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Chapter I

Introduction

Fluid–structure interaction (FSI) is the mechanical interaction of some movable or deformable solid

structures with an internal or surrounding fluid flow. It represents a class of continuum-mechanics

problems with mutual dependence between the fluid and structural mechanics. The fluid mechanics

depends on the instantaneous shape and motion of the structure, and on the other hand, the motion

and deformation of the structure depend on the fluid forces acting on the surface of the structure

as part of the loading.

FSI is almost ubiquitous in our daily lives. Multiple FSI problems are the research subjects

in the field of engineering, such as fluttering of aircraft wings, elastic deformation of wind turbine

blades, and the dam-break flow impacting on the wall. FSI problems are also widely seen in the

field of biological sciences. For instance, different species of birds and fishes are studied from

an FSI point of view in order to improve the understanding of their efficient flying or swimming

mechanisms through flexible wings or fins. In particular, FSI finds a lot of its applications within

the human body. For example, the interaction between blood flow and a deformable vessel provides

understanding of the major physical changes (dilation and stiffening) seen in the elderly known as

vascular aging. The venous valves in legs, also interacting with blood flow to open and close as a

result of FSI, facilitate the ability of the cardiovascular system to carry the blood back to the heart.

Four different sets of heart valves, which turn on and off properly at each cardiac beat, are essential

in regulating the unidirectional flow in the blood circulation system. The interaction between the

blood and artery aneurysm can be investigated to understand the aneurysm rupture mechanism.

The airflow within the lung alveoli is also important in understanding transport of particles and

designing aerosol drug delivery systems. The study on obstructive sleep apnea (OSA) represents

another example of FSI between airflow and the structures in upper airway (i.e., the soft palate

and tongue). The studies of the above-mentioned biomedical FSI problems are of great significance

in enhancing the understanding of the physiological performance, facilitating the clinical diagnosis

and treatment, and improving the optimal design of bio-prostheses.

These FSI problems typically involve sophisticated mechanics, and they are in general still

computationally very challenging in several aspects. First, each problem involves a complicated

three-dimensional anatomical geometry for the fluid flow that varies from patient to patient. The

movement due to deformation of the soft tissue further complicates the dynamics of the flow. Sec-
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ond, the soft tissue in each problem generally consists of inhomogeneous and anisotropic materials

that may go through large deformations. Therefore, the nonlinear tissue mechanics is not straight-

forward to model either with high accuracy in most cases. Lastly, FSI modeling of these soft tissues

would require solving fluid mechanics and tissue mechanics simultaneously. A numerical method

coupling both parts is often subject to limitation in mesh resolution, time step restriction, and

numerical stability issues. Therefore, developing efficient computational methods for these FSI

problems is still an active area of research.

In this dissertation, I will focus on two specific FSI problems: 1) the aortic valve, and 2) the

vocal fold vibration. Both problems have strong applications in health care of patients, for which

we aim to develop patient-specific computationally based tools for disease treatment, especially

surgical planning. In the following sections, I will described medical background of each problem

and discuss the state-of-the-art of computational modeling to provide a context for my study.

1.1 Fluid–structure interaction of heart valves and its computational modeling

1.1.1 Fluid–structure interaction of heart valves and applications

The human heart has four different sets of valves, one for each chamber of the heart. They are mitral

valve, aortic valve, tricuspid valve, and pulmonary valve. The heart valves are thin, membrane-like

structures, and they open and close mostly passively in response to the hemodynamic forces at each

heart beat, regulating the unidirectional blood flow through the heart [3]. Specifically, during the

systole, the left ventricle contracts and the aortic valve opens to allow the oxygen-rich blood being

pumped through the aorta. Meanwhile, the pulmonary valve opens to allow the oxygen-poor blood

in right ventricle go through the pulmonary artery to the lung. During the diastole, the pulmonary

and aortic valves close while the tricuspid valve and mitral valve open, such that the blood fills

inside the left and right ventricles, respectively.

According to the World Health Organization (WHO), the cardiovascular disease has been iden-

tified as the number 1 cause for death globally. Early detection and appropriate management using

counselling and medicine are needed for people with cardiovascular disease or who are at high

cardiovascular risk (due to the presence of one or more risk factors such as hypertension, diabetes,

hyperlipidaemia or already established disease). Two common vascular diseases within the heart

valve community are the aortic stenosis (AS) and the aortic regurgitation (AR). The AS occurs

when the aortic valve becomes calcified and thickened (usually due to aging). The opening of the

valve is narrowed and thus reduces or blocks the blood flow from the heart to the rest of the body.

The AR happens when the valve fails to close tightly and the blood flows back due to the valve

leakage. More than 85,000 valve substitutes are now implanted in the United states and 280,000

worldwide each year [4, 5].

Aside from in-vivo and in-vitro studies from the experimental side, the development of efficient

and reliable computational FSI simulation tools in heart valve application provides an alternative

way for the study of its performing mechanism. Many FSI simulations have been conducted in order
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to promote the understanding of the fundamental physics of heart valves (both natural valves and

prosthetic valves). Earlier FSI studies mainly focus on the construction of robust FSI simulation

tool, with some discussion on the valve deformation, flow field and vortex structure [6–11]. With

the advancement in computation power and medical imaging technique, recent studies are able to

incorporate more realistic computational models into the FSI simulation, such as subject-specific

aorta geometry, nonlinear and anisotropic valve material properties and physiological pressure

loading [12–17]. Patient-specific FSI simulation can provide unique insights into the disease states

and help the physicians to evaluate the valve/device and select the one that best fits the individual

patient in transcatheter aortic valve implantation (TAVI) [18].

1.1.2 Literature review for computational modeling of heart valves

Due to substantial simulation challenges involved in handling the large three-dimensional (3D)

geometrical variations, topological change of the flow domain (i.e., on and off of the valves), and

numerical instability of the FSI algorithm, to date few methods can solve this FSI problem to a

satisfactory level. It remains an active area of research to develop computationally efficient and yet

high-fidelity simulation tools to model the FSI of heart valves.

Given the complex 3D geometry of heart valves and large displacement of the valve leaflets

in a cardiac cycle, it is extremely difficult to apply a conventional computational fluid dynamics

(CFD) method that is based on boundary-conformal meshing of the fluid domain, as frequent mesh

regeneration would be needed to avoid severe mesh distortion and deterioration. Therefore, the

existing numerical methods for the heart valve FSI have mostly relied on non-boundary-conformal

or immersed-boundary type of approaches to solve the fluid flow. In these methods, the mesh

discretizing the flow domain is a typically fixed grid, either structured (e.g., Cartesian) or unstruc-

tured, and is independent from the Lagrangian mesh that discretizes and tracks the solid domain

representing the elastic leaflets. As the Lagrangian mesh moves across the fixed grid, special treat-

ment needs to be done in the flow solver to accounts for the presence of the immersed leaflets and

the effects of their movement.

To do so, De Hart et al. [19] introduced a Lagrange multiplier into the governing Navier-

−Stokes equation to replace the surface force at the boundary for simulation of the aortic valve.

Even though the flow simulation was limited to a coarse resolution of less than 1000 finite elements,

this work nevertheless represents one of the early studies of full 3D FSI models of the heart valves.

Later Griffith and coworkers [20, 10] advanced the aortic valve model by using a diffuse-interface

immersed-boundary method that is based on the Cartesian grid for the flow. The use of a structured

grid, and thus the efficient algorithms associated with the grid, allows the method to deploy much

more mesh points to resolve the flow. In the diffuse-interface immersed-boundary method, the no-

slip/no-penetration boundary conditions are not directly imposed when solving the Navier−Stokes

equation; rather, in one computational step, the solid structure is first allowed to convect along

with the fluid, and then the required stress from the fluid leading to the structural deformation is
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computed by solving the solid mechanics; this fluid force is then fed into the momentum equation

of the fluid as a regularized volumetric force to advance the time step. Conceptually, this approach

only changes the sequence of the solution process and would still provide the same solution once

convergence is reached. However, such sequencing could be prone to spurious fluid forces and

numerical instability, especially when the stiffness of the structure is high and the computed fluid

stress is sensitive to the structural deformation. In those simulations, the valve leaflets have low

bending stiffness and thus may develop wrinkly deformations.

Borazjani [11] used a sharp-interface immersed-boundary method to model the flow for both a

mechanical and a bio-prosthetic aortic valve. The method in this work was also based on a fixed

but curvilinear grid, and fine resolution was applied to capture the detailed vortex structures in

the flow. However, the structural model in the work utilizes membrane finite elements, which do

not include the bending stress in the structure; thus, the leaflets also develop wrinkly deformations.

Later, this method was extended to include shell elements to handle bending of the leaflets [21,

22]. The closing phase was not considered in those studies. Recently, Hsu and coworkers [3, 23]

used a so-called immersogeometric FSI method to model both the flow and structure. Several

advancements have been made in their study. For example, the mesh for the flow is not boundary-

fitted but is adaptive around the solid surface; both stretching (in-plane) and bending (out-of-plane)

deformation were included; a contact model was introduced for leaflet collision; and wall compliance

was also incorporated. One limitation is that their study has not yet examined the flow field in

detail. More recently, Mao et al. [24] combined a commercial finite-element package with a custom

flow solver based on the smoothed particle hydrodynamics to simulate FSI of the aortic valve. With

the help of the commercial package, their structural model is detailed and displays realistic pattern

of deformation. However, their discussion on the flow field is also very limited.

To summarize this brief literature review, the FSI model of the heart valves has been advanced

significantly in recent years, but there is still lack of modeling study that provides reasonable details

for both the valve deformation and the flow pattern. To address this issue, we propose a 3D FSI

simulation of the aortic valve to investigate both the leaflet deformation and vortex pattern in

the flow. Studies like this are significant because it is understandable that for systems like the

heart valves, the flow pattern is intricately associated with the structural deformation through the

interaction, and understanding the relationship between these two parts may lead to useful tools

to diagnose any abnormality of one part based on available information about the other. Thus, in

my study I will consider both the flow and the structural mechanics in detail.

1.2 Fluid–structure interaction of vocal fold and its applications

1.2.1 Vocal fold vibration and voice production

Phonation is one critical component of many human activities, such as singing, communication, and

expression of emotion. The phonation process is represented by a rapid and periodic opening and

closing of glottis through the separation and apposition of a pair of valve-like structure of muscle
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and tissue called vocal fold with the accompany of airflow under lung pressure [25]. During this

process, the air is expelled from the lung through the glottis and the self-oscillating motion of the

vocal fold is sustained, generating fundamental frequency between 80 and 220 Hz for normal voiced

speech [26]. As reported in a statistical study [27], approximately 7.5 million people in the United

States have a type of voice disorder, which can lead to discomfort, pain, poor work performance,

social withdrawal, and even long-term disability.

The key objective of constructing a high-fidelity computational modeling tool is to investi-

gate the behaviour of the intraglottal air flow, the vibrating vocal fold dynamics as well as the

coupling between these two. Meanwhile, such modeling tools should be able to account for the

complex geometry of musculo-cartilaginous structure, the multi-layer structure of vocal fold, and

the accurate parameterization of tissue property of the vocal fold [26]. Being an alternative way to

experimental study, the computational modeling is of important use to enhance the understanding

of the phonation process in the larynx, to assist the diagnosis and treatment of voice disorders in

clinical situations, to provide new explanations to laryngeal pathology such as acute phonotrauma,

to improve the design of prosthetic larynges, and to predict the performance of surgical implants.

1.2.2 Literature review for computational modelling of vocal fold

Many FSI models have been developed in the past with various levels of complexity to simulate

the vocal fold vibration. In terms of spatial setup, these models can be generally categorized

depending on whether the airflow and the tissue respectively assume a zero-, one-, two-, or three-

dimensional configuration. Within each configuration, the models can still differ significantly from

one another depending on how to treat various details such as the structural tissue layers, elastic

properties of the tissue, and anatomical features of the larynx. In early stages, discrete or lumped-

mass systems were created to understand onset of phonation [28–30]. In these models, the vocal

fold was simplified to two or more mass blocks connected to elastic springs, and the Bernoulli

equation or other simplified flow equations were used to model the airflow. Despite its simplicity,

such models can capture self-induced oscillations and have been used extensively to understand

basic effects of governing parameters, e.g., the subglottal pressure and tissue stiffness, and also

to investigate characteristic behavior of normal and abnormal phonation, e.g., chaotic vibration

and vocal fold polyps [29]. With the development of high-performance computing hardware and

software, continuum-mechanics based computational models have been increasingly used for vocal

fold modeling. For example, both two-dimensional (2D) and 3D finite-element models have been

developed to simulate the vocal fold deformation [31–35]. More recently, high-resolution simulations

have been more frequently used in the FSI modeling of the vocal fold. Examples of previous works

include[36–39]. Using the intensive, typically parallelized computations, many of these studies have

reported the unsteady vortex structures in the airflow and their interaction with the vocal fold.

As modern medical imaging technology is being advanced, internal anatomy of human bodies

can be viewed with unprecedented details using noninvasive approaches such as computed tomog-
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raphy (CT) and magnetic resonance imaging (MRI). Such imaging modalities may provide 3D

geometry of the larynx as well as the interior structure of the tissues [40, 41, 2]. The images

generated by these techniques could be used to develop more sophisticated computational models

that have much realistic representation of the laryngeal anatomy. Compared with the previous

computational models that are based on greatly simplified geometries (even for continuum-based

models), the anatomical models are a significant step closer to patient-specific and high-fidelity

modeling of phonation, which is eventually needed for clinical care of voices of individual patients.

Some recently work, e.g., [42] and [43], provide insights into the development towards such medical

imaging based models of the vocal fold. More details about the development and improvement

of vocal fold modeling can be found in review papers of [44] and [26]. Only a brief summary of

literature is provided here to set up the context for the present study.

One issue related to patient-specific modeling is that even if a patient’s anatomy could be

reconstructed with high fidelity, there are still a few other modeling parameters whose values

cannot be specified with accuracy, for example, the elastic properties of the tissue material that

may vary from patient to patient. Even for the same patient, the effective stiffness of the tissue

highly depends on neurological control of various muscle groups and consequently the adduction

state of the vocal fold [45]. These uncertain parameters are important to capture the patient-

specific vibration features [46]. Therefore, either ad hoc assumptions have to be made, or some

parameter identification approach must be used to estimate those parameters. It will be too

expensive to perform parameter identification using 3D FSI models due to their high computational

cost. One possible method is thus to use a reduced-order model to determine those unknown

material properties, which could then be used to enhance fidelity of the 3D models.

To construct a reduced-order FSI model for vocal fold vibration, it may be appropriate to sim-

plify the description of the flow rather than the description of the tissue mechanics, especially when

accurate capture of the vibration characteristics is desirable. This is because the vocal fold defor-

mation is three-dimensional and can be complicated, requiring at least a 3D model representation;

furthermore, 3D simulation of the turbulent glottal flow is typically much more expensive than 3D

simulation of the tissue deformation, and reducing flow simulation can largely lower the overall

computational cost. For such a purpose, the Bernoulli equation has been most widely used in the

past to describe the pressure and velocity of the glottal flow. A comparison of the Bernoulli equa-

tion with the Navier−Stokes equation was studied by [47], who used a 2D setup, assuming either

steady flow or FSI, to assess the accuracy of the Bernoulli principle. Their comparison showed that

all Bernoulli based models result in similar predictions of the mean intraglottal pressure, maximum

orifice area, and vibration frequency; however, those predictions rely on the heuristic specification

of flow separation location in the Bernoulli models, and the location is quite different from that

obtained from the simulation based on the Navier−Stokes equation.

In a previous work [48], the authors coupled an anatomical vocal fold model that was based

on the MRI scan of the rabbit larynx with a Bernoulli based flow model to perform fast FSI

simulations. Their flow model was calibrated a priori using 3D flow simulation of the same larynx,
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in which the 3D flow data were used to set up the curved flow path along the airway for the 1D

model and also to specify the proper location of flow separation. Using a hybrid FSI model of

the 1D flow and the 3D tissue and trying to match the model prediction with the experimental

measurement of the vibration, they estimated the elastic constants of the vocal fold of each subject.

Next, with the material properties identified for individual samples, the updated 3D FSI simulations

were able to capture the specific vibration characteristics for each subject used in the study. In a

later study, the same authors compared the hybrid FSI model with 3D FSI by using a simplified

vocal fold geometry to more thoroughly assess the performance of such Bernoulli based 1D flow

models [48]. They found that that model prediction can be sensitive to the subjective specification

of the separation location; in some case where the medial thickness of the vocal fold is small, the

hybrid FSI model leads to a significantly different vibration mode of the vocal fold than the 3D FSI

model. From these previous studies, it is clear that the Bernoulli equation has serious limitation in

its capability to satisfactorily compute the pressure in the flow for a given geometrical configuration

of the glottis, and a new model that can better predict the pressure is desirable.

Computational modelling of vocal fold can also find its application in the clinical treatment

of unilateral vocal fold paralysis (UVFP). Based on a conservative estimation, more than 20,000

patients are diagnosed with UVFP annually in the United States [49]. Type I laryngoplasty is

commonly used in surgical re-positioning of the paralyzed vocal fold and an implant is placed in

the thyroid cartilage to medialize the affected vocal fold. The implant changes not only the shape of

the glottis but also the dynamic response of the vocal folds to the airflow exiting through the glottis.

Although patients benefit significantly from intervention, variability exists in approaches to surgical

management due to the subject-specific differences in the laryngeal anatomy and tissue properties.

This variability produces undesirable inconsistency in clinical outcomes, increases healthcare costs

and an unnecessary burden on patients and their families.

In the context of voice production, the complex interaction among glottal airflow, vocal fold

tissue, and implant design presents a perfect FSI problem for computational modeling to solve.

A physics-based, high-fidelity and efficient computational tool that incorporates the individual-

specific features of the laryngeal anatomy and tissue properties can be used to assist surgeons with

pre-operative planning and to improve surgical outcomes.

1.3 Overview of the dissertation

In this dissertation, we will computationally study both the aortic valve and the vocal fold.

These two topics are included in one dissertation because of two main reasons. First, we use

essentially the same numerical method to solve the 3D fluid–structure interaction for both the aortic

valve and the vocal fold. That is, a Cartesian grid based immersed-boundary method is utilized

to solve the viscous incompressible flow (blood or air), and a nonlinear finite-element method is

utilized to solve the deformation of the soft tissue (the leaflets or the vocal fold); furthermore, a

partitioned, strong coupling approach is adopted to handle the FSI process.
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Second, for both problems we have complemented the 3D simulation with a similar reduced-

order approach to model the flow. In particular, a one-dimensional (1D) flow model is developed

in each case to represent the transient flow with drastically reduced computational cost. Such a 1D

model is coupled with the 3D FEM tissue model to simulate the FSI with the goal of reproducing

the deformation and dynamics of the tissue as close as possible to the full 3D FSI model. In

each case, we will describe the 1D flow model development, reduced-order FSI simulation, and its

performance assessment.

The following sections summarize each chapter and their relationship.

1.3.1 Parallelization of an immersed-boundary method based on domain de-

composition (Chapter 2)

In this chapter, we present a parallel algorithm of the immersed-boundary method based on the

simple idea of multi-dimensional domain decomposition. The structured Cartesian grid is divided

into multiple partition blocks, or subdomains, and each processor core will work on its assigned

partition. Data exchange among the processor cores is done via MPI calls. Speedup and code

efficiency are analyzed for several benchmark test cases; then the parallel code is applied to case

studies for demonstration, including hummingbird flight, vocal fold, and aortic valve.

1.3.2 A computational study of the 3D FSI of aortic valve (Chapter 3)

In this chapter, a 3D computational study of the FSI of the aortic valve is presented, where the leaflet

thickness is set to 0.1 mm. This represents our first exploration of using the in-house immersed-

boundary method to model the heart valve and studying the underlying FSI from a perspective

that has not been well discussed before. In particular, we present a balanced approach to model

both flow and valve mechanics and use high resolution to resolve the transient flow field. Both the

flow field and deformation of the aortic valve are discussed in detail. On the flow side, the pressure

and velocity field, the transient flow rate, the momentum balance along the flow direction and

the vortex development are analyzed. On the structure side, the geometric and effective opening

areas, the deformation pattern, the transient hemodynamic force experienced by the valve, and the

pressure loading on the leaflet surface are quantitatively examined.

1.3.3 Effect of bending stiffness on the FSI of aortic valve (Chapter 4)

After completing a baseline case study in Chapter 2, we move on to perform a parameter study

using the same aortic valve model. In particular, the thickness of the valve leaflets is varied from

0.1 mm to 0.8 mm, and therefore the corresponding normalized bending stiffness (scaled by the

driving pressure gradient along the aorta) varies in a wide range, representing both healthy and

diseased aortic valves. Through the 3D simulation, we perform detailed analyses of the valve

deformation and the transient flow field, including pressure distribution over the leaflets, flow rate,
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vortex dynamics, as well as the overall force on the valve. An optimal bending stiffness of the

leaflets is found through this study. Furthermore, we propose a new 1D flow model and perform

the reduced-order FSI simulation using this model. Its successes and limitations are studied in

juxtaposition with the 3D FSI simulation.

1.3.4 A reduced-order flow model for fluid–structure interaction simulation of

vocal fold vibration (Chapter 5)

In this chapter, we first consider an idealized vocal fold geometry and use the 3D FSI approach

to simulate the vocal fold vibration. Based on insight from the 3D simulation, we developed a

reduced-order flow model for the glottal airflow. Unlike the previous reduced-order flow models,

the present 1D flow model is based on the viscous momentum equation, as opposed to the Bernoulli

principle for ideal flow. In addition, an “entrance effect” is introduced to account for flow focusing

at the glottal entrance. The performance of this model in FSI simulation is evaluated using full 3D

FSI as the benchmark.

1.3.5 A reduced-order flow model for vocal fold vibration: from idealized to

subject-specific models (Chapter 6)

In this chapter, we extend the reduced-order flow model developed for an idealized vocal fold model

in the preceding chapter to subject-specific vocal fold models. The material properties of the vocal

fold tissue used here are based on parameter estimation in our previous study. The numerical

results are compared with those from the high-speed imaging experiment of in vivo phonation.

Good agreement is found in the vibration frequency, amplitude, phase delay, and deformation

pattern of the vocal fold, which suggests potential application of the present approach for future

patient-specific modeling.
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Chapter II

Parallelization of an immersed-boundary method based on domain decomposi-

tion

2.1 Introduction

Immersed-boundary method was originally proposed by Peskin in the numerical analysis of

blood flow in the heart [50, 51]. Unlike the traditional methods that are based on body-conformal

mesh, one key feature of the immersed-boundary method is the usage of a Cartesian background

mesh for discretization of the flow domain, which greatly simplifies the preprocessing step of mesh

generation. The immersed solid body, usually represented by a Lagrangian mesh, moves through

the Cartesian flow mesh, and its effect on the flow can be modeled by constructing the forcing term

at the fluid–structure interface [52]. The immersed-boundary method has been proven suitable

for solving moving boundary problems with complex geometry and large deformation [53], which

are often encountered in biological flows since complex anatomies and soft tissues are typically

involved in biological systems. Moreover, the concern for numerical stability associated with mesh

regeneration in traditional body-conformal methods is relieved by using the immersed-boundary

method. Thanks to these advantages, the immersed-boundary method has been gaining more pop-

ularity recently for modeling biofluid dynamics. Since its original employment, many modifications

and improvements have been made, and similar methods have found wide applications such as

cardiovascular flows [6, 10, 14, 1, 54] and biological locomotion problems [53, 55].

Three-dimensional flow simulations are usually time-consuming, especially when a fine mesh

needs to be used and large deformation of flow domain is involved. In typical cases, parallel com-

puting is indispensable in flow simulations. Different parallelization approaches have been devised

specifically for the immersed-boundary method. Givelberg and Yelick proposed a parallel frame-

work for their immersed-boundary method software package called IB using the object-oriented

Titanium language [56]. In their framework, fluid nodes on the mesh are assigned to different

processor cores for calculation of the fluid force and update of the boundary position. The scala-

bility of their approach was carried out with up to 16 million mesh points and 128 processor cores.

Yildirim et al. presented a parallel scheme to solve FSI problems, and the parallel efficiencies for

the immersed-boundary method and the body-conformal method are compared on up to 1024 pro-

cessor cores using a mesh size of 5 million points [57]. Wiens and Stockie put forward a domain

decomposition parallelization for an immersed-boundary algorithm, and the speedup and efficiency

10



were tested with no more than 256 processor cores [58]. Spandan et al. presented a domain decom-

position framework for simulating the flow in the left ventricle of the heart, in which strong scaling

was achieved up to 1000 cores [59]. Parallel techniques for the immersed-boundary method were

also specifically used to accelerate the FSI simulation of heart valves [10, 11, 23, 1].

In this work, a parallel algorithm for our flow solver, which is based on a direct-forcing immersed-

boundary method, is implemented for the FSI study of soft tissues. This parallel algorithm takes

advantage of the structured mesh. The entire flow domain can be divided into multiple subdomains

with the flexibility of either 1D, 2D, or 3D decomposition. All the processor cores are indexed to

facilitate data exchange between neighboring cores through the MPI protocols. We first test this

parallel algorithm by using two benchmark cases, Taylor–Green vortex and Hills spherical vortex,

where the analytical expressions exist at least for initial flow specification. The parallel performance

will be analyzed using different mesh sizes. Then, we apply this parallel algorithm to three biological

flow problems: the unsteady aerodynamics of hummingbird during fast forward flight, the vocal

fold vibration, and the aortic valve functioning.

2.2 Parallel algorithm for the immersed-boundary method

In a previous work from our group [53], an in-house FORTRAN code has been developed for the

simulation of 3D fluid–structure interaction (FSI) problems in biological systems involving large

deformation. This method uses a partitioned framework with strong FSI coupling. The viscous

incompressible Navier−Stokes equation is solved with a sharp-interface immersed-boundary method

based on Cartesian grid. A hybrid formulation was implemented in this method to reduce the

numerical oscillations for moving boundaries [60]. The large deformation involved in solid-body

dynamics is solved with a conventional finite-element method accounting for both geometric and

material nonlinearity. The entire FSI system is solved in a block-wise iterative manner until the

convergence criterion is achieved at the fluid–structure interface. This numerical approach has been

validated through several benchmark test cases and its versatility has been presented through its

applications in several FSI studies by our group, such as the hovering and forward flight of the

hummingbird [61, 55], vocal fold vibration [45, 62], and the heart valve [1].

