i to perform push,

update, and pull on each worker is also not fixed. It depends on the batch size, the total

number of deployed workers as well as the state of the workers, and the parameter server.

V.4.1.4 Total Cost

The total cost includes the data transfer and initialization costs for all workers, followed

by the asynchronous training and update costs from different workers.

As the set of workers is assumed to be heterogeneous, some of them may not be de-

ployed for training (e.g., due to high data transfer cost or low computational capability).

Typically, having more workers will reduce the workload of each participating worker;

hence the epoch time may be reduced. However, it may also increase the update time

(i.e., tupdate
i) due to resource contentions caused by different workers trying to update the

parameters at the same time.

Let γi ∈ {0,1} denote a binary variable indicating if worker wi will be deployed for

training or not, i.e., γi = 1 if di > 0 and γi = 0 if di = 0. Then, for all workers to complete

a specified number of epoches, denoted by numE poch, the total cost of distributed training

can be expressed as:

Total_cost = max
i
{Trans f ers

i}+max
i
{Initializei · γi}

+max
i
{epochTimei} ·numE poch.

123

V.4.2 Optimization Problem

The goal of Deep-Edge is to minimize the overall cost of distributed training on a set

of heterogeneous edge nodes by choosing a data sharding scheme D, the batch sizes B, as

well as the number of deployed workers while subject to some system and performance

constraints. The following states the optimization problem:

minimize Total_cost

subject to bmin ≤ bi ≤ bmax, ∀i (V.1)

0≤ di ≤ |M|, ∀i (V.2)

∑i di = |M| (V.3)

pressurea
i ≤ δ

a, ∀a ∈ backAppi,∀i (V.4)

Constraint (V.1) requires the batch size to be within the range of minimum and max-

imum system-specific batch size, which could be determined by the DL model or the de-

vice’s memory constraint. Constraints (V.2) and (V.3) require that each worker receives

a portion of the data samples, and altogether they cover the entire set of data samples.

Finally, Constraint (V.4) requires that, for each worker wi, the pressure to its set of back-

ground applications, backAppi, due to running the distributed training job on the same

device, should be contained to be within an application-specific threshold δa for each ap-

plication a ∈ backAppi in order not to violate the SLO of the application. The estimation

of the pressure function to a background task, and the sensitivity function for the training

job will be discussed further in Section V.5.

As the objective function (i.e., Total_cost) and the pressure constraint in the above opti-

mization problem have a complex, non-linear relationship with the decision variables (i.e.,

D,B), it cannot be expressed analytically. Therefore, the problem cannot be solved us-

ing standard solvers and/or analytical techniques. Therefore, we aim at designing efficient

124

heuristic solutions, which will be described in Section V.5.3.2.

V.4.3 Assumptions

We assume that the user specifies the maximum number of epochs (i.e., numE poch)

required for the training of the DL model, which is independent of the configuration of

the workers. The user also provides the model trigger condition, and the model is only

updated whenever the trigger condition is received. As the DL model is usually updated on

a large amount of data, we further assume that the one-time transfer cost (i.e., Trans f ers
i)

and initialization cost (i.e., Initializei) are negligible compared to the total training time.

Finally, we assume that the location of the parameter server(s) is given, and we do not need

to select a node as a parameter server based on some specific criteria.

V.5 Design and Implementation of Deep-Edge

This section presents the design and implementation details of Deep-Edge by describing

the architecture model, various components of the framework, and its modes of operation.

We also explain our solution approach for minimizing the job completion of the DL model

update in heterogeneous edge clusters under background stress.

V.5.1 Architecture Model of Deep-Edge

The architecture model consists of K edge nodes, out of which N are workers, O are

data sources, and P are parameter servers, and they are represented by disjoint setsW , DS

and PS , respectively. These edge nodes form a local area network and are connected via

a layer 2 Ethernet switch, as shown in Figure V.9. As mentioned in the previous section,

the nodes inW∪PS forms the DL model update cluster, where the worker nodes perform

the actual re-training and the parameter server nodes act as a central repository for model

parameters. The remaining nodes are belonging to setDS store data samples for the model

125

Solver

Profiler

Resource
Monitor

Launcher

Accuracy
Monitor

Parameter
Server

Worker

Source

Edge
Nodes

Deep-Edge
Manager

Switch

Figure V.9: Deep-Edge architecture

update task.

One of the nodes in DS also acts as a Deep-Edge Manager (DEM), which implements

the Deep-Edge framework. DEM is a collection of components that enables profiling, re-

source scheduling and runtime monitoring of the DL cluster. The components are hosted as

REST endpoints as http://<ip>:<port>/<endpt_name>?<endpt_args>, where ip

is the IP address of the host, port is the port associated with the DEM, and endpt_name,

endpt_args are the name and input arguments of the endpoint. The following subsec-

tions describe the different components and modes of operation associated with the DEM,

as shown in Figure V.10.

V.5.2 Components of Deep-Edge Manager

The DEM consists of five components, which together provide a unified solution for

profiling, scheduling, and monitoring the DL model update tasks.

1 Profiler: Deep-Edge uses a data-driven approach to estimate tcompute, tupdate and

pressure experienced by background applications. This component allows both latency-

critical and model update tasks to be profiled against stress points along the dimen-

126

sions of CPU, GPU, and memory utilization. The Profiler accepts different system

metrics and stress points as the input arguments. Deep-Edge uses CPU, Memory,

Disk I/O stressors from the well-known library Stress-ng [148] and the GPU load

stressing application is based on the NVIDIA Cuda-10 library.

2 Solver: This component implements the scheduling strategy to identify the candi-

date workers and their respective data shards. The Solver takes the number of data

samples, the current state of the edge cluster along with the performance and interfer-

ence models as inputs, and outputs a data sharding scheme. The scheduling strategy

is explained in more detail in Section V.5.3.2.

3 Resource Monitor: The Resource Monitor maintains a map of active workers in the

edge cluster and periodically monitors the ongoing model update tasks. This com-

ponent is responsible for re-triggering the model update task in response to worker

node failure.

4 Launcher: This component is responsible for launching applications (DL & stress-

ing) on the worker and parameter server nodes. It accepts three different kinds of

arguments: a) Stressor arguments; b) DL arguments; and c) Logging arguments.

The Stressor arguments include parameters for the different stressing applications.

The DL arguments include machine learning specific arguments, such as batch size,

number of epochs, optimizer, etc., and the Logging arguments include the file path

for creating log files. It launches the DL model update on the designated worker

nodes with the assigned parameter server.

5 Accuracy Monitor: Accuracy monitor observes the progress of the training job af-

ter each epoch. Deep-Edge allows dynamic stopping of the model update task by

tracking the accuracy of the validation set.

127

Offline	Phase

Profiling	DL
Model	with
Background
Edge	Tasks

Performance
Model	Learning

Accuracy
Evaluation

DL	Model
UpdateData	TransferData	Sharding

Estimation

Resource
Monitor Updated

Model

Online	Phase

Model	Update
Trigger

Figure V.10: Modes of operation

V.5.3 Modes of Operation

The operation of DEM can be categorized into two modes, offline and online, as illus-

trated in Figure V.10. In the offline or design mode, we build machine learning models

to predict the execution time of the DL model update task and latency-critical background

tasks. In the online mode, appropriate workers, along with batch size distribution and data

shards, are calculated based on the developed performance models such that model update

time is minimized while adhering to SLO constraints imposed by the background appli-

cations. The online mode also handles worker failures by trying to restart the DL model

update task. The details of the features, as mentioned above of Deep-Edge, are provided in

the following.

V.5.3.1 Performance and Interference Modeling

Deep-Edge uses a data-driven approach for modeling the performance of DL model

update tasks on each node as well as the interference experienced by latency-critical back-

ground tasks. The performance of the DL model update task is measured by the time

to complete one epoch, epochTime, which is the function of per-sample compute time,

128

tcompute, and update time, tupdate, as defined in the optimization problem. Here, tcompute de-

pends upon the node type, node state, and batch size. We describe node state as a vector of

system metrics containing CPU, GPU, and memory utilization. However, tupdate depends

not only on the node state but also on the complete batch distribution, state of the param-

eter server, and the number of workers. We define two functions, EstComputeTime and

EstUpdateTime, to model the relation between the state of the DL cluster and tcompute

and tupdate as shown in Equations (V.5) and (V.6) below, where Xi and bi represent the state

and batch size associated with worker wi ∈W , B is the batch size distribution and Xps is

the state of the parameter server.

tcompute
i = EstComputeTime(Xi,bi) (V.5)

tupdate
i = EstU pdateTime(Xi,B,Xps, |W|) (V.6)

In order to create an interference profile of the DL model update task, we model in-

terference as performance degradation experienced by the background applications. As

shown in Figure V.12, we use a two-step approach to quantify performance degradation,

i.e., increase in execution time. In the first step, we model the effects of running the DL

model update task on a node whose state is described in Equation (V.7). The function,

EstState, gives the relation between the initial state of the node, X initial , and its new

state, X new while executing the DL model update task. Since the system metrics can vary

during the execution of the DL model update task, we use the 95th percentile value statis-

tic. The second step involves learning the performance degradation, i.e., pressure to the

background task, as a function of the new node state, defined by EstExecTime as shown

in Equation (V.8).

129

break
[true]

loop
[Accuracy< DesiredAccuracy]

GetAccuracy

Accuracy

Terminate

Ack

LauncherSolver
Resource
Monitor

Accuracy
MonitorData Store

Workers
and
PS

Deep-Edge Manager

Trigger

GetState

SendState

Data Partition
Map

Send DataAck

Ack

Register Launch

Ack
Ack

Ack

Notify

Figure V.11: Event Sequence Diagram of Data Sharding and Resource Scheduling

Profiler
Workers

and
PS

Initiate
Stressor

SendState

Ack

Run Target
App

Terminate
App

SendState

Kill
Stressor

Ack

Figure V.12: Event Sequence
Diagram of Profiling the back-
ground tasks along with DL
model update task

X new
i = EstState(X initial

i) (V.7)

pressurea
i = EstExecTime(X new

i) (V.8)

The models, as mentioned above, are learned by first performing sensitivity analysis to

understand the importance/influence of the prospective features. Based on the candidate

features set obtained after sensitivity analysis, regression models are learned. In Deep-

Edge, we use H2O’s AutoML framework [149] to find the best hyperparameter tuned algo-

rithm.

