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Abstract Immune activated T lymphocytes modulate the activity of key metabolic pathways to

support the transcriptional reprograming and reshaping of cell proteomes that permits effector T

cell differentiation. The present study uses high resolution mass spectrometry and metabolic

labelling to explore how murine T cells control the methionine cycle to produce methyl donors for

protein and nucleotide methylations. We show that antigen receptor engagement controls flux

through the methionine cycle and RNA and histone methylations. We establish that the main rate

limiting step for protein synthesis and the methionine cycle is control of methionine transporter

expression. Only T cells that respond to antigen to upregulate and sustain methionine transport are

supplied with methyl donors that permit the dynamic nucleotide methylations and epigenetic

reprogramming that drives T cell differentiation. These data highlight how the regulation of

methionine transport licenses use of methionine for multiple fundamental processes that drive T

lymphocyte proliferation and differentiation.

DOI: https://doi.org/10.7554/eLife.44210.001

Introduction
T lymphocytes responding to antigen undergo rapid proliferation as they differentiate to produce

effector populations. T cells also undergo large-scale, dynamic transcriptional remodelling during

differentiation in response to immune activation (Sen et al., 2016; Crompton et al., 2016;

Gray et al., 2014; Zhang et al., 2014). Immune activation of T lymphocytes requires that these cells

adapt their metabolic programs to support rapid clonal expansion and cell differentiation. For exam-

ple, activated T cells accelerate glucose metabolism to fuel oxidative phosphorylation, glycolysis and

the production of UDP-GlcNAc to allow critical intracellular protein O-GlcNAcylations (Donnelly and

Finlay, 2015; Swamy et al., 2016). Activated T cells also dramatically upregulate lipid production

programs to meet the demand for membrane biosynthesis associated with growth and

proliferation (Kidani et al., 2013). T cells also need a supply of glucose, leucine and arginine to sus-

tain the activity of the serine/threonine kinase complex Mammalian Target of Rapamycin Complex 1

(mTORC1) (Finlay et al., 2012; Nicklin et al., 2009; Wang et al., 2015), a critical kinase that regu-

lates the differentiation and migratory capacity of effector T cells (Delgoffe et al., 2011;

Sinclair et al., 2008); serine is required for biosynthesis of purine nucleotides needed for T cell pro-

liferation (Ma et al., 2017).

It is thus increasingly recognised that ensuring that T cells have a sufficient supply of metabolic

substrates for key biological processes is critical for T cell participation in adaptive immune
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responses. Hence understanding how the supply of these substrates is controlled is essential. In this

context, it is evident that protein and nucleotide methylations are essential for T cell differentiation:

Histone and DNA methylations are key epigenetic modifications that control the accessibility of

DNA to the transcriptional machinery (Allis and Jenuwein, 2016). The methylation of RNA is also

critical for cell function: mRNA cap methylation controls mRNA binding to the eukaryotic translation

initiation factor 4E (eIF4E) to regulate translation initiation (Aregger and Cowling, 2017; Gonato-

poulos-Pournatzis and Cowling, 2014; Varshney et al., 2018); the methylation of adenosine,

‘m6A’, in RNA controls multiple processes including translation, splicing and stability of mRNA

(Dominissini et al., 2012; Louloupi et al., 2018; Li et al., 2017; Mauer et al., 2017). Furthermore,

there is an increasing awareness that protein arginine methylation is critical for T lymphocyte activa-

tion (Inoue et al., 2018). How do T cells ‘manage’ the increased demand for methyl donors as they

respond to immune activation? In this context, methionine is an essential amino acid in mammals for

de novo protein synthesis but it is also required for the production of S-adenosylmethionine (SAM),

the universal methyl donor for DNA, RNA and protein methyltransferases. The unanswered question

then is how is methionine metabolism and the production of methyl donors controlled in T cells?

There are many studies showing the importance of protein, RNA, DNA and histone methyltransfer-

ases in T cells (Inoue et al., 2018; Li et al., 2017; Lee et al., 2001; Thomas et al., 2012;

Yang et al., 2015; Karantanos et al., 2016; Gray et al., 2017; Sellars et al., 2015; DuPage et al.,

2015; Geoghegan et al., 2015; Zhang et al., 2014; Tumes et al., 2013; Gamper et al., 2009).

However, critical facts about methionine metabolism are unknown; do naı̈ve T cells express all the

key enzymes for methionine metabolism to provide methyl donors for methyltransferases? Is there

any immune regulation of flux through the methionine cycle? It is also unknown how T cells control

intracellular methionine availability in terms of the balance between the production of methionine

from intracellular recycling (salvage pathways) versus external sources. How dependent is T cell acti-

vation on the external methionine supply? What are the relevant methionine transporters in T

eLife digest White blood cells known as T cells are an essential part of the immune system. If

these cells do not work properly the immune system falls down, leading to disease and eventually

death. T cells have receptors on their surface that can detect molecules that do not belong in the

body and that may indicate an infection or cancer. When one of these foreign molecules is detected,

the T cell will activate and transform to become better equipped to protect the body. These two

processes known as activation and differentiation involve extensive changes within the T cell. Many

of these changes rely on the addition of a small chemical tag onto molecules such as DNA, RNA or

proteins. The tag, a methyl group, is most often obtained by breaking down a chemical called

methionine, one of the building blocks of proteins.

Like all other animals, humans cannot make methionine, and so we must instead obtain it through

our diet or recycle it from existing proteins. This raised some questions: does the availability of

methionine limit the activity of T cells? And, if so, is it the uptake or breakdown of methionine that

has the biggest effect?

Sinclair et al. answered these questions by studying T cells from mice. First, the T cells were

activated, the proteins from those cells were then collected and quantified using a technique called

high resolution mass spectrometry.

In further experiments, the uptake and use of a radioactively labeled version of methionine was

followed in activated T cells. Using these approaches, Sinclair et al. showed T cell activation

increased the cells demand for methionine, and that T cells need a steady supply of methionine to

remain activated. The main limiting factor in this process was the speed at which the cell could make

the transport systems it needs to collect methionine from its surroundings.

These findings could prove useful in developing treatments for diseases associated with

uncontrollable T cells, such as leukaemia and certain autoimmune diseases. Such treatments could,

for example, involve restricting the transport of methionine into T cells through drugs, or potentially

via the diet.

DOI: https://doi.org/10.7554/eLife.44210.002
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lymphocytes and is methionine metabolism coupled to T cell activation and differentiation into effec-

tor cells?

The present study uses high resolution mass spectrometry and metabolic labelling strategies to

address these fundamental questions. The data identify and quantify expression of the key enzymes

of the methionine cycle in T cells and document how these are regulated by immune activation. Key

observations are that methionine flux through the methionine cycle is controlled by the T cell antigen

receptor and that a constant sustained external supply of methionine is necessary for T cell immune

activation to sustain protein biogenesis, histone methylation and RNA methylation. We identify a

dominant rate limiting step for the production of methyl donors for nucleotide and protein methyla-

tions in immune activated T cells is methionine transport across the T cell membrane. Antigen recep-

tor regulation of methionine transport across the cell membrane is thus a key step that licenses the

use of methionine for fundamental cellular process that drive T lymphocyte proliferation and

differentiation.

Results

The sustained supply of extracellular methionine is important for
activation of T cells
To investigate whether methionine availability in the external environment is important for T cells,

we initially assessed the impact of methionine deprivation on the immune activation of CD4+ T cells.

Flow cytometric forward and side scatter analysis of CD4+ T cells activated in the absence of methio-

nine revealed that these cells do not undergo normal cell growth/blastogenesis (Figure 1a). TCR-

activated CD4+ T cells deprived of methionine are smaller than CD4+ T cells activated in the pres-

ence of methionine (Figure 1a), and fail to proliferate (Figure 1b). However activation markers such

as CD69 are expressed normally (Figure 1c). Methionine levels in RPMI tissue culture media are 100

mM. Serum methionine availability has been shown to range from 3 to 30 mM (Mentch et al., 2015),

consequently we used levels of methionine spanning this range to further explore the importance of

extracellular methionine availability for CD4+ T cell differentiation. In these experiments CD4+ T cells

were activated by triggering TCR complexes and CD28 and cultured in Interleukin 2 (IL2) and IL12 to

differentiate into Th1 cells that produce high levels of interferon gamma (IFNg). We assessed the

impact of restricting methionine availability on CD4+ T cell differentiation by activating the cells in

media with different levels of methionine. The data in Figure 1d show that the frequency of IFNg

producing CD4+ T cells is dependent upon extracellular methionine availability (Figure 1d). A 2-fold

reduction in methionine from 10 mM to 5 mM thus had a striking impact on the frequency of IFNg

producing CD4+ T cells that could develop under Th1 polarising conditions (Figure 1e) and also con-

trolled the amount of IFNg produced per cell (Figure 1f).

These initial experiments show that methionine availability is rate limiting for T cell activation and

differentiation. However, another question is how important is sustained methionine supply for T cell

function? To address this question T cells were activated through TCR/CD28 in a saturating concen-

tration of external methionine (100 mM) for 20 hr prior to culturing in reduced concentrations of

methionine for a further 2 hr. We then used quantitative single cell assays to assess the impact of

acute restriction of methionine availability for protein synthesis, RNA and DNA synthesis in immune

activated T cells. Protein synthesis was assayed using a single cell assay that quantifies the incorpo-

ration of an analogue of puromycin into nascent protein chains in the ribosome; total RNA and DNA

synthesis were measured by monitoring incorporation of the nucleoside analogue, 5-ethynyl uridine

(EU) or a modified thymidine analogue (EdU) respectively. The data show that T cells activated in the

presence of 100 mM methionine have high rates of protein, RNA and DNA synthesis (Figure 1g–i).