In a partitioned FSI framework, data exchange is necessary at the fluid–structure interface

between the flow solver and the structure solver. To be more specific, the force is interpolated

on the flow side from the instantaneous flow field and is then sent to the structure solver. The

displacement and velocity of the fluid–structure interface are computed by the solid solver and

sent to the flow solver to be used as internal boundary condition for the flow. Thus, the overall

computation time of the FSI simulation depends on both the flow solver and the solid solver.

Comparable time spending between the flow solver and the solid solver can effectively reduce the

waiting time between these two solvers and thus accelerate the FSI simulation. However, the FSI

simulation often becomes very time-consuming, especially when fine mesh is employed on the flow

side in order to capture accurately the flow characteristics and calculate the stresses on the structure.

In this situation, implementation of parallel computing becomes necessary for flow simulations.
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Figure 2.1: Illustration of 3D domain decomposition for a hummingbird simulation.
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In one of our FSI studies of the aortic valve [1] (also Chapter III), we have successfully im-

plemented a simple MPI parallelization approach for the flow based on one-dimensional domain

decomposition. The rectangular computational domain, which is discretized by a single-block Carte-

sian grid, is divided into multiple subdomains along one spatial direction, and each processor core is

assigned to handle one subdomain only. At each overlapping boundary of a subdomain, two buffer

slices are used to store the flow data exchanged from the neighboring processor core. The setup of

the buffer slices and the storage of the flow data are necessary to support the correct interpolation,

extrapolation, or the finite-difference discretization at the grid points within the subdomain. The

structure solver is parallelized with an OpenMP strategy since the mesh size for the solid body is

much smaller than that on the flow side in the applications we consider.

In order to further accelerate the costly flow simulation, it is desirable to split the computational

domain in the other two spatial directions as well, which would result in two- and three-dimensional

domain decomposition approaches. By doing so, much more processor cores can be deployed for

the flow simulation and for each core, the subdomain and the corresponding computational load

would be further reduced. In this work, we implement both 2D and 3D domain decomposition and

test the parallelization performance for these strategies.

Details of the current immersed-boundary method for solving the flow have been described

previously [63, 60]. A brief description of the 1D domain decomposition has also been introduced

in the application to the FSI of the aortic valve [1] (also Chapter III). In order to facilitate the

understanding of the strategies here, we demonstrate the 2D domain decomposition as an example.

In the current sharp-interface direct-forcing immersed-boundary method, the Cartesian grid points

are divided into four categories: fluid nodes, solid nodes, ghost nodes, and hybrid nodes. The

fluid nodes occupy the flow region and anchor the standard second-order finite-difference stencil

used in the discretized equation, while the solid nodes in the interior of the solid body are simply

dummy nodes. The ghost nodes and hybrid nodes are defined in the vicinity of the fluid–structure

interface. Calculation on the ghost nodes requires the local extrapolation of the flow field into

the solid domain. For each hybrid node, both a local flow field interpolation and finite-difference

discretization of the momentum equation are used to improve the solution near the interface when

a moving boundary is involved. For both ghost and hybrid nodes, the numerical treatment involves

a few nearby nodes and also the boundary conditions at the fluid–structure interface to support

the interpolation, extrapolation, or finite-difference discretization.

The extension of domain decomposition from 1D to 2D and 3D is straightforward conceptually.

In the 1D domain decomposition, the entire computational domain is divided into several slabs

along one direction. Each processor core only works on its own assigned partition that is indexed

using a one-dimensional array. For each subdomain, two extra buffer slices are included on each

of the two ends to store the necessary flow data obtained from the neighbouring subdomain. For

instance, for the k-th core in 1D domain decomposition, the flow data on the buffer slices are

directly from the (k − 1)-th core on the left side and from the (k + 1)-th core on the right side.

For 2D domain decomposition, the entire computational domain is further divided in the second
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spatial direction, resulting in long cubes of subdomains. Indexing of each subdomain and processor

core now requires two-dimensional arrays. The size of the subdomains is reduced thanks to the

added decomposition in the second direction, while the number of communication calls increases

as the number of neighboring subdomain becomes more. For example, for the (j, k)-th core, it

needs to receive the flow data from (j − 1, k)-th, (j + 1, k)-th, (j, k − 1)-th, and (j, k + 1)-th cores

on its left, right, top, and bottom sides, respectively. Note that the size of the flow data for the

communication at each overlapping subdomain-subdomain interface reduces as more subdomains

are created, which helps reduce the communication load even though the number of communication

calls increases.

Within each subdomain, identification of all four types of nodes on the Cartesian mesh and

also setup of the interpolation and extrapolation stencils associated with the ghost/hybrid nodes

are carried out by its assigned processor core only. Doing so helps increase scalability of the entire

simulation time step. Note that some ghost nodes and hybrid nodes could be located near the

subdomain boundary, and the flow data at the two extra buffer slices will be used for those nodes

to support the correct computation of interpolation and extrapolation.

Since the current FSI simulation employs a partitioned framework, parallelization of the struc-

ture solver can be done independently from that of the flow solver. Furthermore, the flow solver

and structure solver can run in parallel and necessary data exchange is coordinated through MPI.

The number of the OpenMP threads to parallelize the structure solver is set to provide a balanced

cost between these two solvers.

At each time step, the current configuration of the solid body is updated from the structure

solver, and the identification of the fluid nodes, solid nodes, ghost nodes, and hybrid nodes is carried

out by the flow solver. Then, the interpolation and extrapolation stencils for the ghost nodes and

hybrid nodes are prepared. The solution procedure for one flow step consists of three substeps and

can be summarized as follows. In the first substep, an advection-diffusion equation is solved in

the absence of the pressure, and an intermediate velocity field is obtained. In this step, both the

nonlinear advection term and the viscous term are discretized using the Crank–Nicolson scheme to

improve the numerical stability, and the spatial derivatives are discretized by a second-order central

scheme. Gauss–Siedel line relaxation method is used to solve the linearized system. In the second

substep, the Poisson equation is solved to obtain the pressure field, and in the third substep, the

velocity is updated using the pressure to become divergence-free.

In order to accelerate the convergence of the Poisson equation in the second substep, which is

the most expensive part in the flow simulation, we have implemented a parallel multigrid method

in the solver. A V-cycle iteration strategy is adopted in the multigrid implementation. In the V-

cycle, the residual of the Possion equation is first computed from a nested Gauss–Siedel relaxation

method at a finer grid level and is then interpolated to the next coarser grid through the injection

step. The same process is repeated until the coarsest grid level is reached. Then, the solution from

the coarser level is interpolated onto the next finer level to correct the pressure at that level.
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Figure 2.2: Decay of the Taylor–Green vortex at Re=1600.

All of our tests are done on Stampede 2 at the Texas Advanced Computing Center (TACC).

2.3 Performance tests

2.3.1 Taylor–Green vortex

The Taylor–Green vortex represents decaying of an isotropic, homogeneous turbulence in an un-

bounded domain and is often used for the purpose of code validation or numerical approach evalua-

tion [64, 65]. The flow is computed by directly solving the Navier−Stokes equation in the primitive

variables. The flow domain is a cubic bounding box with a length of 2πL and is discretized by a

uniform Cartesian grid. Within the domain, the flow variables, velocity (u, v, w) and pressure p,

are initialized according to the following formula:

u = V0 sin
(x
L

)
cos
( y
L

)
cos
( z
L

)
,

v = −V0 sin
(x
L

)
cos
( y
L

)
cos
( z
L

)
,

w = 0, (2.1)

p = p0 +
ρV0

2

16

[
cos

(
2x

L

)
+ cos

(
2y

L

)][
cos

(
2z

L

)
+ 2

]
,

where L = 1 is the reference length, V0 = 1 is the reference velocity, p0 = 0 is the reference pressure,

ρ is the density. The Reynolds number, Re = ρV0L/µ, is set to 1600, where µ is the viscosity.

Fig. 2.2 presents the contours of the vorticity at t = 0.5, t = 2.0 and t = 9.0. The flow

field transforms from the initial solution specified by the analytical expression Eq. (2.2), which

contains one single length scale, to rapid build-up of a fully turbulent dissipative spectrum due to

the nonlinear interaction of the developing eddies. The smaller eddies will eventually die out if the

simulation continues.

Fig. 2.3 shows the transient evolution history of the kinetic energy Ek within the flow domain

computed using a total number of 64 processor cores and 2D domain decomposition with 8 × 8
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Figure 2.3: Evolution of the kinetic energy in the Taylor–Green vortex.

in the y- and z-directions. The kinetic energy is defined by Ek = 1
ρΩ

∫
Ω
ρuiui

2 dΩ, where Ω is the

flow domain. The evolution curve starts at about 0.125 and gradually reduces to about 0.025 when

t = 20.0. This result is in good agreement with Debonis [64].

In order to test the parallel performance of our domain-decomposition strategy, four different

grid sizes are used, namely, 2563, 5123, 10243, and 20483. The wall-clock times, measured in

seconds, are listed in Table 2.1. In Fig. 2.4, we plot the speedup and parallel efficiency for different

grid sizes. From these results, we can see that scaling performance is significantly affected by the

mesh size. For the smallest mesh, 2563, the scaling performance drops below 60% for more than

256 cores; for the 5123 mesh, the scaling performance is below 60% for more than 1000 cores.

Clearly, the speedup and parallel efficiency are improved as the grid size increases. For both 10243

and 20483 meshes, even super-linear performance is observed for intermediate number of cores. For

instance, the parallel efficiency with 64 cores for the 10243 and 20483 meshes is 103.4% and 108.5%,

respectively. For the 20483 mesh, the code scales very well for even 4000 cores.

2.3.2 Hill’s spherical vortex

Hill’s spherical vortex represents the steady flow of a spherical vortex in a rotating fluid. Such a

vortex can be produced inside an air bubble immersed in a uniform passing flow. The velocity
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Figure 2.4: Speedup and parallel efficiency for the Taylor–Green Vortex with different mesh sizes.
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y z Total 2563 5123 10243 20483

1 1 1 433.7 3626.7 – –

2 2 4 117.9 985.6 7620.4 –

4 4 16 29.5 243.1 2159.9 20339.2

8 8 64 8.7 68.9 522.4 4685.2

16 16 256 2.6 20.3 138.5 1166.5

32 32 1024 1.1 6.1 45.9 344.2

64 64 4096 0.42 2.7 14.5 102.9

Table 2.1: The wall-clock time measured in seconds with various domain decomposition for the

Taylor–Green vortex.

Figure 2.5: Flow pattern in Hill’s spherical vortex.
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y z Total 2563 5123 10243 20483

1 1 1 377.1 2935.9 – –

2 2 4 99.3 771.1 6668.6 –

4 4 16 30.8 244.6 2097.9 23651.4

8 8 64 9.3 69.7 569.6 4859.1

16 16 256 2.5 20.0 160.5 1287.6

32 32 1024 1.0 7.8 41.7 356.9

64 64 4096 0.72 2.7 14.3 104.1

Table 2.2: The wall time measured in seconds for various domain decomposition and grid sizes in

Hill’s spherical vortex.

components within the sphere are described as

u = V0
xz

R2

v = V0
yz

R2
(2.2)

w = V0

[
1−

( z
R

)2
− 2

( r
R

)2
]

where R is the radius of the sphere, r =
√
x2 + y2, and V0 is the reference velocity. Fig. 2.5 shows

the flow pattern within the sphere from our simulation using 64 cores and 2D decomposition (8× 8

in the y- and z-directions).

Compared with the preceding case of the Taylor–Green vortex where there is no solid body

present, the Hill’s vortex contains the immersed-boundary treatment. We purposely set the sphere

as the fluid-solid interface and specify the velocity at the spherical surface. Therefore, the immersed-

boundary algorithm is activated in the code, including identification of the fluid and solid regions,

setting up stencils for the ghost and hybrid nodes near the interface, and calculation of solutions at

these nodes. The numerical tests would serve the purpose of evaluating scaling performance when

the immersed-boundary treatment is active in the simulation.

To test the parallel performance, four different grid sizes are used, 2563, 5123, 10243, and

20483. The wall-clock times, measured in seconds, are listed in Table 2.2. In Fig. 2.6, we plot

the speedup and parallel efficiency for different grid sizes. From these results, we can see that

scaling performance is again significantly affected by the mesh size. For the smallest mesh, 2563,

the scaling performance drops below 70% for more than 256 cores; for the 5123 mesh, the scaling

performance is similar. The speedup and parallel efficiency are improved as the grid size increases

further. For the 10243 mesh, the efficiency is near 60% for 4096 cores; for the 20483 mesh, the

efficiency displays super-linear performance for up to 1000 cores, and it is still around 80% for 4096

cores. These results indicate that the current immersed-boundary solver can scale up to 4096 cores

when handing large-size problems of more than one billion mesh points.
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Figure 2.6: Speedup and parallel efficiency for different grid sizes in Hill’s spherical vortex.
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y z Total Wall time Speedup Efficiency

5 5 25 333.7 1.00 100.0%

10 5 50 164.3 2.03 101.6%

10 10 100 94.0 3.55 88.8%

20 10 200 49.1 6.80 85.0%

25 10 250 40.1 8.32 83.2%

25 20 500 21.5 15.52 77.6%

25 40 1000 11.4 29.27 73.2%

25 80 2000 6.8 49.07 61.3%

50 80 4000 4.9 68.10 42.6%

Table 2.3: The wall time measured in seconds and parallel performance on a 600× 500× 400 mesh

for hummingbird flight.

2.3.3 Case demo 1: hummingbird flight

We further test the scaling performance of our flow solver through a computational study of the

flapping-wing aerodynamics of the hummingbird. The background of the problem and hummingbird

model setup are described in detail in Song et al. [55]. Briefly, the wing kinematics of a calliope

hummingbird was obtained a high-speed filming of the bird in wind tunnel and was reconstructed

for flow simulation. The bird’s wing span is around 10 cm. Its flight speed is 8.3 m/s, and the

wingbeat frequency is 45.5 Hz. The computational domain is represented by a 24 × 20 × 16 cm3

rectangular box. We tested the code performance by using different domain decomposition on

a Cartesian mesh of 600 × 500 × 400 (120 million) points. The results are listed in Table 2.3,

and Fig. 2.7 presents the corresponding speedup and parallel efficiency. In this simulation, the

subdomains have the same size, but the computational load among the processor cores are not

well balanced since some of the subdomains contain part of the hummingbird body and some do

not. Nevertheless, the flow code scales well up to 2000 CPU cores with a speedup around 49 (with

respect to 25 cores) and a parallel efficiency near 61%. If the number of cores is further increased

to 4000, the speedup increases to about 68 (with respect to 25 cores); however, the efficiency drops

to around 43%.

Figure 2.8 shows the vortex structures around the hummingbird within one wingbeat cycle from

a complete simulation. This simulation uses a stretched Cartesian grid of 680×600×480 (about 196

million) points. Around the hummingbird, the grid resolution is 0.025 cm in all three directions.

The Reynolds number based on the flight speed and the average wing chord length is around 3000.

The time step is ∆t = 0.005 ms, which leads to approximately 4400 steps per wingbeat cycle. For

domain decomposition, 50 and 40 cores are used in y- and z-directions, respectively, which leads to

a total number of 2000 cores.

21



(a)

102 103

Number of CPU cores

100

101

102

S
p

e
e

d
u

p

Ideal Speedup

600*500*400

(b)

102 103

Number of CPU cores

30

40

50

60

70

80

90

100

110

120

E
ff

ic
ie

n
c
y
(%

)

Ideal Efficiency

600*500*400

Figure 2.7: Speedup and parallel efficiency in the simulation of hummingbird flight.
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Figure 2.8: Snapshots of flow field within one wingbeat cycle from the hummingbird fast forward

flight simulation.
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x y z Total Wall time Speedup Efficiency

1 4 16 64 25.0 1.00 100.0%

1 4 32 128 13.2 1.89 95.0%

1 4 64 256 8.3 3.01 75.3%

1 7 64 448 5.0 5.00 71.4%

3 4 16 192 8.5 2.94 98.0%

3 4 32 384 5.0 5.00 83.3%

3 4 64 768 4.0 6.25 52.1%

3 7 64 1344 2.5 10.00 47.6%

Table 2.4: The wall time measured in seconds and parallel performance using domain decomposition

on a 450× 196× 128 Cartesian mesh for FSI simulation of vocal fold vibration.

2.3.4 Case demo 2: vocal fold vibration

Since this dissertation will focus on vocal fold and heart valve modeling, we apply the parallelization

technique to these two problems as well to test its performance. For the vocal fold problem,

the background and 3D FSI model setup are described in our work [66] (also Chapter V). The

parallel performance is tested by using a stretched 450×196×128 Cartesian grid (about 11 million

mesh points). A 2D domain decomposition is illustrated in Fig. 2.9. The wall time and parallel

performance are listed in Table 2.4.

From the results, it can be seen that reasonable efficiency is achieved for near 1000 cores. Note

that the mesh size in this case is about 10 times smaller than that in the hummingbird case; thus,

lower scaling performance is expected.

2.3.5 Case demo 3: aortic valve

For the aortic valve problem, the background and 3D FSI model setup are described in our works [1,

54] (also Chapters III and IV). The parallel performance is tested for the case where the leaflet

thickness is 0.2 mm. A stretched 400× 130× 130 Cartesian grid (about 7 million points) is used to

discretize the flow domain. A 2D domain decomposition is illustrated in Fig. 2.10. The wall time

and parallel performance are listed in Table 2.5.

From the results, it can be seen that reasonable efficiency is achieved for near 700 cores. Note

that the mesh size in this case is close to that in the vocal fold case and thus similar scaling

performance is expected.
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Figure 2.9: Illustration of the flow domain and its 2D decomposition for the vocal fold vibration

simulation.

y z Total Wall time Speedup Efficiency

5 5 25 11.3 1.00 100.0%

10 5 50 5.7 1.98 99.0%

10 10 100 3.2 3.53 88.3%

13 13 169 2.0 5.65 83.6%

26 26 676 0.6 18.83 69.6%

Table 2.5: The wall time measured in seconds and parallel performance using domain decomposition

on a 400× 130× 130 Cartesian mesh for FSI simulation of aortic valve.
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Figure 2.10: Illustration of the flow domain and its 2D decomposition for the aortic valve simulation.
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2.4 Conclusion

In this chapter, we described the parallel algorithm for the immersed-boundary method in the

flow solver. The parallelization is based on simple domain decomposition, where the flow domain

can be divided into multiple subdomains in one, two, or three directions. As a result, thousands of

processor cores can be employed to accelerate the costly 3D flow simulation while the total memory

usage is not affected significantly.
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Chapter III

A computational study of the 3D FSI of aortic valve

3.1 Introduction and significance of the study

In this chapter, we describe a three-dimensional simulation of the fluid–structure interaction

(FSI) of the aortic valve using a direct-forcing immersed-boundary method. The geometry of the

valve is taken from a bioprosthetic valve, and the computational framework is based on a previous

partitioned approach that is versatile for handling a range of biological FSI problems involving

large deformations. When applying the approach in the heart valve simulation, we implemented

an efficient parallel algorithm based on domain decomposition to handle the costly flow simulation.

As compared with previous simulations of the aortic valve, our simulation was able to capture both

realistic deformation of the leaflets and vortex structures in the flow, thus providing a balanced

modeling approach for the flow and the valve. The results show that the pressure distribution on

the leaflet surface is highly nonuniform and the jet flow contains a sequence of vortices during the

opening process. After the valve is fully opened, both the three leaflets and the jet still experience

significant oscillations due to the high flexibility of the leaflets. The drag resistance of the valve

is also characterized, and it is found that the resistance is approximately equivalent to the inertial

force of accelerating the fluid column of three diameter length. These details could be potentially

used to characterize FSI of the aortic valve.

3.2 Model description and the numerical approach

3.2.1 Model setup

The three-dimensional computational model used is illustrated in Fig. 4.1. The aorta is simplified

to a cylindrical tube of diameter D = 2.1 cm and length L = 19 cm. It has a three-lobed dilation

to model the aortic sinuses. These dilation regions were believed to play a significant role in the

dynamics of the valve [67–69]. The dimensions of the aortic sinuses in the current model are based

on the measurements of the human aortic root [70, 71]. According to the geometric description in

Reul et al. [71], the cross-section of the aortic sinuses is built with an epitrochoid equation. The

aortic valve consists of three flexible semi-lunar leaflets that can independently deform from one

another. The overall geometry of the aortic sinuses and leaflets is axisymmetric about the x-axis.

Despite of the complexity of anatomy of human aorta, simplified computational domains similar to
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(a)

(b) (c)

Figure 3.1: (a) Computational model of the aorta root, where the aorta tube and the aortic valve

are sutured in the sinus region. (b) A close-up view of the flexible leaflets, where the three markers

are used later to plot the displacement history. (c) The fixed nodes (red markers) and prescribed

contact detection region (blue markers).

ours are often used for the FSI study of native aortic valve and its prostheses [10–12, 23, 3, 24]. In

our study, the geometry of the leaflets (Fig. 4.1(b)) was provided by Prof. Wei Sun’s lab at Georgia

Tech by courtesy and was extracted from a transcatheter aortic valve (TAV) model [24].

For spatial discretization, the aorta wall is divided into 20,735 triangular elements with refine-

ment in the sinuses region, where the element size is about 0.3 mm. Each leaflet is 0.1 mm thick

and consists of a total of 535 finite-element serendipity (20-node Hexahedron) elements and 3,983

nodes. The aorta wall and leaflets are represented by two separate meshes, and they intersect

each other without necessarily sharing the nodes. The aorta wall is assumed to be rigid, while

the leaflets can undergo free deformations. On each leaflet, 830 nodes located in the commissure

region of two neighboring leaflets and also along the base are fixed along with the aorta wall, as

shown in Fig. 4.1(c). This type of attachment follows a similar setup for the bioprosthetic valve

in Kamensky et al. [3] without the stent included. Three nodes in Fig. 4.1(b), one located at the

center of the free edge and the other two in the belly region, are used later to show kinematics of

the leaflet.
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The aortic valve tissue is known to be anisotropic and inhomogenous with leaflet-specific col-

lagen fiber networks [72, 12]. Different constitutive models have been proposed to investigate the

mechanical behavior and the failure mechanisms of the aortic valve, e.g., [73, 19, 74]. In our study,

the hyperelastic Saint Venant−Kirchhoff model is adopted to represent the tissue behavior of the

valvular leaflets. Previous studies have shown that different tissue models produce qualitatively

similar deformation patterns for normal valves [3, 23, 24]. The leaflet dynamics is governed by

ρs
d2ui
dt2

+ ηd
dui
dt

=
∂σij
∂xj

(3.1)

where ui is the displacement, ηd is the damping coefficient representing structural damping in the

tissue, and σij is the Cauchy stress tensor. The density of the leaflets is ρs = 1 g/cm3, ηd is

chosen to be 200 g/cm3·cs to ensure the reasonable time scale for valve opening and closing in the

FSI model. For the elastic properties, we set Young’s modulus E = 1500 kPa and Poisson’s ratio

νs = 0.4 [3, 23].

The blood is assumed to be Newtonian and incompressible. The governing equation of the flow

is the unsteady Navier−Stokes equation

ρ

(
∂vi
∂t

+
∂vivj
∂xj

)
= − ∂p

∂xi
+ µ

∂2vi
∂xj∂xj

,
∂vi
∂xi

= 0, (3.2)

where vi is the velocity, p is the pressure, ρ is the blood density, and µ is the viscosity. No-slip and

no-penetration boundary conditions are imposed at the aorta wall as well as the leaflet surface. the

fluid domain is a 19× 4.4× 4.4 cm3 rectangular bounding box and is divided by a 400× 130× 130

nonuniform Cartesian grid. Fine resolution with ∆x = 0.025 cm and ∆y = ∆z = 0.034 cm is used

in the region around the aortic valve. The flow is driven by a physiological pressure drop along the

aorta. The density and dynamic viscosity of the blood are, respectively, ρ = 1 g/cm3 and µ = 0.005

Pa·s. This blood viscosity is at higher end to reduce the demand for mesh resolution.

To solve the FSI problem, we use a computational framework that was previously developed for

simulating biological systems that involve large deformations [53]. In this partitioned framework,

the flow is solved using a Cartesian grid based direct-forcing immersed-boundary method, and

the solid is solved using a nonlinear finite-element method on unstructured grids. FSI coupling is

achieved by iterating the two solvers while communicating boundary conditions at each time step

until convergence. The code was verified through various case studies, including both thin-walled

and general 3D body problems. In the FSI iteration, the relaxation factors are chosen as α = 0.7

for the velocity update, α = 0.9 for the force update, and α = 1.0 for the displacement update.

The convergence criteria are 10−5 N, 10−2 m/s, and 10−3 cm for the nodal force, velocity, and

displacement, respectively.

In the simulation, each cardiac cycle has a time duration of T = 0.86 sec, which corresponds to

a heart rate of 70 beats per minute. For convenience, we will use the centisecond, or cs, as the time

unit hereafter. To ensure numerical stability of the FSI coupling, the time step used for the flow

solver is ∆t = 4.0×10−3 cs. The time step for the structural simulation is smaller, ∆t = 5.0×10−5
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cs, so that each FSI step contains 80 substeps for the solid. Similar to previous models [23, 24], a

transient transvalvular pressure load, as shown in Figure 3.2, is applied at the inlet of the aorta

tube to drive the flow. The peak pressure during systole is Pmax = 2 kPa, and the lowest pressure

during diastole is -8 kPa. The exit pressure is zero. As a complementary study, a uniform pressure

load of much lower magnitude is applied directly on the leaflets to open and close the valve without

flow. In this structure-only simulation setup, the peak systolic pressure is 0.533 kPa, and the lowest

diastolic pressure is -12.67 kPa. These data are consistent with those in previous studies [23, 24].