130

V.5.3.2 Resource Scheduling

Figure V.11 shows the sequence of events of a new request of model update. A data

store requests to DEM’s solver endpoint to trigger the mode: Model Update. Upon the

receipt of the request, the Solver gets the updated states of the workers, i.e., the num-

ber of prospective workers and their respective states (system metrics) from the Resource

Monitor. Then, the Solver calculates the candidate worker nodes, data shards, and batch

distribution using the scheduling strategy illustrated in Algorithm 5. The data and batch

distributions are sent back to the data store to initiate data and base model transfer. After

successful transmission, the data source registers the task information, such as the number

of workers, data source, worker hostnames, data shards, and batch distribution, with the

Launcher. Then, the Launcher sends the acknowledgment back to the data source after

successfully starting the DL model update task on selected workers. Accuracy Monitor ob-

serves the progress of the training job after each epoch, and terminate the DL model update

process once it reached the desired accuracy.

The heuristic presented in Algorithm 5 provides an efficient solution to the optimization

problem described in Section V.4. The input of the algorithm includes the workers’ state

map X = [X1,X2, . . . ,XN], where Xi = [X cpu
i , X gpu

i , Xmem
i] represents the state of worker

wi ∈ W , the parameter server’s state Xps = [X cpu
ps , X gpu

ps , Xmem
ps], number of data samples

M, the stopping threshold ε , and the maximum number of iterations τ . The output of the

algorithm is the data distribution D̃ and the batch size distribution B̃, such that (di ∈ D̃,

bi ∈ B̃) identifies the data shard and batch size associated with worker wi ∈ W . If any

worker wk ∈W is not selected for the model update task, the algorithm will return dk = 0

and bk = 0 for the worker.

The heuristic computes the data and batch distributions in an iterative fashion, where

the initial estimate of the size of all data shards is ∞ [Lines 2-3]. Using the initial data

distribution and memory utilization of a node, the corresponding batch size bi is calculated

[Line 6] using the function GetMaxBatchSize, which enforces adherence of the memory

131

constraint described in the optimization problem, by providing the maximum batch size

given the current memory utilization of the node. With the batch size estimates, tcompute,

tupdate and ttotal are calculated for all the workers [Lines 7-9]. Refined data distribution

is then calculated based on ttotal to balance the workloads of all the workers [Line 10].

After calculating the refined data distribution, all workers check for adherence for resource

interference constraints [Lines 11-22]. A worker is dropped from the DL cluster [Lines

19-21] if any of its background tasks will experience deadline violations [Lines 14-17].

The cycle [Lines 5-28] repeats until the data distributions in two consecutive iterations are

almost the same, i.e., the L2 norm is less than a threshold, ε or the maximum number of

iterations τ have been reached [Lines 24-26].

Then, we calculate the epoch time based on the data shards, which is given by the

maximum time taken by any worker to process the data samples assigned [Line 29]. Note

that, based on our proportional data sharding scheme, the difference between the epoch

times from the different workers should be minimal (only due to rounding-off errors). If

the resulting epoch time is better than the best one we have found so far, we remember the

configuration as a potential solution [Lines 30-32]. Finally, to explore if better solutions

are possible, we calculate the effect of removing the slowest worker (in terms of the total

per-sample training time) on the overall epoch time [Lines 33-34]. As fewer workers are

now present, this may affect the update time for each remaining worker, which will, in

turn, affect the data shards and the epoch time. This process is performed iteratively until

removing a worker no longer improves the overall epoch time, in which case the algorithm

will eventually terminate [Line 36]. The best one will then give the final data shard size

found so far.

V.5.3.3 Fault Tolerance

When a worker node experiences a failure while executing a model update task either

due to process crash or node failure, the Resource Monitor in the DEM will detect such

132

Algorithm 5: Resource Scheduling Heuristic

1 Initialize: min_t∗← ∞, W̃ ← φ , B̃ ← φ , D̃ ← φ , Iter← 0
2 di = ∞, ∀wi ∈W;
3 D← {d1,d2, . . . ,dN}, Iter← 0;
4 while True do
5 while True do
6 bi←min(GetMaxBatchSize(Xmem

i),di), ∀wi ∈W;
7 tcompute

i ← EstComputeTime(Xi,bi), ∀wi ∈W;
8 tupdate

i ← EstUpdateTime(Xi,Xps,B, |W|),∀wi ∈W;
9 ttotal

i ← tcompute
i + tupdate

i /bi,∀wi ∈W;
10 di =

|M|
ttotal
i ·∑wi∈W

1
ttotal
i

,∀wi ∈W;

11 for each wi ∈W do
12 f lag← False
13 for each a ∈ backAppi do
14 if pressurea

i > δ a
i then

15 f lag← True;
16 break; . Constraint violated
17 end
18 end
19 if f lag then
20 W ←W\wi,bi← 0,di← 0; . Remove worker
21 end
22 end
23 Dnew←{d1,d2, . . . ,dN}, Iter++;
24 if (||Dnew - D||2 ≤ ε) ∨ (Iter == τ) then
25 break;
26 end
27 D←Dnew;
28 end
29 epochTime = maxwi∈W(di · ttotal

i);
30 if epochTime < min_t∗ then
31 min_t∗← epochTime;
32 W̃ ←W , B̃ ← B , D̃ ← D;
33 wk← argmaxwi∈W(ttotal

i); . Find slowest worker
34 W ←W\wk,bk← 0,dk← 0; . Remove worker
35 else
36 break;
37 end
38 end

133

LauncherSolver
Resource
Monitor

Accuracy
MonitorData Store

Workers
and
PS

Deep-Edge Manager

Get Data
Partition

Map

Send Data

Ack

Register Launch

Ack
Ack

Fault
Detected

Save Model

Ack
Kill Process

Ack

Number of
Datapoints

GetInfo

Send Data
Partition

MapTransfer Data

Ack

Notify

Ack

break
[true]

loop

GetAccuracy

Terminate

Ack

Accuracy

[Accuracy< DesiredAccuracy]

Figure V.13: Event Sequence Diagram of Failure handling

events and trigger the re-launching of the task. The DEM uses a three-strike rule, i.e., a

worker will not be considered part of the DL cluster if it has experienced at least three

interruptions while running a model update task. Figure V.13 highlights the sequence of

134

events as a result of worker failure. After detecting a worker failure, the Resource Mon-

itor requests the available workers to save their current progress and then kills the model

update processes on the available workers. After the processes are killed, the Resource

Monitor gets the DL model update task information such as data shards, batch distribution,

worker hostnames, data source, and task id from the Launcher. Then, the Resource Mon-

itor requests the Solver to create the data-sharding map for the data points of the failed

node. Once the data-sharding map is created, Resource Monitor notifies the appropriate

data source to re-trigger the model update task.

V.6 Evaluation

In this section, we present the evaluation results of different phases of Deep-Edge

framework.

V.6.1 Experiment Setup

V.6.1.1 TestBed

Our test-bed comprises of one NVIDIA Jetson TX2 (256-core NVIDIA Pascal GPU,

8GB memory, Dual-Core NVIDIA Denver 2 64-Bit CPU and Quad-Core ARM Cortex-

A57), three NVIDIA Jetson Nano (128-core Maxwell GPU, Quad-Core ARM Cortex-A57,

4GB memory) devices and two Raspberry Pi 4 (Broadcom BCM2711, Quad-core Cortex-

A72 (ARM v8), 4GB memory) devices. These devices are connected by one Gigabit layer

2 switch. One raspberry pi acts as a parameter server while the second acts as a data store

and also hosts the DEM.

V.6.1.2 Workloads

The model update task consists of updating a base DNN, Inception [147] with 3855 data

samples from Caltech-256 dataset [146] using MXNET [111]. The base Inception model

135

is created using transfer learning [150], where the last layer of a pre-trained Inception

model based on Imagenet [151] replaced by a new layer. We trained the base model (last

layer) with 2600 data points to reach an accuracy of 75%. We emulated the model update

trigger when the accuracy of the base model decreases below 50% accuracy, which is our

assumed tolerance threshold. To emulate real data generation, we continuously feed the

base model new 4600 data points, where the model accuracy degraded to 50% accuracy,

and we triggered the model update process. We updated our model on 4600 data points of

the Caltech dataset, in which 3855 data points are used as training data points, and the rest

of the data points are validation set.

The latency-critical task is based on a distributed real-time computer vision application

of image reconstruction from multiple video streams where an initial image processing

step is performed in parallel on multiple edge devices. The image processing step involves

identifying scale and rotation invariant descriptors (features) using Scale Invariant Feature

Transform (SIFT) [152]. The latency-critical task constitutes executing SIFT transform on

the acquired frame and sending the serialized SIFT features along with the original frame

to an image stitching server over a UDP socket every 200 ms. The size and resolution of

the acquired frame is 56 KB, 640x320, respectively.

V.6.2 Performance Modeling

We performed sensitivity analysis along the dimensions of GPU, CPU, Memory Uti-

lization, the number of workers, and batch size. The following behaviors are observed:

20 40 60 80
GPU Utilization (%)

0.1

0.2

tc
om

pu
te

(s
ec

s)

TX2 Nano

Figure V.14: Stressing GPU increases compute
time.

20 30 40 50 60
CPU Utilization (%)

0.46

0.48

tco
m

pu
te

TX
2

 (s
ec

s)

TX2

1.06

1.08

tco
m

pu
te

N
an

o
(s

ec
s)

Nano

Figure V.15: Stressing CPU increases compute time.

136

2
2

2
3

2
4 2

5
2

6

Batch Size

0.05

0.10

0.15

tc
om

pu
te

(s
ec

s)

TX2 Nano

Figure V.16: Increasing Batch size decreases compute
time.

(4,4,
4,4)

(16,8,
8,8)

(32,12,
12,12)

(64,16,
16,16)

Batch Distribution

1.00

1.25

1.50

av
g.

 t
up

da
te

(s
ec

s)

average
TX2

Nano1
Nano2

Nano3

Figure V.17: Increasing Batch size decreases update
time.

2
2

2
3

2
4 2

5
2

6

Batch Size

40

60

80

M
em

or
y

U
til

iz
at

io
n

(%
) TX2 Nano

Figure V.18: Increasing the batch size increases the
memory footprint.

2 3 4
Number of workers

1.00

1.25

av
g.

 t
up

da
te

(s
ec

s)

Figure V.19: Increasing workers nodes increase update
time.

I) Increasing GPU utilization increases compute time, tcompute [Figure V.14].

II) Increasing CPU utilization increases compute time, tcompute [Figure V.15].

III) Increasing the batch size of the DL model update process decreases compute time,

tcompute [Figure V.16].

IV) Increasing the batch size of the DL model update process decreases update time,

tupdate [Figure V.17].

V) Increasing the batch size of the DL model update process increases the memory

utilization [Figure V.18].

VI) Increasing the number of workers results in increasing DL model update time,

tupdate [Figure V.19].

VII) Increasing CPU utilization of parameter server, increases the update time, tupdate

[Figure V.20].

VIII) Increasing Memory utilization does not affect the throughput of the model update

task. However, insufficient free memory can result in terminating a process by OS.

