Show simple item record

Single-event transients in Indium Gallium Arsenide MOSFETs for Sub-10 nm CMOS technology

dc.creatorGong, Huiqi
dc.date.accessioned2020-08-22T21:03:36Z
dc.date.available2018-09-18
dc.date.issued2018-09-18
dc.identifier.urihttps://etd.library.vanderbilt.edu/etd-09172018-130053
dc.identifier.urihttp://hdl.handle.net/1803/14170
dc.description.abstractMOSFETs are the building blocks of modern electronics. A modern microprocessor contains billions of transistors. The microelectronics revolution can be characterized by the motto ‘smaller is better’, due to its cost reduction, enhanced performance and greater efficiency. InGaAs FinFETs are promising candidates for sub-10 nm technology due to their excellent gate control and superior transport properties. Single-event transients (SETs) are electrical perturbations produced by energetic particles, such as atmospheric neutrons or alpha particles emitted from back end of line (BEOL) materials. The temporary currents generated by these events may lead to soft errors in ICs, which are one of the most important reliability issues in highly scaled technologies. In this work, SET response and charge collection mechanisms of InGaAs FinFETs are explored with both pulsed-laser and heavy-ion irradiation. InGaAs FinFETs are more sensitive to SETs than their Si counterparts due to parasitic bipolar amplification effects. InGaAs FinFETs are less sensitive to SETs as fin width decreases due to geometry and backgating effects. Plasmonic effects may enhance charge deposition in the fins for FinFETs with very narrow fins and future gate-all-around-nanowire technologies. In order to be compatible with mainstream silicon technology, InGaAs FinFETs are integrated on silicon substrates. These silicon-substrate InGaAs FinFETs are more robust to SETs than semi-insulating InP-substrate InGaAs FinFETs due to reduced bipolar amplification effects, which makes these devices promising candidates for both terrestrial and space applications.
dc.format.mimetypeapplication/pdf
dc.subjectpulsed-laser
dc.subjecttechnology computer-aided design (TCAD)
dc.subjectInGaAs
dc.subjectFinFET
dc.subjectCMOS
dc.subjectsingle-event transient (SET)
dc.subjectbipolar amplification
dc.subjectheavy ion
dc.subjecttechnology scaling
dc.subjectcharge collection
dc.titleSingle-event transients in Indium Gallium Arsenide MOSFETs for Sub-10 nm CMOS technology
dc.typedissertation
dc.contributor.committeeMemberDaniel M. Fleetwood
dc.contributor.committeeMemberRobert A. Reed
dc.contributor.committeeMemberMichael L. Alles
dc.contributor.committeeMemberEnxia Zhang
dc.contributor.committeeMemberSokrates T. Pantelides
dc.type.materialtext
thesis.degree.namePHD
thesis.degree.leveldissertation
thesis.degree.disciplineElectrical Engineering
thesis.degree.grantorVanderbilt University
local.embargo.terms2018-09-18
local.embargo.lift2018-09-18
dc.contributor.committeeChairRonald D. Schrimpf


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record