3.2.2 Parallelization of the FSI simulation

Details of the immersed-boundary method for the flow have been described previously [60, 63]. Some

clarifications are needed here as both thin structures (leaflets) and 3D solid bodies (aorta wall) are

involved in the present case. Furthermore, a simple domain-decomposition based parallelization

has been implemented to accelerate the simulation, and some of the specific issues related to the

immersed-boundary treatment should be discussed.

As illustrated in Fig. 3.3(a), all the nodes on the Cartesian grid are divided into four groups [60]:

fluid nodes, solid nodes, ghost nodes, and hybrid nodes. The ghost nodes are located within the

solid domain and are immediately adjacent to the fluid-solid interface, and the hybrid nodes are

located within the fluid domain and are immediately adjacent to the fluid-solid interface. In the

current sharp-interface immersed-boundary flow solver, the fluid nodes anchor the standard 2nd-

order finite-difference stencil used in the equation discretization, solid nodes are simply dummy

nodes, but the ghost nodes and hybrid nodes need special treatment. In particular, each ghost

node requires a local extrapolation of the flow field into the solid domain, and each hybrid node

requires a combination of the local flow field interpolation and finite-difference discretization of

Eq. (3.2). For both types of nodes, the numerical treatment involves a few nearby nodes and

the boundary conditions at the fluid-solid interface to support the interpolation, extrapolation, or

finite-difference discretization [60].

In Fig. 3.3(a), the aorta tube is treated as a general 3D rigid body containing the region outside

of the tube wall. The leaflets are too thin to be resolved by the flow mesh and cannot host ghost

nodes inside. Instead, as in the previous work [60], an artificial thickness of 2 to 3 grid intervals

is introduced to allow ghost nodes to be defined in the “interior” of the leaflets. For parallel

computing, the rectangular box containing the flow domain is divided into a stack of subdomains

in the z-direction. Each subdomain only stores the data for its own portion of the flow field but

has a full copy of the unstructured mesh of the fluid-solid interface. Since the surface mesh data

is much smaller as compared with the volume data of the flow field, this decomposition strategy

allows nearly a constant scaling of the total computer memory regardless the number of processor

cores being used for the simulation.

Within each subdomain, all four types of nodes are determined independently from other sub-

domains before solving the flow for the current time step. In addition, the computations related
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Figure 3.2: Pressure load applied (a) at the inlet of the aorta tube in the FSI simulation and (b)

directly on the leaflets in the structure-only simulation, where cs denotes centisecond.
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to setting up the interpolation and extrapolation stencils for the ghost and hybrid nodes, and also

the computations related to updating these nodes during the solution process, are restricted to the

subdomain itself. Therefore, the computational overhead associated with the immersed boundary

scales very well with the number of subdomains or with the number of processors. The algorithm

of determining whether a node is located inside or outside of a general 3D body was described in

Mittal et al. [63], and so was the extrapolation algorithm for the ghost nodes. The algorithm for

the hybrid nodes was designed to reduce numerical oscillations associated with moving boundaries

and was described in Luo et al. [60]. These algorithms are directly used here for each processor

to compute its own ghost nodes and hybrid nodes while solving the flow within its subdomain.

Readers are referred to these references for further detail of the algorithms. Note that some ghost

nodes and hybrid nodes could be located near the boundary of the subdomain and their compu-

tation may require two slices of flow field to support the interpolation or extrapolation zone as

shown in Fig. 3.3(b). Therefore, each subdomain is supplemented with two buffer slices on each

side. These slices of data are communicated through the Message Passing Interface (MPI) in the

parallel implementation.

In the FSI simulation, a separate processor core handles computation of the solid mechanics

so that the fluid and solid partitions can be done in parallel and coordinated through MPI. Fur-

thermore, the finite-element solver of the solid mechanics is parallelized with an OpenMP strategy

since the number of solid nodes is much less than that on the flow side and such parallelization pro-

vides a balanced cost between the two solvers. For the computing facility, we used the Stampede1

system at the Texas Advanced Computing Center (TACC). Each node contains two Xeon Intel

8-Core 64-bit E5 (Sandy Bridge) Processors with a core frequency of 2.7 GHz. The flow domain is

divided into slabs along the z-direction. The speedup of using 2, 8, 32, and 64 CPU cores is 2.1,

6.2, 17.5, and 27.1, respectively, which corresponds to an efficiency of 105%, 78%, 55%, and 42%,

respectively. Thanks to the domain decomposition strategy used, the total memory remains nearly

constant when the number of cores is varied. Note that the speedup is related to the problem size

and the current mesh only has 130 points in the z-direction for decomposition. In a separate test

of using 360×946×2048 points, we have achieved the super-linear (i.e., over 100%) performance for

up to 1,024 CPU cores; the result was confirmed by the technical staff of the NSF XSEDE through

their Extended Collaborative Support Services (ECSS) program.

3.2.3 Contact model

During closing phase and also sometimes in opening as well, the three leaflets can experience

significant contact with one another. Similar to previous studies [11, 3], a penalty method is

adopted here to prevent the leaflets from penetration. At each time step, potential surface-to-

surface contact needs to be checked in order to invoke the contact algorithm. To reduce the

computational cost, only the surface nodes within the prescribed contact detection region as shown

in Fig. 4.1(c) are checked for contact detection. For each of these nodes, the contact distance is

computed by projecting it onto the surface of its neighboring leaflets. The contact force in the
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Figure 3.3: (a) Schematic of the immersed-boundary method for the aortic valve simulation, and

(b) a subdomain with 2 buffer slices on each side in the parallel implementation. The shaded

regions represent the stencil for local interpolation or extrapolation.
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direction of the surface normal is then calculated by

fcnt =

0, if d− d0 > 0

−fext − k(d− d0), otherwise
(3.3)

where fcnt is the nodal contact force, fext is the external force (i.e., hydrodynamic force) on the

node, d is the contact distance, k is the contact stiffness, and d0 is a prescribed threshold distance.

Within the threshold distance, the external load fext is canceled out and a net force of magnitude

−k(d−d0) is added to prevent inter-penetration of colliding leaflets. Note that this net force acts on

the contact side for both leaflets. The contact force vanishes outside of the contact distance. Here

we set k = 1 g/cs2 and d0 = 0.08 cm so that when the leaflets are stopped due to collision, the gap

between them is below one cell width on the flow mesh. These parameters may need adjustment

if a much finer flow mesh is used. Strictly speaking, when the two leaflets are approaching each

other, the lubrication effect may be dominant and the leaflets might never experience solid-to-solid

contact [75, 76] due to the presence of a thin liquid film and its high pressure. However, such

lubrication effect takes place when the gap is small and the flow is nearly being cut off. Thus, as

long as it provides proper kinematic constraints for the leaflets, the exact nature of the contact

mechanism should not significantly affect flow or leaflet deformation during the most of the opening

and closing phases.

3.2.4 Mesh refinement study

A mesh refinement study is first performed by refining the fluid domain to 500 × 260 × 260 in

the x, y, and z, directions, respectively. Around the leaflets, the resolution is doubled in all three

directions. In addition, the time step is also halved. The refined FSI simulation is run up to t = 20

cs when the valve has already been fully opened and the peak flow is reached. Comparing the

results from this simulation and those from the baseline mesh, we obtained a less than 7% error in

the peak flow rate. The comparison of the leaftlet deformations is shown in Fig. 3.4 by plotting the

transient displacement of the three labeled nodes on one leaflet. The result indicates that dynamic

deformations of the valve are well captured using the baseline flow mesh. We also examined the

characteristic flow patterns such as the unsteady vortex ring structures in the flow from the baseline

mesh, and those results also agree well with the refined simulation.

3.3 Results and discussions

3.3.1 Flow rate and valve opening area

Figure 4.6 presents the transient flow rate in three cardiac cycles for the FSI simulation. The peak

flow rate is 431 ml/s for the first cycle and 447 ml/s for the second and third cycles. The difference

in the first cycle is caused by the initial condition that sets zero fluid velocity everywhere and a

stress-free state for the leaflets. Unless specifically stated, the results presented hereafter are from
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Figure 3.4: Comparison of transient radial and axial displacements of the three labeled nodes on

one leaflet (marked in Fig. 4.1(b)) between the baseline mesh (circles) and the refined mesh (pluses).

Left: node 1; middle: node 2; right: node 3.

the second and third cycles, where the dynamics of the valve and the flow have reached a periodic

state. The peak flow rate obtained in our study is close to previous aortic valve simulations and is

within physiological range [10, 23]. Integrating the transient flow rate in time, we obtain a resul-

tant stroke volume that is approximately 89.7 ml per cycle, and the corresponding cardiac output

is about 6.3 L/min. Both the stroke volume and cardiac output data are within the physiological

range [68, 77]. The effective orifice area (EOA) and dimensionless performance index (DPI) rep-

resent a measurement of the valve’s resistance characteristics and are often used clinically for the

quantification of valve stenosis severity [78, 79]. The EOA in our calculation follows the previous

definition [78], EOA(cm2) = Qrms/51.6
√

∆p, where Qrms is the root mean square systolic flow

rate (cm3/s) and ∆p is the mean systolic pressure drop (mmHg). We used the pressure difference

between the two ends of the tube to calculate ∆p. The present EOA is 1.67 cm2. The resultant

DPI, defined as the ratio between the EOA and the cross section area of the aorta tube, A, is

EOA/A = 0.49. Similar results for the EOA and DPI are reported in previous experimental and

modeling studies [78, 24]. Regurgitation is the leakage of blood backward through the aortic valve

to the left ventricle during diastole. In the current simulation, the regurgitation volume is about

2.6 ml per cycle. This result is also in good agreement with those previous data [78, 24].

The geometric orifice area (GOA) from the FSI simulation is presented in Fig. 3.6 for the three

cardiac cycles. This area is calculated by projecting the valve in the axial direction and finding

the opening area. From the GOA history, the valve opens rapidly in 5 to 6 cs; the ejection time
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Figure 3.5: Volumetric flow rate, Q, in the first three cycles.
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Figure 3.6: History of the geometric orifice area (GOA) in the FSI simulation.

is around 32 cs; and the rapid closure time is from 3 to 4 cs. These results agree well with the

previously reported data [68, 24]. The peak GOA is around 2 cm2. During the opening phase,

some oscillations can be seen in the GOA. Such oscillations are also captured by a fiber-reinforced

hyperelastic tissue model in Mao et al. [24] and in present study is related to the leaflet oscillation

that will be discussed later.

3.3.2 Leaflet deformation and pressure distribution

Figure 3.7 shows the opening and closing phases of the aortic valve in both structure-only and

FSI simulations. Similarities as well as differences can be found in terms of the leaflet deformation

between these two simulations. First, in the opening phase the aortic valve opens faster in the

structure-only simulation than in the FSI simulation. The valve in the structure-only simulation

becomes fully open at t = 3 cs, while it is still not yet fully open until t = 5 cs in the FSI simulation.

The exact opening time has to do with the magnitude of the pressure load applied, which is different

in the two simulations. What is more important in this figure is the comparison of the deformation

pattern. In both simulations, the belly region of the leaflets opens in the beginning of the process

and arches towards the aortic sinuses. However, because of the uniform pressure load applied in

the normal direction of the valve surface, the free edge region of the leaflets in the structure-only
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t=2.8 cs t=4.4 cs t=6.0 cs t=31.6 cs t=34.8 cs t=35.6 cs

Figure 3.7: Deformation sequence of the valve under (upper row) a uniform pressure loading in the

structure-only simulation, or (lower row) the hydrodynamic pressure in the FSI simulation.

simulation moves immediately in the opening phase and is seen to bend outward as in Fig. 3.7(a). In

contrast, in the FSI simulation the load acted on the leaflet surfaces is based on the actual transient

blood flow field and the free edges do not open immediately. Instead, the belly region of the valve

have a faster opening than the free edge region, and as a result, the free edge region bends inward and

the entire valve forms roughly a converging nozzle. Such deformation pattern in FSI is consistent

with the in-vivo observation in [80] and is also reported in previous FSI simulations [23, 24]. To

explain this deformation pattern, we visualize the pressure distribution on the leaflet surfaces in

Fig. 4.8. The pressure on the leaflet surface is extracted by interpolation from the flow mesh [63].

In this figure, the contours of the pressure on the left ventricle side of the valve are plotted. It can

be seen that the pressure in general varies in time according to the boundary pressure applied at

the inlet (Fig. 3.2(a)); however, the pressure distribution is highly nonuniform during much of the

cardiac cycle as long as the valve is not fully closed and flow can go through the valve. Since the

valve is overall a converging nozzle, flow speed is naturally faster near the nozzle exit, where the

pressure drops in magnitude. Therefore, the pressure load near the free edges is lower as compared

with the pressure load near the belly region, and consequently, the belly region has a faster opening

speed.

In the closing phase, Fig. 3.7 shows that the free edge region in the structure-only simulation

close nearly uniformly due to the prescribed uniform pressure load, and this region moves faster

than the rest of the leaflet. In the FSI simulation, the free edge region remains open at t = 31.6

cs. As later closing state, e.g., t = 34.8 cs and t = 35.6 cs, the free edge region still bends outward

so that the valve forms a converging-diverging nozzle. This deformation pattern is consistent with

the negative pressure distribution on the ventricle side of the valve in Fig. 4.8. At t = 34.8 cs and

t = 35.6 cs, the negative pressure on the ventricle side is lowest near the belly region, causing this

region to move inward earlier than the other regions.
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Figure 3.8: Pressure distribution (unit: kPa) on the ventricle side of the valve in FSI simulation at

t = 0.4, 2.8, 6.0, 23.6, 32.4, 34.8, 35.6, 53.2, 85.2 cs (a-i). Note that the color range is different in

each frame. The colors at the fixed leaflet edges and the contact area are not meaningful (because

of no fluid contact).

These differences in the leaflet kinematics observed between the structure-only and the FSI

simulations were also discussed previously [23, 24]. However, the detail of the pressure distribu-

tion was not reported. Given the geometrical symmetry as well as the load symmetry, the valve

deformation in the structure-only simulation is symmetric. However, in the current FSI simulation

asymmetric opening and closing of the valve are observed (Fig. 3.7(c,d). This asymmetry of the

valve deformation is consistent with previous computational [23, 13, 24] and in vitro experimen-

tal [81] studies, and it is related to the asymmetry in the flow that will be discussed later. We point

out that the shear stress can be extracted from the flow simulation as well. Since its magnitude is

much smaller as compared with the pressure, we have included it in a supplementary figure without

further discussion here.

After the full closure of the valve, the pressure distribution on the ventricle side turns uniform
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Figure 3.9: Pressure distribution (unit: kPa) on the aortic side of the valve in FSI simulation at

t = 0.4, 2.8, 6.0, 23.6, 32.4, 34.8, 35.6, 53.2, 85.2 cs (a-i).
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(Fig. 4.8(h,i)). Fig. 3.9 shows that throughout the cardiac cycle, the pressure distribution on the

aortic side of the valve is quite uniform. On this side, pressure can either positive or negative,

depending on the phase in a cycle. During initial opening in first few centiseconds (Fig. 4.8(a-c)),

the pressure on the aortic side is positive because of leaflet acceleration. Later after the valve is

fully opened, the pressure becomes negative (Fig. 4.8(d-f)) due to the high flow speed through the

valve. Before the full closure and immediately after, the pressure turned positive again and its

magnitude becomes high (Fig. 4.8(g,h)). This high pressure impact is caused by the fast closure of

the aortic valve and is well-known as the “water hammer effect”.

3.3.3 Leaflet dynamics

The opening and closing dynamics of the valve are better seen in position tracking of the three

labeled markers. Fig. 3.10 shows both the radial and axial positions of the three markers. As a

reference, detail of the waveform of the the flow rate is also plotted here. From the marker-tracking

plots, it can be seen that the valve opening-closing has generally four stages: (1) rapid opening with

large displacement, (2) maintenance of maximum excursion with small-amplitude oscillations, (3)

slow initial closing, and (4) rapid closing. Among these stages, the rapid opening only takes about

5 to 6 cs, the maximum excursion about 19 cs; the slow closing about 7 cs, and the fast closing

about 3 cs. These dynamic characteristics are consistent with previous high-speed recording of the

actual leaflet motion [80, 82].

At the maximum excursion stage, the three leaflets continue to oscillate like flapping flags

immersed in an incidental flow, whose traveling-wave motion is induced by instability of the coupled

fluid-structure system. Note that such oscillation is not observed in the structure-only simulation.

Fig. 3.10(a) shows that the magnitude of the oscillation is about 2 mm at the belly and 1.4 mm at

the free edge, and the frequency is 14.7 Hz (thus, the period is 6.8 cs). An animation of the leaflet

motion is provided in supplementary materials. From the phase delay of the oscillation among the

three nodes, we can calculate the phase speed of the traveling wave, which is about 0.25 m/s. This

flapping oscillation of the leaflets has to do with the jet oscillation and vortex dynamics in the flow,

which will be discussed later.

3.3.4 Momentum balance

Analyzing the flow resistance of the valve could be useful for the study of the transvalvular pressure

difference and also for the resistance performance of prosthetic valves [78]. Consider the interior

of the aortic wall as a control volume, we may analyze the momentum balance of the flow and the

overall force on the valve. First, the momentum conservation of the flow in the axial direction is

∂

∂t

∫
ρudV +

∫
ρu2 dA = (P1 − P2)A− Fval − Fsin − Ftub, (3.1)

where u is the axial velocity, A = πD2/4 is the area of the cross section, P1 and P2 are the inlet

and outlet pressure, respectively, Fval is the total axial hydrodynamic force on the leaflet surfaces
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Figure 3.10: Flow rate (a), radial (b) and axial (c) positions of three labeled markers in a cardiac

cycle of FSI simulation.
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(both aortic and ventricle sides included), Fsin is the axial force on the sinus section of the wall,

and Ftub is the axial force on the remaining tube wall. Introducing the flow rate, Eq. (4.1) can be

written as

(P1 − P2)A = ρLQ̇+

∫
out

ρu2 dA−
∫

in
ρu2 dA+ Fval + Fsin + Ftub, (3.2)

where Q̇ = dQ
dt

is the time derivative of the flow rate.

The right-hand side terms in Eq. (4.2) are directly evaluated from the simulation and are plotted

in Fig. 3.11 for comparison along with the pressure loading at the inlet. In the figure, it can be

seen that the momentum flux at the outlet is almost equal to the momentum flux at the inlet.

Therefore, these two terms nearly cancel each other in Eq. (4.2). Among the rest of the terms, the

inertial force of the fluid, ρLQ̇, is the highest during initial opening as well as most of the systole

before the inlet pressure starts to drop at t = 18 cs. This result means that most of the boundary

pressure loading is used for acceleration of the fluid column in the tube. However, the net force on

the valve leaflets is also quite significant. During valve opening at 0 < t < 5 cs, the normalized

valve force Fval/(PmaxA) can reach as high as 0.3. At t = 7 cs when the valve has been fully open,

Fval/(PmaxA) drops to 0.13. Then as the flow rate continues to rise, Fval/(PmaxA) is increased and

oscillates between 0.24 and 0.54 due to the flapping motion of the leaflets.

Since the inertial force of the fluid is proportional to the total mass of the fluid column and

depends on the choice of the fluid domain length, another way of assessing Fval is to compare it

with the equivalent length of the fluid column being accelerated in terms of the valve diameter,

i.e., Fval/(ρDQ̇), where D is the tube diameter. From the results in Fig. 3.11, Fval/(ρQ̇) = 3.95D

at t = 2 cs, which means that Fval is equivalent to the inertial force of accelerating approximately

four diameters (4D) of fluid column at the time. During rapid opening from 1 to 6 cs, the average

result is 3.1D. At t = 7 cs when the flow rate has the maximum acceleration, Fval/(ρQ̇) drops to

1.5D. During the entire acceleration time (0 to 21 cs), the ratio between the average Fval and the

average ρQ̇ is 4.4D.

When the boundary pressure becomes negative and the flow is decelerating between t = 21 and

33 cs, Fval remains positive. When the valve is fast closing after t = 35 cs, the flow is reversed, and

the force on the valve quickly becomes negative. The reversal flow is immediately stopped by the

full closure of the valve. However, the impact force of the fluid on the leaflet becomes very high

as a result of the water hammer effect. The spike in Fig. 3.11 indicates that Fval/(PmaxA) reaches

nearly 10.

In comparison with Fval, the total shear on the present segment of the tube wall, Ftub, is small.

The force on the sinus wall, Fsin, is much smaller than Fval. Therefore, it is reasonable to use

Fval alone to calculate the drag coefficient of the aortic valve and ignore Fsin. We may use the

peak momentum flux at the inlet, Imax =
∫
ρu2 dA = 13.3 N to define the drag coefficient, so that

CD = 2Fval/Imax. From Fig. 3.11, the maximum drag coefficient is 1.04 near t = 18 cs. Note that

at that moment, even though the valve is open, the flow rate is high and the valve still undergoes

flapping motion, which causes the force on the valve to be large. During the entire period of systole
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Figure 3.11: Momentum balance within a cycle, where the force terms have been normalized by

PmaxA. (b) is a zoom-in view of (a).

from t = 0 to 33 cs, the average CD is 0.47.

3.3.5 Velocity field

Fig. 3.12 shows a few snapshots of the flow field by plotting the contours of the u-velocity in the

yz-planes at several axial locations. These contours indicate how the shape of the pulsatile jet

changes with time and location. Note that the shape of the nozzle formed by the leaflets may

change from roughly a star to a triangle and to a hexagon during opening and closing, as seen in

Fig. 3.9. Such shape changes have a direct impact on the jet. In Fig. 3.12(a) where t = 6 cs, the jet

immediately after the valve exit has a similar shape to the hexagon nozzle formed by the valve at

the moment. The profiles in the downstream slices may reflect the nozzle shape in earlier moments

but could also have been changed by the inertial effect of the fluid. For example, the jet profiles in

slices 2 and 3 have a triangular shape but are opposite in orientation. This jet flipping phenomenon
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(a)

Figure 3.12: Contours of u-velocity at time t = 6 cs (a), 7.6 cs (b), 10.8 (c), and 23.6 (d). The four

slices are located at x/D = 0.1, 0.4, 0.9, 1.4 from the exit of the valve.

was studied previously in the context of a stationary noncircular nozzle/steady jet [83, 84], where

jet flipping happens at axial locations between x/D = 0.1 and 1.0. The jet profile in slice 4 of

Fig. 3.12(a) has lost its original shape since leaving the nozzle and has become more circular.

In Fig. 3.12(b) where t = 7.6 cs, both slice 1 and slice 2 maintain the hexagon shape of the

jet, and the triangular shapes of opposite orientations have moved downstream and showed up in

slice 3 and 4. In Fig. 3.12(c,d) where t = 10.8 and 23.6 cs, respectively, the valve is fully open, and

flow continues to accelerate (t = 10.8) or is reaching its maximum speed (t = 23.6). In those two

frames, the jet no longer has a well-defined shape due to substantial unsteady motion of the flow.

Even at slice 1, the jet profile may be significantly different from the shape of the nozzle because

of the effect of the oscillatory motion of the leaflets on the jet. Jet flipping is still visible between

some of the slices, e.g., slices 2 and 3 in Fig. 3.12(c,d).

Fig. 3.13 shows the velocity field in the slice at y = 0 that cuts through two leaflets and

the domain axis for t = 5.2, 14, 21.2, and 23.6 cs (see Fig. 4.1(a,b) for the slice location). In

Fig. 3.13(a,b), the flow field is symmetric at the early opening stage. Furthermore, Fig. 3.13(a)

shows that the pulsatile jet is led by two vortex rings near its front; behind these two vortex rings,

the diameter of the jet follows opening of the valve, i.e., increasing as it is closer to the valve exit.

Later in Fig. 3.13(b) when the valve is completely open, the jet is characterized by several vortex

rings along the axial direction. These vortex rings are formed because the shear layer instability

that takes place between the jet and the surround fluid in the sinuses or near the aorta wall.
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Figure 3.13: Velocity vectors in the y = 0 plane at t = 5.2, 14, 21.2, 23.6 cs. Only every one out of

two points is shown in each direction.

These vortices interact with the wall, and their growth is confined by the presence of the wall, as

opposed to a free jet whose shear layer vortices are unconfined. As flow continues to accelerate,

symmetry breaking takes place due the inertial effect at high Reynolds numbers. In Fig. 3.13(c),

the jet immediately next to the valve exit is skewed toward the lower side of the sinus wall, while

in Fig. 3.13(d), the jet moves toward the opposite sinus wall immediately after leaving the valve.

Therefore, the entire jet appears to be oscillating continuously, instead of going straightforward,

after the valve is fully opened. We point out that this oscillatory jet motion was also observed in

a recent in vitro experiment study of the aortic valve [85].

The vortices and flow recirculation in the sinus region are also of interest due to their possible

role in the leaflet dynamics [67–69]. In Fig. 3.13, the flow pattern in the sinuses is not clear because

of low fluid velocity. We have visualized the streamlines in a supplementary figure, where the 3D

recirculation in the sinus region bears certain similarity with images from in vivo experiment (e.g.,

Figure 4 in Markl et al. [86]). Since these vortices highly depend on the geometry of the sinuses

and available experimental data is limited, further comparison is not straightforward and is deferred

to future study along with examination of the role of the vortices.

Fig. 3.14 shows the velocity field for t = 16.4 to 20.4 cs in the slice at z = 0 that cuts through

only one leaflet and divides the domain symmetrically (see Fig. 4.1(a,b) for the slice location).

This slice provides a better view of the leaflet oscillation as well as the interaction with the jet.

From Fig. 3.14(a) to (f), the two leaflets in the view clearly display a wave traveling from their

base to the free edge, which leads to a secondary flapping oscillation of the leaflets beyond their
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Figure 3.14: Velocity vectors in the z = 0 plane at t = 16.4, 17.2, 18.0, 18.8, 19.6, and 20.4 cs.