Based on the above observations, we considered CPU, GPU Utilization, and batch size

137

5.8 33.7 49.7 58.9 81.0
PS CPU Utilization (%)

2

4

av
g.

 t
up

da
te

(s
ec

s)

average
TX2

Nano1
Nano2

Nano3

Figure V.20: Stressing CPU of parameter server increases update time.

as candidate features for function EstComputeTime and added server CPU utilization,

the number of workers along with batch distribution of all nodes to the above list as fi-

nal features to learn the function EstUpdateTime. The function, EstSatte, is multiple

outputs in nature, i.e., GPU, CPU, Memory, and a separate regressor is learned for each

one of them. We extend the label with the feature name to notify the individual regression

model, for instance, EstStatemem represents the memory regressor. GetMaxBatchSize

uses EstStatemem recursively to identify maximum feasible batch size to run model up-

date job on a node. Finally, EstExecTime uses all system metrics of the node as features

to predict the time to finish the latency-critical task. We used H2O’s AutoML framework

to select the best regression algorithm as well as perform the hyperparameter tuning. Ta-

ble V.1 highlights the number of data points, regression algorithm along with accuracy

for all learned functions. As evident from the table, the gradient boosting methods, XG-

Boost [153], outperformed others with an average MAPE (mean absolute percentage error)

of 2.32% overall models.

V.6.3 Resource Scheduling

We compare Deep-Edge scheduling policy with fairness based schedulers adopted in

many resource managers such as Yarn [154], Mesos [155]. In fairness based schedulers,

138

Device Function Data-points Algorithm Accuracy
(train/test) (MAPE)

Nano EstComputeTime 1386/264 XGBoost 0.414 ± 0.35
Nano EstUpdateTime 1386/264 XGBoost 11.29 ± 9.5
Nano EstStategpu 1386/264 XGBoost 3.06 ± 0.74
Nano EstStatecpu 1386/264 XGBoost 8.043 ± 7.45
Nano EstStatemem 1386/264 XGBoost 0.82 ± 0.86
Nano EstExecTime 1386/264 XGBoost 1.73 ± 0.21
TX2 EstComputeTime 378/72 XGBoost 3.84 ± 7.42
TX2 EstUpdateTime 378/72 XGBoost 12.29 ± 10.52
TX2 EstStategpu 378/72 XGBoost 3.05 ± 1.35
TX2 EstStatecpu 378/72 XGBoost 11.61 ± 9.81
TX2 EstStatemem 378/72 XGBoost 1.01 ± 0.51
TX2 EstExecTime 378/72 XGBoost 1.48 ± 0.12
Pi EstStatecpu 630/120 XGBoost 2.32 ± 1.58
Pi EstStatemem 630/120 XGBoost 1.70 ± 1.15

Table V.1: Estimator results

the data is divided equally among the worker nodes, where Deep-Edge intelligently shard

the data among multiple workers based on the state and type of the worker nodes. We

performed 120 random experiments, and in each experiment, all worker nodes are running

the SIFT feature detector task along with randomly selected stressors such that the initial

state of every node does not violate the deadline of the background application. Figure V.21

highlights the average epoch time observed using Deep-Edge and fairness schedulers. On

average, the Deep-Edge scheduler reduced the epoch time by 1.54x times without violating

any deadline. A histogram of DL task speedup (%) is highlighted in Figure V.22.

V.6.3.1 Effectiveness of Data Sharding Strategy on Epoch Time

As described in Algorithm 5, we calculated the number of data points for each worker

from the whole dataset, and send the respective data points(di) to respective workers. In

isolation, TX2 devices support the batch size of 64 for the Caltech dataset, whereas Nano

139

0 200 400 600 800 1000 1200
Epoch Time

(seconds)

0

20

40

60

80

100

120

Ex
pe

rim
en

ts

Deep-Edge Fairness

Figure V.21: Epoch time distribution

140

0 25 50 75 100 125 150 175 200
Speed Up (%)

0

10

20

30

D
en

si
ty

Figure V.22: Speed Up distribution

devices support the batch size of 16 for the Caltech dataset. This is because, TX2 device

has 8GB memory, where the Nano device has 4GB memory space. We considered the

maximum available batch size because increasing batch size results decrease in the compute

and update time. For our experiments, we had one TX2 and three Nano devices. Based on

our performance estimation algorithm, we divided 1893 data points for the one TX2 device

and 654 data points for the three Nano devices. The epoch time for the experiment in the

heterogeneous cluster was around 121 seconds, as shown in the Figure V.23(left). After

that, our Algorithm 5 removes the slowest worker node and calculates the epoch time.

Here, as shown in Figure V.23(right), removing one worker increases the epoch time, and it

becomes around 148 seconds. Then, we compared the epoch time with the best performing

standalone device. In this case, if we run the experiment on a standalone TX2 device with

3855 data points, the epoch time would be around 184 seconds. Therefore, based on these

experiments, we considered one TX2 and three Nano devices cluster setup for the model

update task because, in that setup, the epoch time was minimum, as shown in Figure V.23.

In our second case study, we ran GPU intensive tasks as background co-located ap-

plications. In this experiment, the GPU utilization in TX2 was 32% due to background

co-located applications. In the first Nano device, GPU utilization was 42%, and in the

other two Nano devices, the GPU utilization was 24% due to background co-located ap-

plications. With this background GPU utilization, we run the DL model update task in the

heterogeneous cluster. Using the Algorithm 5, we calculate the number of data points for

141

Figure V.23: Epoch time with different cluster setup.

each worker, so that the epoch time remains the same. Based on our performance estima-

tion algorithm, we divided 1631 data points for the one TX2 device, 691 data points for

the first Nano device, 769 data points for the second Nano device, and 764 data points for

third Nano device. As shown in the Figure V.24(left), the epoch time for all the devices is

around 154 seconds in the four worker node cluster setup.

Figure V.24: EpochTime when GPU is occupied by co-located application

Similarly, we changed the background co-located tasks to change the background GPU

utilizations. The GPU utilization in TX2 was 28% due to background co-located appli-

cations. In the first Nano device, GPU utilization was 25%, and in the other two Nano

devices, the GPU utilization was 24% due to background co-located applications. Based

on our performance estimation algorithm, we divided 1677 data points for the one TX2 de-

vice, 694 data points for the first Nano device, 735 data points for the second Nano device,

and 749 data points for third Nano device. As shown in the Figure V.24(right), the epoch

time for all the devices is around 155 seconds in the four worker node cluster setup.

142

V.6.4 Model Convergence

As shown in the Figure V.25 and Figure V.26, the model converges despite different

batch combinations and different computing power of the edge devices. As we bound the

epoch time of each worker node within a minimal threshold, the synchronization delay is

minimally bounded. Hence, the asynchronous parameter synchronization does not stale

any worker model, and the overall DL model converges.

Figure V.25: Model convergence with batch combination of 64,16,16,16 on cluster of
1tx2 and 3 nanos.

Figure V.26: Model convergence with batch combination of 8,8,8,8 on cluster of 1tx2
and 3 nanos.

V.7 Conclusion

V.7.1 Summary

This chapter presents an interference aware Deep Learning model update platform for

the edge devices that minimizes the DL model update time by intelligently distributing

data among worker nodes while adhering to the latency constraints of the background ap-

plications. We built a performance model to estimate the pressure and sensitivity to run

the DL model update with the background latency-critical tasks. We described different

components of the framework and also showed the efficacy of the scheduling heuristic by

143

validating against realistic case study.

V.7.2 Discussions

In the future, we would like to extend this work in three dimensions: 1. Improving

performance and interference models by adding more features such as memory and disk

bandwidth. 2. Adding support for Multi-Process Service (MPS) based GPU workloads. 3.

Including parameter server load balancing as a part of the scheduling problem.

Acknowledgment of Collaboration

I express my sincere appreciation to my colleague, Ajay Dev Chhokra, for his collabo-

ration in this chapter. The Deep-Edge chapter is divided into four subareas: 1. Deep Edge

framework design and implementation, 2. Sensitivity Analysis of the DL model update

task, 3. Performance Modeling and Evaluation, and 4. Data Sharding Algorithm Design

and Evaluation. I would like to acknowledge Ajay’s efforts towards developing the Deep-

Edge framework. Moreover, he also created a proof of concept and demonstrated that by

building the performance model for this work, which is a distinguishable work in this chap-

ter. I would also like to appreciate his effort and useful suggestions for understanding and

developing ideas towards formulating the problem and developing the data sharding algo-

rithm. This chapter would not have been possible without his hard work and constructive

ideas.

144

CHAPTER VI

SUMMARY OF RESEARCH CONTRIBUTIONS

In the doctoral research on ‘Algorithms and Techniques for Automating Deployment

and Efficient Management of Large-Scale Distributed Data Analytics Services,’ the contri-

butions are four-fold.

1 Contribution 1: Automation of Machine Learning(ML) model development and de-

ployment

2 Contribution 2: Automation of Infrastructure and Application Provisioning

3 Contribution 3: Proactive Resource Management to handle the dynamic workload

4 Contribution 4: Efficient and Interference-aware Strategy for continual ML, espe-

cially Deep Learning model update on heterogeneous edge cluster

The holistic and intelligent framework for Automating Deployment and Management

of Data Analytics Services across Distributed Systems is available in https://github.com/

doc-vu/Stratum.git.

VI.1 Summary of Model-Driven Approach to Automate ML Model Development,

Deployment and Dissemination

The advent of the Internet of Things (IoT) and microservices-based architectures have

enabled a variety of smart distributed applications where IoT devices gather, transform

and analyze data in high volumes and velocity. Many of these applications require real-

time and robust predictive analytics, which requires executing the stream processing work-

flows closer to the source of the data as well as dynamic resource management decision

making. Moreover, predictive analytics requires the developer to build reliable and robust

145

https://github.com/doc-vu/Stratum.git
https://github.com/doc-vu/Stratum.git

Machine Learning (ML) models which in turn requires them to conduct feature engineer-

ing, parameter search, and tuning, and ML model selections, all of which are not only

time-consuming but developers often lack the needed expertise. The proliferation of ML

libraries and frameworks, data ingestion tools, stream and batch processing engines, vi-

sualization techniques, and a variety of available hardware platforms further exacerbates

these problems. To overcome these daunting challenges faced by IoT smart application de-

velopers, we present an end-to-end, holistic IoT data analytics solution called Stratum for

data analytics applications’ full lifecycle management. Stratum uses serverless comput-

ing principles thereby shifting the deployment and runtime resource management respon-

sibilities away from the developer while offering them an event-driven ML-as-a-service

capability for inference jobs that can opportunistically exploit the edge-fog-cloud resource

spectrum to ensure their needed Quality of Service(QoS). Stratum provides users with an

intuitive, declarative mechanism based on the principles of model-driven engineering to

specify their application needs, which are then transformed via generative programming

principles to automate the application lifecycle management. The chapter II describes the

Stratum architecture highlighting the problems it resolves and demonstrates its capabilities

using real-world case studies.