However, limiting extracellular methionine availability for 2 hr strikingly impacted on the ability of

the cells to maintain these key processes. The EC50, that is the concentration of methionine required

for half maximal effect was in these TCR/CD28 activated CD4+ cells was 1.39 mM for protein synthe-

sis; 2.94 mM for RNA synthesis and 12.62 mM for the frequency of cells undergoing DNA synthesis

(Figure 1j–l). Similar experiments were done with Th1 effector cells. These were differentiated for 5

days in 100 mM methionine and then maintained for five hours in methionine limited media. The

data show that the ability of Th1 cells to sustain RNA, protein and DNA synthesis is also dependent

on sustained methionine supply (Figure 1m–o).
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Figure 1. T cell activation and differentiation requires a sustained supply of extracellular methionine. (a) Flow cytometry plots show the forward (FSC)

and side (SSC) scatter profiles of CD4+ T cells stimulated through the TCR (CD3/CD28) for 18 hr ± methionine. (b) Cell counts of CD4+ T cells over 48 hr

after TCR-stimulation (CD3/CD28) in the presence or absence of methionine. (c) Flow cytometry plots CD69 expression of CD4+ T cells stimulated

through the TCR (CD3/CD28) for 18 hr ± methionine. (d-f) CD4+ T cells activated with CD3/CD28 antibodies + IL2/IL12 for 3 days in indicated

Figure 1 continued on next page
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Methionine metabolic pathways in T cells.
Methionine is the predominant ‘start’ amino acid used to initiate polypeptide synthesis during

mRNA translation. Figure 2a shows naı̈ve CD4+ T cells have almost undetectable incorporation of

extracellular 3H-methionine into protein, however incorporation of 3H-methionine into protein is

greatly increased upon activation through the TCR (Figure 2a).

One explanation for the environmental methionine requirement for T cells is that it fuels protein

synthesis. However methionine fuels other essential metabolic pathways, consequently we used

mass spectrometry to explore methionine metabolism in CD4+ T cells stimulated via the T cell anti-

gen receptor/CD28 complex. In particular, the methionine cycle which is initiated when methionine

is converted into S-adenosylmethionine (SAM) in an ATP-consuming reaction and catalysed by

methionine adenosyltransferase (MAT2A). Methyltransferases then transfer the methyl group from

SAM to yield S-adenosylhomocysteine (SAH) and a methylated substrate. SAH is swiftly converted

into homocysteine (HCy) by S-adenosylhomocysteine hydrolase (AHCY, also known as SAHH). The T

cell metabolomics data show that SAM levels remain relatively constant between TCR stimulated

and naı̈ve CD4+ T cells (Figure 2b). However, TCR activated cells show an increase in the generation

of S-adenosylhomocysteine (SAH) and HCy (Figure 2b). This increased production of SAH and HCy

demonstrates that triggering the TCR drives increased flow through the methionine cycle. HCy has

two potential metabolic fates, that is, it can be converted to cystathionine, or recycled back into

methionine via subsequent enzymatic reactions through the de novo pathway. In the de novo path-

way, methionine synthase (MTR) and the cofactor vitamin B12 perform the rate-limiting step of incor-

porating methyl groups derived from folate metabolism and HCy to produce methionine. SAM can

also be utilised for polyamine synthesis, providing spermine and spermidine and yielding 5-methyl-

thioadenosine (MTA). The sulphur of MTA can be recycled back into methionine using the salvage

pathway, the first step of which is catalysed by MTA phosphorylase (MTAP) to generate 5-methyl-

thioribose-1-phosphate (reviewed in Mentch and Locasale, 2016; Albers, 2009). In this context, fur-

ther evidence that TCR triggering drives the methionine cycle is provided by the data showing that

activated CD4+ T cells accumulate 5-methylthioadenosine (MTA) and Methyl-5-thio-5-D-ribose 1-

phosphate; metabolites produced downstream of polyamine synthesis. Activated CD4+ T cells also

had increased levels of cystathionine and 2-oxobutanoate (C4H6O3); the latter is produced when

cystathionine gamma-lyase converts cystathionine to cysteine (Figure 2b).

One function for the methionine metabolite, S-adenosylmethionine (SAM), is as a methyl donor

for methylation modification reactions. The increased production of S-adenosylhomocysteine (SAH)

in TCR activated cells argues that SAM is being used as a methyl donor during T cell activation. To

explore links between TCR triggering and methylation pathways we first explored if activated T cells

showed increased protein methylation by monitoring the methylation status of histone H3 at both

activating (lysine 4; H3K4) and inhibitory (lysine 27; H3K27) sites. To investigate the methylation sta-

tus of H3K4 and H3K27 in CD4+ T cells we used flow cytometry with antibodies that recognise trime-

thylation on H3K4 and H3K27, respectively. These experiments show that trimethylation (me3) of

both H3K4 and H3K27 in CD4+ T cells is increased upon in vitro TCR- stimulation (Figure 2c).

Figure 2d shows the ratio of staining of total H3, H3K27me3 and H3K4me3 of TCR-stimulated, com-

pared with non-stimulated CD4+ T cells (Figure 2d). We also addressed whether a similar increase in

Figure 1 continued

methionine concentrations. (d) CD44 surface staining and intracellular IFNg cytokine staining. The % CD4+ T cells producing IFNg is indicated on the

plot. The percentage (e) and MFI (f) of IFNg producing CD4+ T cells from three biological replicates. (g–l) CD4+ T cells were stimulated through the

TCR (CD3/CD28) for 20 hr before culturing in reducing concentrations of methionine for a further 2 hr. The histograms (left panel) show de novo protein

synthesis as measured by incorporation of the puromycin analog (OPP) (g) or RNA synthesis as determined by EU incorporation (h). The right panels

show the MFIs over the expanded dose response. Cyclohexamide (CHX) treatment or Actinomycin D (ActD) treatment are included as negative controls

for protein and RNA synthesis. (i) The histograms (left panel) show the frequency of CD4+ T cells undergoing DNA synthesis as measured by EdU

incorporation. The right panel shows the frequency of EdU positive cells over the expanded dose response. (j–l) EC50 values were calculated from dose

response curves (using logged concentration values). Goodness of fit is represented by the R2 values. (m–o) Th1 effector cells were expanded for 5 days

before culturing in reducing concentrations of methionine for a further 5 hr. The histograms show (m) de novo protein synthesis (n) RNA synthesis and

(o) DNA synthesis. (Plots are representative of 3 biological replicates. Gating strategies are provided in Supplementary file 1. Error bars are mean ± s.d

of: three biological replicates; Points on the graphs indicate biological replicates.).

DOI: https://doi.org/10.7554/eLife.44210.003
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Figure 2. Methionine metabolism in T cells. (a) 3H radioactivity measured in TCA precipitated protein from isolated CD4+ T cells stimulated through

the TCR (CD3/CD28) in the presence of 3H-methionine for the indicated times. (b) Metabolomic analysis of metabolites in the de novo pathway and the

salvage pathway of the methionine cycle. The graphs show metabolite intensity derived from integrated peak areas of MS intensity from naı̈ve CD4+ T

cells and TCR-stimulated CD4+ T cells (CD3/CD28, for 16 hr). Enzymes are indicated adjacent to arrows (in blue). P values are indicated on each graph.

Figure 2 continued on next page
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H3K27me3 and H3K4me3 occurs in vivo. Accordingly, CD4+ T cells from OT2 TCR transgenic mice

were adoptively transferred into normal hosts prior to immunisation with the cognate antigen, oval-

bumin. Analysis of the H3K27me3 and H3K4me3 staining shows that H3 trimethylation on K27 and

K4 increases upon immune activation in vivo (Figure 2e,f).

SAM is also used as a substrate for RNA methyltransferases, producing methylated RNA and

SAH. To investigate if there are changes in RNA methylation during T cell activation we designed

experiments where CD4+ T cells were activated in methionine-free media supplemented with 3H-

methionine where the radiolabel is attached to the methyl group. This allowed us to purify RNA

from the activated cells and quantified the incorporation of the 3H-methyl group into RNA. The data

show that the 3H-radiolabel is incorporated into RNA after 6 hr of TCR/CD28 stimulation, and this is

further increased after 18 hr (Figure 2g). A key control in this experiment is to ensure that there is

no protein contamination in the RNA extractions. For this we did a parallel quantification of the

incorporation of 3H-methionine and 3H-phenylalanine: the latter would only be present into cellular

proteins. The data show there was no protein contamination of these RNA preparations as judged

by absence of any detectable 3H-phenylalanine label, compared with high levels of 3H-phenylalanine

incorporated into protein (Figure 2h).