Only every one out of two points is shown in the axial direction.

initial displacement during opening. This oscillation was also shown by the tracing of the markers in

Fig. 3.10. Even though the magnitude of this flapping motion is smaller as compared with the overall

opening/closing motion of the leaflets, it has a direct impact on the jet near the valve exit. From

this figure, the leaflet at the bottom can either lift up the jet away from (Fig. 3.14(d,e)) or direct it

toward (Fig. 3.14(a,b)) the nearby wall through its flapping motion. Therefore, the frequency of the

jet oscillation corresponds to the flapping frequency of the leaflets. The jet skewness changes the

location where the jet reattaches to the aorta wall and thus causes significant dynamic interactions

between the jet and the wall (an animation of the velocity field is provided in supplementary

materials). In addition, large vortices can be generated at the shear layer between the jet and the

opposite side of the wall, leading to rich vortex dynamics as discussed next. We should point out

that the traveling-wave motion of the leaflets is likely associated with the thin thickness adopted in

the present study, and this type of motion is not observed in some of the recent experiments where

thicker leaflets were used [87]. In a separate study, we have doubled the thickness and still clearly

see a similar wave motion. Since the thickness of the native and prosthetic leaflets can vary from

0.16 mm to 1 mm [13, 88], this traveling-wave result may be only applicable to very thin leaflets.

On the other hand, it may be worthwhile to study in the future that how this behavior varies with

the leaflet thickness and stiffness.
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3.3.6 Vortex dynamics

Fig. 3.15 shows a sequence of the vortex structures in the flow by plotting the isosurface of the

imaginary part of the complex eigenvalue of the velocity gradient tensor. When the valve is opening

from complete closure, distinct vortex rings are formed around the starting jet. There have been

many studies about vortex ring formation for pulsatile jets, including discussions of optimal vortex

ring formation in the applications of propulsion as well as heart valves [89]. However, details of these

vortices in the native aortic valve have been scarcely studied. In the present study, we visualize

the 3D shape of these vortices and their evolution with the hope that it can lead to future in-depth

study on the vortex dynamics of the aortic valve. Fig. 3.15(a) shows the leading vortex ring at the

front of the jet and the following second ring. As the jet is further advancing, more vortex rings are

formed due to roll-up of the unstable shear layer around the jet. In Fig. 3.15(b,c), a third vortex

ring can be seen behind the second ring. These rings sometimes are loosely connected to form

roughly a closed loop. In addition, these rings are not completely separated but are interconnected

through vortex filaments.

In Fig. 3.16, we plot the time-dependent locations of the first three vortex rings during valve

opening. It can be seen that the distances between these rings gradually increase, which is due

to increase of the flow speed. We also examined the shape of these vortex rings. The first ring

maintains roughly a circular shape. However, the second ring changes significantly during evolution,

and this is shown in Fig. 3.17. Initially, this ring has three lobes that move faster downstream than

the rest part of the ring (Fig. 3.17(a)). Then the ring becomes more rounded, and rear part catches

up the three lobes so that the entire ring is less stretched in the axial direction (Fig. 3.17(b,c)).

Later this ring becomes triangular (Fig. 3.17(d,e)) and then tortuous with three different lobes

formed and stretched backward in the axial direction (Fig. 3.17(f)). The third ring also experiences

dynamic shape change, but since it is short-lived as compared with the first two rings, its shape is

not discussed in detail here.

In Fig. 3.15(d) where t = 10.8 cs, another ring is visibly formed, but at this point the earlier

vortex rings start to break down and become less identifiable. Later as the flow rate continues

to increase (Fig. 3.15(e)) and then reaches its peak (Fig. 3.15(f)), the vortex rings are no longer

formed. Instead, the vortices quickly break up and form longitudinal filaments that do not have

a clear organization. An animation of the vortices is provided in supplementary materials. Such

vortex breakup has to do with the increased Reynolds number as the flow rate is growing during

diastole, but the breakup process could have been accelerated due to the oscillations of the jet and

interactions of the vortices and the aorta wall that were discussed in the previous section. Further

study will be done in the future to investigate how the vortex dynamics observed here is affected by

the choice of the nondimensional parameter in the FSI model. Since the current study is limited to

a straight tube, one particular focus may be how the curvature of the aorta arch affects the vortex

dynamics [22, 16].
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Figure 3.15: Vortices in the flow at t = 5.2, 6.8, 8.4, 10.8, 16.4, and 22.8 cs.
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Figure 3.16: Location of the 1st and 2nd vortex rings during start of valve opening.
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(a) (b) (c)

(d) (e) (f)

Figure 3.17: Evolution of the 2nd vortex ring at t = 2.8, 3.6, 4.4, 5.2, 6.0, and 7.6 cs.

3.4 Chapter conclusion

We have performed a three-dimensional study of the fluid–structure interaction of the aortic

valve using a direct-forcing immersed-boundary method and parallel computing. In comparison

with previous computational models, in this study both the flow and the valvular leaflets are

treated with high fidelity approaches. The flow involves high-resolution simulation of a pulsatile

jet, and the tissue mechanics incorporates bending and stretching behaviors of the elastic leaflets.

Thus, the present model provides a tool to study details of the flow field and the valve deformation

simultaneously. Different from previous studies that mainly focused on the leaflet kinematics,

we have additionally studied the details of the pressure distribution over the leaflet surfaces, the

momentum balance of the flow, the flapping motion of the leaflets, and the three-dimensional

patterns of the vortex structures in the flow. Following are the main conclusions from this study:

1. The pressure on the ventricle side of the leaflets are highly nonuniform, and this pressure

distribution causes the leaflets to open and close with their belly region leading the free-edge

region. This deformation pattern affects the instantaneous nozzle shape of the valve and

consequently the jet flow.

2. The total fluid force on the valve during opening is approximately equivalent to the inertial

force of simultaneously accelerating three diameters of the fluid column. The drag coeffi-

cient of the valve based on the peak momentum flux is close to 0.5 during systole but its

instantaneous peak can reach 1.
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3. The flapping motion of the leaflets causes significant asymmetry of the jet and also unsteady

oscillation of the jet.

4. The jet flow during initial opening is characterized by a sequence of vortex rings formed near

the jet front and at the shear layer between the jet and the aorta wall. These vortices have

distinct features in shape, and their formation is reasonably organized. When the valve is

fully open and the flow rate is high, the jet contains disorganized vortices mostly aligned in

the streamwise direction.
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Chapter IV

Pressure distribution over the leaflets and effect of bending stiffness on fluid–

structure interaction of the aortic valve

4.1 Introduction and significance of the study

Heart valves (i.e., mitral, tricuspid, aortic and pulmonic valves) consist of flexible thin leaflet

structures that respond to dynamic pressure loads within a cardiac cycle to open and close in

precise sequence for regulation of the blood flow direction in the heart. Normally, these thin

leaflets have low flexural rigidity so that they can rapidly open and close in just a few centiseconds,

thus requiring little work from the heart; on the other hand, they have high tensile strength to resist

a transvalvular pressure of 80 mmHg or even greater [90, 91]. Under certain disease conditions,

e.g., valvular stenosis, heart valves may thicken and stiffen, causing more difficulty for the leaflets

to open. The study of the fluid–structure interaction between blood flow and heart valves is useful

for diagnosis of the heart valve disease, surgical planning of the valve repair and replacement, as

well as engineering design of prosthetic valves [78, 92].

There have been quite a few computational efforts in modelling the fluid–structure interaction

(FSI) of heart valves that incorporate the three-dimensional characteristics of the valve geometry

and blood flow. Due to the numerical challenges involved in handling the large leaflet defor-

mation and topological change of the flow domain, many of these efforts have been focused on

the development of the numerical methods or modelling approaches. The discussion of detailed

flow characteristics and parameter study are far from extensive. To handle the complex geome-

try, the numerical methods for solving the FSI problem typically utilize non-boundary conformal

grids and a form of immersed-boundary method to discretize and solve the Navier−Stokes equa-

tion [51, 19, 8, 20, 11, 21, 3, 23, 24]. The underlying flow mesh could be Cartesian [51, 20], or

curvilinear [8, 11, 21], or unstructured [19, 3, 23], but in general it does not follow the movement of

the leaflets. The leaflet deformation pattern has often been discussed by these simulation studies.

The flexible leaflets were modelled using a finite-element approach either as elastic membranes

without bending stiffness, or as plate and shell elements that permit bending loads. The latter

provides a more natural deformation pattern in the leaflets. Furthermore, several studies have

shown that FSI simulations provides more reasonable deformation pattern than solid-only simula-

tions where only the tissue mechanics is solved and a uniform hemodynamic pressure distribution

is assumed over the leaflet surface as the loading condition [23, 24, 81]. This conclusion suggests
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that nonuniform spatial distribution should be incorporated for the pressure load when analysing

the leaflet dynamics. Other than the most basic FSI process, some computational studies also

included additional effects such as the surrounding tissue (e.g., aortic root) compliance [19, 93] and

fiber-reinforcement in the leaflet tissue [94].

Several previous computational studies also have included discussion on characteristics of the

flow field. For example, De Tullio [95] used direct numerical simulation (known as DNS) to simulate

FSI of a rigid aortic bileaflet mechanical valve and to investigate the turbulence shear stress.

Borazjani [11] studied the differences in the flow between a bileaflet mechanical valve and a bio-

prosthetic aortic valve. Gilmanov and Sotiropoulos [22] compared the vortex rings in the aorta

generated by bicuspid and trileaflet aortic valves during the opening phase; they also compared the

shear stress on the two types of valves. From these studies, it is clear that the flow is dominated

by unsteady vortices and the morphology of the valve, e.g., bicuspid v.s. trileaflet, rigid v.s.

flexible, has a significant impact on the three-dimensional (3D) flow characteristics. In a more

recent simulation of ours [1], we also examined the aortic flow behavior including jet oscillation, 3D

profile of the jet in cross-sections, and formation of a train of vortex rings during initial opening. In

addition to the aortic valve, there have been a few studies on the flow of the other heart valves as

well. For example, Seo et al. [96] simulated the effect of the mitral valve on flow in the left ventricle

and suggested that a normal physiological mitral valve promotes the formation of a circulatory flow

pattern in the ventricle.

On the experimental side, laser Doppler velocimetry (LDV) and particle imaging velocimetry

(PIV) have been used in many cases to study the FSI of heart valves through in vitro set-ups [97–99].

In these studies, flow measurement was mainly focused on the region immediately around the valve

exit in order to quantify the wall shear stress on the leaflets. There has also been significant interest

in optimality of the vortex rings formed by the heart valves as it might be an indicator for health

condition of the heart [100, 89]. More recently, PIV measurement has been done for the flow further

downstream the valves to study more details of the flow behavior such as the velocity, vorticity

and turbulent characteristics including the Reynolds shear stress and turbulent kinetic energy [85].

With advance of medical imaging technologies such as magnetic resonance imaging (MRI) and

echocardiography, there have been quite a few studies that provide direct measurement of the flow

characteristics in the body, including vortices produced by the aortic or mitral valves [86, 101–103],

helical flow pattern in the aorta [104], and quantification of wall shear stress [105].

Despite these experimental and computational studies of the heart valve FSI, the hemodynamic

pressure and the total force on the valve surface have not been well discussed. Studies in the past

were mostly focused on shear stress caused by the turbulent blood flow due to its connection with

hemolysis and platelet activation [78], and in contrast, pressure distribution on the leaflets has

received much less attention despite the fact it is the primary driving mechanism for the leaflet

deformation. Although the transvalvular pressure has been previously measured and studied in

many cases, this pressure is not equal to the pressure on the leaflet surface, as a large portion of

the transvalvular pressure is working directly on the blood for its acceleration rather than being
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transmitted onto the valve; as a result, the transvalvular pressure measurement does not provide

much information about the spatial distribution of the pressure on the leaflet surface. In a recent

study [1], we quantified surface pressure characteristics for a thin (0.1 mm) aortic valve using 3D

FSI simulation. However, the issue deserves further exploration since the pressure on the leaflets is

closely associated with the leaflet dynamics as well as the flow behavior and is thus influenced by

many factors. One of them is the leaflets’ elastic property that directly affects their own deformation

and subsequently the aortic jet. In general, there has been limited study about the effect of the

bending stiffness of the leaflets and how it affects the FSI of heart valves. One exception is a

recent computational study [106], in which the authors performed FSI simulations of a patient-

specific aortic model with varying leaflet thickness and studied the effect of the bending rigidity

on the valve’s opening area, flow speed and kinetic energy. However, the pressure distribution and

valve force were not discussed. Although a qualitative understanding of the stiffness effect may be

straightforward (e.g., a stiffer valve requires more pressure load to open), a detailed quantitative

study is necessary to better understand a few important questions: 1) What would be a proper

ratio of the transvalvular pressure to the bending rigidity of the leaflets to open and close the

valve? 2) As the leaflets stiffen and slow down in opening, how much tansvalvular pressure is

used to accelerate the flow and how much is acting on the valve as the resistance to the flow? 3)

How would the pressure distribution change on the valve as the leaflet deformation is modified

due to an increase in the bending stiffness? 4) How are the spatial and temporal characteristics

of the vortex rings affected in this process? Taking advantage of the fine-resolution model and

parallel computation developed in our previous study, it is possible to investigate these questions

by performing a series of numerical simulations.

Other than 3D computational FSI models of heart valves, simpler models with much lower

computational cost also have useful applications in clinics, e.g., non-invasive measurement of the

ventricle pressure. In the procedure of echocardiography, flow velocity data is used to derive the

ventricle pressure based on the unsteady Bernoulli equation and the assumption that aortic valve is

merely a stationary round nozzle [107, 108]. Such models are easy to use in practice but may lead

to significant errors. An improved reduced-order flow model could offer more accurate information

without demanding substantial computational resources. Other than clinical measurement of the

ventricular pressure, the reduced-order flow model may also find applications in the multiscale

modelling of the cardiovascular network in which an individual blood vessel may be treated as

one-dimensional (1D) flow path [109]. To develop a reduced-order flow model, one should bear in

mind that the pressure distribution over the leaflet surface is nonuniform. Furthermore, the effect

of the fast leaflets movement during opening and closing on the flow should also be considered. The

leaflets normally are very flexible and nearly massless, but they do not really follow the flow due to

attachment to the aorta root. Therefore, their effect on the flow is not necessarily straightforward

to incorporate.

In our study, we will use the same 3D FSI approach as described in our previous work [1],

i.e., a Cartesian grid based sharp-interface immersed-boundary method combined with a finite-
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element method, to investigate the effect of the bending stiffness of the leaflets on the FSI process

of the aortic valve. We will study the leaflet deformation, pressure distribution and total force

on the valve, and 3D flow field. Furthermore, we will present a new 1D flow model based on the

momentum and mass conservation equations and will couple it with the 3D valve model to perform

FSI simulations. We will assess the performance of the 1D flow model by comparing the leaflet

deformation and flow rate with those obtained from the corresponding 3D FSI model. Limitations

and the future direction of this model will be discussed at the end.

4.2 Model description and the numerical approach

4.2.1 Model set-up

A trileaflet aortic valve model similar to that in Chen and Luo [2018] is adopted and shown in

Fig. 4.1. The aorta is simplified as a rigid cylindrical tube with a diameter, D = 2.1 cm, and a

length, L = 19 cm. The three protruded lobes on the tube represent the aortic sinuses and their

dimensions are based on physiological measurements of human aortic root [70, 71]. The geometry

of the leaflets was based on a transcatheter aortic valve (TAV) [24] and was originally provided

by Professor Wei Sun’s lab at Georgia Institute of Technology. The thickness of the human aortic

valve, h, can range from 0.26 mm to 1.3 mm for normal hearts [88] but could be thinner for

transcatheter valves, e.g., 0.16 mm for a polyurethane valve [13] and 0.18 mm for a pericardial

bioprosthetic valve [110]. The native aortic valve is typically asymmetric and also nonuniform in

thickness [88], but we assume a symmetric model and uniform thickness for simplicity. To vary

the leaflet thickness, we extrude the mesh of the leaflets along the surface normal direction in the

ANSYS ICEM package to obtain eight different valve models, whose thickness is h = 0.05, 0.08,

0.1, 0.2, 0.3, 0.5, 0.6 and 0.8 mm, respectively. The small-thickness cases with h ≤ 0.1 mm are

included as theoretical exploration of this study. The model with h = 0.1 mm was constructed in

our previous study [1], and we will include some of results from that study in the present work for

comparison.

For spatial discretization, the rigid aortic wall is divided into 20,735 triangular elements with

mesh refinement in the sinus region (approximately 0.3 mm in size). The valve tissue has a separate

mesh, where each leaflet is discretized using 539 to 806 20-node hexahedron elements. These

elements use quadratic basis functions and have higher-order accuracy than the 4-node tetrahedral

elements that use linear basis functions. The valve is then attached to the aorta with fixed element

nodes in the commissure region and also along the base, as shown in Fig. 4.1(a). A slightly open

valve is used as the initial condition. A contact detection region shown in Fig. 4.1(c) is prescribed

on the left-ventricle side of the surface for each leaflet, within which all the surface nodes will be

checked in the simulation to determine whether or not to invoke the contact algorithm. Three

nodes in Fig. 4.1(b), one located at the center of the free edge and the other two in the belly region,

are traced to show kinematics of the leaflets.

Constitutive models of the valve tissue have been advanced to include fiber orientation and
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Figure 4.1: (a) Computational model of the aorta root, where the aorta tube and the aortic valve

are affixed together. (b) Axial view of the valve and three sinuses, where the three markers on

a leaflet are used later to plot the displacement history. (c) The fixed nodes (red markers) and

contact detection region (blue markers).
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anisotropic effects [111]. However, a simple isotropic neo-Hookean model should be sufficient for

simulation of flexural deformation [112]. Thus, we assume that the leaflet tissue is isotropic and

homogeneous, and we adopt the Saint Venant−Kirchhoff model for the hyperelastic tissue behavior

in which the nonlinear strains are incorporated. The density of the leaflets is ρs = 1 g/cm3. The

mass damping coefficient, ηd, is chosen so that ηdh = 1 g/cm2·cs−1 is constant for all valve models

(cs or centisecond is the time unit in the present study unless otherwise specified). This structural

damping is much smaller in comparison with the damping effect provided by the fluid and is added

to be consistent with the previous case of h = 0.1 mm. For the material properties, we set Young’s

modulus E = 1500 kPa and Poisson’s ratio νs = 0.4 [3, 23].

The blood is assumed to be Newtonian and incompressible. No-slip and no-penetration bound-

ary conditions are imposed at the aorta wall as well as the leaflet surface. The fluid domain is a

19 × 4.4 × 4.4 cm3 rectangular bounding box and is discretized by a 400 × 130 × 130 nonuniform

Cartesian grid. Finer resolution with ∆x = 0.025 cm and ∆y = ∆z = 0.034 cm is used in the

region surrounding the valve. The flow is driven by a physiological pressure drop along the aorta.

The density and dynamic viscosity of the blood are ρ = 1 g/cm3 and µ = 0.005 Pa·s, respectively.

Each cardiac cycle has a time duration of T = 0.86 sec, or 86 cs, which corresponds to a heart rate

of 70 beats per minute. Similar to previous aortic valve models [23, 24], a transient transvalvular

pressure load as shown in Fig. 4.2 is applied at the inlet of the aorta tube to drive the flow. The

peak pressure during systole is Pmax = 2 kPa, and the lowest pressure during diastole is -8 kPa.

The exit pressure at the outlet is Pout = 0 kPa.

To solve the governing equations, we use a computational framework that was previously de-

veloped for simulating biological systems that involve large deformations [53]. In this partitioned

FSI framework, the flow is solved using a Cartesian grid based direct-forcing immersed-boundary

method, and the solid is solved using a nonlinear finite-element method on an unstructured La-

grangian mesh [113, 114]. Fluid–structure interaction coupling is achieved by iterating the two

solvers while communicating boundary conditions at each time step until convergence. The code

was verified through various case studies, including both thin-walled and general 3D body prob-

lems [53]. In the current FSI iteration, the relaxation factors are chosen as α = 0.7 for the velocity

update, α = 0.9 for the force update and α = 1.0 for the displacement update. To ensure numerical

stability of the FSI coupling, the time step used for the flow solver is ∆t = 8.0× 10−3 cs. The time

step for the structural simulation is smaller, ∆t = 5.0× 10−5 cs, so that each FSI step contains 160

substeps for the structural simulation.

For parallel computing, the rectangular box containing the flow domain is divided into 26×26

subdomains in the y- and z-directions using domain decomposition. Each subdomain only stores

its own flow field data but has a full copy of the unstructured mesh of the fluid–solid interface.

Since the surface mesh data for the solid is much smaller as compared with the volume data of

the flow field, this decomposition strategy allows nearly a constant scaling of the total computer

memory regardless the number of processor cores being used for the simulation. In the present

study, a total number of 692 processor cores (676 for flow and 16 for solid) are used for the FSI
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Figure 4.2: Pressure load applied at the inlet of the aorta tube in the FSI simulation, where cs

denotes centisecond.

simulation, which takes about 50 hours for one cardiac cycle on Stampede 2 at the Texas Advanced

Computing Center (TACC).

4.2.2 Contact model

During the closing phase and also sometimes in the opening as well, the three leaflets experience

significant contact with one another. Similar to previous studies [11, 3], a penalty method is

adopted here to model collision and prevent the leaflets from penetration. At each time step, the

node-to-surface distance is calculated to determine whether the contact algorithm is invoked or not.

That is, for each of the nodes in the contact region shown in Fig. 4.1(c), the distance is computed

by projecting it onto the surface of its neighboring leaflets. The contact force in the direction of

the surface normal is then calculated by

fcnt =

0, if d− d0 > 0

−fext − k(d− d0), otherwise
(4.1)

where fcnt is the nodal contact force, fext is the external force (i.e., the hydrodynamic force) on

the node, d is the distance, k is the contact stiffness and d0 is a prescribed threshold distance.

Within the threshold distance, the external load fext is cancelled out and a net force of magnitude

−k(d − d0) is added to prevent inter-penetration of colliding leaflets. The contact force vanishes

outside of the threshold distance. Here we set k = 1 g/cs2 and d0 = 0.08 cm so that when the
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leaflets are stopped by the contact force, the gap between them is below one cell width on the flow

mesh (thus, the flow is cut off completely). We ignore the possible lubrication effect for the thin

gap between two leaflets, as the exact nature of the contact mechanism should not significantly

affect flow or leaflet deformation during the most of the opening and closing phases.

4.2.3 Mesh refinement study

A mesh refinement study is performed for the case of thickness h = 0.3 mm, where the flow domain

is divided by a 500× 260× 260 nonuniform Cartesian grid and the resolution around the leaflets is

∆x = 0.015 cm and ∆y = ∆z = 0.017 cm. The time step size is ∆t = 4.0× 10−3 cs and the refined

FSI simulation is run up to 36 cs for the entire systole until the valve already reaches full closure.

The results are shown in Fig. 4.3 for comparison. Fig. 4.3(a) and (b) show the transient axial

and radial displacements of the traced markers located on the leaflets (i.e., node 1 and node 2 in

Fig. 4.1). Fig. 4.3(c) and (d) show the total axial force on the three leaflets, Fval, and the flow rate,

respectively. From these results, we see that the valve dynamics and the total force on the valve are

accurately captured by the baseline mesh, while the flow rate exhibits a less than 7% error during

the peak rate. We then examined the pressure distribution on the leaflet surface using the refined

mesh, as shown in Figure 4.4. The results indicate that the baseline mesh is sufficient in capturing

the nonuniform pressure on the surface of the leaflets. We have also examined the vortex structures

from the refined-mesh simulation, and they are consistent with the baseline-mesh results. Based on

these comparisons, the baseline flow mesh is deemed satisfactory for the current study. We also did

a separate mesh refinement study for the finite-element model of the valve, in which the number

of hex-20 elements is increased by approximately 5 times in the refined mesh. Comparison of the

leaflet dynamics shows that the results are in excellent agreement with the baseline valve mesh.

4.3 Results and discussions for 3D simulation

4.3.1 Leaflet deformation

Fig. 4.5 shows the valve deformation sequence for thickness h = 0.2 to 0.8 mm. From these plots,

it is evident that the bending rigidity has a significant effect on the dynamic shape of the valve and

the extent of valve opening. For the thinner leaflets with h = 0.2 and 0.3 mm, the valve opens up

quickly, first bulging out from its belly and then moves its free edges to their full extent. During

the closing phase, the leaflets start contract inward, again first from the belly area and then the free

edges follow up. Because the mid-edge moves ahead of rest of the free edge, each leaflet forms an

inward fold at the mid-edge. During diastole, the leaflets are stretched inward with clear extension

by the negative ventricle pressure. For h = 0.1 mm, the deformation pattern is similar to that is

described here, but the leaflets are so flexible in that case that they also form a travelling wave

from the base to the free edge, causing the leaflets to flap like immersed flags after the valve is

fully opened [1]. The two thinnest cases, h = 0.05 and 0.08 mm, have similar flapping motion to

the case of h = 0.1 mm (see a supplementary figure for leaflet deformation in these cases). Such
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Figure 4.3: Comparison between the baseline flow mesh and refined flow mesh for (a) axial and (b)

radial displacements of the nodes 1 and 2 on the leaflet, (c) the total force on the valve normalized

by the pressure load, and (d) the flow rate during entire systole.
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Figure 4.4: Pressure distribution (unit: kPa) on the valve from the 3D FSI simulation for h = 0.3

mm; (a) baseline mesh, and (b) refined mesh.

flapping motion was confirmed in our previous study [1] using mesh and time step refinement.

For the intermediate thickness of h = 0.5 and 0.6 mm, the valve opening is clearly slowed down.

The leaflet bellies do not bulge out very much, and the free edges are not fully extended out, thus

creating a smaller opening area for the flow to go through. During the closing phase, the free edges

move in first, and then the belly regions follow. The curvature of the mid edges is not as high as

that of the thinner leaflets. For the thickest case of h = 0.8 mm, the valve opening is substantially

reduced, and the leaflet displacement is less than halfway through.