VI.2 Summary of Model-Driven Approach to Automate Infrastructure and

Application Provisioning

Users of cloud platforms often must expend significant manual efforts in the deploy-

ment and orchestration of their services on cloud platforms due primarily to having to

deal with the high variabilities in the configuration options for virtualized environment

setup and meeting the software dependencies for each service. Despite the emergence of

many DevOps cloud automation and orchestration tools, users must still rely on specifying

low-level scripting details for service deployment and management using Infrastructure-as-

Code (IAC). Using these tools required domain expertise along with a steep learning curve.

146

To address these challenges in a tool-and-technology agnostic manner, which helps pro-

mote interoperability and portability of services hosted across cloud platforms, we present

a GUI based cloud automation and orchestration framework called CloudCAMP. It incorpo-

rates domain-specific modeling so that the specifications and dependencies imposed by the

cloud platform and application architecture can be specified at an intuitive, higher level of

abstraction without the need for domain expertise using Model-Driven Engineering(MDE)

paradigm. CloudCAMP transforms the partial specifications into deployable Infrastructure-

as-Code (IAC) using the Transformational-Generative paradigm and by leveraging an ex-

tensible and reusable knowledge base. The auto-generated IAC can be handled by existing

tools to provision the services components automatically. We validate our approach quan-

titatively by showing a comparative study of savings in manual and scripting efforts versus

using CloudCAMP.

VI.3 Summary of Proactive Resource Management Strategy

Pre-trained deep learning models are increasingly being used to offer a variety of compute-

intensive predictive analytics services such as fitness tracking, speech and image recogni-

tion. The stateless and highly parallelizable nature of deep learning models makes them

well-suited for serverless computing paradigm. However, making effective resource man-

agement decisions for these services is a hard problem due to the dynamic workloads and

diverse set of available resource configurations that have their deployment and management

costs. To address these challenges, we present a distributed and scalable deep-learning

prediction serving system called Barista and make the following contributions. First, we

present a fast and effective methodology for forecasting workloads by identifying various

trends. Second, we formulate an optimization problem to minimize the total cost incurred

while ensuring bounded prediction latency with reasonable accuracy. Third, we propose an

efficient heuristic to identify suitable compute resource configurations. Fourth, we propose

an intelligent agent to allocate and manage the compute resources by horizontal and vertical

147

scaling to maintain the required prediction latency. Finally, using representative real-world

workloads for urban transportation service, we demonstrate and validate the capabilities of

Barista.

VI.4 Summary to Interference-aware continual ML/DL Model Update Strategy on

Heterogeneous Edge

Deep Learning (DL) model-based AI services are increasingly offered in a variety of

predictive analytics services such as computer vision, natural language processing, speech

recognition. However, the quality of the DL models can degrade over time due to changes

in the input data distribution, thereby requiring periodic model updates. Although cloud

data-centers can meet the computational requirements of the resource-intensive and time-

consuming model update task, transferring data from the edge devices to the cloud incurs

a significant cost in terms of network bandwidth and are prone to data privacy issues. With

the advent of GPU-enabled edge devices, the DL model update can be performed at the

edge in a distributed manner using multiple connected edge devices. However, efficiently

utilizing the edge resources for the model update is a hard problem due to the hetero-

geneity among the edge devices and the resource interference caused by the co-location of

the DL model update task with latency-critical tasks running in the background. To over-

come these challenges, we present Deep-Edge, a load and interference aware, fault-tolerant

resource management framework for performing model update at the edge based on dis-

tributed training. The chapter V makes the following contributions. First, it provides a

unified framework for monitoring, profiling, and deploying the DL model update tasks on

heterogeneous edge devices. Second, it presents an optimization problem to minimize the

total model update cost in the heterogeneous edge environment while guaranteeing that no

latency-critical applications experience deadline violations. Third, it proposes an efficient

heuristic to identify suitable compute resource configurations and a data sharding strat-

egy to distribute the data among the available resources by building an interference-aware

148

performance model. Finally, we present empirical results to validate the efficacy of the

framework by presenting a real-world DL model update case-study based on the Caltech

dataset and an edge AI cluster testbed.

VI.5 List of Publications

JOURNAL PUBLICATIONS

1. Yogesh Barve, Prithviraj Patil, Anirban Bhattacharjee, and Aniruddha Gokhale.

"Pads: Design and implementation of a cloud-based, immersive learning environ-

ment for distributed systems algorithms." IEEE Transactions on Emerging Topics in

Computing 6, no. 1 (2017): 20-31.

2. Goncalo Martins, Arul Moondra, Abhishek Dubey, Anirban Bhattacharjee, and

Xenofon Koutsoukos. "Computation and communication evaluation of an authen-

tication mechanism for time-triggered networked control systems." Sensors 16, no.

8 (2016): 1166.

CONFERENCE PUBLICATIONS

1. Anirban Bhattacharjee∗, Ajay Dev Chhokra∗, Hongyang Sun , Shashank Shekhar,

Aniruddha Gokhale, Gabor Karsai and Abhishek Dubey. "Deep-Edge: An Efficient

Framework for Deep Learning Model Update on Heterogeneous Edge" , In 2020

IEEE International Conference on Fog and Edge Computing (ICFEC), IEEE, 2020 –

Under Review

2. Anirban Bhattacharjee, Yogesh Barve, Shweta Khare, Shunxing Bao, Zhuangwei

Kang, Aniruddha Gokhale, and Thomas Damiano. "STRATUM: A BigData-as-a-

Service for Lifecycle Management of IoT Analytics Applications", In 2019 IEEE

International Conference on Big Data (Big Data), pp. 1607-1612. IEEE, 2019.

149

3. Shweta Khare, Hongyang Sun, Julien Gascon-Samson, Kaiwen Zhang, Aniruddha

Gokhale, Yogesh Barve, Anirban Bhattacharjee, and Xenofon Koutsoukos. "Lin-

earize, predict and place: minimizing the makespan for edge-based stream process-

ing of directed acyclic graphs." In Proceedings of the 4th ACM/IEEE Symposium on

Edge Computing, pp. 1-14. 2019.

4. Anirban Bhattacharjee, Ajay Dev Chhokra, Zhuangwei Kang, Hongyang Sun and

Aniruddha Gokhale, "BARISTA: Efficient and Scalable Deep Learning Prediction

Serving using Serverless Computing." In 2019 IEEE International Conference on

Cloud Engineering (IC2E), pp. 23-33. IEEE, 2019.

5. Yogesh Barve, Shashank Shekhar, Ajay Dev Chhokra, Shweta Khare, Anirban Bhatta-

charjee, Zhuangwei Kang, Hongyang Sun and Aniruddha Gokhale, "FECBench: A

Holistic Interference-aware Approach for Application Performance Modeling." In

2019 IEEE International Conference on Cloud Engineering (IC2E), pp. 211-221.

IEEE, 2019.

6. Anirban Bhattacharjee, Barve, Yogesh, Shweta Khare, Shunxing Bao, Aniruddha

Gokhale, and Thomas Damiano. "Stratum: A Serverless Framework for the Lifecy-

cle Management of Machine Learning-based Data Analytics Tasks." In 2019 USENIX

Conference on Operational Machine Learning (OpML 19), pp. 59-61. 2019.

7. Yogesh Barve, Shashank Shekhar, Shweta Khare, Anirban Bhattacharjee, and Anirud-

dha Gokhale. "UPSARA: A Model-Driven Approach for Performance Analysis of

Cloud-Hosted Applications." In 2018 IEEE/ACM 11th International Conference on

Utility and Cloud Computing (UCC), pp. 1-10. IEEE, 2018.

8. Anirban Bhattacharjee, Yogesh Barve, Aniruddha Gokhale, and Takayuki Kuroda.

"A Model-Driven Approach to Automate the Deployment and Management of Cloud

Services." In 2018 IEEE/ACM International Conference on Utility and Cloud Com-

150

puting Companion (UCC Companion), pp. 109-114. IEEE, 2018.

9. Shashank Shekhar, Hamzah Abdel-Aziz, Anirban Bhattacharjee, Aniruddha Gokhale,

and Xenofon Koutsoukos. "Performance interference-aware vertical elasticity for

cloud-hosted latency-sensitive applications." In 2018 IEEE 11th International Con-

ference on Cloud Computing (CLOUD), pp. 82-89. IEEE, 2018.

10. Anirban Bhattacharjee, Yogesh Barve, Aniruddha Gokhale, and Takayuki Kuroda.

"(WIP) CloudCAMP: Automating the Deployment and Management of Cloud Ser-

vices." In 2018 IEEE International Conference on Services Computing (SCC), pp.

237-240. IEEE, 2018.

11. Shashank Shekhar, Ajay Dev Chhokra, Anirban Bhattacharjee, Guillaume Aupy,

and Aniruddha Gokhale. "INDICES: exploiting edge resources for performance-

aware cloud-hosted services." In 2017 IEEE 1st International Conference on Fog

and Edge Computing (ICFEC), pp. 75-80. IEEE, 2017.

12. Goncalo Martins, Anirban Bhattacharjee, Abhishek Dubey, and Xenofon D. Kout-

soukos. "Performance evaluation of an authentication mechanism in time-triggered

networked control systems." In 2014 7th International Symposium on Resilient Con-

trol Systems (ISRCS), pp. 1-6. IEEE, 2014.

WORKSHOPS AND POSTERS

1. Aniruddha Gokhale, Yogesh Barve, Anirban Bhattacharjee, and Shweta Khare,

"Software - defined and Programmable CPS/IoT-OS: Architecting the Next Gen-

eration of CPS/IoT Operating Systems", in 1st International Workshop on Next-

Generation Operating Systems for Cyber-Physical Systems (NGOSCPS 2019 Po-

sition Papers)

151

2. Yogesh Barve, Shashank Shekhar, Ajay Dev Chhokra, Shweta Khare, Anirban Bhatta-

charjee, and Aniruddha Gokhale. "Poster: Fecbench: An extensible framework for

pinpointing sources of performance interference in the cloud-edge resource spec-

trum." In 2018 IEEE/ACM Symposium on Edge Computing (SEC), pp. 331-333.

IEEE, 2018.

3. Yogesh Barve, Shashank Shekhar, Ajay Dev Chhokra, Shweta Khare, Anirban Bhatta-

charjee, and Aniruddha Gokhale, "Demo Paper: FECBench A Framework for Mea-

suring and Analyzing Performance Interference Effects for Latency-Sensitive Appli-

cations", RTSS Works Demo Session of the 39th IEEE Realtime Systems Sympo-

sium (RTSS), Dec 1114, 2018.

TUTORIALS AND TALKS

1. Anirban Bhattacharjee, Yogesh Barve, Shweta Khare, and Aniruddha Gokhale, "In-

vestigating Dynamic Resource Management Solutions for Cloud Infrastructures us-

ing Chameleon Cloud," 2nd Chameleon Users Meeting, Feb 2019.

