Show simple item record

Delivery of CRISPR/Cas9 Ribonucleoprotein using Carrier-Free Protein Engineering or Porous Silicon Nanoparticles

dc.creatorFletcher, Ronald Brock
dc.date.accessioned2023-08-28T14:14:34Z
dc.date.created2023-08
dc.date.issued2023-07-14
dc.date.submittedAugust 2023
dc.identifier.urihttp://hdl.handle.net/1803/18460
dc.description.abstractGene editing unlocks the source code of life—DNA—for human engineering. This could enable treating myriad diseases, with huge academic and industrial efforts ongoing towards treatments for numerous cancers, neurodegenerative diseases (like Alzheimer’s or Huntington’s), hypercholesteremia, osteoarthritis, and, of course, genetic diseases like Duchenne muscular dystrophy. The biggest technical challenge remaining is delivery—getting the treatment to the right cells. Against this challenge, we engineered two very different strategies, which approached the challenge from very different angles, and demonstrated efficacy in mouse models of post-traumatic osteoarthritis (PTOA) and Duchenne’s muscular dystrophy. The first strategy is the first to ever apply porous silicon nanoparticles (PSiNPs) to Cas9 delivery. Optimizing the formulation enabled gene editing twice as efficient as a commercial standard in vitro. High levels of gene editing were also achieved in mouse models of osteoarthritis and muscular dystrophy. The second strategy is a contrarian, paradigm-shifting approach to delivery. Instead of viral or nanoparticle encapsulation, we engineer the Cas9 protein to not need encapsulation (i.e. “carrier-free” delivery) by incorporating cell-penetrating peptides, chemical RNA stabilization, and targeting peptides. In a mouse model of Duchenne’s muscular Dystrophy, we demonstrate liver-avoidance, therapeutic levels of editing upon local administration, and significant levels of editing upon intravenous administration.
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.subjectCRISPR
dc.subjectCas9
dc.subjectDelivery
dc.subjectDrug Delivery
dc.subjectAlbumin
dc.subjectCarrier
dc.subjectCarrier-Free
dc.subjectCell
dc.subjectCell-Penetrating
dc.subjectPeptide
dc.subjectCell-Penetrating Peptide
dc.subjectGene Editing
dc.subjectGene
dc.subjectDNA
dc.subjectDNA Editing
dc.subjectUptake
dc.subjectGal8
dc.subjectPorous Silicon
dc.subjectPSi
dc.subjectPSiNP
dc.subjectPSNP
dc.subjectnanoparticle
dc.subjectVINSE
dc.subjectundruggable
dc.subjectdrug
dc.subjectArthritis
dc.subjectMuscular Dystrophy
dc.subjectSV40
dc.subjectNLS
dc.subjectnuclear localization sequence
dc.subjectintravenous
dc.subjectRNA
dc.subjectRNA engineering
dc.subjectFluoro
dc.subject2'-F
dc.subject2'-OMe
dc.subjectAlphaFold
dc.subjectAi9
dc.subjectsgRNA
dc.subjectLoxP
dc.subjectCRE
dc.subjectrecombinase
dc.subjectLMWP
dc.subjectLiver
dc.subjectKidney
dc.subjectbiodistribution
dc.subjectBarium
dc.subjectBarium Chloride
dc.subjectBaCl2
dc.subjectLipofectamine
dc.subjectRNP
dc.subjectribonucleoprotein
dc.subjectrecombinant
dc.subjectHis
dc.subjectHis-Tag
dc.subject96-well
dc.subjectHigh-Throughput
dc.subjectimage cytometry
dc.subjectimage analysis
dc.subjectcomputational
dc.subjectcomputer
dc.subjectin vivo
dc.subjectintramuscular
dc.subjectintraarticular
dc.subjectIVIS
dc.subjectConfocal
dc.subjectfluorescence
dc.subjecttdTomato
dc.subjectTomato
dc.subjectSEM
dc.subjectCy5
dc.subjectAtto647
dc.subjectModeling
dc.subjectModel
dc.subjectTGA
dc.titleDelivery of CRISPR/Cas9 Ribonucleoprotein using Carrier-Free Protein Engineering or Porous Silicon Nanoparticles
dc.typeThesis
dc.date.updated2023-08-28T14:14:34Z
dc.type.materialtext
thesis.degree.namePhD
thesis.degree.levelDoctoral
thesis.degree.disciplineBiomedical Engineering
thesis.degree.grantorVanderbilt University Graduate School
local.embargo.terms2025-08-01
local.embargo.lift2025-08-01
dc.creator.orcid0000-0002-3986-9040
dc.contributor.committeeChairDuvall, Craig L


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record