For all the cases in Fig. 4.5, the free edges of the leaflets form an opening with a three-lobe

propeller configuration that is consistent with observations in several previous experimental studies

of aortic valve [115–117] as well as FSI simulations [9, 3, 24, 118, 1]. This particular shape is

caused by the inward fold at the mid edge of the leaflets that has higher stiffness and has to snap

through in order to extend out to form an opposite curvature. For the thinner cases of h = 0.2

and 0.3 mm, snap through is easier and can happen later at full opening of the valve. For thicker

cases of h = 0.5 and 0.6 mm, snap through becomes more difficult. For h = 0.8 mm, snap through

becomes impossible with the given ventricle pressure load, and therefore, the propeller configuration

is maintained during the whole systole in this case. For h = 0.1 mm and less, the valve opens from

the middle due to its low bending rigidity and thus, the valve forms a three-lobe star shape instead

during initial opening phase (see a supplementary figure for leaflet deformation in these cases).

4.3.2 Flow rate and valve opening area

Figure 4.6(a,b) presents the transient flow rate, Q =
∫
udA, and geometric orifice area (GOA) from

an entire cardiac cycle for all five different cases. The GOA is calculated by finding the projected
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Figure 4.5: Deformation of the valve in 3D FSI simulation for thickness (a) h = 0.2 mm, (b) 0.3

mm, (c) 0.5 mm, (d) 0.6 mm, and (e) 0.8 mm.
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Figure 4.6: Volumetric flow rate, Q, and geometric orifice area (GOA) in a full cardiac cycle for

h = 0.2 to 0.8 mm.
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Figure 4.7: (a) Effect of the normalized bending rigidity on the normalized maximum GOA. The

case of h = 0.1 mm from Chen and Luo [2018] has been included. The dashed part indicates that

the leaflets undergo significant flapping oscillations. The shaded area represents approximately the

optimal region. (b) Transient GOA for the three thinnest valve cases showing large oscillations.

64



area of the valve on a plane perpendicular to the aorta axis. The effect of the bending rigidity

is evident from this figure. As the thickness increases, the flow rate and the opening area during

the systole drop significantly, especially for the cases of h = 0.6 and 0.8 mm. Note that from the

specified pressure waveform in Fig. 4.2, the driving ventricle pressure at the inlet starts to drop at

t = 18 cs. However, the forward flow continues to accelerate under the positive pressure load until

around t = 20 cs when both the flow and GOA reach a peak. The peak flow rate is 483, 459, 396,

304 and 112 ml/s for the case of h = 0.2, 0.3, 0.5, 0.6 and 0.8 mm, respectively.

During the closing phase, the thinner valves have a faster moving speed as seen from the time

derivative of the GOA. However, the thicker valves close earlier from both the flow rate and GOA

plots, which is due to the low flow rate and smaller GOA at the opening phase in these cases. A

negative dip in the flow rate is observed for all the cases, indicating a temporary flow reversal that

takes place along with closing motion of the leaflets. By integrating the transient flow rate in time,

we obtain the stroke volume for each valve model, which is 98.5, 99.6, 75.3, 52.0 and 20.3 ml per

beat for thickness of h = 0.2, 0.3, 0.5, 0.6 and 0.8 mm, respectively. The corresponding cardiac

output (or averaged flow rate) is 6.9, 7.0, 5.3, 3.6 and 1.4 l/min. The peak flow rate, stroke volume

and cardiac out in the cases of h = 0.2, 0.3 and 0.5 mm are all within the physiological range for

normal adult aortic valves [68, 77], while in the cases of 0.6 and 0.8 mm these variables are below

the normal range due to reduced valve opening.

The effective orifice area (EOA) represents a measurement of the valve’s characteristic resistance

and is often used clinically for the quantification of valve stenosis severity [78, 79]. The EOA in

our calculation follows the previous definition [78], EOA(cm2) = Qrms/(51.6
√

∆p), where Qrms

is the root mean square systolic flow rate in ml/s and ∆p is the mean systolic pressure drop in

mmHg. We used the time period when the pressure difference Pin − Pout is positive to compute

the average as ∆p. According to this formula, the EOA is 1.81, 1.72, 1.46, 1.11 and 0.49 cm2 for

thickness of h = 0.2, 0.3, 0.5, 0.6 and 0.8 mm, respectively. For thinner leaflets (e.g., h = 0.2 and

0.3 mm), the EOAs are in agreement with earlier reported results for normal adult valves [78, 24].

As the thickness increases, the leaflets behave like calcified or stenotic valves and the EOA drops

significantly. Regurgitation is the leakage of blood backward through the aortic valve to the left

ventricle during diastole. In current simulation, the regurgitation volume in all the cases is less

than 1.3 ml per cycle and is also in good agreement with previous reports [78, 24]. The performance

index of the valve, defined as EOA/A and used in clinical contexts as a criterion to evaluate severity

of valve stenosis, is 0.53 for h = 0.2 mm but drops to only 0.14 for h = 0.8 mm. This index is listed

later in Tab. 4.1 along with the normalized valve force for all the cases.

In general, the valve opening-closing process can be divided into four stages: (I) rapid valve

opening, (II) maintenance of maximum excursion, (III) slow valve closing, and (IV) fast valve

closing [80, 68]. For the cases of h = 0.2 and 0.3 mm, these four stages can be clearly observed

from the GOA plot. In these cases, the rapid valve opening takes approximately 5 to 6 cs, the

maximum excursion approximately 19 cs, the slow closing approximately 7 cs, and the fast closing

approximately 3 to 4 cs. These time scales agree well with the previously reported data for healthy
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aortic valves [78, 24]. As the thickness further increases from 0.5 to 0.8 mm, the maximum excursion

stage (represented by a plateau in the transient GOA history) vanishes gradually.

In the three cases of h = 0.1 mm and less, the time scales of the four stages are similar to those

in the cases of h = 0.2 and 0.3 mm. However, in those cases, the thin leaflets exhibit a flag-like

flapping motion after the valve is fully opened [1], which leads to significant oscillations in the GOA

(Fig. 4.7b). The magnitude and frequency of flapping in those cases are different and may have to

do with the bending stiffness, tension in the leaflets, as well as the curvature of the leaflet surface

once the valve is opened. For thicker valves, only the case of h = 0.2 mm has such high-frequency

oscillations in the GOA and the magnitude is very small as seen in Fig. 4.6(b); in the other cases,

no evident flapping motion is observed. As a result of the leaflet flapping, the jet in the cases of

h ≤ 0.1 mm also becomes more oscillatory. For h = 0.05, 0.08 and 0.1 mm, the flow rate is 504,

479, 447 ml/s, respectively, and the EOA is 1.89, 1.79 and 1.67 cm2, respectively. Note that the

case of 0.1 mm, whose E∗
B = 0.0012, has reduced flow rate, EOA and GOA when compared with

the case of 0.2 mm (Fig. 4.7a and Tab. 4.1). Thus, the changes of valve opening and flow rate are

not monotonic as the thickness is reduced from 0.2 mm.

We further present the effect of the bending rigidity on the valve opening in terms of non-

dimensional parameters. Fig. 4.7 shows the normalized maximum GOA by the cross-sectional area

of the aorta tube, A, against the bending rigidity normalized by the overall pressure gradient ∆P/L,

i.e., E∗
B = EB/(∆PR

4/L), where ∆P = Pmax − Pout is the pressure drop during valve opening,

EB = Eh3/12(1− ν2) is the flexural rigidity, L is the tube length, and R is the radius of the aorta

tube. From Fig. 4.7(a), there exists an optimal range of normalized bending rigidity of the valve

that is roughly between E∗
B =0.003 and 0.04. It is worth noting that most of previous studies of

normal aortic valves, including native and prosthetic, fall within this optimal range [88, 119, 24].

Above the range, the valve may become too stiff with the valve opening reduced. In reality the heart

would have to do extra work through physiological control mechanisms in the body to maintain

sufficient cardiac output; in that case, the normalized bending rigidity E∗
B is effectively reduced

due to higher pressure load. On the other hand, below this range the leaflets are too flexible and

may form travelling waves and flapping motions, which is typically seen in immersed flags [120]

and could cause the valve performance to drop as in the case of h = 0.1 mm. In the design

of transcatheter valves, the leaflet thickness is sometimes reduced to accommodate the valve to

miniaturized catheters [121]. The present finding of the hydrodynamic consequence for very thin

leaflets may serve as a design consideration for such valves. Even if sufficient valve opening could

still be achieved (as in the cases of h = 0.05 and 0.08 mm), frequent oscillation of the leaflets due

to flapping may become a concern for the cyclic flexural fatigue of bioprosthetic valves [122].

The definition of the dimensionless parameter E∗
B involves the use of the average pressure

gradient along the tube during valve opening, where the tube length has been included in the

scaling. To confirm that the results are relatively independent of the tube length and the pressure

gradient is a reasonable reference for scaling, we have doubled the tube length, with the tube

segments upstream and downstream the valve both lengthened and the driving pressure at the inlet
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Figure 4.8: Pressure distribution (unit: kPa) on the valve in 3D FSI simulation for thickness (a)

h = 0.2 mm, (b) 0.5 mm, and (c) 0.8 mm. Note that the color range is different in each frame and

colors at the fixed edges are not meaningful.

also doubled. The transient GOA for h = 0.3 mm from this additional FSI simulation is provided

as a supplementary figure. The result is consistent with that from the baseline simulation, despite

small differences are observed (such differences are expected since the pressure drop should not be

strictly proportional to the tube length due to the presence of the valve).

4.3.3 Pressure distribution

Pressure distribution on the valve surface is a result of two-way interaction between the flow and

the leaflets. Thus, not only the instantaneous shape of the valve but also the motion of the leaflets

affect the magnitude and spatial characteristics of the surface pressure. Fig. 4.8 shows the pressure

on the ventricle side of the valve for h = 0.2, 0.5 and 0.8 mm at selected systolic moments. It can

be seen that at most of these time frames, the surface pressure varies from the base to the free edge

of the leaflets. Overall, the pressure drops along the axial direction from the fixed base to the free

edge since the valve forms a converging nozzle while opening and the fluid velocity is highest at

the exit of the valve. However, the effect of the leaflet movement can be seen as well. For example,

comparing the frame of h = 0.2 mm and t = 2.8 cs and the frame of h = 0.5 mm and t = 6.0 cs, the

amount of valve opening is similar in these two frames, but the pressure is significantly different.
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Figure 4.9: History of normalized (a) Fval and (c) ρLQ̇ for each valve in a full cycle. (b,d) Zoom-in

view of (a,b) for systolic acceleration.

In particular, the pressure near the base of the valve in the former frame has lower magnitude than

the pressure at the same region in the latter frame; furthermore, the pressure in the former frame

has less variation and is more uniform from the base to the free edge. This result has to do with

the fast valve opening in the case of h = 0.2 mm, where the thin leaflets yield to the accelerating

flow more quickly and thus incur less impact from the flow.

For the thickest valve of h = 0.8 mm, the characteristics of pressure distribution do not change

substantially in time during opening due to slow motion of the leaflets, even though the overall

magnitude of the pressure still varies temporally according to the pressure waveform specified at

the inlet. In all the cases, the pressure on the ventricle side of the valve becomes nearly uniform

when the valve is fully closed as seen in the last column in Fig. 4.8. In addition, the pressure on

the aortic side of the valve is always nearly uniform, though its magnitude depends on the overall

shape and movement of the valve.

4.3.4 Momentum balance and total force on the valve

In order to better understand the total hemodynamic force on the valve, or valve’s resistance to

the flow, we consider the interior of the aortic wall as a control volume and analyse the momentum
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balance of the flow. The momentum conservation of the flow in the axial direction is

∂

∂t

∫
ρudV +

∫
ρu2 dA = (Pin − Pout)A− Fval − Fsin − Ftub, (4.1)

where u is the axial velocity, A = πD2/4 is the area of the cross-section, Pin and Pout are the inlet

and outlet pressure, respectively, Fval is the total axial hemodynamic force on the leaflet surfaces

(both aortic and ventricle sides included) or the valve resistance, Fsin is the axial force on the sinus

section of the wall, and Ftub is the axial force on the remaining tube wall. Introducing the flow

rate, Eq. (4.1) can be written as

(Pin − Pout)A = ρLQ̇+

∫
out

ρu2 dA−
∫

in
ρu2 dA+ Fval + Fsin + Ftub, (4.2)

where Q̇ is the time derivative of the flow rate and L is the length of the flow domain. This

equation represents how the transvalvular pressure load is split among different factors that include

the inertial acceleration of the fluid column in the aorta, momentum fluxes, and the forces on

the valve, sinuses, and tube wall. As shown in our previous study [1], the momentum fluxes at

the inlet and outlet nearly cancel each other; furthermore, Fsin and Ftub are small. Thus, the

overall pressure load is mostly shared between flow acceleration and the force on the valve, i.e.,

(Pin − Pout)A ≈ ρLQ̇+ Fval, at any time moment.

The transient valve force Fval and fluid inertial force ρLQ̇ normalized by PmaxA are both plotted

in Fig. 4.9 for an entire cycle. The most distinct feature in the valve force as shown in Fig. 4.9(a) is

the negative spike that immediately follows full closure of the valve for all the cases except h = 0.8

mm. This force is generated when the reversal flow is initiated during the closing phase but is

quickly shut off. Due to its momentum, the reversal flow impinges on the aortic side of the valve,

leading to a “water hammer” effect and a large resultant force. If the valve is thin and more

elastic, the leaflets may be stretched toward the left ventricle by the reversal flow and then bounce

back, thus causing several following-up spikes of lower magnitude. An animation of the valve force

for h = 0.3 mm is provided as supplementary material. As the valve thickness is increased, the

magnitude of the force spike becomes lower, and the spike has completely gone for h = 0.8 mm.

From the inertial force shown in Fig. 4.9(b), we see that there are corresponding spikes in ρLQ̇

that are similar in magnitude but opposite in sign to the valve force.

From the zoom-in plots in Fig. 4.9(c,d), it can be seen that for thin leaflets of h = 0.2 and 0.3

mm, the valve force is much smaller as compared with the fluid inertial force during the acceleration

phase of t = 0 to 20 cs. For the thick leaflets of h = 0.6 and 0.8 mm, the valve force becomes greater

than the fluid inertial force. The effect is further quantified in Tab. 4.1 using Fval/(PmaxA) and

Fval/(ρDQ̇) averaged from the systole. To compute the average, only the time period of positive

Fval is considered, and the same for Q̇. The former represents percentage of the valve resistance

in the total transvalvular pressure load, and the latter represents the equivalent length of the fluid

column, in terms of tube diameter, being accelerated. At h = 0.2 mm, the valve resistance is 22%

of the transvalvular pressure and is equivalent to accelerating 3.4D of fluid column; at h = 0.8 mm,
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h (mm) E∗
B

EOA
A

Imax
PmaxA

Fval
PmaxA

Fval

ρDQ̇avg
CD

0.05 1.5E-4 0.55 1.09 15% 2.2 0.28

0.08 6.0E-4 0.52 1.01 18% 2.7 0.36

0.1 1.2E-3 0.49 1.00 24% 3.9 0.48

0.2 9.3E-3 0.53 1.10 22% 3.4 0.40

0.3 3.1E-2 0.51 1.10 28% 3.8 0.50

0.5 1.5E-1 0.43 0.75 35% 6.2 0.94

0.6 2.5E-1 0.33 0.42 48% 10.3 2.28

0.8 6.0E-1 0.14 0.07 80% 40.5 22.80

Table 4.1: Normalized bending rigidity E∗
B, performance index EOA/A, average maximum mo-

mentum flux Imax, average valve force Fval, and average drag coefficient CD for each case. The

case of h = 0.1 mm is from Chen and Luo [2018].

the valve resistance reaches 80% of the transvalvular pressure and is equivalent to accelerating

40.5D of fluid column, which would add significant load to the cardiovascular network.

We may use the peak momentum flux at the inlet, Imax = max
∫
ρu2 dA to define the drag

coefficient of the valve, so that CD = 2Fval/Imax. For thinner valves of h = 0.2 and 0.3 mm, Imax

is 1.52 N. For thicker valves, Imax drops quickly and is 1.03, 0.58 and 0.10 N for h = 0.5, 0.6 and

0.8 mm, respectively. The corresponding drag coefficient is listed in Tab. 4.1. For h = 0.2 mm,

CD is 0.40, and for h = 0.8 mm, CD reaches a high level of 22.8. In all the resistance measures

listed in the table, the case of h = 0.1 mm has higher resistance than the case of h = 0.2 mm due

to its flapping motion in the leaflets. The two thinnest cases, h = 0.05 and 0.08 mm, have lower

drag resistance measures as compared to other cases such as h = 0.1 and 0.2 mm because these

extremely thin leaflets have low stretching stiffness in addition to low bending stiffness, thus having

a larger opening area.

4.3.5 Flow field

Fig. 4.10 shows a sequence of the vortex structures, plotted using the Q-criteria, for selected cases

with thickness h = 0.2, 0.5 and 0.8 mm. For comparison, we also included the case of h = 0.1 mm

from our earlier work [1]. It can be seen that the bending rigidity of the valve has a significant

effect on the vortex development. For the case of h = 0.1 mm, the flow field is featured by a

leading vortex ring first emitting from the central hole of the leaflets and also the second and the

third vortex rings that follow the first ring. The first ring is more circular. The second vortex ring

initially has a similar 3-lobe star shape to the shape of the initial valve exit, then the ring evolves

to a triangular shape before final breakdown (see Fig. 17 in Chen and Luo [2018] for more detail).

The cases of h = 0.05 and 0.08 mm have similar vortex patterns.

For all the other five thicker cases considered here, the jet initially forms three separate vortex

rings, which originate from the three gaps between any two adjacent leaflets. This behaviour is
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Figure 4.10: Vortex development during valve opening for (a) h = 0.1, (b) 0.2, (c) 0.5, and (d) 0.8

mm at t = 2.8, 3.6, 4.4, 5.2, and 16.4 cs.

associated with the propeller shape of valve opening and is caused by the slow opening at the

mid-edge of the leaflets where the leaflets fold inward and the effective stiffness is much higher than

the rest of the area. In the case of h = 0.2 mm, the three vortex rings are interconnected through

vortex filaments shedding from the free edge. As the valve continues to open, the axial velocity

increases in the central core region, causing the vortex rings to deform. The vortex filaments earlier

connecting the three vortex rings penetrate the rings, causing more vortex-vortex interactions, and

they travel downstream along with the rings (t = 3.6 and 4.4 cs) untill later breakdown after t = 6

cs.

In the cases of h = 0.5 and 0.8 mm, the three leading vortex rings are more rounded in shape

and have less deformation in the first 4 cs. Also, these vortex rings are more independent of each

other without evident interconnecting vortex filaments. As the thickness increases, the jet is more

confined near the central core region and has a higher velocity due to limited opening area. For

instance, the axial velocity at t = 2 cs is 0.98 m/s for h = 0.3 mm, while it is 1.47 m/s for h = 0.6

mm at the same moment, in which case the vortex rings are advected downstream more quickly.

In all cases, the vortices become less identifiable later after 16 cs as the flow rate continues to rise.

An animation of the vortex structures for h = 0.3 mm is provided as supplementary material.

71



x
1

x
3 x

4
x

2

P
s

P
in

P
out

u
s

Xe

Sinus

Leaflets

Aorta wall

A(x,t)

p(x,t)

u(x,t) x

Figure 4.11: Schematic of the axisymmetric domain for the 1D flow model.

4.4 One-dimensional flow model and FSI simulation

4.4.1 Model description

Having better understood the pressure distribution on the valve surface, we proceed to develop

a 1D transient flow model to represent the hemodynamics through the aortic valve. We will

combine this flow model with the 3D finite-element model of the valve to repeat the FSI simulation.

Such a hybrid 1D/3D FSI model could be useful when high-fidelity representation of the tissue

mechanics is needed, e.g., for surgical planning, but simplification of the flow is desired for efficient

simulations. To construct the 1D flow model, we make a few drastic simplifying assumptions to

the flow and its geometrical domain. First, we assume that the flow is described only by the axial

velocity component, u(x, t), and the pressure has the form of p(x, t). Second, the entire domain

is axisymmetric, including the aorta tube and the sinus region, and the trileaflet valve is treated

as a nozzle with circular cross-sections but a flexible wall. The schematic of the domain is shown

in Fig. 4.11 for illustration. The cross-section area of the domain at any location is denoted by

A(x, t) and is calculated from the actual 3D geometry of the domain shown in Fig. 4.1. At a

cross-section that intersects the three leaflets, A is computed by finding the area within an x-plane

enclosed by the ventricle side of the leaflet surface. Since the free edges of the actual leaflets are

not located in the same cross-section before the valve is fully open, an x-plane may cut through

the free edges and thus the enclosed area is not well defined. In that case, the shape of the free

edges upstream the x-plane is projected onto the plane, and the total area A is the combination of

this projected area and the area formed by the intersection between the x-plane and the rest of the

valve. This treatment allows the effective cross section of the jet to be taken into account and A to

be continuous from the base to the exit of the valve in the 1D model. The valve exit is denoted by

a Lagrangian point, Xe, in Fig. 4.11. The mass conservation equation of the flow can be written as

∂A

∂t
+
∂Au

∂x
− us

∂A

∂x
= 0, (4.1)
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where us(x) is the axial velocity of the leaflets. This equation takes into account the fact that the

leaflets are moving in the radial direction as well as in the axial direction, both types of displacement

having an effect on the local mass conservation. We calculate the axial velocity us at each x-location

by comparing and computing shift of A in the axial direction from two consecutive time steps.

Following the 1D flow model developed by Cancelli and Pedley [1985] for a collapsible tube with

variable cross-sectional area and later modified by Anderson et al. [2013] to simulate the airflow

in the human upper airway, we simplify the x-momentum equation of the flow in the entire domain

to the following form,

ρ
∂u

∂t
+ ρu

∂u

∂x
= −∂p

∂x
+ τ

s

A
(4.2)

τ = τfric + τχ,

where τ is shear stress including the frictional loss, τfric, and additional pressure loss in a diverging

channel, τχ, and s is the perimeter of the cross-section. The friction loss, τfric, is estimated based

on the fully developed laminar flow in a tube with constant cross-section, i.e., τfric = −2µ( s/A)u;

and τχ is usually associated with loss of kinetic energy due to flow separation and is calculated

according to

τχ =
A

s
( 1− χ) ρu

∂u

∂x
, (4.3)

where 0 ≤ χ ≤ 1 is a constant representing the amount of pressure recovery in the diverging

channel. If χ = 1, then τχ = 0 and the pressure can be fully recovered (except for the loss due to

τfric, which is small for the short domain in the present study); and if χ = 0, then no pressure is

recovered. In the present study, we tested this constant empirically through several simulations. It

was found that the following choices work well: in the opening phase, χ = 0.6 is set in the region

between the valve exit Xe and the sinus-tubular junction downstream (i.e., the interval [Xe, x3] in

Fig. 4.11), while χ = 1.0 elsewhere; after the flow is reversed during the closing phase, χ = 0 in the

region of [x2, Xe], χ = 0.8 in [Xe, x3], and χ = 1.0 elsewhere.

In the FSI simulation, the fluid pressure from the 1D flow model is applied axisymmetrically

on the left-ventricle side of the 3D valve so that the surface pressure on this side only depends on

x and t. On the aortic side, the surface pressure is nearly uniform and is close to the pressure

near the valve exit, as we learned from the 3D FSI simulation. Thus, we assume a uniform sinus

pressure, Ps, on the aortic side of the valve and assume that it is related to the pressure at Xe, Pe,

by the inertial displacement of the fluid in the entire sinus region,

Ps − Pe = −cρV̈–
R
, (4.4)

where V– is the instantaneous volume of the sinus region calculated from the actual domain, V̈– is

the second-order time derivative of V– , R is the tube radius, and c is an arbitrary constant and is

set equal to c = 0.2 through several trials.

The 1D flow is driven by the pressure at the inlet, p = Pin at x1, which is time dependent and

is the same as in the 3D FSI model. At the outlet x4, p = Pout = 0. Eq. (4.1) and Eq. (4.2) form a
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boundary value problem that can be solved straightforwardly using a shooting method. Specifically,

at a time step where the inlet pressure Pin is specified and A is first calculated from the current

valve configuration, we assume an inlet velocity u(x1) and solve Eq. (4.1) using a finite-difference

method for u(x) within the entire domain. From this temporary solution of u(x), we then solve

Eq. (4.2) for temporary pressure p(x), again using a finite-difference method. The pressure solution

at the outlet, p(x4), is compared with the outlet pressure condition p = Pout for convergence check

of this time step. The Newton–Raphson method is adopted for the iterative solution process at

each time step. That is, after temporary solutions of u(x) and p(x) are obtained, u(x1) is perturbed

and the solution process for Eqns. (4.1) and (4.2) is repeated for a different output of p(x4). Then,

the numerical derivative dp(x4)/du(x1) is calculated and used in the Newton’s iteration until p(x4)

matches Pout. Finally, a similar FSI iteration procedure as in the full 3D simulation is employed

here for the hybrid FSI model.

4.4.2 Results from the hybrid FSI simulation

Fig. 4.12 shows the deformation sequence of the aortic valve at h = 0.2 to 0.8 mm from FSI

simulation using the 1D flow model. In general, the characteristic deformation pattern agrees well

with that from the 3D FSI simulation. This result is in contrast with the solid-only simulation with

a uniform pressure assumption, which leads to overly large displacement and outward bending of the

leaflets [23, 22, 1]. For thinner leaflets of h = 0.2 and 0.3 mm, the 1D flow model produces correct

deformation sequence where the belly of the valve bulges out first and is followed by the free edge

opening, and in the other cases, the free edges move ahead of the rest of the valve. Furthermore,

the 3-lobe propeller shape of the free edges is preserved for all cases during both the opening and

closing phases. The major discrepancy with the 3D result is that for thicker leaflets of h = 0.6 and

0.8 mm, the opening of the valve is smaller than the opening from the 3D FSI result. A detailed

comparison is further shown in Fig. 4.13 for history of the GOA during the entire systole. For

thinner leaflets of h = 0.2 and 0.3 mm, the 1D flow model also produces fairly accurate dynamics of

the leaflets, i.e., fast opening, maximum excursion, slow closing, and then fast closing of the valve,

even though the maximum valve opening in the hybrid simulation is slightly smaller than that in

the 3D simulation. For thicker leaflets of h = 0.6 and 0.8 mm, there is significant discrepancy

between the two models, and the hybrid simulation produces slower opening and closing than the

3D simulation; however, the overall characteristics are still in qualitative agreement.