2. Aniruddha Gokhale, Yogesh Barve, Anirban Bhattacharjee, and Travis Brummett,

"Experiences using Chameleon in a Cloud Computing Course," 2nd Chameleon Users

Meeting, Feb 2019.

3. Shashank Shekhar, Yogesh Barve, Shweta Khare, Anirban Bhattacharjee, and Anirud-

dha Gokhale, "FECBench: An Extensible Framework for Pinpointing Sources of

Performance Interference in Cloud-to-Edge hosted Applications," Tutorial at IEEE

International Conference on Cloud Engineering (IC2E), Apr 2018.

4. Yogesh Barve, Anirban Bhattacharjee, and Aniruddha Gokhale, "PADS A Model

Driven Engineering Framework for Learning Distributed Systems Algorithms," Tu-

torial at the ACM/IEEE 20th International Conference on Model-driven Engineering

Languages and Systems (MODELS), Sept 1722, 2017.

152

DOCTORAL SYMPOSIUM

1. Anirban Bhattacharjee. "MDE-based Automated Provisioning and Management of

Cloud Applications." In MODELS (Satellite Events). 2017.

153

BIBLIOGRAPHY

[1] D. Delen and H. Demirkan, “Data, information and analytics as services,” 2013.

[2] J. L. Berral-García, “A quick view on current techniques and machine learning algo-

rithms for big data analytics,” in 2016 18th international conference on transparent

optical networks (ICTON). IEEE, 2016, pp. 1–4.

[3] G. Ananthanarayanan, P. Bahl, P. Bodík, K. Chintalapudi, M. Philipose, L. Ravin-

dranath, and S. Sinha, “Real-time video analytics: The killer app for edge comput-

ing,” computer, vol. 50, no. 10, pp. 58–67, 2017.

[4] G. Martins, A. Bhattacharjee, A. Dubey, and X. D. Koutsoukos, “Performance evalu-

ation of an authentication mechanism in time-triggered networked control systems,”

in 2014 7th International Symposium on Resilient Control Systems (ISRCS). IEEE,

2014, pp. 1–6.

[5] M. Satyanarayanan, “The emergence of edge computing,” Computer, vol. 50, no. 1,

pp. 30–39, 2017.

[6] A. Bhattacharjee, “Mde-based automated provisioning and management of cloud

applications.” in MODELS (Satellite Events), 2017, pp. 480–483.

[7] A. Bhattacharjee, Y. Barve, A. Gokhale, and T. Kuroda, “A model-driven approach

to automate the deployment and management of cloud services,” in 2018 IEEE/ACM

International Conference on Utility and Cloud Computing Companion (UCC Com-

panion). IEEE, 2018, pp. 109–114.

[8] ——, “(wip) cloudcamp: Automating the deployment and management of cloud

services,” in 2018 IEEE International Conference on Services Computing (SCC).

IEEE, 2018, pp. 237–240.

154

[9] A. Bhattacharjee, Y. Barve, S. Khare, S. Bao, A. Gokhale, and T. Damiano, “Stra-

tum: A serverless framework for the lifecycle management of machine learning-

based data analytics tasks,” in 2019 {USENIX} Conference on Operational Machine

Learning (OpML 19), 2019, pp. 59–61.

[10] A. Bhattacharjee, Y. Barve, S. Khare, S. Bao, Z. Kang, A. Gokhale, and T. Damiano,

“Stratum: A bigdata-as-a-service for lifecycle management of iot analytics applica-

tions,” in IEEE International Conference on Big Data (Big Data). IEEE, 2019, pp.

1607–1612.

[11] A. Bhattacharjee, A. D. Chhokra, Z. Kang, H. Sun, A. Gokhale, and G. Karsai,

“Barista: Efficient and scalable serverless serving system for deep learning pre-

diction services,” in 2019 IEEE International Conference on Cloud Engineering

(IC2E), June 2019, pp. 23–33.

[12] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A survey on

concept drift adaptation,” ACM computing surveys (CSUR), vol. 46, no. 4, p. 44,

2014.

[13] X. He, H. Zhang, M.-Y. Kan, and T.-S. Chua, “Fast matrix factorization for online

recommendation with implicit feedback,” in Proceedings of the 39th International

ACM SIGIR conference on Research and Development in Information Retrieval.

ACM, 2016, pp. 549–558.

[14] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and I. Stoica,

“Clipper: A low-latency online prediction serving system,” in 14th {USENIX} Sym-

posium on Networked Systems Design and Implementation ({NSDI} 17), 2017, pp.

613–627.

[15] D. C. Schmidt, “Model-driven engineering,” COMPUTER-IEEE COMPUTER

SOCIETY-, vol. 39, no. 2, p. 25, 2006.

155

[16] E. Bisong, “Kubeflow and kubeflow pipelines,” in Building Machine Learning and

Deep Learning Models on Google Cloud Platform. Springer, 2019, pp. 671–685.

[17] F. Tekiner and J. A. Keane, “Big data framework,” in Systems, Man, and Cybernetics

(SMC), 2013 IEEE International Conference on. IEEE, 2013, pp. 1494–1499.

[18] S. Shekhar, H. Abdel-Aziz, A. Bhattacharjee, A. Gokhale, and X. Koutsoukos, “Per-

formance interference-aware vertical elasticity for cloud-hosted latency-sensitive

applications,” in 2018 IEEE 11th International Conference on Cloud Computing

(CLOUD). IEEE, 2018, pp. 82–89.

[19] S. Khare, H. Sun, J. Gascon-Samson, K. Zhang, A. Gokhale, Y. Barve, A. Bhatta-

charjee, and X. Koutsoukos, “Linearize, predict and place: minimizing the makespan

for edge-based stream processing of directed acyclic graphs,” in Proceedings of the

4th ACM/IEEE Symposium on Edge Computing, 2019, pp. 1–14.

[20] S. Shekhar, A. D. Chhokra, A. Bhattacharjee, G. Aupy, and A. Gokhale, “Indices:

exploiting edge resources for performance-aware cloud-hosted services,” in 2017

IEEE 1st International Conference on Fog and Edge Computing (ICFEC). IEEE,

2017, pp. 75–80.

[21] Y. Barve, S. Shekhar, A. Chhokra, S. Khare, A. Bhattacharjee, and A. Gokhale,

“Fecbench: An extensible framework for pinpointing sources of performance inter-

ference in the cloud-edge resource spectrum,” in 2018 IEEE/ACM Symposium on

Edge Computing (SEC). IEEE, 2018, pp. 331–333.

[22] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A toolkit

for modeling and simulation of resource management techniques in the internet of

things, edge and fog computing environments,” Software: Practice and Experience,

vol. 47, no. 9, pp. 1275–1296, 2017.

156

[23] P. Ravindra, A. Khochare, S. P. Reddy, S. Sharma, P. Varshney, and Y. Simmhan,

“Echo: An adaptive orchestration platform for hybrid dataflows across cloud and

edge,” in International Conference on Service-Oriented Computing. Springer,

2017, pp. 395–410.

[24] E. Al-Masri, “Enhancing the microservices architecture for the internet of things,”

in 2018 IEEE International Conference on Big Data (Big Data). IEEE, 2018, pp.

5119–5125.

[25] T. Li, J. Zhong, J. Liu, W. Wu, and C. Zhang, “Ease. ml: Towards multi-tenant

resource sharing for machine learning workloads,” Proceedings of the VLDB En-

dowment, vol. 11, no. 5, pp. 607–620, 2018.

[26] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley, “Google

vizier: A service for black-box optimization,” in Proceedings of the 23rd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining.

ACM, 2017, pp. 1487–1495.

[27] D. Baylor, E. Breck, H.-T. Cheng, N. Fiedel, C. Y. Foo, Z. Haque, S. Haykal,

M. Ispir, V. Jain, L. Koc et al., “Tfx: A tensorflow-based production-scale machine

learning platform,” in Proceedings of the 23rd ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining. ACM, 2017, pp. 1387–1395.

[28] (2017) Meet michelangelo: Uber’s machine learning platform. [Online]. Available:

https://eng.uber.com/michelangelo/

[29] M. Ma, H. P. Ansari, D. Chao, S. Adya, S. Akle, Y. Qin, D. Gimnicher,

and D. Walsh, “Democratizing production-scale distributed deep learning,” arXiv

preprint arXiv:1811.00143, 2018.

[30] W. Wang, J. Gao, M. Zhang, S. Wang, G. Chen, T. K. Ng, B. C. Ooi, J. Shao, and

157

https://eng.uber.com/michelangelo/

M. Reyad, “Rafiki: machine learning as an analytics service system,” Proceedings

of the VLDB Endowment, vol. 12, no. 2, pp. 128–140, 2018.

[31] M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S. A. Hong, A. Konwinski, S. Murch-

ing, T. Nykodym, P. Ogilvie, M. Parkhe et al., “Accelerating the machine learning

lifecycle with mlflow,” Data Engineering, p. 39, 2018.

[32] D. Crankshaw, G.-E. Sela, C. Zumar, X. Mo, J. E. Gonzalez, I. Stoica, and A. Tu-

manov, “Inferline: Ml inference pipeline composition framework,” arXiv preprint

arXiv:1812.01776, 2018.

[33] Y. Lee, A. Scolari, B.-G. Chun, M. Weimer, and M. Interlandi, “From the edge to

the cloud: Model serving in ml .net,” Data Engineering, p. 46, 2018.

[34] R. Chard, Z. Li, K. Chard, L. Ward, Y. Babuji, A. Woodard, S. Tuecke, B. Blaiszik,

M. J. Franklin, and I. Foster, “Dlhub: Model and data serving for science,” arXiv

preprint arXiv:1811.11213, 2018.

[35] S. Zhao, M. Talasila, G. Jacobson, C. Borcea, S. A. Aftab, and J. F. Murray, “Pack-

aging and sharing machine learning models via the acumos ai open platform,” in

2018 17th IEEE International Conference on Machine Learning and Applications

(ICMLA). IEEE, 2018, pp. 841–846.

[36] R. Di Cosmo, A. Eiche, J. Mauro, S. Zacchiroli, G. Zavattaro, and J. Zwolakowski,

“Automatic deployment of services in the cloud with aeolus blender,” in Service-

Oriented Computing. Springer, 2015, pp. 397–411.

[37] N. Huber, F. Brosig, S. Spinner, S. Kounev, and M. Bahr, “Model-based self-aware

performance and resource management using the descartes modeling language,”

IEEE Transactions on Software Engineering, 2016.

158

[38] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara, “Serverless com-

puting: An investigation of factors influencing microservice performance,” in 2018

IEEE International Conference on Cloud Engineering (IC2E). IEEE, 2018, pp.