How dependent are these protein and nucleotide methylation reactions on extracellular methio-

nine? Figure 2i shows that SAH levels in TCR activated CD4+ T cells and Th1 cells are dependent

upon extracellular methionine supply which argues that sustained methionine availability is required

to produce methyl donors for protein and nucleotide methylation (Figure 2i). In this context, the

data in Figure 2j show that the increase in H3K4 and H3K27 trimethylation in CD4+ T cells in

response to TCR activation is regulated by extracellular methionine availability (Figure 2j). We also

examined the importance of extracellular methionine for RNA methylation in T cells. One of the

most abundant mammalian RNA modifications is methylation of the N6 adenosine (m6A) regulated

by the METTL3 methyltransferase (Liu et al., 2014a). This RNA methylation is important for mRNA

stability and in T cells has been shown to be essential for normal T cell function (Li et al., 2017). The

data in Figure 2k show that the percentage of total m6A methylation in effector Th1 cells decreases

as extracellular methionine is decreased (Figure 2k). Another RNA post-translational methyl modifi-

cation found in RNA is 5-methylcytosine (m5C), the data in Figure 2l show that the amount of m5C

in mRNA from effector Th1 cells is dependent upon extracellular methionine (Figure 2l). Collectively,

these data demonstrate that extracellular methionine is not only directed into protein synthesis in T

cells but also into the methionine cycle to generate methyl donors for histone and RNA methylation

Figure 2 continued

Source data is available in Figure 2—source data 1. (c) The histograms show representative intracellular staining of total H3, trimethylated H3K27

(H3K27me3) or trimethylated H3K4 (H3K4me3) from IL7 maintained (unstimulated) or TCR-stimulated (CD3/CD28) CD4+ T cells for 18 hr. Geometric

mean fluorescence intensities (MFI) are shown in the histograms. (d) The graph shows ratios of H3, H3K27me3 and H3K4me3 MFIs from TCR-stimulated

(CD3/CD28) CD4+ T cells compared to unstimulated CD4+ T cells. (e, f) OT2 (CD45.1) cells were adoptively transferred into WT CD45.2 hosts. The hosts

were immunised with NP-OVA/alum and the transferred OT2 cells were analysed after 3 days. The histograms (left) show representative intracellular

staining of H3K27me3 (e) and H3K4me3 (f). Graphs (right) show ratios of H3K27me3 and H3K4me3 MFIs in activated OT2 CD4+ T cells compared to

non-activated host CD4+ T cells 3 days post-immunisation. (g) 3H radioactivity measured in RNA extracted from isolated CD4+ T cells stimulated

through the TCR (CD3/CD28) in the presence of 3H-methionine for the indicated times. (h) 3H radioactivity measured in protein or RNA extracted from

CD4+ T cells stimulated in parallel to (g) in the presence 3H-phenylalanine for 18 hr. (i) Levels of SAH from unstimulated (naı̈ve cells), TCR-stimulated

(CD3/CD28, 18 hr) CD4+ T cells or IL2 maintained Th1 cells ± methionine for 18 hr. (j) The histograms show representative intracellular staining of total

H3, trimethylated H3K27 (H3K27me3) or trimethylated H3K4 (H3K4me3) from IL7 maintained (unstimulated) or TCR-stimulated (CD3/CD28) CD4+ T

cells±methionine as indicated (18 hr). (k) Percentage of RNA with m6A modification, as determined by ELISA, in Th1 cells cultured with decreasing

methionine concentrations for 5 hr (as indicated). (l) Percentage of RNA with m5C modification, as determined by ELISA, in Th1 cells

cultured ±methionine for 5 hr. (Error bars are mean ± s.d of: (a–d, i–l) three biological replicates (e–f) six biological replicates. (g,h) 4 (RNA) biological

replicates and five biological replicates (protein). MFIs are indicated in the histograms, points on the graphs indicate biological replicates. (b, e, l) t -

test; (d,i,k) One-way ANOVA; P= *<0.05, **<0.01, ***<0.001, ****<0.0001; Flow cytometry gating strategies are provided in Supplementary file 1).

DOI: https://doi.org/10.7554/eLife.44210.004

The following source data is available for figure 2:

Source data 1. Spreadsheet containing the list of metabolite intensities derived from integrated peak areas of MS intensity from naı̈ve CD4+ T cells

(N1-3) and TCR-stimulated CD4+ T cells (S1-3).

DOI: https://doi.org/10.7554/eLife.44210.005
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reactions. Furthermore, the sustained supply of extracellular methionine is necessary for these

processes.

Methionine cycle regulation in T cells
The elevated levels of SAH and HCy and the increased levels of RNA and histone methylation dem-

onstrate that immune activated T cells increase metabolic flow through the methionine cycle. To

explore the molecular basis for the increases in methionine metabolism in activated T cells we used

quantitative, mass spectrometry-based proteomics to interrogate the expression and abundance lev-

els of methionine cycle enzymes in naı̈ve, TCR activated and effector CD4+ T cells. Critical enzymes

that regulate the metabolic flow through the two arms of the methionine cycle, the de novo and sal-

vage pathways, are shown in Figure 3a,b. We initially looked at the expression levels of these key

proteins in naı̈ve T cells by comparing their relative abundance against the backdrop of the total pro-

tein landscape. The data show that naı̈ve CD4+ T cells express the key methionine cycle enzymes

MAT2A, AHCY and MTR (Figure 3c,d and e). Interestingly, both MAT2A and AHCY are highly abun-

dant proteins in the naı̈ve cell proteomic landscape (Figure 3c and d). Similarly, SRM/SMS and

MTAP, enzymes which use SAM for polyamine synthesis and subsequent methionine salvage, are

abundantly expressed in naı̈ve T cells (Figure 3f and g). mtnA-D, enzymes involved in the final steps

of methionine salvage, are also expressed at levels higher than the ‘average’ protein is expressed in

a T cell (Figure 3h). The relative abundance, as indicated by their concentration, of these proteins

within the total proteomic landscape is consistently maintained at high levels upon activation and

differentiation of CD4+ T cells (Figure 3i).

The data in Figure 2 show that immune activation of T cells drives increased RNA methylation.

We therefore interrogated the proteomic data to quantify expression of essential RNA methyltrans-

ferases in naı̈ve and immune activated T cells. mRNA methyl cap formation marks RNAs for further

processing, nuclear export and translation initiation (Gonatopoulos-Pournatzis and Cowling, 2014);

the m6A RNA methylation regulates mRNA stability (Geula et al., 2015). Key methyltransferases for

RNA cap methylation are RNMT, the RNA (guanine-7-) methyltransferase (Cowling, 2009), and the

cap methyl transferases CMTR1 or CMTR2 (Inesta-Vaquera and Cowling, 2017). The proteomics

data show that RNMT and CMTR1 are abundantly expressed in naı̈ve and at similar levels in TCR

activated CD4+ T cells, whereas CMTR2 is not expressed at high levels in any population

(Figure 4a). The data show that naı̈ve T cells also express equimolar levels of the METTL3/METTL14

m6A methyltransferase complex (Figure 4b) (Liu et al., 2014b). Another frequent RNA modification

is cytosine �5 methylation (m5C). The proteomics data show that naı̈ve T cells express high levels of

NSUN2, the methyltransferase responsible for RNA m5C modification, these high levels are main-

tained after TCR activation and through differentiation (Figure 4c) (Yang et al., 2017).

The high levels of expression of the RNA methyl transferases in naı̈ve T cells is in contrast to the

pattern of expression of the histone and DNA methyl transferases. The expression of the DNA

methyl transferases DNMT1 and DNMT3a is markedly higher in immune activated CD4+ T cells than

in naı̈ve T cells (Figure 4d). Moreover, activated CD4+ T cells dramatically increase expression of

UHRF1, which is required for DNMT1 recruitment and activity (Nishiyama et al., 2016). The expres-

sion of the polycomb repressive complex 2 (PRC2), which is responsible for histone 3 lysine 27 meth-

ylation (H3K27), is also highly increased upon T cell activation and in differentiated effector T cells

compared with naı̈ve T cells (Figure 4e,f) as is expression of other key histone methyltransferases,

responsible for histone methylations including H3K4, K9 and K36 and H4K20 methylation

(Bochyn�ska et al., 2018; Mozzetta et al., 2015; Wagner and Carpenter, 2012) (Figure 4g).

One striking observation in the current study was that even short periods of methionine depriva-

tion cause a loss of RNA and histone methylations. A key question then, is whether the dependence

of these cells on extracellular methionine for histone and RNA methylation reflects that methionine

is needed to sustain expression of the methionine cycle enzymes and/or RNA and histone methyl-

transferases. To address this question, we used mass spectrometry to assess the impact of acute

methionine deprivation on the proteome of effector Th1 CD4+ T cells. In these experiments, Th1

CD4+ T cells were switched into media containing 1mM or 100mM methionine for 5 hr prior to proc-

essing for single-shot proteomics from which we identified 4’400 proteins. The data shows that the

protein expression profile did not significantly vary upon acute methionine deprivation, with a very

high correlation coefficient between the two conditions of 0.98 (Figure 5a). Proteins that showed

significant changes in expression (increased or decreased) are listed in Figure 5b.
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Figure 3. Proteomics expression of methionine pathway in T cells Quantitative proteomics data showing the abundance of key enzymes in the

methionine cycle of the de novo. (a) and the salvage pathways (b). Mean protein copy numbers, indicated in red, estimated using the proteomic ruler

protocol and presented as log-transformed mean values are shown relative to their frequency in the total data set. The graphs show copy numbers

from naı̈ve CD4+ T cells of MAT2A (c), AHCY (d), MTR (e) and SRM/SMS (f), MTAP (g) and mtnA-D (h). (i) Quantitative proteomics data comparing the

concentration of key enzymes in the methionine cycle of the de novo and the salvage pathways in naı̈ve, TCR activated and Th1 effector CD4+ T cells.