The hybrid FSI simulation is stopped once the valve becomes fully closed. Thus, the diastole

phase is not included in the simulation. In practice, the 1D flow model can simply be replaced by a

lumped-parameter piston-like model to continue the simulation after valve closure and to capture

the subsequent ’water hammer’ effect.

Pressure distribution on the valve surface from the hybrid FSI simulation is shown in Fig. 4.14

for all five cases. Comparing the pressure contours with those in the corresponding 3D simulation

as shown in Fig. 4.8, we see that the overall nonuniform characteristics are captured by the 1D
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Figure 4.12: Sequence of valve deformation from hybrid 1D/3D FSI simulation for thickness (a)

h = 0.2 mm, (b) 0.3 mm, (c) 0.5 mm, (d) 0.6 mm, and (e) 0.8 mm.
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Figure 4.13: Comparison of the GOA history between the 1D flow and 3D flow in the FSI simulation.

Figure 4.14: Pressure distribution (unit: kPa) on the valve in hybrid FSI simulation for thickness

(a) h = 0.2 mm, (b) 0.5 mm, and (c) 0.8 mm.
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Figure 4.15: Comparison of the flow rate between the 1D flow and 3D flow in the FSI simulation.

flow model: the pressure on the ventricle side drops from the base to the free edge during opening

phase, and during closure the pressure on the ventricle side becomes more uniform in the cases

h = 0.2 to 0.6 mm. Furthermore, the pressure on the aortic side varies in time in response to the

valve opening in a correct fashion as in the 3D simulation. Even though the specific magnitude of

the pressure may be somewhat different from that in the 3D simulation, in general the pressure

difference between two sides of the valve is still reasonably close to that in the 3D simulation.

Further inspection shows that in the cases of h = 0.6 and 0.8 mm, the pressure on the ventricle

side near the mid point of the free edges is lower than that in the 3D simulation. This discrepancy

has led to reduced opening of the valve by the 1D flow in these two cases.

Fig. 4.15 shows the history of the flow rate from the hybrid FSI simulation. Again, the major

characteristics of the flow are captured reasonably well. For thinner valves of h = 0.2 and 0.3

mm, the flow rate matches the 3D result quite well, including rise and drop of the flow rate in the

systole and even the temporary negative flow rate right before the full closure. For thicker valves

h = 0.5 and 0.6 mm, there is significant discrepancy between the two models, and the 1D flow

model produces a lower flow rate that is associated with reduced valve opening in the simulation.

Fig. 4.16 shows a comparison of the leaflet kinematics between the hybrid and full 3D FSI

simulations. In the figure, the radial position of the three selected points on the valve is traced out

during systole. These points are marked in Fig. 4.1: node 1 on the free edge, node 2 at the belly

and node 3 near the base. It can be seen that the hybrid FSI results generally agree with the full

3D FSI results, indicating that the transient deformation is, overall, consistent between the two

simulations. However, there are also notable differences. For example, in the case of h = 0.2 mm,

the free edge of leaflets first bends more outward in the hybrid FSI simulation before returning

to the same position as in 3D FSI. Since the leaflets are very flexible in this thin case, the valve

deformation is more sensitive to the errors in the pressure prediction. In the cases of h = 0.6 and

0.8 mm, the hybrid simulation clearly under-predicts the valve deformation, and this result has to

do with the simplified interpolation of 1D pressure onto the leaflet surface as discussed earlier.

In summary, the present 1D flow model produces reasonable results when combined with the
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Figure 4.16: Comparison of the radial position for the three marked points on the valve between

the 1D and 3D flow models in the FSI simulation.

3D tissue model, and it requires drastically less computation as compared with the 3D flow model.

In some of the cases, e.g., valves with high bending rigidity, this 1D flow model could be further

improved by considering interpolating the fluid pressure onto the leaflet surface in an empirical

fashion that better matches the pressure contours from the 3D simulation. Finally, there are

several limitations in the present study. We have ignored the anisotropic effects of the tissue and

greatly simplified the geometry of the aortic root as well as the inlet/outlet flow conditions. Our

models are also limited to a symmetric configuration of the valve, and its possible application to

asymmetric and abnormal valves (e.g., bicuspid valves) will need further investigation.

4.5 Chapter conclusion

In this work, we presented a numerical study of the transient and nonuniform pressure distribu-

tion on the aortic valve as well as the effect of the bending stiffness on the fluid–structure interaction

of the valve. To complement the full 3D FSI simulation, we developed a new one-dimensional flow

model and coupled it with the 3D valve model to perform hybrid FSI simulation. By varying the

thickness of the leaflets and thus the bending rigidity of the valve, we simulated both the normal

flexible valve and the stiffened valve with high rigidity. The simulation results show that once the

flexural rigidity normalized by the transvalvular pressure gradient exceeds E∗
B = 0.2, the bend-

ing stiffness of the valve has a major detrimental effect on the valve function. As the bending

stiffness is further increased beyond this value, the valve opening is largely reduced and the valve

resistance becomes substantially higher. On the other hand, as shown previously, if the bending
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stiffness is overly low (e.g., E∗
B =1.2E-3), the leaflets could have flapping oscillations and may lead

to undesirable effects on the valve mechanics. Therefore, optimal bending stiffness between these

extreme cases should be desirable for best valve performance. This result might provide a useful

guideline for the design of prosthetic valves. Our 1D flow model and hybrid FSI simulation show

that the new reduced-order flow model is able to capture the pulsatile aortic flow and the pressure

distribution on the valve reasonably well. This model may be useful for situations where costly 3D

flow simulations are not desirable, e.g., design optimization of the prosthetic valves.
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Chapter V

A reduced-order flow model for fluid–structure interaction simulation of vocal

fold vibration

5.1 Introduction and significance of the study

Vocal fold virbation during phonation involves aerodynamic interaction of a pulsatile glottal jet

and the soft vocal fold tissue stretched between the laryngeal cartilages. The unsteady airflow is

responsible for activating and sustaining the vocal fold vibration, and the oscillation pattern of the

vocal fold in turn modulates the airflow. This dynamic interaction determines many basic charac-

teristics of voice [25]. An advanced computational model of the fluid–structure interaction (FSI) for

the vocal fold will find useful applications in the understanding, diagnosis, and treatment of voice

disorders. Many FSI models have been developed in the past with various levels of complexity.

In terms of spatial setup, these models can be generally categorized depending on whether the

airflow and the tissue respectively assume a zero-, one-, two-, or three-dimensional configuration.

Within each configuration, the models can still differ significantly from one another depending on

how to treat various details such as the structural tissue layers, elastic properties of the tissue, and

anatomical features of the larynx. In early stages, discrete or lumped-mass systems were created to

understand onset of phonation [28–30]. In these models, the vocal fold was simplified to two or more

mass blocks connected to elastic springs, and the Bernoulli equation or other simplified flow equa-

tions were used to model the airflow. Despite its simplicity, such models can capture self-induced

oscillations and have been used extensively to understand basic effects of governing parameters,

e.g., the subglottal pressure and tissue stiffness, and also to investigate characteristic behavior

of normal and abnormal phonation, e.g., chaotic vibration and vocal fold polyps [29]. With the

development of high-performance computing hardware and software, continuum-mechanics based

computational models have been increasingly used for vocal fold modeling. For example, both

two-dimensional (2D) and 3D finite-element models have been developed to simulate the vocal fold

deformation [31–35]. More recently, high-resolution simulations have been more frequently used in

the FSI modeling of the vocal fold. Examples of previous works include Thomson et al. [36], Luo

et al. [37, 38], Zheng et al. [39]. Using the intensive, typically parallelized computations, many of

these studies have reported the unsteady vortex structures in the airflow and their interaction with

the vocal fold.

As modern medical imaging technology is being advanced, internal anatomy of human bodies
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can be viewed with unprecedented details using noninvasive approaches such as computed tomog-

raphy (CT) and magnetic resonance imaging (MRI). Such imaging modalities may provide 3D

geometry of the larynx as well as the interior structure of the tissues [40, 41, 2]. The images gener-

ated by these techniques could be used to develop more sophisticated computational models that

have much realistic representation of the laryngeal anatomy. Compared with the previous compu-

tational models that are based on greatly simplified geometries (even for continuum-based models),

the anatomical models are a significant step closer to patient-specific and high-fidelity modeling

of phonation, which is eventually needed for clinical care of voices of individual patients. Some

recently work, e.g., Xue et al. [42] and Mittal et al. [43], provide insights into the development

towards such medical imaging based models of the vocal fold. More details about the development

and improvement of vocal fold modeling can be found in review papers of Alipour et al. [44] and

Mittal et al. [26]. Only a brief summary of literature is provided here to set up the context for the

present study.

One issue related to patient-specific modeling is that even if a patient’s anatomy could be

reconstructed with high fidelity, there are still a few other modeling parameters whose values

cannot be specified with accuracy, for example, the elastic properties of the tissue material that

may vary from patient to patient. Even for the same patient, the effective stiffness of the tissue

highly depends on neurological control of various muscle groups and consequently the adduction

state of the vocal fold [45]. These uncertain parameters are important to capture the patient-

specific vibration features [46]. Therefore, either ad hoc assumptions have to be made, or some

parameter identification approach must be used to estimate those parameters. It will be too

expensive to perform parameter identification using 3D FSI models due to their high computational

cost. One possible method is thus to use a reduced-order model to determine those unknown

material properties, which could then be used to enhance fidelity of the 3D models.

To construct a reduced-order FSI model for vocal fold vibration, it may be appropriate to

simplify the description of the flow rather than the description of the tissue mechanics, especially

when accurate capture of the vibration characteristics is desirable. This is because the vocal fold

deformation is three-dimensional and can be complicated, requiring at least a 3D model represen-

tation; furthermore, 3D simulation of the turbulent glottal flow is typically much more expensive

than 3D simulation of the tissue deformation, and reducing flow simulation can largely lower the

overall computational cost. For such a purpose, the Bernoulli equation has been most widely used

in the past to describe the pressure and velocity of the glottal flow. A comparison of the Bernoulli

equation with the Navier−Stokes equation was studied by Decker and Thomson [47], who used a 2D

setup, assuming either steady flow or FSI, to assess the accuracy of the Bernoulli principle. Their

comparison showed that all Bernoulli based models result in similar predictions of the mean intra-

glottal pressure, maximum orifice area, and vibration frequency; however, those predictions rely on

the heuristic specification of flow separation location in the Bernoulli models, and the location is

quite different from that obtained from the simulation baed on the Navier−Stokes equation.

In a previous work [48], the authors coupled an anatomical vocal fold model that was based
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on the MRI scan of the rabbit larynx with a Bernoulli based flow model to perform fast FSI

simulations. Their flow model was calibrated a priori using 3D flow simulation of the same larynx,

in which the 3D flow data were used to set up the curved flow path along the airway for the 1D

model and also to specify the proper location of flow separation. Using a hybrid FSI model of

the 1D flow and the 3D tissue and trying to match the model prediction with the experimental

measurement of the vibration, they estimated the elastic constants of the vocal fold of each subject.

Next, with the material properties identified for individual samples, the updated 3D FSI simulations

were able to capture the specific vibration characteristics for each subject used in the study. In a

later study, the same authors compared the hybrid FSI model with 3D FSI by using a simplified

vocal fold geometry to more thoroughly assess the performance of such Bernoulli based 1D flow

models [48]. They found that that model prediction can be sensitive to the subjective specification

of the separation location; in some case where the medial thickness of the vocal fold is small, the

hybrid FSI model leads to a significantly different vibration mode of the vocal fold than the 3D

FSI model.

From these previous studies, it is clear that the Bernoulli equation has serious limitation in

its capability to satisfactorily compute the pressure in the flow for a given geometrical configu-

ration of the glottis. To address this limitation, in the present study we adopt a 1D momentum

equation based flow model that was originally developed to solve separated flow in the collapsible

tube [123, 124]. This model has been recently introduced for vocal fold modeling [125]. It includes

the viscous effect as well as the pressure loss associated with flow separation that is typically en-

countered in a divergent channel. A recent review [126] discussed more applications of this model

as well as its advantages and limitations. One particular limitation has to do with the significant

viscous dissipation upstream the narrowest section of the channel that is not accounted for by the

model [127, 126]. In the present study, we incorporate an empirical function in the 1D flow model

to account for the entrance effect that takes place as the flow enters the glottal gap. By introduc-

ing a correction coefficient to the cross-section area, we exclude the boundary layer at the glottal

entrance and limit the momentum equation to the core of the flow. Thus, our model is less affected

by the viscous dissipation upstream the narrowest section that was discussed previously [127]. The

objective of the present study is to describe this new flow model and assess its effectiveness in

predicting vocal fold vibration when coupled with 3D tissue mechanics in a hybrid FSI model.

To do so, we use an idealized yet 3D vocal fold geometry and perform 3D FSI simulations as the

benchmark results for this setup. In order to test its robustness, we vary the medial thickness of the

vocal fold (and thus the shape of the glottis during vibration), the subglottal pressure, as well as

the material model of the tissue, and we also include the Bernoulli based models as supplementary

references. In Section 2, we will first describe this 1D flow model and then introduce the validation

setup. The results and discussions will be given in Section 3. Finally, we will provide concluding

remarks in Section 4.

82



2

1
ρu2p+ 

Vocal fold

section

Minimum

Glottis
x

x0

x

loss

Pressure

1 2xmin x

x

p

Figure 5.1: Illustration of pressure and total pressure along the center of the flow through a glottis-

like gap.

5.2 Method

5.2.1 The one-dimensional viscous flow model

Figure 5.1 illustrates generally how an incompressible flow behaves while going through a glottis-

like gap. Along the flow, the pressure first decreases to a minimal level at the narrowest section and

then increases in the divergent section. However, due to the momentum losses to viscous resistance

and velocity fluctuations, especially the losses associated with flow separation, the pressure at the

exit does not recover to its full level at an entrance location with the same cross sectional area as

the exit (i.e., x1 and x2 in Fig. 5.1), and the corresponding total pressure experiences significant

loss after the minimum section as illustrated in Fig. 5.1. The amount of loss in the form of pressure

decrease depends on the specific geometry as well as the Reynolds number. To describe the flow

without resorting to the 3D Navier−Stokes equation, we use the 1D model developed by Cancelli

and Pedley for flow in a collapsible tube [123]. In this model, the authors considered energy loss in

a tube with increasing cross section, where the flow may experience significant viscous resistance

as well as separation. The model consists of the unsteady continuity and momentum equations as

below,

∂A

∂t
+
∂Au

∂x
= 0 (5.1)

ρ
∂u

∂t
+ ρu

∂u

∂x
+
∂p

∂x
− τ s

A
= 0 (5.2)

τ = τfric + τχ (5.3)
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where ρ, u and p are respectively the density, velocity, and pressure, s is the perimeter around

the cross-sectional area, A, and τ is the total stress that combines the viscous stress, τfric, and an

additional stress, τχ, that causes loss of kinetic energy due to separation. The viscous term can be

estimated based on fully-developed flow in a tube of constant cross section, i.e., τfric = −2µ( s/A)u.

The loss of kinetic energy term can be modeled according to

τχ =
A

s
( 1− χ) ρu

∂u

∂x
, (5.4)

where 0 ≤ χ ≤ 1 is a constant representing pressure recovery. Plugging Eq. (6.2) into Eq. (6.1),

one obtains a term like ( 1 − χ) ρu( ∂u/∂x), which cancels part of the advection term and leaves

only χρu( ∂u/∂x) in the momentum equation. Thus, χ = 1 means there is no separation loss, and

χ = 0 means all kinetic energy is lost and there would be no pressure recovery. In Cancelli and

Pedley [123], the sign of the production of the velocity and pressure gradient is used to determine

the choice of χ. Here we simply set χ according to converging or diverging section, i.e.,

χ =

1, before the minimum section

χmin, after the minimum section
(5.5)

where χmin is the minimum value of χ. With this definition of χ, the pressure in the converging

section can be fully converted to kinetic energy – that is, the Bernoulli equation is satisfied (or,

the unsteady Bernoulli equation is satisfied if the unsteady term is significant); in addition, the

pressure loss in the diverging section is accounted for.

Given a specific geometrical configuration of the glottis, Eqns. (5.1) to (5.3) can be solved

straightforwardly using a numerical method such as the finite-difference method. Similar to the 3D

flow, the boundary conditions of the 1D model includes p = Psub at an upstream location x = x0,

p = Pe at the glottal exit x = x2, and the velocity u has zero derivative at x = x0. Here we set x0

to be the location where the cross section of the flow domain starts to change. Pe is generally close

to the domain outlet pressure, Pout, but it may vary a little depending on the specific geometry of

the vocal fold. We will choose its constant value based on the 3D FSI results.

While Eq. (6.1) is a reasonable description of the flow momentum along the centerline of the

converging-diverging channel, the continuity equation, Eq. (5.1), assumes that the velocity profile

in a cross section is nearly uniform. In reality, when the flow enters the glottal gap, the sudden

narrowing of the cross section at the entrance causes a significant vena contracta effect. That is,

the flow under inertia is more focused to the center as shown in Fig. 6.1, rather than following the

exact shape of the channel. The vena contracta effect is more influenced by the high curvature of

the entrance and may still exist even if the channel is straight or converging after the entrance.

As a result, if the actual cross section area A is used for flow continuity, significant error could be

introduced to the intraglottal velocity. As it is shown later in Section 3, without the entrance effect,

the velocity at the minimum section may be over-estimated, leading to an erroneous prediction of

strong negative pressure at the location.
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introduces a vena contracta effect. A0 is the actual cross section area, and A is the effective area.

To account for such an entrance effect, we define the effective cross section area, A, and the

actual cross section area, A0, and we introduce their ratio, α,

α(x) =
A(x)

A0(x)
(5.6)

when considering the mass conservation along the channel. In the present study, the actual area A0

is calculated directly from the instantaneous 3D vocal fold geometry, and α(x) will be determined

empirically from the 3D FSI simulation as discussed later. With the function α(x) determined

a priori, the effective area A can be calculated from Eq. (6.4) and is then used in the contiuity

equation, Eq. (5.1).

5.2.2 Setup of the 3D FSI model

We use a simple geometrical setup in the full 3D FSI simulation to provide benchmark for the

reduced-order FSI model. The setup is illustrated in Fig. 5.3, where a rectangular box represents

the airway and its walls are assumed to be rigid. The total length of the rectangular box is 12 cm

and the vocal fold starts from 2 cm from the inlet. The flow is assumed to be incompressible and

is governed by the viscous Navier−Stokes equation in the full 3D model. A pair of vocal fold is

placed symmetrically in the box with length L = 20 mm, width W = 13 mm, and depth D = 10

mm. The cross section of the vocal fold is uniform and has roughly a trapezoidal shape. The initial

glottal gap is at 0.4 mm. The details of the cross section were described in [37, 48]. It was found

previously that the medial surface thickness T significantly affects the configuration of the glottal

shape during vibration and thus the intraglottal flow [48]. Therefore, two different medial surface

thicknesses are used here, a large one with T = 3.50 mm and a small one with T = 1.75 mm.

For the boundary conditions, the left, right, anterior and posterior surfaces of the vocal fold,

i.e., all the sides attached to the rectangular box, are treated as fixed surfaces, while the other
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Figure 5.3: The vocal fold model and computational domain used in the study for 3D FSI simulation.

surfaces in contact with airflow are free to move. During vibration, the vocal fold is allowed to

have a small gap of 0.2 mm for a minimal amount of flow to go through. The airflow is driven from

left (inlet) to right (outlet) by a constant pressure drop between the subglottal pressure Psub at the

inlet and reference supraglottal pressure Pout = 0 kPa at the outlet. The pressure drop is around

1 kPa.

As the current study is focused on the reduced-order modeling for the glottal flow, the tissue

model of the vocal fold is not of primary concern. Thus, despite that the real tissue is anisotropic

and has a multi-layer structure, the vocal fold here is assumed to be isotropic and homogenous.

Nevertheless, we adopt two different constitutive laws for the tissue material, the Saint Venant-

−Kirchhoff model and a hyperelastic, two-parameter Mooney−Rivlin model. In both material

models, nonlinear strains have been incorporated. More detail of the Saint Venant−Kirchhoff

model can be found in our group’s previous work [53]. The Mooney−Rivlin model is one of popular

models for representing large deformations of soft tissues. The strain energy density function for

this model is given as

W = α10(I1 − 3) + α01(I2 − 3) +K/2(J − 1)2 (5.7)

where K represents the bulk modulus,α10 and α01 are material constants, and J = det(F ) with F

standing for the deformation gradient. In addition, I1 and I2 are invariants based on J and the

principal stretches of the deformation gradient. Further detail of this model for the vocal fold can

also be found in our group’s previous work [53].

In both tissue models, the material density is ρs = 1040 kg/m3 and mass damping is 0.05 s−1.

In the Saint Venant−Kirchhoff model, Youngs modulus is set to be E = 15 kPa, and Poisson’s

ratio is ν = 0.475. For the Mooney−Rivlin model, α10 = 2.29 kPa and α01 = 0.25 kPa are used

in the Mooney−Rivlin model to match the specified stiffness of the Saint Venant−Kirchhoff model

at small strain. The air density is ρ = 1.13 kg/m3. Thus, the characteristic intraglottal velocity

is V =
√

2(Psub − Pout)/ρ = 42.1 m/s. We define the jet Reynolds number using ReJ = ρV d/µ,
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where d ∼ 1 mm is the characteristic glottal gap during opening phase and µ is the air viscosity. In

the current study, we set ReJ = 210. If the channel height is used in the definition of the Reynolds

number, we have Re = 4200.

5.2.3 Numerical method and mesh refinement study for 3D simulation

A finite-element method is used to solve the tissue deformation [53]. The vocal fold is meshed

with approximately 18,000 20-nodes hexahedral elements and 80,000 vertex nodes. No-slip and no-

penetration wall conditions are specified for all flow domain boundaries except the inlet and outlet,

where either the inlet or outlet pressure is applied and the velocity is assumed to have a zero

normal derivative. An immersed-boundary method is adopted for the flow simulation [60, 53, 1].

A non-uniform Cartesian grid with 320× 98× 72 points is used to discretize the flow domain. The

subglottal pressure is set to be Psub =0.75, 1.0 or 1.25 kPa, which is within the range of the onset

pressure for normal human phonation. The time step size ∆t = 0.0025 ms is used for the FSI

simulation, which leads to about 4000 steps for each vibration cycle that is approximately at 100

Hz.

A grid convergence study is done for the case with medial thickness T = 3.5 mm and Psub = 1.0

kPa, while the Mooney−Rivlin model is employed for the material behavior. The nonuniform

Cartesian grid is doubled in the region around the vocal fold and also in the flow region immediately

downstream the vocal fold, and the time step size is reduced to 0.002 ms. From the results, a

relative difference of 2.0% is observed between the baseline mesh and the fine mesh for the vibration

frequency, 4.5% for the vibration amplitude, and 3.9% for the phase delay between the inferior or

superior points on the medial surface. As seen later, these errors are much smaller when compared

to the differences between the reduced-order model and the full 3D model. Therefore, the baseline

mesh is considered to be acceptable for further investigations in this work.

5.3 Results and discussions

5.3.1 Results from 3D FSI simulations

The 3D FSI simulations provide full flow field data, including the velocity and pressure, to bench-

mark the reduced-order FSI model. Figure 5.4 shows a snapshot of the vortex structures in the flow

for Psub = 1.0 kPa and the Mooney−Rivlin model. These vortex structures are unsteady and gen-

erally follow the pulsatile jet to go downstream while interacting with one another and eventually

dissipating. Fortunately, even though these vortices correspond to some degree of pressure fluctu-

ations in the flow, they do not drastically change the pressure in the supraglottal region. Thus,

we could assume a constant supraglottal pressure in the reduced-order model for Pe. From the 3D

simulations, we obtain that the pressure is around Pe = 0 Pa for T = 3.5 mm and Pe = −100 Pa for

T = 1.75 mm. In both T = 1.75 mm and 3.5 mm cases, the vocal fold exhibits a second-mode like

vibration, where the oscillation resembles the second eigenmode of the current vocal fold structure
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(a) (b) 

(c) (d) 

Figure 5.4: Vortices in the supraglottal region obtained from 3D FSI simulations for (a,b) small

medial thickness T = 1.75 mm and (c,d) large medial thickness T = 3.5 mm. The isosurface is

defined using the λ-criterion with the contour level at 20 s−1. (a,c) Opening phase; (b,d) closing

phase.

and is primarily in the lateral or y-direction [38]. The amplitude of vibration is d = 0.89 mm for

T = 1.75 mm and d = 1.22 mm for T = 3.5 mm. Here the amplitude of vibration d is defined as

the maximum y-displacement of the medial surface at the glottal exit (the gap width at the exit is

thus 2d). In the case of T = 1.75 mm, the glottis does not close completely (or reach the minimal

gap) during closing phase, so flow is continuous despite being oscillatory. In the case of T = 3.5

mm, the glottis reaches the minimal gap and the glottal channel is significantly longer than the

small thickness case; thus, the jet is nearly completely cut off during closing phase, while during

opening phase the jet has shorter penetration downstream.