159–169.

[39] G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino, and

A. Di Salle, “Towards recovering the software architecture of microservice-based

systems,” in Software Architecture Workshops (ICSAW), 2017 IEEE International

Conference on. IEEE, 2017, pp. 46–53.

[40] K. Kumar, S. Sinha, and P. Manupriya, “D-pnr: Deep license plate number recogni-

tion,” in Proceedings of 2nd International Conference on Computer Vision & Image

Processing. Springer, 2018, pp. 37–46.

[41] K. M. M. Thein, “Apache kafka: Next generation distributed messaging system,”

International Journal of Scientific Engineering and Technology Research, vol. 3,

no. 47, pp. 9478–9483, 2014.

[42] Y. D. Barve, P. Patil, A. Bhattacharjee, and A. Gokhale, “Pads: Design and imple-

mentation of a cloud-based, immersive learning environment for distributed systems

algorithms,” IEEE Transactions on Emerging Topics in Computing, vol. 6, no. 1, pp.

20–31, 2018.

[43] M. Maróti, R. Kereskényi, T. Kecskés, P. Völgyesi, and A. Lédeczi, “Online collab-

orative environment for designing complex computational systems,” Procedia Com-

puter Science, vol. 29, pp. 2432–2441, 2014.

[44] M. Claesen and B. De Moor, “Hyperparameter search in machine learning,” arXiv

preprint arXiv:1502.02127, 2015.

[45] (2018) Collectd - the system statistics collection daemon. [Online]. Available:

https://collectd.org/

159

https://collectd.org/

[46] (2018) Nvidia system management interface. [Online]. Available: https:

//developer.nvidia.com/nvidia-system-management-interface/

[47] (2018) Messaging that just works — rabbitmq. [Online]. Available: https:

//www.rabbitmq.com/

[48] (2018) Influxdb - time series database. [Online]. Available: https://www.influxdata.

com/time-series-platform/influxdb/

[49] Y. Barve, P. Patil, A. Bhattacharjee, and A. Gokhale, “Pads: Design and imple-

mentation of a cloud-based, immersive learning environment for distributed systems

algorithms,” IEEE Transactions on Emerging Topics in Computing, 2017.

[50] OASIS, “Topology and orchestration specification for cloud applications,” http://

docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf, 2013, oASIS Standard.

[51] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and J. Wettinger, “Integrated cloud

application provisioning: interconnecting service-centric and script-centric manage-

ment technologies,” in OTM Confederated International Conferences" On the Move

to Meaningful Internet Systems". Springer, 2013, pp. 130–148.

[52] J. Humble and J. Molesky, “Why enterprises must adopt devops to enable continuous

delivery,” Cutter IT Journal, vol. 24, no. 8, p. 6, 2011.

[53] J. Carrasco, J. Cubo, F. Durán, and E. Pimentel, “Bidimensional cross-cloud man-

agement with tosca and brooklyn,” in Cloud Computing (CLOUD), 2016 IEEE 9th

International Conference on. IEEE, 2016.

[54] T. Eilam, M. Elder, A. V. Konstantinou, and E. Snible, “Pattern-based composite

application deployment,” in 12th IFIP/IEEE International Symposium on Integrated

Network Management (IM 2011) and Workshops. IEEE, 2011, pp. 217–224.

160

https://developer.nvidia.com/nvidia-system-management-interface/
https://developer.nvidia.com/nvidia-system-management-interface/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.influxdata.com/time-series-platform/influxdb/
https://www.influxdata.com/time-series-platform/influxdb/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf

[55] H. Lu, M. Shtern, B. Simmons, M. Smit, and M. Litoiu, “Pattern-based deploy-

ment service for next generation clouds,” in Services (SERVICES), 2013 IEEE Ninth

World Congress on. IEEE, 2013, pp. 464–471.

[56] K. Képes, U. Breitenbücher, and F. Leymann, “The sepade system: Packaging entire

xaas layers for automatically deploying and managing applications,” month, 2017.

[57] L. Leite, C. E. Moreira, D. Cordeiro, M. A. Gerosa, and F. Kon, “Deploying large-

scale service compositions on the cloud with the choreos enactment engine,” in Net-

work Computing and Applications (NCA), 2014 IEEE 13th International Symposium

on. IEEE, 2014, pp. 121–128.

[58] D. Ardagna, E. Di Nitto, G. Casale, D. Petcu, P. Mohagheghi, S. Mosser,

P. Matthews, A. Gericke, C. Ballagny, F. D’Andria et al., “Modaclouds: A model-

driven approach for the design and execution of applications on multiple clouds,” in

Proceedings of the 4th International Workshop on Modeling in Software Engineer-

ing. IEEE Press, 2012, pp. 50–56.

[59] S. Narain, G. Levin, S. Malik, and V. Kaul, “Declarative infrastructure configuration

synthesis and debugging,” Journal of Network and Systems Management, vol. 16,

no. 3, pp. 235–258, 2008.

[60] E. Torlak and D. Jackson, “Kodkod: A relational model finder,” in Tools and Algo-

rithms for the Construction and Analysis of Systems. Springer, 2007, pp. 632–647.

[61] J. Fischer, R. Majumdar, and S. Esmaeilsabzali, “Engage: a deployment manage-

ment system,” in ACM SIGPLAN Notices, vol. 47, no. 6. ACM, 2012, pp. 263–274.

[62] R. Di Cosmo, M. Lienhardt, R. Treinen, S. Zacchiroli, J. Zwolakowski, A. Eiche,

and A. Agahi, “Automated synthesis and deployment of cloud applications,” in Pro-

ceedings of the 29th ACM/IEEE international conference on Automated software

engineering. ACM, 2014, pp. 211–222.

161

[63] T. A. Lascu, J. Mauro, and G. Zavattaro, “A planning tool supporting the deployment

of cloud applications,” in Tools with Artificial Intelligence (ICTAI), 2013 IEEE 25th

International Conference on. IEEE, 2013, pp. 213–220.

[64] P. Hirmer, U. Breitenbücher, T. Binz, F. Leymann et al., “Automatic topology com-

pletion of tosca-based cloud applications.” in GI-Jahrestagung, 2014, pp. 247–258.

[65] U. Breitenbucher, T. Binz, K. Képes, O. Kopp, F. Leymann, and J. Wettinger, “Com-

bining declarative and imperative cloud application provisioning based on tosca,” in

Cloud Engineering (IC2E), 2014 IEEE International Conference on. IEEE, 2014,

pp. 87–96.

[66] I. Giannakopoulos, N. Papailiou, C. Mantas, I. Konstantinou, D. Tsoumakos, and

N. Koziris, “Celar: automated application elasticity platform,” in Big Data (Big

Data), 2014 IEEE International Conference on. IEEE, 2014, pp. 23–25.

[67] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, p.

436, 2015.

[68] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio, “End-to-end

attention-based large vocabulary speech recognition,” in Acoustics, Speech and Sig-

nal Processing (ICASSP), 2016 IEEE International Conference on. IEEE, 2016,

pp. 4945–4949.

[69] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Autonomic vertical elasticity

of docker containers with elasticdocker,” in Cloud Computing (CLOUD), 2017 IEEE

10th International Conference on. IEEE, 2017, pp. 472–479.

[70] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian, N. Mitchell,

V. Muthusamy, R. Rabbah, A. Slominski et al., “Serverless computing: Current

trends and open problems,” in Research Advances in Cloud Computing. Springer,

2017, pp. 1–20.

162

[71] A. Gujarati, S. Elnikety, Y. He, K. S. McKinley, and B. B. Brandenburg, “Swayam:

distributed autoscaling to meet slas of machine learning inference services with re-

source efficiency,” in Proceedings of the 18th ACM/IFIP/USENIX Middleware Con-

ference. ACM, 2017, pp. 109–120.

[72] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and M. Zhang, “Cher-

rypick: Adaptively unearthing the best cloud configurations for big data analytics.”

in NSDI, vol. 2, 2017, pp. 4–2.

[73] C. Delimitrou and C. Kozyrakis, “Quasar: resource-efficient and qos-aware cluster

management,” ACM SIGPLAN Notices, vol. 49, no. 4, pp. 127–144, 2014.

[74] S. Venkataraman, Z. Yang, M. J. Franklin, B. Recht, and I. Stoica, “Ernest: Efficient

performance prediction for large-scale advanced analytics.” in NSDI, 2016, pp. 363–

378.

[75] S. K. Barker and P. Shenoy, “Empirical evaluation of latency-sensitive application

performance in the cloud,” in Proceedings of the first annual ACM SIGMM confer-

ence on Multimedia systems. ACM, 2010, pp. 35–46.

[76] Y. Ukidave, X. Li, and D. Kaeli, “Mystic: Predictive scheduling for gpu based cloud

servers using machine learning,” in Parallel and Distributed Processing Symposium,

2016 IEEE International. IEEE, 2016, pp. 353–362.

[77] Y. Barve, S. Shekhar, S. Khare, A. Bhattacharjee, and A. Gokhale, “Upsara: A

model-driven approach for performance analysis of cloud-hosted applications,” in

2018 IEEE/ACM 11th International Conference on Utility and Cloud Computing

(UCC). IEEE, 2018, pp. 1–10.

[78] V. Ishakian, V. Muthusamy, and A. Slominski, “Serving deep learning models in a

serverless platform,” in 2018 IEEE International Conference on Cloud Engineering

(IC2E). IEEE, 2018, pp. 257–262.

163

[79] “AWS lambda,” https://aws.amazon.com/serverless/, 2018.

[80] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak, and S. Wag-

ner, “Opentosca–a runtime for tosca-based cloud applications,” in International

Conference on Service-Oriented Computing. Springer, 2013, pp. 692–695.

[81] A. Aldhalaan and D. A. Menascé, “Near-optimal allocation of vms from iaas

providers by saas providers,” in Cloud and Autonomic Computing (ICCAC), 2015

International Conference on. IEEE, 2015, pp. 228–231.

[82] A. Brogi and S. Forti, “Qos-aware deployment of iot applications through the fog,”

IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1185–1192, 2017.

[83] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for heterogeneous

datacenters,” in ACM SIGPLAN Notices, vol. 48, no. 4. ACM, 2013, pp. 77–88.

[84] E. B. Lakew, C. Klein, F. Hernandez-Rodriguez, and E. Elmroth, “Towards faster

response time models for vertical elasticity,” in Proceedings of the 2014 IEEE/ACM

7th International Conference on Utility and Cloud Computing. IEEE Computer

Society, 2014, pp. 560–565.

[85] E. Kalyvianaki, T. Charalambous, and S. Hand, “Adaptive resource provisioning

for virtualized servers using kalman filters,” ACM Transactions on Autonomous and

Adaptive Systems (TAAS), vol. 9, no. 2, p. 10, 2014.