Concentration is calculated using the histone ruler and estimated mass of molecules per cell, as described in Wiśniewski et al. (2014). (Data are from

three biological replicates and error bars are mean ± s.d.).
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Figure 4. Methyltransferase expression in T cells. Abundance of (a) CMTR1 and RNMT cap methyltransferases (b) METTL3 m6A RNA methyltransferase

and (c) NSUN2 m5C methyltransferase expression in naı̈ve, TCR activated and effector Th1 CD4+ T cells (plotted as in 3 c). (e) DNA methyltransferases

use SAM as a methyl donor to methylate CG residues. The concentration of the DNA methyltransferase complexes expressed in naı̈ve CD4+ T cells

(naı̈ve), 24 hr TCR- stimulated (aCD3/aCD28, IL2/12) CD4+ T cells (TCR) and in vitro generated Th1 cells (Th1). (f) The polycomb repressor complex 2
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With regard to the methionine cycle specifically, these experiments found that acute short term

methionine deprivation of Th1 cells had no impact on expression of key enzymes including; MAT2A,

AHCY, SRM/SMS,MTAP and mtnA (Figure 5c–g). The expression of RNA, DNA and histone methyl

transferases was also not changed by short-term methionine restriction (Figure 5h–j). The need for T

cells to sustain supply of methionine to maintain the methionine cycle is thus explained by the need

for methionine to produce methyl donors.

The impact of methionine restriction on c-myc expression and mTORC1
activity
How much does methionine deprivation impact on other metabolic programs in T cells? In this con-

text, the serine/threonine kinase mTORC1 and the transcription factor c-myc can be described as

hubs of metabolic regulation in T cells. Appropriate mTORC1 activity and c-myc expression are criti-

cal for correct effector T cell responses (Xu et al., 2012; Zeng and Chi, 2017; Wang et al., 2011).

In both T cells and NK cells, expression of c-myc protein is highly sensitive to amino acid availability

and expression of amino acid transporters (Sinclair et al., 2013; Loftus et al., 2018). To explore

whether c-myc expression was dependent upon extracellular methionine availability, we used a

mouse model where a fusion protein of GFP-Myc is expressed under the control of the endogenous

Myc promoter (GFP-MycKI) (Huang et al., 2008; Preston et al., 2015). GFP-MycKI CD4+ T cells

increase expression of the activation marker CD69 in response to TCR/CD28 stimulation in both the

presence (100mM) and absence of methionine. The data show that the induction of GFP-Myc expres-

sion in response to TCR/CD28 activation is blunted in the absence of methionine (Figure 6a,b).

It has also recently been demonstrated that methionine availability regulates mTORC1 activity

through metabolite SAM binding to SAMTOR; SAM- SAMTOR then associates with and inhibits

GATOR1, resulting in lysosomal recruitment and activation of mTORC1 (Gu et al., 2017;

Valvezan and Manning, 2019). To investigate whether mTORC1 activity in T cells is sensitive to

extracellular methionine availability, effector CD4+ Th1 cells were switched to methionine free condi-

tions and the impact of this on mTORC1 activity in Th1 cells was assessed. The data show mTORC1

activity in T cells was partially sensitive to methionine deprivation, though the impact of methionine

loss was not equivalent to total amino acid deprivation or rapamycin treatment (Figure 6c,d). Treat-

ment with SAM (50mM) modestly restores mTORC1 activity in the absence of methionine (Figure 6e,

f). These data show that methionine availability and the production of SAM can feed into control of

mTORC1 activity. The impact of methione deprivation on c-myc expression and mTORC1 activity

highlights the diversity of cellular responses in T cells that are able to sense the external methionine

environment.

Control of the methionine cycle in T cells via controlled expression of
methionine transport
The proteomic data reveal that increased flux through the methionine cycle and increases in RNA

methylation are not explained by changes in the abundance of the key enzymes of the methionine

cycle or the RNA methyl transferases. However, the sustained availability of extracellular methionine

is critical which raises the possibility that the rate limiting step for methionine metabolism in acti-

vated T cells is the rate of methionine transport. To investigate the methionine transport capacity of

naı̈ve versus effector T cell populations, we compared radiolabeled methionine uptake in naı̈ve and

activated T lymphocytes. Naı̈ve CD4+ T cells show very little/near undetectable uptake of 3H-labeled

methionine (Figure 7a) whereas methionine transport was readily detected in CD4+ T cells activated

with CD3/CD28 crosslinking antibodies and in effector Th1 cells (Figure 7a). Figure 7b show that

Figure 4 continued

(PRC2) uses SAM to methylate lysine residues for example K27 on histone tails. Concentration of the PRC2 components calculated from proteomics

data from naı̈ve CD4+ T cells (naı̈ve), 24 hr TCR- stimulated CD4+ T cells (TCR) and in vitro generated Th1 cells (Th1). (g) Flow cytometry plots showing

EZH2 staining in naı̈ve CD4+ T cells, CD4+ T cells stimulated through the TCR (aCD3/aCD28, IL2/12) for 18 hr and in vitro generated Th1 cells. MFI are

shown on the graph. (h) Concentrations of histone methyltransferases calculated from proteomics data of naı̈ve CD4+ T cells (naı̈ve), 24 hr TCR-

stimulated CD4+ T cells (TCR) and in vitro generated Th1 cells (Th1). Histone methyl modifications are indicated. (Error bars are mean ± s.d. Data are

from three biological replicates.).

DOI: https://doi.org/10.7554/eLife.44210.007
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Figure 5. Acute methionine restriction on methionine cycle proteome Quantitative ‘single-shot’ proteomics was performed on in vitro generated IL2

maintained Th1 cells cultured for 5 hr in 100 mM or 1 mM methionine. (a) The graph shows the protein copy numbers in Th1 cultured with 1 mM

methionine plotted against those in 100 mM methionine. Pearson correlation is indicated. (b) Proteins that were significantly differentially expressed

(P = <0.05, with a 1.5 fold cut-off) are listed by gene name. They are ranked as most decreased by acute methionine deprivation to those that are
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the high levels of methionine transport in Th1 cells is dependent on sustained signalling via the IL2

receptor. Hence, either the removal of IL2, or the exposure of cells to limiting IL2 concentrations,

results in a decrease of 3H-methionine uptake. Together, these data demonstrate that naı̈ve CD4+ T

lymphocytes greatly increase methionine uptake in response to antigenic stimulation. These changes

in methionine transport could reflect changes in either the expression or activity of T cell methionine

transporters.

Mammalian methionine transporters include the System ASC (alanine-serine-cysteine preferring)

transporter SLC1A5; the System L transporters SLC7A5 and SLC7A8; the System y + L transporters

SLC7A6 and SLC7A7; and the System A transporters SLC38A1 and SLC38A2 (Utsunomiya-

Tate et al., 1996; Baird et al., 2009; Bröer and Palacı́n, 2011; Kanai et al., 1998; Nii et al., 2001;

Napolitano et al., 2015). Interrogation of the naı̈ve, TCR and effector T cell proteomic data identi-

fied several candidate methionine transporters in TCR stimulated CD4+ T cells and effector Th1s;

notably SLC1A5, SLC7A5, SLC7A6 and SLC38A2 (SNAT2) (Figure 7c). The candidate methionine

Figure 5 continued

increased. (c-g) The graphs show mean copy numbers (estimated using the proteomic ruler protocol) of (c) MAT2A, (d) AHCY, (e) SMS/SRM, (f) MTAP

and (g) mtnA. (h-j) The graphs show mean copy numbers of (h) RNA cap methyltransferases RNMT and CMTR1; (i) DNA methyltransferase complex

components UHRF1, DNMT1 and DNMt3a and (j) histone methyltransferases SUV39H1, SETD3 and EZH2. (Error bars are mean ± s.d. Data are from

three biological replicates.).
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Figure 7. Antigen receptor and cytokine signalling regulate methionine bioavailability through SLC7A5 expression. (a) Uptake of 3H-methionine in

purified CD4+ T cells±TCR activation using CD3/CD28 antibodies for 3 or 18 hr. (b) 3H-methionine uptake in 5 day in vitro expanded Th1 cells switched

for final 18 hr into indicated concentrations of IL2. (c) The graphs show copy numbers of potential methionine transporters from proteomics data sets of

naı̈ve CD4+ T cells, 24 hr TCR- stimulated CD4+ T cells and effector Th1 cells. (nd = not detected) (d) Uptake of 3H-methionine in IL2 maintained Th1

Figure 7 continued on next page
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transporters that were detected in activated T cells have different expression levels: the most abun-

dant candidates were SLC7A5 and SLC1A5 (ASCT2). SLC7A6, and SLC38A2 (SNAT2) are both

expressed at far lower levels than SLC7A5. The proteomic data moreover reveal the basis for the

failure of naı̈ve T cells to transport methionine: they have a very low copy number of any candidate

methionine transporter (Figure 7c). Hence in contrast to methionine cycle enzymes which are abun-

dantly expressed in naı̈ve and effector CD4+ T cells, expression of methionine transporters is

restricted to TCR activated and effector T cells.

One way to address which methionine transporter dominates in activated T cells is to use selec-

tive pharmacological approaches that would distinguish the different candidates. For example, 2-

aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) is a competitive blocker for System L transport-

ers (Verrey et al., 2004); MeAIB competitively blocks SLC38A2 (Mackenzie and Erickson, 2004).