We use the velocity field data from the 3D simulations to calculate the area correction coefficient,

α(x), which is defined in Eq. (6.4). As shown in Fig. 5.5, the velocity profile across the glottis is

nonuniform, and as stated in Section 2.1, introducing such area correction would improve accuracy

of the 1D mass conservation equation. This coefficient is calculated by computing the ratio between

the avergage streamwise velocity in a cross section, uavg, and the maximum streamwise velocity of

the cross section, umax, i.e.,

α(x) =
uavg
umax

=
1
A0

∫
u dS

umax
. (5.1)

If the flow inside the glottis is symmetric, then umax is also the centerline velocity. During vibration,

α(x) varies somewhat depending on the instantaneous shape of the glottal gap. However, the
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Figure 5.5: Streamline plot and contours of the streamwise velocity within the z = 0 slice for

T = 1.75 mm.

Table 5.1: Four reduced-order flow models used for comparison

Model Governing equation Entrance effect Separation location

B1 Bernoulli equation No Minimal area

B2 Bernoulli equation No Glottal exit

M1 1D momentum equation No –

M2 1D momentum equation Yes –

coefficient is around 1 at the inlet and 0.75 at the exit from the simulation results. The inlet

location xa and the exit location xb are marked out in Fig. 5.5. We use a quadratic function

to approximate α and demand that it has zero derivative at xb. The result gives the following

expression for α(x),

α(x) =
(x− xb)2

4(xa − xb)2
+ 0.75 for xa ≤ x ≤ xb (5.2)

As shown later, it turns out that the same function for α can be used for different cases of the

medial thickness, subglottal pressure and tissue behavior.
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5.3.2 Comparison of the reduced-order models

We consider two setups of the momentum-based reduced-order FSI model. In the first, the flow

is described by Eqns. (5.1) to (5.3) but no entrance effect is incorporated (i.e., α(x) = 1); this

model is denoted by M1. The second model includes the entrance effect for the flow using the area

correction coefficient given by Eq. (5.1), and this model is denoted by M2. In addition to these two

models, we consider two Bernoulli based flow models, i.e., removing the last term in Eq. (6.1) that

involves τ . These two models are denoted by B1 and B2, respectively. For B1, we set the location

of flow separation always at the minimum cross section area within the glottis, at which and further

downstream the pressure is set to p = Pe. For B2, we set the separation location always at the

glottal exit with the same pressure specification. These four models are summarized in Tab. 5.1.

For all reduced-order models, the same vocal fold model as that in the 3D model is used for FSI

simulation. In each case, data collection is done after sustained vibration is established.

Figure 5.6 shows the vibration pattern of the vocal fold within the mid-plane z = 0 that is

predicted by different FSI models. In this case, T = 1.75 mm, Psub = 1.0 kPa, and the Mooney-

−Rivlin model are used. Furthermore, for all cases with the smaller medial thickness, χmin = 0.5

has been adopted; and for all cases with the larger medial thickness, χmin = 0.2 has been adopted

to account for more pressure loss in this case. The original rest shape of the vocal fold is included

in the figure as a reference. The vibration pattern from the 3D simulation indicates a second-mode

like vibration, where the vocal fold oscillation is primarily in the lateral or y-direction. In contrast,

model B1 produces a vibration pattern that resembles the first eigenmode of the vocal fold, where

the vocal fold oscillates primarily in the streamwise or x-direction and the eigen frequency is at 73

Hz for the current vocal fold structure. Even though this oscillation mode also leads to opening and

closing of the glottis, the vibration frequency is significantly lower than the second eigenmode whose

frequency is at 126 Hz for the current vocal fold structure. The other three reduced-order models,

B2, M1, and M2 all produce a second-mode like vibration. However, the amplitude of the vibration

is different among these models. For B2 and M1, the vibration amplitude is significantly greater

than that of the 3D FSI model. Detailed comparisons are shown in Tab. 5.2 for the vibration

frequency f , amplitude d, and phase delay φ between the glottal inlet and exit (i.e., the phase

difference between points 1 and 2 indicated in Fig. 5.5). The data in the table show that for all

these quantities, M2 produces the closest result to that of the 3D FSI model.

For the large medial thickness case of T = 3.5 mm, the comparison of the vibration pattern is

shown in Fig. 5.7, where Psub = 1.0 kPa and the Mooney−Rivlin model are used. In this case, B1,

M1, and M2 achieved the second-mode dominant vibration and are similar to the 3D FSI model.

B2 model did not reach a steady vibration pattern, and instead the deformation becomes overly

large, causing the simulation to diverge. Further examining the patterns shown in this figure, we

see that in B1 the glottis switches between a divergent shape and a straight shape in a vibration

cycle, while in both M1 and M2, the glottis has a convergent shape during opening, a divergent

shape during closing, and a straight shape in between, i.e., a similar sequence of deformation to
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Figure 5.6: Vibration pattern in the mid-plane z = 0 obtained by different FSI models for the vocal

fold with small medial thickness: a) 3D FSI simulation, b) B1, c) B2, d) M1, and e) M2. The

dashed lines indicate the original shape of the vocal fold.
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Figure 5.7: Vibration pattern in the mid-plane z = 0 obtained by different FSI models for the vocal

fold with large medial thickness: a) 3D FSI simulation, b) B1, c) M1, and d) M2. The dashed lines

indicate the original shape of the vocal fold.
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Table 5.2: Reduced-order models compared with 3D FSI for vocal fold in terms of vibration fre-

quency f , amplitude d, and phase delay φ.

T (mm) Model f (Hz) difference d (mm) difference φ(◦) difference (◦)

54em1.75 3D FSI 132 - 0.89 - -19 -

B1 78 40.1% 1.27 42.8% -9 10

B2 140 7.7% 1.44 62.0% 10 29

M1 144 10.8% 1.38 54.9% 21 40

M2 144 7.7% 0.78 12.5% -15 4

54em3.50 3D FSI 140 - 1.22 - 157 -

B1 136 2.3% 1.31 7.4% 98 59

B2 - - - - - -

M1 144 2.9% 1.25 2.5% 186 29

M2 144 2.9% 1.20 1.4% 161 4

that predicted by the 3D FSI model. The quantitative comparison in Tab. 5.1 shows that even

though M1 and M2 produce close results to the 3D FSI, but M2 is better in terms of the vibration

amplitude and the phase delay.

5.3.3 Comparison of pressure distribution

To further study the difference among the four reduce-order models, we compare the pressure

distribution along the flow, especially in the region within the glottis, since the pressure directly

causes the vocal fold displacement and provides the mechanism for sustained vibration. For the

comparison, we use the vocal fold deformation obtained from the 3D FSI simulation and calculate

the pressure distribution using the four 1D flow models summarized in Tab. 5.1. This way, the glot-

tal configuration is the same across different models, and we can focus on the pressure calculation

given by these flow models.

Figure 5.8 shows the pressure distribution for the case of T = 1.75 mm at both closing and

opening phases. At the closing phase, M2 has the closest distribution to the 3D FSI among the

four reduced-order models. For B1, B2, and M1, the pressure drops too fast as the flow enters the

glottis. This is because for M2, introducing the entrance effect moves the minimal cross sectional

area further downstream within the glottis and thus improves the pressure prediction near the

glottal entrance. At the opening phase, B1 and M2 both produce reasonable pressure distribution

close to the 3D FSI result, though M2 also generates a negative pressure zone in the glottis like

the 3D FSI model. Both B2 and M1 have a presence of strong negative pressure, especially for B2

since its separation location is set at the glottal exit and thus over-predicts the negative pressure

at the narrowest cross section. Overall, we see that including the entrance effect allows M2 to have

better performance than the other 1D models.
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(a)

(b)

Figure 5.8: Comparison of pressure distribution for different models where T = 1.75 mm. (a)

Closing phase, and (b) opening phase.
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(a)

(b)

(c)

Figure 5.9: Comparison of pressure distribution for different models where T = 3.5 mm. (a)

Opening phase, (b) maximum opening, and (c) closing phase.
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Figure 5.9 shows the pressure distribution for the case of T = 3.5 mm at opening, maximum

opening, and closing phases, where the glottal shape is convergent, straight, and divergent, re-

spectively. For the closing phase in (a), the glottal exit has the minimal cross sectional area.

Consequently, B1 and B2 have the same separation point and thus the identical pressure predic-

tion. M1 also produces a very close result to those of B1 and B2 since no pressure loss in the

divergent section is involved and the frictional stress is small. M2 gives better pressure prediction

near the entrance (between x = −0.4 and -0.2 cm). After x = −0.1 cm, all reduced models have

similar results.

When the glottis is straight, Fig. 5.9(b) shows that M2 again has the best prediction, and the

pressure drops too fast near the entrance for the other 1D models. For the closing phase with a

divergent glottis, Fig. 5.9(c) shows that B1, M1, and M2 all have significant error with low pressure

prediction near the entrance. B2 predicts an overly low pressure; thus in the FSI simulation, this

model broke down and did not reach a converging result. Similar to the 3D FSI, M2 also produces

a negative pressure zone with proper magnitude, despite that the location of the zone is slightly

upstream in comparison with the 3D FSI. This negative pressure zone is instrumental for the closure

of the glottis.

5.3.4 Effects of the subglottal pressure and tissue model

To further assess the performance of model M2, we vary the subglottal pressure, so that Psub = 0.75,

1.0, or 1.25 kPa, and we repeat the comparison of M2 with the 3D FSI model. In this study, only

B1 is selected as a reference since B2 may not produce a converged result. The other parameters

remain the same for this comparison. Figure 5.10 shows the comparison of the vibration frequency,

amplitude, and phase delay for T = 1.75 mm as Psub is varied. The 3D FSI results show that

as the subglottal pressure is raised, the vibration frequency only slightly increases; the vibration

amplitude more than doubled; and the phase delay remains nearly constant. For all three subglottal

pressure levels, the results from M2 agree well with the 3D FSI, while the B1 produces a different

vibration mode that has a much lower frequency.

Figure 5.11 shows the comparison for T = 3.5 mm under different subglottal pressures. In

this case, the Bernoulli based model, B1, predicts the correct vibration mode whose frequency

and amplitude are close to those of the 3D FSI; however, the momentum-based model, M2, has

clearly better performance in that its frequency, amplitude, and phase delay all have visibly better

agreement with those of the 3D FSI. These results indicate that the performance of model M2 is

not significantly influenced by the subglottal pressure.

All the results presented here have been based on a Mooney−Rivlin model for the material

behavior of the vocal fold tissue. To further expand the study and ensure that the new model

is insensitive to the choice of the material parameters of the vocal fold, we used a Saint Venant-

−Kirchhoff tissue model to repeat both the 3D and reduced-order FSI simulation. Psub = 1.0 kPa,

and the same two medial thickness values are used. The results are shown in Tab. 5.3 for B1,
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(b)

(c)

Figure 5.10: Comparison of B1, M2, and 3D FSI at different subglottal pressures for T = 1.75 mm.

(a) Vibration frequency, (b) amplitude, and (c) phase delay.
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(a)

(b)

(c)

Figure 5.11: Comparison of B1, M2, and 3D FSI at different subglottal pressures for T = 3.5 mm.

(a) Vibration frequency, (b) amplitude, and (c) phase delay.
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Table 5.3: Comparison of the reduced-order models with the 3D FSI using a Saint Venant−Kirchhoff

material model for the vocal fold tissue
T (mm) model f (Hz) difference d (mm) difference φ(◦) difference (◦)

34em1.75 3D FSI 126 - 1.07 - -9 -

B1 72 42.9% 1.35 26.2% -5 4

M2 128 1.6% 1.05 1.9% 5 14

34em3.50 3D FSI 133 - 0.97 - 76 -

B1 128 3.8% 1.25 28.9% 62 14

M2 128 3.8% 1.06 9.3% 83 7

M2, and 3D FSI. The data show that M2 again has better agreement with the 3D FSI in terms of

vibration frequency, amplitude, and phase delay for both T = 1.75 mm and 3.5 mm. Therefore,

the choice of the material model of the vocal fold does not affect performance of model M2 for the

FSI simulation.

5.3.5 Further discussions

Unlike the Bernoulli based models, the 1D flow model introduced in the present work does not

need an explicit specification of the separation point in the glottis. Instead, partial loss of the

kinetic energy in the divergent section is considered in the new model. This consideration allows

for incomplete pressure recovery in the section, including downstream the separation point. Thus,

the intraglottal pressure predicted by the model goes through a much smoother transition from the

glottal entrance to the exit, a feature that the actual pressure distribution should have as shown by

the 3D simulation results in Section 3.4. We point out that even though the energy consideration in

the present model is different from boundary layer separation consideration in the Bernoulli model,

the two perspectives are still largely congruent with each other. This is because the boundary layer

separation leads to significant mixing of the separated flow and is the primary reason for energy

loss in the flow.

The introduction of a correction to the cross sectional area addresses the effect of the geometry at

the glottal entrance and thus further improves the pressure prediction by the new model. Although

the numerical solution to this model requires an iteration process, the computational cost of the

simple governing PDE is minimal compared to that of solving the 3D Navier−Stokes equation or

that of solving the 3D solid mechanics of the tissue deformation. Finally, the present 1D flow model

can be reduced to a Bernoulli model by setting χ = 1 before an assumed separation point, i.e.,

allowing for pressure recovery prior to flow separation, and also by setting α = 1, i.e., ignoring the

entrance effect. On the other hand, simply modifying the location of separation in the Bernoulli

model does not give the same result as the current model. Therefore, the current approach offers

more flexibility than the Bernoulli based approach.
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It should be pointed out that the current flow model has several limitations. Like the Bernoulli

models, the current model reduces the glottal flow to 1D, thus drastically simplifying the flow

behavior. Only a constant value of the pressure recovery coefficient χ is assumed in the model

for the divergent section. This treatment ignores the difference before and after the separation

point that may be located somewhere between the minimum cross section and the glottal exit.

As a result, it should be anticipated that this model does not always provide significantly better

accuracy than the Bernoulli based models even though it generally has more advantages. The

current model contains a free parameter, χ, and a function, α(x), which need to be set properly.

The former depends on channel length of the glottis, as shown by the effect of the medial thickness

in the current study, and also likely by the degree of the divergent angle if the angle is large; the

latter should be more influenced by the curvature of the vocal fold surface near the glottal entrance

as well as the Reynolds number. In the current study, α(x) is empirically determined using 3D

simulation data from a specific vocal fold model setup. In the future, it would be desirable if a

more general form of this function is determined for broader situations.

5.4 Chapter conclusion

We have introduced a new one-dimensional flow model for the glottal flow and for the FSI

simulation of vocal fold vibration. This model is based on the reduced momentum equation with the

entrance effect and the energy loss/partial pressure recovery in the divergent section included. We

used a simple vocal fold configuration and performed 3D FSI simulations to assess the performance

of the reduced-order FSI model. Two different medial thicknesses, three subglottal pressures, and

two material behaviors were considered in the study. The results show that after incorporating the

entrance effect, the momentum based flow model provides significantly more accurate predictions of

the vibration characteristics than the Bernoulli based models as well as the momentum based model

that does not incorporate the entrance effect. Therefore, the new model offers a useful approach in

the applications of the reduced-order FSI model for the vocal fold such as parameter identification.
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Chapter VI

A reduced-order flow model for vocal fold vibration: from idealized to subject-

specific models

6.1 Introduction

The lifetime prevalence of voice disorders in the United States adult population is 30% with point

prevalence rates of 6.6% to 7.5% [128]. Voice disorders are debilitating and can lead to significant

socioemotional consequences, loss of income, and long-term disability. Certain voice disorders, e.g.,

unilateral vocal fold paralysis, may require surgery for voice restoration. Due to many factors

such as surgical techniques, patient variations, and experience of surgeons, the revision rates of

the surgeries can vary widely, and there are sometimes inconsistent or even undesirable clinical

outcomes. Thus, there is significant need for a clinical tool to assist surgeons with pre-operative

planning and to improve patient outcomes. Since the voice production directly depends on vocal

fold vibration, a result of fluid–structure interaction (FSI) between the glottal airflow and vocal

fold tissue, developing patient-specific computational models capable of simulating vibration of

surgically modified vocal folds and predicting the surgical outcome would be useful in individualized

surgical planning for patients.

Numerous computational models with different levels of complexity are available to simulate

the FSI process of vocal fold vibration. In the early stage, lumped-mass structural models coupled

with a low-order fluid model were often used [28, 29, 44, 30]. With drastic simplification but high

computational efficiency, these models provided insightful information about the physical process

such as onset of self-sustained oscillations and basic parameter effects. With tremendous growth

of computational power, 2D or 3D models of the glottal flow simulation, as well as finite-element

method (FEM) based tissue models have been commonly adopted for more accurate simulations

of vocal fold vibrations [31, 32, 36, 33, 37–39, 129, 130, 35, 131, 132]. Even though simplified

geometries of vocal fold were assumed in these references, the fundamentals of the FSI process in

vocal fold vibration have been better understood, such as the vortex dynamics, tissue deformation,

acoustics, and effects of geometrical and material properties.

In addition to growth of computing technology, recent development in medical imaging technolo-

gies, e.g., computed tomography (CT) and magnetic resonance imaging (MRI), allows the compu-

tational models to become more realistic and even subject-specific. These imaging modalities may

provide detailed 3D anatomy of the larynx as well as the interior structure of the tissue [40, 41, 2],
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which can be incorporated into a computational FSI model as the laryngeal geometry and the

tissue structure of the specific subject that is being modeled. Examples of such patient-specific FSI

models include Mittal et al. [43], Alipour et al. [133], Xue et al. [42], and also Chang et al. [48].

More details about the development techniques for such computational models can be found in

recent reviews of Alipour et al. [44] and Mittal et al. [26].

Although medical imaging techniques can provide detailed anatomy of the larynx for vocal fold

modeling, imaging data only provide geometric information that can be used for 3D spatial repre-

sentations of the tissue and air domain. A high-fidelity 3D model is still limited by the uncertain

tissue properties of individual patients, which depends on factors such as fiber composition [134]

as well as active control due to muscle activities [25]. These uncertain parameters are important

to capture the subject-specific vibration features [46]. It is possible to solve an inverse problem

to determine these parameters by performing multiple system simulations and continuously updat-

ing their estimated values. However, 3D simulations, especially those of the glottal airflow, are

prohibitive, making the procedure rarely practical. It is thus desirable to much simpler model for

parameter identification prior to high-fidelity simulations. In a previous work of ours [135], we used

a 1D calibrated Bernoulli flow model coupled with 3D FEM model of the vocal fold to determine the

stiffness properties of individual samples of rabbit vocal fold, and the resulting FSI model was able

to capture the subject-specific vibration as compared with the in vivo experimental measurement.

Bernoulli based equations have long been used for vocal fold vibration. Decker and Thomson [47]

compared the Bernoulli equation with the Navier−stokes equation for the 2D vocal fold vibration,

and they found that the Bernoulli model has to rely on heuristic specification of flow separation

location within the glottis in order to produce similar results as the Navier−stokes equation. Similar

conclusion was drawn later by Chang [48], who found that the Bernoulli equation may lead to a

significantly different vibration mode of the vocal fold than the 3D FSI model. To address the

limitation of the Bernoulli equation, in a recent work [66], we developed a new 1D momentum

equation based flow model that was originally designed to solve separated flow in the collapsible

tube [123, 124] and has been recently introduced for vocal fold modeling [125]. In this model,

we took into account for the entrance effect, which is due to inertial flow entering the glottis

from a sharply converging shape in the subglottal region. Using an idealized vocal fold geometry,

we compared this 1D flow model with 3D model in FSI simulations and found that the 1D model

produces consistent results with those from the 3D model for different medial thicknesses, subglottal

pressures, and tissue models. In the present study, we aim to extend this model to more general

situation to different tissue stiffness properties as well as subject-specific, anatomical vocal fold

models. Similar to the previous study [66], we will use the full 3D FSI to assess performance

of the 1D model in the case of idealized geometries; however, for the subject-specific models, we

will directly compare the simulation results with the vibratory characteristics derived from in vivo

experimental measurement. Therefore, this study represents a significant step toward application

of reduced-order models in patient-specific modeling.
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Figure 6.1: Schematic of airflow entering the glottis where sudden change of the geometry at the

inlet introduces a vena contracta effect. A0 is the actual cross section area, and A is the effective

area. The blue arrow lines represent the streamlines and the red-dashed lines the boundary layer

thickness.

6.2 Modeling methods and case setup

6.2.1 The one-dimensional viscous flow model

We consider the airflow flowing in the narrow glottal section between the two medial surfaces

of the vocal fold, which in general has a converging-diverging shape as shown by a schematic in

Fig. 6.1. The flow is considered to be viscous and incompressible due to its low Mach number (Ma

∼ 0.1). Due to separation from the vocal fold surface and viscous effect, the total pressure may

experience significant loss. Considering the mass and momentum conservation equation, Cancelli

and Pedley [123] developed a 1D flow model to describe a collapsible tube. The model can be

written as

∂A

∂t
+
∂Au

∂x
= 0

ρ
∂u

∂t
+ ρu

∂u

∂x
= −∂p

∂x
+ τ

s

A
(6.1)

τ = τfric + τχ

where ρ, u and p are respectively the density, velocity, and pressure, s is the perimeter around the

cross section, A is the effective cross section area, and τ is the total stress that combines the viscous

stress, τfric, and an additional stress, τχ, that is associated with loss of kinetic energy due to flow

separation. In Cancelli and Pedley [123], the loss of the kinetic energy term is modeled as

τχ =
A

s
( 1− χ) ρu

∂u

∂x
, (6.2)

where 0 ≤ χ ≤ 1 is a constant representing pressure recovery; χ = 1 means there is no separation

loss, and χ = 0 means all kinetic energy is lost and there would be no pressure recovery. Here we

simply set χ = 1 in the converging section and χ = χmin for the diverging section, where χmin is

the minimum value of χ that will be set for specific vocal fold geometry.

103



In Cancelli and Pedley [123], the the viscous stress τfric is estimated using fully-developed flow

in a tube of constant cross section, i.e., τfric = −C0µ( s/A)u, where C0 is the parameter related

the shape of cross section, e.g., C0 = 2 for the circular section and C0 = 3 for a rectangular section

with aspect ratio higher than 10. We assume that the viscous effect is grouped into τχ for the

diverging section. Thus, τfric is only calculated for the converging section.

In addition to the model described by Eq. (6.1), we also consider the entrance effect in the

present flow model. That is, when the glottal airflow enters the narrow glottal gap from the much

wider subglottal region, it experiences a significant vena contracta effect, and consequently, the

effective cross sectional area of the flow core, A, is smaller than that of the actual cross sectional

area, A0, as illustrated in Fig. 6.1. Without such entrance effect, the negative pressure at the

minimum section could be over-estimated, leading to inaccurate pressure load on the vocal fold

surface. To calculate the effective area A, we introduce a correctional coefficient, α(x), so that

A(x) = α(x)A0(x). (6.3)

In our previous work, we empirically determined α(x) based on the 3D simulation of the FSI

problem by calculating it from α(x) = uavg/u, where uavg is the average velocity in the cross

section and u is the centerline velocity. Based on the simulation data, a quadratic function was

used to approximate α(x) from the glottal inlet xa to the exit xb shown in Fig. 6.1,

α(x) = 1− C1 + C1
(x− xb)2

(xa − xb)2
for xa ≤ x ≤ xb. (6.4)

Thus, α = 1 at xa and 1− C1 at xb, respectively. C1 is the parameter to be set in the flow model

based on the overall shape of the glottis.

For the boundary conditions of the 1D flow, we set a specified subglottal pressure p = P0 at the

inlet and p = Pe at the glottal exit. The specific choices of these parameters, as well as the loss

coefficient χmin in Eq. (6.2) and C1 in Eq. (6.4) for the area correction function will be specified

later in the case studies. To solve the nonlinear boundary value problem, we use a shooting method

as described in Li et al. [66].

6.2.2 Setup of the FSI model for idealized geometries

Figure 6.2 shows the idealized vocal fold considered in the present study. This geometric model was

also used in our previous studies [130, 66]. The rectangular channel of 120 mm in length represents

the larynx, and its walls are assumed to be all rigid. The inlet has a fixed subglottal pressure P0

=1.0 kPa, and the outlet has a reference pressure of Pout = 0 kPa for all the cases in consideration.

The airflow is assumed to be incompressible and is governed by the viscous Navier−Stokes equation

in the full 3D model. A pair of vocal fold bands are placed symmetrically in the channel at x = 20

mm from the inlet. The length, width, and depth are L = 20 mm, W = 13 mm, and D = 10

mm, respectively. These length parameters are chosen to represent human vocal fold [31]. The

cross section of vocal fold is uniform and the glottal gap is set to be 0.4 mm initially. The details

104



of the cross section profile were described in previous works [37, 130]. The medial thickness, T ,

has significant effects on the flow and the vocal fold vibration [48], as the medial surfaces are the

primary loading surfaces for the sustained vibration. Two different values of T will be considered,

a larger one of T = 3.50 mm and a smaller one of T = 1.75 mm. The surfaces of the vocal fold in

contact with the air are free to move, while the other boundaries are fixed. The flow is driven by

the pressure difference between the inlet and outlet of the channel.

The objective of simulating the vocal fold with idealized geometry is to verify the reduced-

order flow model as the tissue stiffness properties are changed. Therefore, we do not consider the

anisotropic tissue behavior or a multi-layer structure as proposed in many previous works [31, 38, 35]

which would be better representation of the real tissue. Instead, the vocal fold here is assumed to

be isotropic and homogeneous, and is governed by a hyperelastic, two-parameter Mooney−Rivlin

model. The Mooney−Rivlin model is one of popular models for representing large deformations of

soft tissues. The strain energy density function for this model is given as

W = α10(I1 − 3) + α01(I2 − 3) +K/2(J − 1)2 (6.5)

where K represents the bulk modulus, α10 and α01 are material constants, and J = det(F ) with

F standing for the deformation gradient. In addition, I1 and I2 are invariants based on J and

the principal stretches of the deformation gradient. Further detail of this model for the vocal fold

can be found in our group’s previous work [53]. To verify the reduced-order model, idealized vocal

folds with different tissue properties (α10 and α01) are employed. The tissue density is ρs = 1040

kg/m3 and mass damping is 0.05 s−1 for all the cases. The air density is ρ = 1.13 kg/m3. Thus, the

characteristic intraglottal velocity is V =
√

2(P0 − Pout)/ρ = 42.1 m/s. We define the jet Reynolds

number using ReJ = ρV d/µ, where d ∼ 1 mm is the characteristic glottal gap during opening

phase and µ is the air viscosity. In the current study, we set ReJ = 210. If the channel height is

used in the definition of the Reynolds number, we have Re = 4200.