[86] N. R. Herbst, N. Huber, S. Kounev, and E. Amrehn, “Self-adaptive workload classi-

fication and forecasting for proactive resource provisioning,” Concurrency and com-

putation: practice and experience, vol. 26, no. 12, pp. 2053–2078, 2014.

[87] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes, “Agile: Elastic distributed

resource scaling for infrastructure-as-a-service.” in ICAC, vol. 13, 2013, pp. 69–82.

164

https://aws.amazon.com/serverless/

[88] N. Vasić, D. Novaković, S. Miučin, D. Kostić, and R. Bianchini, “Dejavu: acceler-

ating resource allocation in virtualized environments,” in ACM SIGARCH computer

architecture news, vol. 40, no. 1. ACM, 2012, pp. 423–436.

[89] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: Precise online qos man-

agement for increased utilization in warehouse scale computers,” in ACM SIGARCH

Computer Architecture News, vol. 41, no. 3. ACM, 2013, pp. 607–618.

[90] A. Y. Nikravesh, S. A. Ajila, and C.-H. Lung, “An autonomic prediction suite for

cloud resource provisioning,” Journal of Cloud Computing, vol. 6, no. 1, p. 3, 2017.

[91] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction models for adaptive

resource provisioning in the cloud,” Future Generation Computer Systems, vol. 28,

no. 1, pp. 155–162, 2012.

[92] M. B. Sheikh, U. F. Minhas, O. Z. Khan, A. Aboulnaga, P. Poupart, and D. J. Tay-

lor, “A bayesian approach to online performance modeling for database appliances

using gaussian models,” in Proceedings of the 8th ACM international conference on

Autonomic computing. ACM, 2011, pp. 121–130.

[93] S. J. Taylor and B. Letham, “Forecasting at scale,” The American Statistician, no.

just-accepted, 2017.

[94] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya, “Workload prediction using

arima model and its impact on cloud applications qos,” IEEE Transactions on Cloud

Computing, vol. 3, no. 4, pp. 449–458, 2015.

[95] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud using predic-

tive models for workload forecasting,” in Cloud Computing (CLOUD), 2011 IEEE

International Conference on. IEEE, 2011, pp. 500–507.

165

[96] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A review of auto-scaling

techniques for elastic applications in cloud environments,” Journal of grid comput-

ing, vol. 12, no. 4, pp. 559–592, 2014.

[97] R. Wilcox, “Kolmogorov–smirnov test,” Encyclopedia of biostatistics, 2005.

[98] H. G. Tucker, “A generalization of the glivenko-cantelli theorem,” Ann.

Math. Statist., vol. 30, no. 3, pp. 828–830, 09 1959. [Online]. Available:

https://doi.org/10.1214/aoms/1177706212

[99] T. Hastie and R. Tibshirani, “Generalized additive models: some applications,” Jour-

nal of the American Statistical Association, vol. 82, no. 398, pp. 371–386, 1987.

[100] A. C. Harvey and N. Shephard, “Structural time series models,” Handbook of statis-

tics, vol. 11, no. 10, pp. 261–302, 1993.

[101] (2018) H2OAutoML. http://docs.h2o.ai/h2o/latest-stable/h2o-docs/_sources/

automl.rst.txt.

[102] (2018) Amazon ec2 instances. https://aws.amazon.com/ec2/pricing/.

[103] (2018) Docker swarm. https://docs.docker.com/engine/swarm/.

[104] (2018) NYC taxi and limousine commission. https://www1.nyc.gov/site/tlc/about/

tlc-trip-record-data.page.

[105] (2018) NYC thruway. https://catalog.data.gov/dataset/

nys-thruway-origin-and-destination-points-for-all-vehicles-15-minute-intervals-latest-full.

[106] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional neural net-

works for volumetric medical image segmentation,” in 2016 Fourth International

Conference on 3D Vision (3DV). IEEE, 2016, pp. 565–571.

166

https://doi.org/10.1214/aoms/1177706212
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/_sources/automl.rst.txt
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/_sources/automl.rst.txt
https://aws.amazon.com/ec2/pricing/
https://docs.docker.com/engine/swarm/
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://catalog.data.gov/dataset/nys-thruway-origin-and-destination-points-for-all-vehicles-15-minute-intervals-latest-full
https://catalog.data.gov/dataset/nys-thruway-origin-and-destination-points-for-all-vehicles-15-minute-intervals-latest-full

[107] L. Huang, X. Dong, and T. E. Clee, “A scalable deep learning platform for identify-

ing geologic features from seismic attributes,” The Leading Edge, vol. 36, no. 3, pp.

249–256, 2017.

[108] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning affordance for

direct perception in autonomous driving,” in Proceedings of the IEEE International

Conference on Computer Vision, 2015, pp. 2722–2730.

[109] H. Tian, M. Yu, and W. Wang, “Continuum: A platform for cost-aware, low-latency

continual learning,” in Proceedings of the ACM Symposium on Cloud Computing,

2018, pp. 26–40.

[110] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard et al., “Tensorflow: A system for large-scale machine learning.”

in OSDI, vol. 16, 2016, pp. 265–283.

[111] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and

Z. Zhang, “Mxnet: A flexible and efficient machine learning library for heteroge-

neous distributed systems,” arXiv preprint arXiv:1512.01274, 2015.

[112] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol,

Z. Yang, W. Paul, M. I. Jordan et al., “Ray: A distributed framework for emerg-

ing {AI} applications,” in 13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 18), 2018, pp. 561–577.

[113] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: an efficient dynamic

resource scheduler for deep learning clusters,” in Proceedings of the Thirteenth Eu-

roSys Conference. ACM, 2018, p. 3.

[114] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han, P. Patel,

X. Peng, H. Zhao, Q. Zhang et al., “Gandiva: Introspective cluster scheduling for

167

deep learning,” in 13th {USENIX} Symposium on Operating Systems Design and

Implementation ({OSDI} 18), 2018, pp. 595–610.

[115] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and F. Yang, “Analysis

of large-scale multi-tenant gpu clusters for dnn training workloads,” in 2019 USENIX

Annual Technical Conference ({USENIX}{ATC} 19), 2019.

[116] “Embedded Systems Developer Kits & Modules from NVIDIA Jet-

son.” [Online]. Available: https://www.nvidia.com/en-us/autonomous-machines/

embedded-systems/

[117] “Products | Coral.” [Online]. Available: https://coral.ai/products/

[118] Z. Zhao, K. M. Barijough, and A. Gerstlauer, “Deepthings: Distributed adaptive

deep learning inference on resource-constrained iot edge clusters,” IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 11,

pp. 2348–2359, 2018.

[119] L. Zhou, H. Wen, R. Teodorescu, and D. H. Du, “Distributing deep neural networks

with containerized partitions at the edge,” in 2nd {USENIX}Workshop on Hot Topics

in Edge Computing (HotEdge 19), 2019.

[120] J. Jiang, B. Cui, C. Zhang, and L. Yu, “Heterogeneity-aware distributed parameter

servers,” in Proceedings of the 2017 ACM International Conference on Management

of Data. ACM, 2017, pp. 463–478.

[121] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing, “Geeps: Scalable

deep learning on distributed gpus with a gpu-specialized parameter server,” in Pro-

ceedings of the Eleventh European Conference on Computer Systems. ACM, 2016,

p. 4.

168

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://coral.ai/products/

[122] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Kumar,

and Y. Yu, “Petuum: A new platform for distributed machine learning on big data,”

IEEE Transactions on Big Data, vol. 1, no. 2, pp. 49–67, 2015.

[123] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep learning in

tensorflow,” arXiv preprint arXiv:1802.05799, 2018.

[124] J. Chen and X. Ran, “Deep learning with edge computing: A review,” Proceedings

of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.

[125] A. Koliousis, P. Watcharapichat, M. Weidlich, L. Mai, P. Costa, and P. Pietzuch,

“Crossbow: Scaling deep learning with small batch sizes on multi-gpu servers,”

arXiv preprint arXiv:1901.02244, 2019.

[126] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep learning:

An in-depth concurrency analysis,” ACM Computing Surveys (CSUR), vol. 52, no. 4,

p. 65, 2019.

[127] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes,

“Large-scale cluster management at google with borg,” in Proceedings of the Tenth

European Conference on Computer Systems, 2015, pp. 1–17.

[128] V. Jalaparti, P. Bodik, I. Menache, S. Rao, K. Makarychev, and M. Caesar,

“Network-aware scheduling for data-parallel jobs: Plan when you can,” ACM SIG-

COMM Computer Communication Review, vol. 45, no. 4, pp. 407–420, 2015.

[129] A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch, M. Harchol-Balter, and G. R.

Ganger, “Tetrisched: global rescheduling with adaptive plan-ahead in dynamic het-

erogeneous clusters,” in Proceedings of the Eleventh European Conference on Com-

puter Systems, 2016, pp. 1–16.

169

[130] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthy, A. Tumanov, J. Yaniv,

R. Mavlyutov, Í. Goiri, S. Krishnan, J. Kulkarni et al., “Morpheus: Towards au-

tomated slos for enterprise clusters,” in 12th {USENIX} Symposium on Operating

Systems Design and Implementation ({OSDI} 16), 2016, pp. 117–134.

[131] Q. Chen, H. Yang, J. Mars, and L. Tang, “Baymax: Qos awareness and increased uti-

lization for non-preemptive accelerators in warehouse scale computers,” ACM SIG-

PLAN Notices, vol. 51, no. 4, pp. 681–696, 2016.

[132] Q. Chen, H. Yang, M. Guo, R. S. Kannan, J. Mars, and L. Tang, “Prophet: Precise

qos prediction on non-preemptive accelerators to improve utilization in warehouse-

scale computers,” in Proceedings of the Twenty-Second International Conference on

Architectural Support for Programming Languages and Operating Systems, 2017,

pp. 17–32.

[133] H. Zhang, L. Stafman, A. Or, and M. J. Freedman, “Slaq: quality-driven scheduling

for distributed machine learning,” in Proceedings of the 2017 Symposium on Cloud

Computing. ACM, 2017, pp. 390–404.

[134] P. Sun, Y. Wen, N. B. D. Ta, and S. Yan, “Towards distributed machine learning in

shared clusters: A dynamically-partitioned approach,” in 2017 IEEE International

Conference on Smart Computing (SMARTCOMP). IEEE, 2017, pp. 1–6.

[135] E. Aleksandrova, C. Anagnostopoulos, and K. Kolomvatsos, “Machine learning

model updates in edge computing: An optimal stopping theory approach,” in 2019

18th International Symposium on Parallel and Distributed Computing (ISPDC).

IEEE, 2019, pp. 1–8.

[136] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-up: Increas-

ing utilization in modern warehouse scale computers via sensible co-locations,” in

170

Proceedings of the 44th annual IEEE/ACM International Symposium on Microar-

chitecture. ACM, 2011, pp. 248–259.