Alanine has a high affinity for SLC1A5 (Kanai and Hediger, 2004); lysine is transported preferentially

by SLC7A6. Accordingly, alanine and lysine competition of methionine transport can be used as evi-

dence for involvement of SLC1A5 or SLC7A6 respectively (Verrey et al., 2004). Furthermore,

SLC1A5, SLC38A2 and SLC7A6 are all dependent on sodium to mediate methionine transport

(Kanai and Hediger, 2004; Mackenzie and Erickson, 2004; Verrey et al., 2004). Accordingly we

assessed the biochemical properties of the methionine transporters in activated T cells. The data

show that 3H-methionine uptake in CD4+ effector Th1 cells is blocked by BCH. The data also show

that competition by either Alanine, Lysine or MeAIB which would block System A mediated uptake

has little impact on methionine transport in activated CD4+ T cells (Figure 7d). Furthermore, 3H-

methionine uptake in effector CD4+ T cells is sodium independent (Figure 7e). This contrasts with

glutamine uptake in the same effector cells, which is not affected by BCH and is sodium dependent

(Figure 7e,f). Collectively these data establish that methionine transport in activated T cells is via

System L transporters. Further evidence for this conclusion is shown in Figure 6g: the cellular uptake

of the System L substrate 3H-phenylalanine is competitively inhibited by methionine (Figure 7h); 3H-

methionine incorporation into protein in activated T cells is blocked by the System L transport inhibi-

tor BCH (Figure 7h); TCR induced production of methylated RNA is prevented in the presence of

BCH (Figure 7i); BCH treatment reduces SAH levels in TCR activated CD4+ T cells (Figure 7j); m6A

mRNA methylation is reduced in the presence of BCH (Figure 7k). Collectively these data show that

methionine delivery mediated via System L amino acid transporters is the rate limiting step for the

methionine cycle in T cells and rate limiting for protein synthesis and RNA methylation. The only Sys-

tem L candidate identified in the proteomics was SLC7A5 and this was also very abundant

(Figure 7c). To test the involvement of SLC7A5 directly we examined the methionine transport

capacity of T cells lacking SLC7A5 expression. Figure 7l shows that SLC7A5 null CD4+ T cells do not

increase methionine uptake in response to activation with CD3/CD28 antibodies. SLC7A5 null CD4+

T cells T cells also show a striking decrease in their ability to increase levels of the methionine metab-

olite SAH in response to TCR/CD28 stimulation (Figure 7m). This is consistent with SLC7A5 expres-

sion being required for the increased flux of methionine through the methionine cycle in response to

TCR activation and differentiation.

Figure 7 continued

cells in the presence or absence of BCH, ALA, LYS, MeAIB or MET (all 5 mM). (e) Uptake of 3H-methionine (left panel) or 14C glutamine (right panel) in

IL2 maintained Th1 cells in presence or absence of sodium in the uptake buffer. (f) 14C-glutamine uptake in IL2 maintained Th1 cells in the presence or

absence of GLN, ALA and BCH (all 5 mM). (g) 3H-phenylalanine uptake in IL2 maintained Th1 cells in the presence or absence of BCH, ALA, LYS, LEU or

MET (all 5 mM). (h–i) 3H radioactivity of TCA precipitated protein (h) or RNA (i) from CD4+ T cells stimulated through the TCR (CD3/CD28) for 6 hr in the

presence of 3H-methionine ± the System L inhibitor BCH. (j) SAH levels as determined by ELISA in CD4+ T cells stimulated through the TCR (CD3/

CD28)±the System L inhibitor BCH for 18 hr. (k) Percentage of RNA with m6A modification, as determined by ELISA, in Th1 cells cultured in 20 mM

MET ±BCH for 5 hr. (l) Uptake of 3H-methionine in TCR stimulated (CD3/CD28, 18 hr) CD4+ T cells from Slc7a5fl/fl or Cd4-Cre+::Slc7a5fl/fl mice,

compared to unstimulated CD4+ T cells maintained in IL7,±System L transporter inhibitor BCH (5 mM). (m) SAH levels in CD4+ T cells from Slc7a5fl/fl or

Cd4-Cre+::Slc7a5fl/fl mice stimulated through the TCR (CD3/CD28) for 18 hr, compared to naive cells. ((a,b- d, f, g, l, m) ANOVA, (e,h–k) t-test; P=

*<0.05, **<0.01, ***<0.001, ****<0.0001. Uptakes performed in triplicate. Error bars are s.d. from minimum three biological replicates. Points indicate

individual biological replicates.).

DOI: https://doi.org/10.7554/eLife.44210.010
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Discussion
The present study explores how T cells control a fundamental metabolic pathway and shows that

antigen receptor triggering of T cells initiates a cycle of methionine metabolism that generates the

methyl donors required for RNA and histone methylation. We establish that a critical, rate limiting

step to fuel protein synthesis and the methionine cycle in T cells is antigen receptor and cytokine

regulation of methionine transport across the cell membrane. Naı̈ve T lymphocytes express high lev-

els of all the key methionine cycle enzymes but cannot transport sufficient methionine to provide the

substrates for these enzymes or to fuel protein synthesis. The methionine cycle and protein synthesis

are thus only initiated in T cells when antigen receptor engagement signals the expression of methi-

onine transporters that support high rates of methionine transport. This provides some new under-

standing regarding mechanisms that ensure the immunological specificity of effector T cell

differentiation. Only T cells that respond to antigen to upregulate methionine transport will be able

to fuel protein synthesis and supply the methyl donors that permit the dynamic nucleotide methyla-

tions and epigenetic reprogramming that drives T cell differentiation.

Activated T cells express multiple candidate mammalian methionine transporters, therefore we

have used a combination of pharmacological and genetic strategies and pinpoint that the sodium

independent System L amino acid transporter, SLC7A5 is the dominant methionine transporter in

activated T cells. Previous studies have shown that SLC7A5 is important for T cell differentiation in

vitro and in vivo (Sinclair et al., 2013) and proposed that this reflected the role of SLC7A5 as the

key leucine transporter in activated T cells and its subsequent role in regulating the activity of the

leucine sensing kinase mammalian target of rapamycin complex 1 (mTORC1). The present data pro-

vide additional novel information as to why SLC7A5 is critically important for T cells; it is required to

transport methionine. The present data further highlight that the importance of SLC7A5 for T cell

biology reflects that it is a common transporter for multiple essential amino acids.

The dependence of T cell activation, differentiation and proliferation on extracellular methionine

was striking and indicates that T cells cannot rely on methionine salvage pathways or autophagy of

intracellular cargo to meet their demands for methionine. One reason methionine supply is so impor-

tant for immune T cells is to fuel de novo protein synthesis. For example, we show that the expres-

sion of c-myc, a critical transcription factor for T cells, is controlled by external methionine

availability and this is a simple reflection of the fact that proteins with a short half life like c-myc will

be dependent on sustained availability of amino acids. In this latter context, it has been shown that

in vivo activated CD8+ T cells exhibit dynamic control of translation as they differentiate from naı̈ve

(low translation rates) into effector (high translation rates) and memory (low translation rates) cells

(Araki et al., 2017). The present data highlight that the most critical rate limiting step for mRNA

translation is the rate of methionine transport via the System L transporter SLC7A5 because it is this

transporter that determines intracellular methionine bioavailability. We have previously shown that

SLC7A5 expression is restricted to TCR activated effector cells and low in naı̈ve and memory T cells

(Sinclair et al., 2013; Preston et al., 2015). The dynamic changes in mRNA translation observed by

Araki et al. (2017) could thus reflect changes in the methionine transport capacity of naı̈ve versus

effector versus memory T cells.

One other insight from present data was how much T cells depend on an external methionine

supply and the controlled expression of methionine transporters to sustain the production of

S-adenosylmethionine (SAM), the methyl donor for DNA, RNA and protein methyltransferases.

Methionine availability and SAM production also modulate mTORC1 activity in T cells analogous to

the recently described methionine/SAM sensing pathways that regulate mTORC1 in HEK 293 T cells

(Gu et al., 2017). The supply of methyl donors for protein and nucleotide methylations is critical for

many cellular processes. For example, mRNA cap methylation controls mRNA binding and transla-

tion (Gonatopoulos-Pournatzis and Cowling, 2014); the methylation of adenosine, ‘m6A’, in mRNA

controls mRNA stability and is important for T cell homeostasis (Li et al., 2017). The data herein

give new insights namely that engagement of the TCR induces RNA methylation and it is the ability

of TCR triggering to control methionine transport to fuel the methionine cycle that allows the TCR

to control RNA methylation. In this context the TCR does not control expression of the RNA methyl-

transferases; these are already present in naive T cells. The generation of methyl donors by the

methionine cycle is also necessary for DNA methylations which are known to be critical for the tran-

scriptional reprogramming that controls T cell differentiation with both increased and repressed
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transcription of multiple genes, coordinated by changes in DNA methylations (Crompton et al.,

2016; Youngblood et al., 2017; Thomas et al., 2012; Hashimoto et al., 2013; Makar and Wilson,

2004; Ladle et al., 2016). Regulated changes in histone methylation are also critical for T cell

(Henning et al., 2018). Our quantitative proteomics analysis revealed that expression of histone

methylation complexes is low in naı̈ve T cells and increased upon T cell activation. The ability of

immune activated T cells to control histone methylations requires the co-ordination of the expression

of methionine transporters to supply the methionine cycle to make methyl donors as well as to sup-

ply methioinine for ‘building’ the expression of the key methyltransferase complexes. This is in con-

trast to the control of RNA methylation where methyltransferases responsible for RNA modifications

are present in naı̈ve T cells and poised awaiting substrate availability. The present work highlights

that a full understanding of epigenetic control of cell phenotypes and the importance of RNA meth-

ylations requires knowledge of the rate limiting processes that control the methionine cycle under

physiological conditions. Hence identification of methionine transporters and understanding the

molecular details of how methionine transporter expression is regulated is important to understand

how cells control the supply of methyl donors to support key biological processes. In this respect the

importance of methionine bio-availability to other cell lineages is now recognized eg for liver cells

and embryonic stem cells (Tang et al., 2017; Shiraki et al., 2014; Mentch et al., 2015). However,

these studies do not explore or discuss the possibility that methionine availability to cells is deter-

mined by regulated expression of methionine transporters. There is only a limited understanding of

the identity of the relevant methionine transporters in different cell types and very little understand-

ing of the signals that control expression of methionine transporters in different tissues.