A finite-element method is used to solve the tissue deformation [53]. The mesh for each vocal fold

band includes approximately 18,000 20-nodes hexahedral elements and 80,000 vertex nodes. For 3D

FSI simulations, an in-house immersed-boundary method is employed for the flow simulation [53,

60]. A nonuniform Cartesian grid with 320 × 98 × 72 points, and time step size ∆t = 0.0025

centisecond (cs) are used for spatial and temporal discretization, respectively. A mesh-independent

study is performed with the medial thickness T = 3.5 mm and α10 = 2.29 kPa and α01 = 0.25

kPa in the Mooney−Rivlin model. The non-uniform grid is doubled in the region around the

vocal fold and the time step is is decreased to ∆t = 0.002 cs. Comparing the results from the

two different meshes, a relative difference of 2.0% is obtained between the baseline mesh and the

fine mesh for the vibration frequency, 4.5% for the vibration amplitude, and 3.9% for the phase

delay between the inferior or superior points on the medial surface. Therefore, the baseline mesh

is deemed satisfactory for further investigations of the idealized vocal fold in this work. For the

hybrid FSI simulations, the FEM model of the vocal fold remains the same, but the flow is replaced

by the 1D flow model described in Section 2.1 and the 1D flow pressure is simply interpolated onto

the vocal fold surface according to the x-location of the point on the surface.
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(a)

(b)

Figure 6.2: (a) The idealized vocal fold for FSI simulations. (b) Streamlines and contours of the

velocity magnitude within the mid-plane when the vocal fold is open. The flow data is obtained

from a 3D simulation with T = 1.75 mm, and it is used to determine the area correction coefficient,

α(x).
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6.2.3 Subject-specific vocal fold models based on MRI data

We also use the anatomical vocal models developed in a previous work of ours [48] and combine

them with the present 1D flow model to perform FSI simulation. We will validate the results against

the available experiment data from the specific samples that are associated with these anatomical

models. The experimental procedure as well as creation of the vocal fold model were previously

described in Chang et al. [48]. We only summarize the major steps here to provide sufficient context

for the present study.

First, an in vivo phonation experiment was performed using rabbits. In the experiment, five

live male New Zealand white breeder rabbits were used, and their vocal fold were sutured for

adduction [2]. Phonation was evoked by pressurized air introduced from the trachea, and vocal fold

vibration was captured with a high-speed camera (KayPENTAX, Montvale, NJ) at 10,000 frames

per second. The subglottal pressure, volume flow rate, and acoustic intensity were recorded in

acoustic and aerodynamic measurements. More details about the experiment procedure can be in

Ge et al. [136] and Novalske et al. [2].

After the phonation experiment, the rabbit larynx was excised and high-resolution MRI was

performed to obtain details of morphology of the vocal fold while the vocal fold maintained the

adducted phonatory position. Multislice images in the axial, coronal, and sagittal planes were

captured with a Varian 9.4 T horizontal bore imaging system (Varian Inc, Palo Alto, CA). Acquired

data were reconstructed in MATLAB using an inverse Fourier transform. Details of the scanning

procedure were described in [135].

The 3D anatomical vocal fold model was generated for each of the five samples after manual

segmentation from the MRI data and surface mesh reduction/smoothing [135]. Figure 6.3 shows

such geometrical model of the larynx reconstructed from MRI data for sample 1. We can see

internal and external surfaces of the larynx from different views in Fig. 6.3(a) and (b). Two layers

of the internal structure of the vocal fold tissue were identified from the images [135]. These are

the vocal fold cover and body in the reconstructed model as shown in Fig. 6.3(c), and they have

different stiffness properties.

In Chang et al. [135], an iterative procedure was used to estimate the stiffness properties of

the vocal fold. Specifically, the vocal fold tissue was assumed to be isotropic and governed by the

Saint Venant−Kirchhoff model [130, 53] with the density ρs = 1000 kg/m3 and Poissons ratio of

0.3. The Young’s moduli of the cover and body layers in each of the five samples were determined

by attempting to match the vibration frequency and amplitude of the FSI simulation with those

obtained from the high-speed imaging data. In the FSI simulation, a Bernoulli based flow model

was used for the FSI simulation whose flow path and separation location have been calibrated

using a representative 3D simulation using initial guesses of the vocal fold properties through an

eigenfrequency analysis. Fig. 6.4 shows the streamlines in different views from the vocal fold at

open phase for sample 1. A segment of the streamline at the center shown in Fig. 6.4(a) was taken,

along which the 1D flow model was applied (thus the x-coordinate in Eq. (6.1) represents the
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Figure 6.3: Reconstructed larynx geometry from a rabbit larynx sample. The dashed lines in left

and right figures of (c) indicate the position of the slice seen in the middle.

arc length along the curved streamline). The same approach was repeated for the other samples.

Fig. 6.4(c) shows the velocity magnitude in a slice parallel to the flow path in the glottis when the

vocal fold is at opening position. Within the glottis, the flow is concentrated to the center instead

of following the exact shape of vocal fold surface. Therefore, it is necessary to include the entrance

effect as discussed in Section 2.1. For these anatomical models, we set C1 = 0.4 in Eq. (6.4) for

α(x) based on the flow data from representative 3D simulations.
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Figure 6.4: Streamlines at the vocal fold open phase from the 3D FSI simulation. The view in (c)

is for a slice indicated by the dashed line in (a), where the color contours represent the velocity

magnitude (m/s).
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6.3 Results and discussions

6.3.1 Comparison of reduced-order and 3D simulations for idealized vocal fold

models

3D FSI simulation can provide most detailed information about the tissue deformation and flow

field, such as the vibration pattern and vortex structures in the entire 3D domain. For the reduced-

order flow model developed in this study, the 1D flow representation is employed along the centerline

from the inlet of flow path to the exit of glottis. Therefore, the 3D flow information such as vortices

is completely ignored. On the other hand, the tissue model in the hybrid FSI and that in the 3D

FSI are the same. The goal of the present reduced-order flow model is to produce vibratory

characteristics that are as close as possible to those from the full 3D FSI model.

The case setups are listed in Tab. 6.1, where we consider two options for the medial thickness

T and three options for the stiffness properties. Since the two-parameter Mooney−Rivlin model

is employed to describe the tissue behavior, the constants α01 and α10 are simply multiplied by a

factor of 1, 2, or 3 for the baseline, intermediate, or the stiffest case. The vibration frequency of

the vocal fold for each case is between 100 and 300 Hz, as will be seen later. For all these cases, the

pressure recovery coefficient χmin = 0.5, and the entrance effect coefficient C1 = 0.25 in Eq. (6.4)

are chosen in the 1D flow model, including T = 1.75 and 3.5 mm. As described in Section 2.1, the

coefficient C1 is determined based on the 3D flow data of the same vocal fold model.

Figure 6.5 shows a comparison of the vibration pattern in the mid-plane z = 0 for three stiffness

cases and the small thickness of T = 1.75 mm. In each case, one steady vibration cycle is shown from

both the hybrid FSI and the 3D FSI, while the dashed lines indicate the initial position and the solid

lines indicate the deformed position. It can be seen that the second vibration mode is established

in both hybrid FSI and 3D FSI simulations for all three cases, where the vocal fold oscillation is

primarily in the lateral or y-direction. From case S1 to case S3, the amount of deformation keeps

decreasing due to the increased tissue stiffness. The hybrid model agrees reasonably well with 3D

FSI for all the three cases. Figure 6.6 shows a quantitative comparison of these cases, including

the vibration amplitude, vibration frequency, and phase delay. The vibration amplitude is the

maximum y-displacement of the vocal fold measured at the glottal exit in a cycle. In the figure,

the amplitude decreases with increasing tissue stiffness as expected since the subglottal pressure is

fixed. In case 3 where the tissue is the stiffest, the vocal fold has little deformation. The frequency

increases with the tissue stiffness. The phase delay is calculated using the temporal difference

between the glottal inlet and the exit in the mid-plane in terms of displacement. As the tissue

stiffness is varied, the phase delay does not change much and remains around zero, indicating the

glottal inlet and exit have mostly in-phase motion. The in-phase motion is also consistent with the

vibration pattern in Fig. 6.5. From the figure, we see that for all three stiffness cases, the hybrid

FSI model shows good agreement with the 3D FSI model regarding the amplitude, frequency, and

phase delay.

Figure 6.7 shows a comparison of the vibration pattern between the hybrid model and the 3D
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Table 6.1: Case setup for the idealized vocal fold with different thicknesses and stiffness constants

T (mm) Case α10 (kPa) α01 (kPa)

34em1.75 S1 2.29 0.25

S2 4.58 0.50

S3 9.16 1.00

34em3.50 L1 2.29 0.25

L2 4.58 0.50

L3 9.16 1.00

Figure 6.5: Comparison of vibration pattern for small thickness of T = 1.75 mm between the hybrid

FSI and full 3D FSI simulations.

111



Figure 6.6: Comparison of vibration amplitude, phase delay, and frequency for small thickness of

T = 1.75 mm between the hybrid FSI and full 3D FSI simulations.

FSI for large thickness case of T = 3.5 mm. All three cases display a second-mode dominant

vibration pattern, and the deformation produced by the reduced-order flow model agrees very well

with the 3D model for all three stiffness cases. Figure 6.8 shows a quantitative comparison of the

vibration amplitude, vibration frequency, and phase delay. In the figure, the overall effect of the

tissue stiffness on the vibration amplitude and frequency is similar to that in the small thickness

cases. That is, as the stiffness is increased from case L1 to case L3, the vibration amplitude

decreases and the frequency increases. At the same stiffness, the large thickness case displays

greater vibration amplitude than the small thickness case. In particular, the vibration amplitude

is around 1.0 mm, 0.6 mm, and 0.4 mm for cases L1, L2, and L3, respectively, but it is 0.7 mm,

0.3 mm, and 0.1 mm for cases S1, S2, and S3, respectively. Furthermore, the phase delay in the

three large T cases is close to 180◦, meaning the glottal inlet and exit have nearly an out-of-phase

motion. On the other hand, the vibration frequency is very close between the large thickness and

small thickness cases when the tissue stiffness is the same, which indicates that the geometrical

difference between the two medial thicknesses does not affect much the vibration frequency but

has significant effects on other vibratory characteristics such as the vibration amplitude and phase

delay. Finally, Fig. 6.8 shows that the hybrid FSI model agrees well with the 3D FSI model for all

stiffness cases.

6.3.2 Comparison between reduced-order simulation of subject-specific vocal

fold models and experimental data

To further evaluate the performance of the reduced-order flow model in more practical applications,

we utilize the previously constructed subject-specific vocal fold models from MRI data of rabbits

and couple them with the 1D flow equation described in Section 2.1. The results of hybrid FSI

simulations will be compared directly with the available experimental data for model validation.

Data from five animal samples are used in this study, which includes the FEM model of each

vocal fold and in vivo experimental data for the subglottal pressure and high-speed measurement
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Figure 6.7: Comparison of vibration pattern for large thickness of T = 3.5 mm between the hybrid

FSI and full 3D FSI simulations.
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Figure 6.8: Comparison of vibration amplitude, phase delay, and frequency for large thickness of

T = 3.5 mm between the hybrid FSI and full 3D FSI simulations.

Table 6.2: Subglottal pressure P0 and Young’s moduli of each rabbit sample (Eb for the vocal fold

body and Ec for the cover)

Sample P0 (kPa) Eb (kPa) Ec (kPa)

R1 1.05 60 12

R2 0.78 80 8

R3 0.72 80 8

R4 1.00 90 9

R5 0.95 90 9

of the vibratory characteristics. As discussed in Section 2.3, the vocal fold was assumed to include

two structural layers: body and cover, with corresponding Young’s modulus Eb and Ec. These

parameters have been estimated previously for each vocal fold sample [48] and are listed here in

Table 6.2 along with the subglottal pressure used in the in vivo experiment, P0. For all these

cases, the pressure recovery coefficient χmin = 0.1 and the entrance effect coefficient C1 = 0.4 are

used in the reduced-order flow model. Compared with the idealized geometries, a higher C1 (or

stronger entrance effect) and lower pressure recovery are used here because the diverging section of

the rabbit glottis has a greater expansion ratio.

In each animal experiment, the vocal fold was manually adducted by suturing and adjusting the

tension between the thyroid and cricoid cartilages until phonation was audibly perceived [2]. Thus,

the internal tension and tissue stiffness vary significantly from sample to sample. Furthermore,

the anatomy and vocal fold morphology also contain significant individual variations. Thus, these

samples provide a set of meaningful study cases to test accuracy and robustness of the present

reduced-order modeling approach. Figure 6.9(a) shows a representative high-speed montage from

one cycle of vocal fold vibration for rabbit sample R1, which is from a superior view of the glottis.

From the figure, only slight vocal fold collision is observed during vocal fold closure for this sample.

Figure 6.9(b) shows one vibration cycle from the hybrid FSI simulation using the present 1D flow

114



Figure 6.9: Comparison of vibration pattern comparison between the present hybrid FSI simulation

and the high-speed imaging in the experiment [2] for sample R1. The vocal fold length L and gap

width d are shown.
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Figure 6.10: Waveforms of the normalized glottal gap width from the experiment and simulation

for rabbit sample R1.

model and the corresponding reconstructed 3D anatomical vocal fold model. It can be seen that

the dynamical shape of the glottis from the simulation in general agrees well with that from the

experiment for both opening and closing phases. Similar comparisons between experimental and

simulation results are also achieved for the other four rabbit samples.

Figure 6.10 shows a comparison of the the normalized glottal gap width in a sequence of vocal

fold oscillations between the simulation and experiment. The gap width d is normalized by the

average peak magnitudes dmax so that we can focus on comparison of the waveform. Note that

the high-speed imaging does not provide a length scale. Thus, using a normalized length also

facilitates comparison between the simulation and the high-speed data. From the figure, it can be

seen that the waveform obtained from the simulation agrees well with the experiment. We further

compute the normalized root-mean-square (r.m.s.) error of the waveform between the simulation

and experiment and list the data for all five samples in Tab. 6.3. The results show that the error

is within 17%. Thus, the simulated waveform from the hybrid FSI model is reasonably close to

the that from the experiment. Figure 6.11 shows a quantitative comparison between experiment

and numerical simulation for all 5 samples in terms vibration frequency and normalized amplitude,

dmax/L, where L is the vocal fold length. From the figure, the frequency and amplitude from the

simulation fall into the ranges of experimental results for all the five samples despite significant

variations among the individuals. All these results indicate that the present hybrid FSI simulations

agree with the experiment for the individual samples.

Finally, we point out that there are a few limitations in the current study. First of all, the

entrance effect is determined through an empirical manner using the 3D simulation data. A more

generalized approach for arbitrary vocal fold geometry would be more preferable. Second, in this
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Table 6.3: The normalized r.m.s. error of the gap width waveform for each rabbit sample

Sample R1 R2 R3 R4 R5

Error 14.3% 11.3% 15.3% 15.9% 16.9%

Figure 6.11: Frequency and amplitude comparison between experimental and numerical results for

five samples.

study we consider only healthy vocal fold only which is symmetric, and extension of the current

modeling approach to asymmetric vocal fold under disease condition, e.g., unilateral vocal fold

paralysis, needs further exploration. Third, the vocal fold model in the current study was based

on ex vivo MRI scan, and it would be desirable to construct the model from an in vivo scan for

clinical applications. These issues will be investigated in future studies.

6.4 Chapter conclusion

In this study, we have presented a reduced-order flow model and its application for FSI sim-

ulation of vocal fold vibration. The drastically simplified flow model is based on 1D mass and

momentum conservation equations but also includes the entrance effect within the glottis. The

energy loss and partial pressure recovery in the divergent section of the glottis have been taken into

account in the model. We test performance of this model in two scenarios: 1) idealized vocal fold

geometries and 3D FSI simulation by an immersed-boundary method being used as benchmarks,

and 2) subject-specific models constructed from MRI data of rabbit vocal folds and in vivo exper-

imental data being directly used as benchmarks for validation. In the first scenario, the medial

thickness and tissue stiffness are varied, and in the second scenario, five rabbit samples were used

in the study. In all these tests, after coupling the reduced-order flow model with the 3D FEM

model of the vocal fold tissue, the resulting FSI simulations demonstrate good agreements with
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the benchmarks in vibratory characteristics. Thus, the present reduced-order flow model shows

promises in application of patient specific modeling of vocal fold vibration.
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Chapter VII

Conclusions and future directions

In this dissertation, we have advanced a high-fidelity simulation tool for the computational modeling

of fluid–structure interaction (FSI) problems, especially those involving complex anatomy and

large deformation of soft tissues in human body. The flow simulation in this tool is based on

Cartesian grid and an immersed-boundary approach that allows efficient calculations on high-

performance computers. To accelerate the three-dimensional flow simulation, we have implemented

a parallel algorithm based on the idea of domain decomposition in either 1D, 2D, or 3D. Specific

implementation issues related to the immersed-boundary method have been addressed. The code

was tested using benchmark problems and was shown to scale up to several thousand of processor

cores. Practical applications in the hummingbird’s flapping flight and biomedical flows in vocal

fold and heart valves were demonstrated.

We applied the FSI method first to the aortic valve and studied the valve deformation in

relation to blood flow characteristics as well as the force on the valve. In particular, we used 3D

FSI simulations to investigate the effect of bending rigidity on the deformation pattern, flow rate,

valve resistance, and vortex behavior in the flow. From these results, we identified an optimal

range of the bending rigidity that is normalized by the pressure gradient along the aorta. From

the insight of surface pressure distribution, we further developed a one-dimensional transient flow

model by incorporating the leaflet movement and pressure loss. When combined with the 3D valve

model, the reduced-order flow model was shown to produce reasonable results in terms of valve

opening and closing, as well as flow rate.

We also applied the FSI method to the vocal fold vibration problem with the overarching goal

of surgery planning for voice disorders. In this application, we also developed a one-dimensional

flow model to describe the transient airflow through glottis and the intraglottal pressure. We

used 3D FSI simulations to test the 1D model and assess its performance in predicting the vocal

fold’s vibratory characteristics. The reduced-order flow model was also extended to subject-specific

laryngeal anatomy and was validated against in vivo phonation experiment.

In summary, our FSI simulation tools, including both 3D high-fidelity and reduced-order models,

have been successfully applied to the computational modeling of heart valve and vocal fold.

For future directions, more sophisticated models can be built on these simulation tools. For

the aortic valve, realistic geometry of the aorta based on the actual anatomy can be incorporated
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into our model to study the hemodynamics and its interaction with the valve. In addition, the left

ventricle’s motion and mitral valve can be added to our model to conduct FSI simulation of the

entire left heart. For vocal fold vibration, asymmetric vocal fold models with the implant inserted

into the tissue can be numerically studied with the current FSI simulation tools. In both heart

valve and vocal fold cases, the hyperelastic and anisotropic material properties of soft tissues could

be another possible topic for the future FSI study. Overall, these simulation studies will serve to

provide useful means in clinical diagnosis, medical device design, and surgical planning.
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[108] Damien Garcia, Lyes Kadem, David Savéry, Philippe Pibarot, and Louis-Gilles Durand.

Analytical modeling of the instantaneous maximal transvalvular pressure gradient in aortic

stenosis. Journal of biomechanics, 39(16):3036–3044, 2006.

[109] Alison L Marsden and Mahdi Esmaily-Moghadam. Multiscale modeling of cardiovascular

flows for clinical decision support. Applied Mechanics Reviews, 67(3):030804, 2015.

[110] Kewei Li and Wei Sun. Simulated thin pericardial bioprosthetic valve leaflet deformation

under static pressure-only loading conditions: implications for percutaneous valves. Annals

of biomedical engineering, 38(8):2690–2701, 2010.

[111] Kristen L Billiar and Michael S Sacks. Biaxial mechanical properties of the native and

glutaraldehyde-treated aortic valve cusp: part iia structural constitutive model. Journal of

biomechanical engineering, 122(4):327–335, 2000.

[112] Rong Fan and Michael S Sacks. Simulation of planar soft tissues using a structural constitutive

model: finite element implementation and validation. Journal of biomechanics, 47(9):2043–

2054, 2014.

[113] J Doyle. Qed: static, dynamic, stability, and nonlinear analysis of solids and structures.

Software manual, version, 4, 2008.

[114] James F Doyle. Guided explorations of the mechanics of solids and structures. Cambridge

University Press, 2009.

[115] Hiromi Nakai, Masaaki Takeuchi, Hidetoshi Yoshitani, Kyoko Kaku, Nobuhiko Haruki, and

Yutaka Otsuji. Pitfalls of anatomical aortic valve area measurements using two-dimensional

transoesophageal echocardiography and the potential of three-dimensional transoesophageal

echocardiography. European Journal of Echocardiography, 11(4):369–376, 2009.

130



[116] Paul Schoenhagen, Jörg Hausleiter, Stephan Achenbach, Milind Y Desai, and E Murat Tuzcu.

Computed tomography in the evaluation for transcatheter aortic valve implantation (tavi).

Cardiovascular diagnosis and therapy, 1(1):44, 2011.

[117] Takafumi Machida, Masaki Izumo, Kengo Suzuki, Kihei Yoneyama, Ryo Kamijima, Kei

Mizukoshi, Manabu Takai, Yasuyuki Kobayashi, Tomoo Harada, Fumihiko Miyake, et al.

Value of anatomical aortic valve area using real-time three-dimensional transoesophageal

echocardiography in patients with aortic stenosis: a comparison between tricuspid and bicus-

pid aortic valves. European Heart Journal-Cardiovascular Imaging, 16(10):1120–1128, 2015.

[118] Jeannette H Spühler, Johan Jansson, Niclas Jansson, and Johan Hoffman. 3d fluid-structure

interaction simulation of aortic valves using a unified continuum ale fem model. Frontiers in

physiology, 9, 2018.

[119] Gillian M Bernacca, Bernard OConnor, David F Williams, and David J Wheatley. Hydro-

dynamic function of polyurethane prosthetic heart valves: influences of young’s modulus and

leaflet thickness. Biomaterials, 23(1):45–50, 2002.

[120] Michael J Shelley and Jun Zhang. Flapping and bending bodies interacting with fluid flows.

Annual Review of Fluid Mechanics, 43:449–465, 2011.

[121] M Abbasi and AN Azadani. Stress analysis of transcatheter aortic valve leaflets under dynamic

loading: Effect of reduced tissue thickness. The Journal of heart valve disease, 26(4):386–396,

2017.

[122] Ali Mirnajafi, Brett Zubiate, and Michael S Sacks. Effects of cyclic flexural fatigue on porcine

bioprosthetic heart valve heterograft biomaterials. Journal of Biomedical Materials Research

Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Bioma-

terials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials,

94(1):205–213, 2010.

[123] Claudio Cancelli and TJ Pedley. A separated-flow model for collapsible-tube oscillations.

Journal of Fluid Mechanics, 157:375–404, 1985.

[124] Peter Anderson, Sidney Fels, and Sheldon Green. Implementation and validation of a 1d fluid

model for collapsible channels. Journal of biomechanical engineering, 135(11):111006, 2013.

[125] Arvind Vasudevan, Victor Zappi, Peter Anderson, and Sidney Fels. A fast robust 1d flow

model for a self-oscillating coupled 2d fem vocal fold simulation. In INTERSPEECH, pages

3482–3486, 2017.

[126] Matthias Heil and Andrew L Hazel. Fluid-structure interaction in internal physiological flows.

Annual review of fluid mechanics, 43:141–162, 2011.

[127] XY Luo and TJ Pedley. A numerical simulation of unsteady flow in a two-dimensional

collapsible channel. Journal of Fluid Mechanics, 314:191–225, 1996.

131



[128] Natasha Mirza, Cesar Ruiz, Eric D Baum, and Jeffrey P Staab. The prevalence of major

psychiatric pathologies in patients with voice. Ear, nose & throat journal, 82:10, 2003.

[129] Timothy E Shurtz and Scott L Thomson. Influence of numerical model decisions on the

flow-induced vibration of a computational vocal fold model. Computers & structures, 122:

44–54, 2013.

[130] Siyuan Chang, Fang-Bao Tian, Haoxiang Luo, James F Doyle, and Bernard Rousseau. The

role of finite displacements in vocal fold modeling. Journal of Biomechanical Engineering,

135(11):111008, 2013.

[131] Jubiao Yang, Xingshi Wang, Michael Krane, and Lucy T Zhang. Fully-coupled aeroelastic

simulation with fluid compressibilityfor application to vocal fold vibration. Computer methods

in applied mechanics and engineering, 315:584–606, 2017.

[132] Jubiao Yang, Feimi Yu, Michael Krane, and Lucy T Zhang. The perfectly matched layer

absorbing boundary for fluid–structure interactions using the immersed finite element method.

Journal of fluids and structures, 76:135–152, 2018.

[133] Fariborz Alipour, Eileen M Finnegan, and Sanyukta Jaiswal. Phonatory characteristics of

the excised human larynx in comparison to other species. Journal of Voice, 27(4):441–447,

2013.

[134] Kosuke Ishii, Wei G Zhai, Masumi Akita, and Hajime Hirose. Ultrastructure of the lamina

propria of the human vocal fold. Acta oto-laryngologica, 116(5):778–782, 1996.

[135] Siyuan Chang, Carolyn K. Novaleski, Tsuyoshi Kojima, Masanobu Mizuta, Haoxiang Luo,

and Bernard Rousseau. Subject-Specific Computational Modeling of Evoked Rabbit Phona-

tion. Journal of Biomechanical Engineering, 138(1):011005, 2015.

[136] Ping Jiang Ge, Lesley C French, Tsunehisa Ohno, David L Zealear, and Bernard Rousseau.

Model of evoked rabbit phonation. Annals of Otology, Rhinology & Laryngology, 118(1):

51–55, 2009.

132