[137] Y. D. Barve, S. Shekhar, A. Chhokra, S. Khare, A. Bhattacharjee, Z. Kang, H. Sun,

and A. Gokhale, “Fecbench: A holistic interference-aware approach for application

performance modeling,” in 2019 IEEE International Conference on Cloud Engineer-

ing (IC2E), June 2019, pp. 211–221.

[138] S. Chen, C. Delimitrou, and J. F. Martínez, “Parties: Qos-aware resource partitioning

for multiple interactive services,” in Proceedings of the Twenty-Fourth International

Conference on Architectural Support for Programming Languages and Operating

Systems. ACM, 2019, pp. 107–120.

[139] R. Xu, S. Mitra, J. Rahman, P. Bai, B. Zhou, G. Bronevetsky, and S. Bagchi, “Pythia:

Improving datacenter utilization via precise contention prediction for multiple co-

located workloads,” in Proceedings of the 19th International Middleware Confer-

ence. ACM, 2018, pp. 146–160.

[140] J. Zhao, X. Feng, H. Cui, Y. Yan, J. Xue, and W. Yang, “An empirical model for pre-

dicting cross-core performance interference on multicore processors,” in Proceed-

ings of the 22nd international conference on Parallel architectures and compilation

techniques. IEEE, 2013, pp. 201–212.

[141] N. Mishra, J. D. Lafferty, and H. Hoffmann, “Esp: A machine learning approach

to predicting application interference,” in 2017 IEEE International Conference on

Autonomic Computing (ICAC). IEEE, 2017, pp. 125–134.

[142] S. Shekhar, A. Chhokra, H. Sun, A. Gokhale, A. Dubey, and X. Koutsoukos, “Ur-

mila: A performance and mobility-aware fog/edge resource management middle-

ware,” in 2019 IEEE 22nd International Symposium on Real-Time Distributed Com-

puting (ISORC). IEEE, 2019, pp. 118–125.

171

[143] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla: An open

urban driving simulator,” arXiv preprint arXiv:1711.03938, 2017.

[144] Y. Tian, K. Pei, S. Jana, and B. Ray, “DeepTest: Automated testing of deep-neural-

network-driven autonomous cars,” in Proceedings of the 40th International Confer-

ence on Software Engineering. ACM, 2018, pp. 303–314.

[145] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.

Jackel, M. Monfort, U. Muller, J. Zhang et al., “End to end learning for self-driving

cars,” arXiv preprint arXiv:1604.07316, 2016.

[146] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models from few

training examples: An incremental bayesian approach tested on 101 object cate-

gories,” in 2004 conference on computer vision and pattern recognition workshop.

IEEE, 2004, pp. 178–178.

[147] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the in-

ception architecture for computer vision,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2016, pp. 2818–2826.

[148] “cking/stress-ng.git - Unnamed repository; edit this file ’description’ to name the

repository.” [Online]. Available: https://kernel.ubuntu.com/git/cking/stress-ng.git/

[149] “Home - Open Source Leader in AI and ML.” [Online]. Available: https:

//www.h2o.ai/

[150] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features

in deep neural networks?” in Advances in neural information processing systems,

2014, pp. 3320–3328.

[151] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-

172

https://kernel.ubuntu.com/git/cking/stress-ng.git/
https://www.h2o.ai/
https://www.h2o.ai/

thy, A. Khosla, M. Bernstein et al., “Imagenet large scale visual recognition chal-

lenge,” International journal of computer vision, vol. 115, no. 3, pp. 211–252, 2015.

[152] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Interna-

tional journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[153] “GitHub - dmlc/xgboost: Scalable, Portable and Distributed Gradient Boosting

(GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more.

Runs on single machine, Hadoop, Spark, Flink and DataFlow.” [Online]. Available:

https://github.com/dmlc/xgboost

[154] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,

T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache hadoop yarn: Yet another

resource negotiator,” in Proceedings of the 4th annual Symposium on Cloud Com-

puting, 2013, pp. 1–16.

[155] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz,

S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained resource sharing

in the data center.” in NSDI, vol. 11, no. 2011, 2011, pp. 22–22.

173

https://github.com/dmlc/xgboost

	DEDICATION
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Emerging Trends
	Key Research Challenges and Solution Needs
	Requirement 1: Automation of the ML Development Pipeline
	Challenge 1: Abstraction of ML Pipeline
	Challenge 2: Code-generation for ML Model Training and Evaluation
	Challenge 3: Support for ML Deployment

	Requirement 2: Automation of Infrastructure and Application Provisioning
	Challenge 4: Abstraction of Application and Infrastructure details
	Challenge 5: Infrastructure Code-generation from Abstract Model
	Challenge 6: Verification of Abstract Deployment Model
	Challenge 7: Extensibility and Re-usability

	Requirement 3: Proactive Resource Management
	Challenge 8: Workload Variation
	Challenge 9: Optimal Resource Selection
	Challenge 10: Proactive Resource Provisioning

	Requirement 4: Interference-aware Strategy for ML Model Update
	Challenge 11: Heterogeneity-aware Data Management
	Challenge 12: Resource Interference-awareness

	Organization of the Dissertation

	Erudite: A Lifecycle Management Framework for Machine Learning based Predictive Analytics Applications
	Introduction
	Emerging Trends
	Challenges and State-of-the-art Solutions
	Overview of Technical Contributions
	Organization of the Chapter

	Related Work
	Problem Formulation
	Motivating Case Study and Key Challenges
	Deployment Challenges
	Data Movement and Management Challenges
	Model Building and Dissemination Challenges
	Challenges in Determining the Right Hardware Needed
	Runtime Resource Monitoring Challenges

	Solution Requirements
	Requirement 1: Automated Deployment of Application components in Heterogeneous environment
	 Requirement 2: Framework for Flexible ML Service Development and Encapsulation
	Requirement 3: Performance Monitoring and Intelligent Resource Allocation

	Design and Implementation of Erudite
	Addressing Requirement 1: CloudCAMP - Automated Deployment of Application Components in Heterogeneous Resources
	 Meta-model for Heterogeneous Resources
	 Meta-model for Data Ingestion Frameworks
	Meta-model for Data Analytics Applications
	Meta-model for Data Storage Services

	Addressing Requirement 2: Erudite Development Kit for AI/ML Model Development
	 Main Meta-model for Erudite Framework
	 Meta-model for Machine Learning Algorithms
	 Model Evaluation and Flexible ML Service Encapsulation

	 Addressing Requirement 3: Framework for Performance Monitoring and Intelligent Resource Management
	Performance Monitoring
	Resource Management

	 Support for Collaboration and Versioning

	Evaluation
	Evaluating the Rapid Model Development Framework
	Evaluation of Rapid Application Prototyping Framework
	Performance Monitoring on Heterogeneous Hardware
	Resource Management

	Conclusion
	Summary

	CloudCAMP: A Model-Driven Approach to Automate Cloud Services Deployment and Management
	Introduction
	Motivation
	Requirements and State-of-the-art Solutions
	Requirement 1: Reduction in specification details needed for deployment
	Requirement 2: Auto-completion of Infrastructure Provisioning
	Requirement 3: Support for Continuous Integration, Migration, and Delivery

	Overview of Technical Contributions
	Organization of the Chapter

	Related Work
	Design and Implementation of CloudCAMP
	System Architecture of CloudCAMP
	System Implementation of CloudCAMP
	CloudCAMP Domain-specific Modeling Language (DSML)
	Design Rationale for CloudCAMP Meta-models
	Meta-model for the Cloud Platforms
	Meta-model for Application Components
	Defining the Relationship among Components
	Extensibility of the Meta-model

	Design of CloudCAMP Knowledge Base
	Design of Knowledge Base Database
	Design of Knowledge Base Template
	Extensibility of the Knowledge Base

	Generative Capabilities of CloudCAMP DSML
	Knowledge Base for Generation of Infrastructure-as-code Solution for Deployment
	Determining the Order of Deployment and Execution
	Generation of Infrastructure-as-code for Migration
	Support for Continuous Delivery
	Constraints Checking for Correctness Business Models

	Evaluation
	Case Study 1: LAMP-based Service Deployment Study
	Measurement of Manual Effort

	Case Study 2: Application Component Migration for LAMP-based Web Service

	Conclusion
	Summary
	Discussions

	Barista: Efficient and Scalable Serverless Serving System for Deep Learning Prediction Services
	Introduction
	Emerging Trends
	 Challenges and State-of-the-Art Solutions
	Overview of Technical Contributions
	Organization of the Chapter

	Background and Related Work
	 Deep Learning-based Prediction Services
	 Serverless Computing
	 Dynamic Infrastructure Elasticity
	 Workload Forecasting

	System Model and Problem Description
	Infrastructure Model and Assumptions
	VM Flavor Selection and Initial Deployment
	Dynamic Resource Provisioning via Workload Forecasting and Infrastructure Elasticity

	Design and Implementation of Barista
	Architecture of Barista
	 Execution Time Distribution Estimation
	Workload Forecasting
	Forecaster
	Compensator

	Resource Estimation
	Resource Provisioner

	Evaluation
	Experiment Setup
	Predicting Execution Time of Predictive Analytics Services
	Workload Forecasting
	 Resources Selection and Provision
	 Reactive Vertical Scaling for Model Correction

	Conclusion
	 Summary
	 Discussions

	Deep-Edge: An Efficient Framework for Deep Learning Model Update on Heterogeneous Edge
	Introduction
	Emerging Trends
	Challenges and State-of-the-Art Solutions
	Overview of Technical Contributions
	 Organization of the Chapter

	Background and Related Work
	Deep Learning Model Training
	Distributed Deep Learning - Data Parallelism
	Distributed Deep Learning Task Scheduling

	Model Update Strategy
	Resource Interference and Performance Modeling

	Motivation
	Motivation for Model Update
	Motivation for Distributed Training
	Impact of Heterogeneity on Model Update Time
	Impact of Resource Interference on Background Tasks

	Problem Formulation
	Cost Models
	Data Transfer Cost
	Initialization Cost
	Training Cost
	Total Cost

	Optimization Problem
	Assumptions

	Design and Implementation of Deep-Edge
	Architecture Model of Deep-Edge
	Components of Deep-Edge Manager
	Modes of Operation
	Performance and Interference Modeling
	Resource Scheduling
	Fault Tolerance

	Evaluation
	Experiment Setup
	TestBed
	Workloads

	Performance Modeling
	Resource Scheduling
	Effectiveness of Data Sharding Strategy on Epoch Time

	Model Convergence

	Conclusion
	Summary
	Discussions

	Summary of Research Contributions
	Stratum Summary
	CloudCAMP Summary
	Barista Summary
	Deep-Edge Summary
	List of Publications

	 BIBLIOGRAPHY