Finally, the importance of regulated changes in methionine transport for T cell activation predict

that changes in dietary methionine, as seen by Mentch et al. (2015), could impact on T cell function.

Extracellular methionine availability in plasma is thus dependent upon dietary intake and dietary

methionine restriction has been shown to alter histone methylation in the liver (Mentch and Loca-

sale, 2016; Mentch et al., 2015). Whether a T cell would encounter limiting methionine concentra-

tions is unknown, but it is a possibility. In particular it is possible that T cells may have limited access

to methionine if they are positioned in tissues where other cells compete for nutrients. For example

in a tumour microenvironment. The present data indicate that any study of how dietary methionine

impacts any cell will need to consider the impact of restricting methionine on a range of intracellular

signaling and metabolic pathways, RNA modifications and mRNA stability and not only consider the

availability of methionine for protein synthesis.

Materials and methods

Key resources table

Reagent type (species) or
resource Designation

Source or
reference Identifiers

Additional
information

Genetic reagent (M.
musculus)

JAX C57BL/6J,
WT

JAX C57BL/6J Mice, Charles
River
UK

strain
code 632

Genetic reagent (M.
musculus)

Cd4Cre Slc7a5fl/fl Sinclair et al., 2013

Genetic reagent (M.
musculus)

GFP-MycKI Huang et al., 2008;
Preston et al., 2015

In these mice, a fusion protein of Myc
and enhanced green
fluorescent protein
(GFP-Myc) is expressed
from the endogenous
Myc locus (GFP-MycKI)

Genetic reagent (M.
musculus)

OT2 Barnden et al., 1998 maintained in house
on a CD45.1 (LY5.1)
background

Antibody Anti-CD3 (armenian
hamster,
monoclonal)

ThermoFisher Cat #
14-0031-82, RRID:
AB_467049

T cell activation: 1 mg/ml; Th1
differentiation: 2 mg/ml

Continued on next page
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Continued

Reagent type (species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody Anti-CD28 (syrian
hamster,
monoclonal)

ThermoFisher Cat #
16-0281-82, RRID:
AB_468921

T cell activation: 2 mg/ml; Th1
differentiation: 3 mg/ml

Antibody Anti-CD4
(rat, monoclonal)

Biolegend Cat #
100530, RRID:
AB_389325

cell surface
staining 1:200

Antibody Anti-TCRb (armenian
hamster,
monoclonal)

Biolegend Cat #
109220, RRID:
AB_893624

cell surface
staining 1:200

Antibody Anti-CD62L (rat, monoclonal) Biolegend Cat #
104412, RRID:
AB_313099

cell surface
staining 1:200

Antibody Anti-TCR V
alpha 2 (rat,
monoclonal)

Biolegend Cat #
127808, RRID:
AB_1134183

cell surface
staining 1:200

Antibody Anti-CD44
(rat, monoclonal)

Biolegend Cat #
103030, RRID:
AB_830787

cell surface
staining 1:200

Antibody Anti-CD45.1 (mouse,
monoclonal)

Biolegend Cat #
110714, RRID:
AB_313503

cell surface
staining 1:200

Antibody Anti-CD45.2 (mouse,
monoclonal)

Biolegend Cat #
109816, RRID:
AB_492868

cell surface
staining 1:200

Antibody Anti-CD69 (armenian
hamster,
monoclonal)

Biolegend Cat #
104522, RRID:
AB_2260065

cell surface
staining 1:200

Antibody Anti-INFg
(rat, monoclonal)

Biolegend Cat #
505810, RRID:
AB_315404

intracellular
cytokine staining
1:50

Antibody Anti-phospho-S6 (rabbit,
monoclonal)

Cell Signaling
Technologies

Cat #
2211, RRID:
AB_331679

intracellular
staining 1:50

Antibody Anti-Histone H3 (rabbit,
monoclonal)

Cell Signaling
Technologies

Cat # 82241S intracellular
staining 1:50

Antibody Anti-Histone H3K4me3
(rabbit,
monoclonal)

Cell Signaling
Technologies

Cat # 12064 intracellular
staining 1:50

Antibody Anti-H3K27me3
(rabbit,
monoclonal)

Cell Signaling
Technologies

Cat # 12158 intracellular
staining 1:50

Antibody Anti-rabbit A647 Cell Signaling
Technologies

Cat #
4414, RRID:
AB_10693544

intracellular
staining 1:500

Antibody Anti-mouse CD16/CD32 Fc
Block, (rat,
monoclonal)

BD
Biosciences

Cat #
553141, RRID:
AB_394656

Fc block 1:70

Peptide,
recombinant
protein

IL2 Novartis, UK Proleukin Th1 differentiation:
20 ng/ml

Peptide,
recombinant
protein

IL12 RnD Systems,
UK

Cat # 419 ML Th1 differentiation:
10 ng/ml

Peptide,
recombinant
protein

NP-OVA BioSearch technolgies,
UK

Cat # N-5051 Immunisation
100 mg per
mouse

Continued on next page
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Continued

Reagent type (species) or
resource Designation

Source or
reference Identifiers

Additional
information

Commercial
assay or kit

EasySep CD8
positive
isolation kit

STEMCELL Technologies,
UK

Cat # 19853

Commercial
assay or kit

SAH Elisa Axis-Shield Cat # FHCY100

Commercial
assay or kit

m6A methylation Epigentek Cat # P-9005

Commercial
assay or kit

m5C methylation Epigentek Cat # P-9009

Commercial
assay or kit

Rneasy
minikit

Qiagen Cat # 74104

Chemical
compound,
drug

Imject Alum Pierce, UK Cat # 77161 Immunisation
adjuvant

Chemical
compound,
drug

OPP Jena Bioscience Cat # NU-931 20 mM,
10 min incubation

Chemical
compound,
drug

Click EdU Carbosynth Cat # NE08701 10 mM,
45 min incubation

Chemical
compound,
drug

Click EU ThermoFisher Cat # E10345 500 mM,
30 min incubation

Chemical
compound,
drug

Alexa 647
azide

ThermoFisher Cat # A10277 5 mM, in Click
reaction buffer

Chemical
compound,
drug

Actinomycin D Sigma Cat # A1410 5 mg/ml, 45 min

Chemical
compound,
drug

Cyclohexamide Sigma Cat # C7698 100 mg/ml, 30 min

Chemical
compound,
drug

Rapamycin ThermoFisher Cat # PHZ1235 20 nM

Chemical
compound,
drug

[3H] L-
methionine

PerkinElmer Cat # NET061 � 001MC 1 mci/ml uptake buffer

Chemical
compound,
drug

[3H] L-
phenylalanine

PerkinElmer Cat #
NET1122001MC

0.5 mci/ml uptake
buffer

Chemical
compound,
drug

[14C] L-
glutamine

PerkinElmer Cat #
NEC451050UC

0.1 mci/ml
uptake
buffer

Chemical
compound,
drug

silicone oil Sigma Cat # 175633 layering buffer
for uptake assay

Chemical
compound,
drug

dibutyl pthalate Sigma Cat # 524980 layering buffer
for uptake assay

Chemical
compound,
drug

Optiphase HiSafe 3 PerkinElmer Cat # 1200.437 scintillant

Software,
algorithm

FlowJo software Treestar versions 9 and 10
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Mice and cells
C57BL/6 (wild-type, WT), Cd4-Cre::Slc7a5fl/fl, GFP-MycKI and OT2 TCR transgenic mice were bred

and maintained in the WTB/RUTG, University of Dundee in compliance with UK Home Office Animals

(Scientific Procedures) Act 1986 guidelines.

To activate primary T cells, lymph nodes were removed and disaggregated. Cells were cultured

in RPMI 1640 containing L-glutamine (Invitrogen, ThermoFisher Scientific, UK), 10% FBS (Gibco,

ThermoFisher Scientific, UK), 50 mM b-mercaptoethanol (b-ME, Sigma-Aldrich, UK) and penicillin/

streptomycin (Gibco). Cells were stimulated with 1 mg/ml of the CD3 monoclonal antibody (2C11)

and 2 mg/ml anti-CD28 (37.51; ebiosciences, ThermoFisher Scientific, UK) in the presence of cyto-

kines IL12 (10 ng/ml; RnD Systems, UK) and 20 ng/ml IL2 (20 ng/ml; Proleukin, Novartis, UK). To gen-

erate Th1s, murine CD8+ T cells were depleted from lymph node preparations using CD8 depletion

kit (EasySep, STEMCELL Technologies, UK). The resulting mix of CD4+ T cells and APC were cul-

tured at 3 � 105 cells/ml for 5 days in the presence of anti-CD3 (2 mg/ml) and anti-CD28 (3 mg/ml)

and cytokines IL12 (10 ng/ml) and 20 ng/ml IL2 (20 ng/ml). For proteomics samples, naı̈ve CD4+ T

cells were isolated from lymph node and sorted gated on CD4+, CD62Lhigh and CD44low. Live TCR

activated CD4+ cells and Th1 cells were sorted for CD4+ expression and DAP1 exclusion. Cells were

then cultured in 100 mM or 1 mM methionine for a further 5 hr before processing for single-shot pro-

teomics analysis.

Where indicated, methionine free RPMI (ThermoFisher) was supplemented with 10% dialysed FBS

(ThermoFisher) and reconstituted with L-methionine (Sigma).

Cells were incubated at 37 ˚C with 5% CO2 throughout.

Adoptive transfers and ova immunisation
For in vivo activation and proliferation, OT2 (CD45.1) lymph node cells were injected into C57/Bl6

(CD45.2) hosts. After 24 hr, mice were immunised i.p. with 4-Hydroxy-3-nitrophenylacetyl hapten

conjugated to ovalbumin (NP-OVA; 100 mg; BioSearch technologies, UK) adsorbed to alum (Pierce,

UK). Spleens were harvested and transferred cells were identified and analysed at D3 after

activation.

Flow cytometry
For cell surface staining, antibodies conjugated to FITC, PE, APC, AlexaFluor 647, APC-efluor780,

AlexaFluor 700, PerCPCy5.5, Brilliant Violet 421 and 605 were obtained from either BD Biosciences,

eBioscience or Biolegend. Fc receptors were blocked using Fc Block (BD Biosciences). Antibody

clones used were: CD4 (RM4-5), TCRb (H57-597), Va2 (B20.1), CD62L (MEL-14), CD44 (IM7), CD45.1

(A20), CD45.2 (104), CD69 (H1.2F3). Cells were fixed using 1% paraformaldehyde. Standard intracel-

lular cytokine staining protocols were followed for INFg (clone XMG1.2; Biolegend) staining.

For intracellular histone methylation staining or phospho-S6 staining, cells were permeabilised

post fixation by incubation with 90% (v/v) methanol at �20˚C for at least 30 min. Following permea-

bilisation, cells were washed twice and incubated with antibody against Tri-methyl-Histone H3 (Lys

27; clone C36B11), Tri-methyl-Histone H3 (Lys 4; clone C42D8), Histone H3 (clone D1H2 XP) or phos-

pho-S6 Ser235/236 (# 2211) with anti-rabbit Alexa 647 (# 4414) secondary (Cell Signaling Technol-

ogy). Cells were then washed and resupended in 0.5% FBS (v/v) in PBS for acquisition.

For flow cytometry assays for protein, RNA and DNA synthesis; cells were treated with either 20

mM O-propargyl-puromycin (OPP, Jena Bioscience) for 10 min, Click-iT EdU (10 mM; Thermo Fisher)

for 45 mins or Click-iT EU (2 mM; Thermo Fisher) for 30 mins. The incorporation of the analogues

into newly synthesized protein, RNA and DNA was measured by labelling with Alexa 647-azide (Invi-

trogen) using a standard Click-IT chemistry reaction (Thermo Fisher). As negative controls, cyclohex-

amide (100 mg/ml; Sigma; 30mins) and Actinomycin D (5 mg/ml; Sigma; 45 min) were added to stop

protein and RNA synthesis, respectively.

Data were acquired on a LSR Fortessa II with DIVA software or a FACSVerse flow cytometer with

FACSuite software (BD Biosciences) and analyzed using FlowJo software (TreeStar, version 9 and

10). Gating strategies are shown in Supplemental data.
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SAH measurements
S-adenosyl-homocysteine (SAH) levels were measured using a competitive ELISA (Axis Homocysteine

EIA, FHCY 100, Axis-Shield) as recommended, omitting the primary enzymatic conversion of homo-

cysteine to SAH step.

Radiolabelled nutrient uptake
Briefly, nutrient uptake was carried out using 1 � 106 cells resuspended in 0.4 ml uptake medium.

Each uptake for a biological replicate is performed in triplicate. Methionine uptake was carried out

in HBSS (ThermoFisher Scientific) containing [3H] L-methionine (1 mci/ml) and a final extracellular

L-methionine concentration of 0.5 mm. Similarly, phenylalanine uptake was performed using [3H]

L-phenylalanine (0.5 mci/ml) and a final extracellular L-leucine concentration of 0.5 mm. 2 min uptake

assays were carried out layered over 0.5 ml of 1:1 silicone oil (Dow Corning 550 (BDH silicone prod-

ucts; specific density, 1.07 g/ml):dibutyl phthalate (Fluka). Where indicated, [14C] L-glutamine (0.1

mci/ml) was added to assay glutamine uptake simultaneously. Cells were pelleted below the oil, the

aqueous supernatant solution, followed by the silicon oil/dibutyl phthalate mixture was aspirated,

and the cell pellet underneath resuspended in 200 ml NaOH (1M) and b-radioactivity measured by

liquid scintillation counting in a Beckman LS 6500 Multi-Purpose Scintillation Counter (Beckman

Coulter). Where indicated, 5 mM BCH, L-Alanine, L-Lysine, L-Leucine, L-Methionine or MeAIB were

used respectively to quench radiolabeled ligand uptake. The sodium free buffer was TMACl as

described in Baird et al. (2009). Data is expressed as molecules radiotracer per cell per minute. [3H]

L-methionine, [3H] L-phenylalanine and [14C] L-glutamine were obtained from Perkin Elmer. All other

chemicals were obtained from Sigma.

3H- methionine incorporation
IL2/12 maintained effector Th1 cells were cultured with 3H-methionine for 6 hr. Protein from 5 � 106

cells was precipitated with 0.5 ml 10% trichloroacetic acid (TCA), for 15mins at room temperature.

The protein pellet was washed (x3) with cold acetone, and acetone was allowed to evaporate. RNA

was isolated from 5 � 106 cells with RNeasy minikit (Qiagen), and quantified by NanoDrop (Thermo-

Fisher). Samples were resuspended in scintillation fluid (Optiphase HiSafe 3, PerkinElmer) and 3H

radioactivity in TCA precipitated protein, or RNA was measured by liquid scintillation counting in a

Beckman LS 6500 Multi-Purpose Scintillation Counter (Beckman Coulter).

m6A and m5C RNA methylation m6A and m5C RNA methylation was quantified using the fluoro-

metric EpiQuik m6A or 5-mC RNA Methylation quantification Kit (Epigentek) respectively, following

RNA isolation from 5 � 106 cells using RNAEasy minikit (Qiagen).

Metabolomics:
Metabolite extraction-
Metabolite extraction was performed as described in previous study (Liu et al., 2015). The superna-

tant was transferred to a new Eppendorf tube and dried in vacuum concentrator at room tempera-

ture. The dry pellets were reconstituted into 30 ml sample solvent (water:methanol:acetonitrile, 2:1:1,

v/v) and 3 ml was further analyzed by liquid chromatography-mass spectrometry (LC-MS).

LC-MS method-
Ultimate 3000 UHPLC (Dionex) is coupled to Q Exactive-Mass spectrometer (QE-MS, Thermo Scien-

tific) for metabolite profiling. A hydrophilic interaction chromatography method (HILIC) employing

an Xbridge amide column (100 � 2.1 mm i.d., 3.5 mm; Waters) is used for polar metabolite separa-

tion. Detailed LC method was described previously (Liu et al., 2014b) except that mobile phase A

was replaced with water containing 5 mM ammonium acetate (pH 6.8). The QE-MS is equipped with

a HESI probe with related parameters set as below: heater temperature, 120˚C; sheath gas, 30; aux-

iliary gas, 10; sweep gas, 3; spray voltage, 3.0 kV for the positive mode and 2.5 kV for the negative

mode; capillary temperature, 320˚C; S-lens, 55; scan range (m/z): 70 to 900; resolution: 70000; auto-

mated gain control (AGC), 3 � 106 ions. Customized mass calibration was performed before data

acquisition.
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Metabolomics data analysis
LC-MS peak extraction and integration were performed using commercial available software Sieve

2.2 (Thermo Scientific). The peak area was used to represent the relative abundance of each metab-

olite in different samples. The missing values were handled as described in previous study (Liu et al.,

2014b).

Proteomics
Naı̈ve CD4+ and effector Th1 (TMT labelled)
Sample preparation and TMT labelling
Cell pellets were lysed in 400 mL lysis buffer (4% SDS, 50 mM TEAB pH 8.5, 10 mM TCEP). Lysates

were boiled and sonicated with a BioRuptor (30 cycles: 30 s on, 30 s off) before alkylation with

iodoacetamide for 1 hr at room temperature in the dark. The lysates were subjected to the SP3 pro-

cedure for protein clean-up (Hughes et al., 2014) before elution into digest buffer (0.1% SDS, 50

mM TEAB pH 8.5, 1 mM CaCl2) and digested with LysC and Trypsin, each at a 1:50 (enzyme:protein)

ratio. TMT labelling and peptide clean-up were performed according to the SP3 protocol. Samples

were eluted into 2% DMSO in water, combined and dried in vacuo.

Basic reverse-phase fractionation
The TMT samples were fractionated using off-line high pH reverse phase chromatography: samples

were loaded onto a 4.6 � 250 mm Xbridge BEH130 C18 column with 3.5 mm particles (Waters).

Using a Dionex BioRS system, the samples were separated using a 25 min multistep gradient of sol-

vents A (10 mM formate at pH 9 in 2% acetonitrile) and B (10 mM ammonium formate pH 9 in 80%

acetonitrile), at a flow rate of 1 mL/min. Peptides were separated into 48 fractions which were con-

solidated into 24 fractions. The fractions were subsequently dried and the peptides redissolved in

5% formic acid and analysed by LC-MS.

Liquid chromatography electrospray tandem mass spectrometry analysis
(LC-ES-MS/MS)
1 mg per fraction was analysed using an Orbitrap Fusion Tribrid mass spectrometer (Thermo Scien-

tific) equipped with a Dionex ultra high-pressure liquid chromatography system (nano RSLC). RP-LC

was performed using a Dionex RSLC nano HPLC (Thermo Scientific). Peptides were injected onto a

75 mm � 2 cm PepMap-C18 pre-column and resolved on a 75 mm � 50 cm RP- C18 EASY-Spray tem-

perature controlled integrated column-emitter (ThermoFisher) using a four hour multistep gradient

from 5% B to 35% B with a constant flow of 200 nL min�1. The mobile phases were: 2% ACN incor-

porating 0.1% FA (Solvent A) and 80% ACN incorporating 0.1% FA (Solvent B). The spray was initi-

ated by applying 2.5 kV to the EASY-Spray emitter and the data were acquired under the control of

Xcalibur software in a data dependent mode using top speed and 4 s duration per cycle, the survey

scan is acquired in the Orbitrap covering the m/z range from 400 to 1400 Th with a mass resolution

of 120,000 and an automatic gain control (AGC) target of 2.0 e5 ions. The most intense ions were

selected for fragmentation using CID in the ion trap with 30% CID collision energy and an isolation

window of 1.6 Th. The AGC target was set to 1.0 e4 with a maximum injection time of 70 ms and a

dynamic exclusion of 80 s. During the MS3 analysis for more accurate TMT quantifications, 10 frag-

ment ions were co-isolated using synchronous precursor selection using a window of 2 Th and fur-

ther fragmented using HCD collision energy of 55%. The fragments were then analysed in the

Orbitrap with a resolution of 60,000. The AGC target was set to 1.0 e5 and the maximum injection

time was set to 300 ms.

Database searching and reporter ion quantification
The data were processed, searched and quantified with the MaxQuant software package, version

1.5.8.3, Proteins and peptides were identified using the UniProt mouse reference proteome data-

base (SwissProt and Trembl) and the contaminants database integrated in MaxQuant using the

Andromeda search engine (Cox and Mann, 2008; Cox et al., 2011) with the following search

parameters: carbamidomethylation of cysteine and TMT modification on peptide N-termini and

lysine side chains were fixed modifications, while methionine oxidation, acetylation of N-termini of

proteins. The false discovery rate was set to 1% for positive identification of proteins and peptides
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with the help of the reversed mouse Uniprot database in a decoy approach. Copy numbers were cal-

culated as described (Wiśniewski et al., 2014) after allocating the summed MS1 intensities to the

different experimental conditions according to their fractional MS3 reporter intensities.

TCR activated CD4+ (label free)
Cell pellets were lysed and peptides generated using the SP3 method as described above, but with-

out TMT labelling. After elution with DMSO samples were fractionated by high pH reverse phase

chromatography as described above but with the following modifications; samples were loaded

onto a 2.1 � 150 mm Xbridge BEH130 C18 column with 3.5 mm particles (Waters) on a UltiMate

3000 HPLC (Thermo Fisher Scientific) and separated at a flow rate of 0.3 mL/min. Peptides were sep-

arated into 16 fractions which were consolidated into eight fractions. The fractions were subse-

quently dried and the peptides redissolved in 5% formic acid. LC-MS analysis was performed as

described previously (Rollings et al., 2018) with slight modifications. Samples were injected onto a

nanoscale C18 reverse-phase chromatography system (UltiMate 3000 RSLC nano, Thermo Fisher Sci-

entific) before being electrosprayed into a Orbitrap mass spectrometer (LTQ Orbitrap Velos Pro;

Thermo Fisher Scientific). The chromatography buffers used were as follows: HPLC buffer A (0.1%

formic acid), HPLC buffer B (80% acetonitrile and 0.08% formic acid), and HPLC buffer C (0.1% for-

mic acid). Peptides were loaded onto an Acclaim PepMap100 nanoViper C18 trap column (100 mm

inner diameter, 2 cm; Thermo Fisher Scientific) in HPLC buffer C with a constant flow of 5 ml/min.

After trap enrichment, peptides were eluted onto an EASY-Spray PepMap RSLC nanoViper, C18, 2

mm, 100 Å column (75 mm, 50 cm; Thermo Fisher Scientific) using the following buffer gradient: 2% B

(0 to 6 min), 2% to 35% B (6 to 130 min), 35% to 98% B (130 to 132 min), 98% B (132 to 152 min),

98% to 2% B (152 to 153 min), and equilibrated in 2% B (153 to 170 min) at a flow rate of 0.3 ml/min.

The eluting peptide solution was automatically electrosprayed into the Orbitrap mass spectrometer

(LTQ Orbitrap Velos Pro; Thermo Fisher Scientific) using an EASY-Spray nanoelectrospray ion source

at 50˚C and a source voltage of 1.9 kV (Thermo Fisher Scientific). The mass spectrometer was oper-

ated in positive ion mode. Full-scan MS survey spectra (mass/charge ratio, 335 to 1800) in profile

mode were acquired in the Orbitrap with a resolution of 60,000. Data were collected using data-

dependent acquisition: the 15 most intense peptide ions from the preview scan in the Orbitrap were

fragmented by collision-induced dissociation (normalized collision energy, 35%; activation Q, 0.250;

activation time, 10 ms) in the LTQ after the accumulation of 5000 ions. Precursor ion charge state

screening was enabled, and all unassigned charge states as well as singly charged species were

rejected. The lock mass option was enabled for survey scans to improve mass accuracy. MS data was

analysed as described above with the following modifications; MaxQuant software package, version

1.6.0.1. Proteins and peptides were identified using a uniport mouse canonical plus isoforms data-

base (2nd August 2018).

Single-shot proteomics on methionine deprived Th1 cells
Cell pellets were processed as described above, label free. After elution of peptides with DMSO,

samples were processed by single shot LC-MS. Analysis of peptides was performed on a Q-exactive-

HFX (Thermo Scientific) mass spectrometer coupled with a Dionex Ultimate 3000 RS (Thermo Scien-

tific). LC buffers were the following: buffer A (0.1% formic acid in Milli-Q water (v/v)) and buffer B

(80% acetonitrile and 0.08% formic acid in Milli-Q water (v/v). Aliquots of 15 mL of each sample were

loaded at 10 mL/min onto a trap column (100 mm � 2 cm, PepMap nanoViper C18 column, 5 mm,

100 Å, Thermo Scientific) equilibrated in 2% buffer B. The trap column was washed for 5 min at the

same flow rate and then the trap column was switched in-line with a Thermo Scientific, resolving C18

column (75 mm � 50 cm, PepMap RSLC C18 column, 2 mm, 100 Å). The peptides were eluted from

the column at a constant flow rate of 300 nl/min with a linear gradient from 5% buffer B to 35%

buffer B in 120 min, and then to 98% buffer B by 122 min. The column was then washed with 98%

buffer B for 15 min and re-equilibrated in 2% buffer B for 17 min. Q-exactive HFX was used in data

dependent mode. A scan cycle comprised MS1 scan (m/z range from 335 to 1800, with a maximum

ion injection time of 50 ms, a resolution of 60,000 and automatic gain control (AGC) value of 3 �

106) followed by 40 sequential dependant MS2 scans (with an isolation window set to 1.4 Da, resolu-

tion at 7500, maximum ion injection time at 50 ms and AGC 1 � 105. MS data was analysed as

described for the label-free CD4+ TCR activated sample above. Estimates of protein copy number
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were used to calculate the fold change of protein abundance between 100 mM and 1 mM methionine

and a two-sample T test with unequal variance was performed to identify proteins significantly

changing.

Public Availability of Data
The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium

data repository (https://www.ebi.ac.uk/pride/archive/login) and can be accessed with identifier

PXD012052 (for TCR activated CD4 proteome), PXD012053 (for methionine restricted Th1 prote-

ome) and PXD012058 (for naı̈ve and effector CD4 (Th1) proteomes).

Statistics
Statistical analyses were performed using Prism 4.00, GraphPad Software, or Sigma Plot (Systat). A

Shapiro-Wilk test for normality was performed to determine suitable tests for parametric or non-

parametric populations. F-tests were performed to determine equal variance of populations, other-

wise tests assuming unequal variance were performed. Multiple comparisons in one-way ANOVA

analyses were corrected for using the Holm-Sidak method. Where indicated, EC50 and R2values

were calculated with least squares fit, no constraints applied. All used tests are stated in the respec-

tive figure legends, statistical tests used for proteomics analysis are stated in the Proteomics

Materials and methods section.
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Bochyn�ska A, Lüscher-Firzlaff J, Lüscher B. 2018. Modes of interaction of KMT2 histone H3 lysine 4
methyltransferase/COMPASS complexes with chromatin. Cells 7:17–48. DOI: https://doi.org/10.3390/
cells7030017
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